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A supervisory adaptive control approach has been developed 
for a structural vibration control of a coordinate measuring 
machine, which is a dynamic system with time varying system 
model order and parameters. An on-line dynamic data system 
modelling algorithm is used to identify the system model order 
and parameters simultaneously. Based on the identified model, 
a predictive control algorithm is applied to generate control 
commands. A supervisory strategy with several monitoring 
indices and decision-making rules is proposed to supervise the 
modelling and control processes. The developed supervisory 
adaptive control approach has been implemented in a digital 
signal processor board for structural vibration control. Exper- 
imental results indicate a 75% reduction in the peak-to-peak 
vibration and an 80% reduction in the settling time. 
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1. Introduction 

The coordinate measuring machine (CMM) has been widely 
used in manufacturing as a precision measurement gauge. 
However, the performance of CMMs is severely limited by 
dynamic deflection of the measurement problem which persists 
for a period of time after motion is completed. This problem 
becomes more dominant for a high-speed CMM, where a 
lightweight manipulator is generally used to reduce the driving 
torque requirements and to enable the CMM arm to respond 
faster. The lighter mechanisms are more likely to deform 
elastically, causing a higher level of vibration during movement. 
The settling time required for the vibration to decay delays 
subsequent operations, and conflicts with the demand for 
increased CMM measurement speed. In addition, the vibration 
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of the CMM manipulator also causes a dynamic measurement 
error, which limits the precision of the CMM. As a result, 
reducing the vibration of the CMM manipulator to achieve 
high measurement speed and to maintain high measurement 
precision is a challenging research problem. 

Lu et al. [1] studied CMM vibration control problems using 
an integrated lattice filter adaptive control system. In this 
approach, a lattice filter was applied to identify the vibration 
system model. A minimum variance (MV) control algorithm 
was linked with the identification algorithm. Simulation and 
experiments indicated an 80% reduction in the system settling 
time. However, owing to the limitations of the minimum 
variance control, the control performance was very sensitive 
to system time delays and variations. In addition, no super- 
vision was designed for the adaptive controller. Thus, "the 
belts were tensioned and air bearings were adjusted to their 
maximum stiffness" to obtain a fixed time delay. This is not 
the normal CMM working condition. As a result, further 
study on the vibration control of a CMM is important. One 
direction of the study is to design a supervisory adaptive 
controller based on a more effective on-line modelling 
algorithm and predictive control strategy. 

Adding a supervisory strategy is very important in an 
adaptive control. An adaptive control method is often applied 
to a system with time-varying parameters and structure. The 
adoption of the real-valued function has led to a sophisticated 
and comprehensive mathematical theory of feedback control. 
Differential or difference equations are used to model 
continuous-time and discrete-time dynamic systems respect- 
ively, and powerful synthesis methods have been derived [2]. 
These adaptive strategies attempt to identify (modify) the 
model in real-time and to update the control law continuously. 
However, both modelling and adaptation algorithms require 
a priori assumptions. Once these assumptions are made, 
they are often neglected during the design and subsequent 
verification phases. This can result in the actual system 
behaviour being significantly different from the designed, or 
desired behaviour, and even failing to satisfy the prescribed 
specifications. Efforts have been made to develop knowledge- 
based adaptive control or supervisory control strategies. The 
first steps in this direction were proposed in [3-6]. Almost 
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all of them concentrated on the "bursting problems" in 
parameter estimation. Several supervisory functions for the 
adaptive loop were proposed in [7]. Isermann and Lachmann 
[81 proposed a supervision level, which tries to monitor faulty 
functions as early as possible and to take appropriate actions 
in order to guarantee a satisfactory behaviour of the adaptive 
control loops. 

In general, most of the research efforts in this area are 
focused on the development of the concepts of supervisory 
adaptive control. Little literature could be found in supervisory 
adaptive control considering model order identification. Fur- 
thermore, few applications of the supervisory adaptive control 
techniques have been reported to date. 

In this paper, a supervisory adaptive control approach is 
proposed using an on-line dynamic data system (DDS) 
modelling developed by Shi [9] and predictive control tech- 
niques from Bitmead et al. [t0]. The on-line modelling 
algorithm is used to identify the system model order and 
parameters simultaneously. A predictive control algorithm is 
implemented to generate control actions based on this 
identified model. All these modelling and control processes are 
supervised by the developed supervisory strategy. According to 
the principle of "higher intelligence, lower precision" [11], 
the approach consists of three levels (see Fig. 1). The highest 
level is a supervision level to supervise the other two levels. 
The middle level is to finatise controller parameter adjustment 
and system identification. The lowest level is a predictive 
controller, which is used to control the process directly. The 
supervisory adaptive control approach developed has been 
successfully implemented in a digital signal processor board 
(DSP), and applied to a structural vibration control problem 
for a coordinate measuring machine (CMM). 

This paper is organised as follows. Following a brief 
introduction, the on-line system modelling algorithm, the 
predictive control algorithm and the supervisory strategy are 
presented in Section 2. Section 3 outlines the implementation 
on the CMM structural vibration control and its experimental 
results are given. The conclusions are summarised in Section 
4. 

I- 1 
The supervisory adaptive comroller 
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Fig. 1. The supervisory adaptive control for a CMM structural 
vibration control. 

2. Supervisory Adaptive Control Algorithm 

2.1 ~ On-l ine System Identif ication 

Consider a single-input single-output ARX(n ,m)  process, 

1 + ~ aiz -i  y ( t )  = biz -i  z -1 u(t)  + v(t) (1) 
i= l  / 

There are two basic tasks in the system identification 
process, which are: 

1. Model order determination 

2. Model parameter estimation. 

To identify the model order and parameters simultaneously, 
a candidate model set is defined as: 

CAR x = {ARX (n, n - 1) In = 1, 2 . . . . .  nrnax} (2) 

where nm~ is the highest model order. After defining (2), 
the system model order and parameters can be identified 
using a model information matrix, M(t), and its factorization 
[91. 

First define a model information matrix as shown in 
Appendix A. The matrix can be decomposed into its UDIf r 
form [9]: 

M(t) = U(t )O( t )uT( t )  (3) 

where U(t) and D(t) have the form 

u ( t )  = ( 4 )  
1 - 0 ~ ( t )  

- -01( t )  

1 - 0~(t)  

1 - o ; _ , ( t )  

1 

and 

D(t) = diag(J~ 1 (t), J0 -1 (t), j ? l  (t), 
.... j;;1 (t), J~,-_] (t), J,; 1 (t)) 

- 0 ° ( t )  

1 

(5) 

Remark  1. U(t) is an upper triangular (2n + 1) x (2n + 1) 
matrix with ones on the principal diagonal. The vector 0k(t) 
(k = 1, 2, . . . ,  n) is the weighted least-squares estimate of 
the parameters of a kth-order model where the parameter 
vector has the form 

Oik(t) = [-- ak (t -- n + k) ,  bk-1 (t - n + k) ,  

-ak-1  (t - n + k), (6) 

.... - a l ( t -  n + k ) , b o ( t -  n + k ) ]  T 

Thus, all parameter estimates of the candidate model set (2) 
are obtained simultaneously from U(t). Note that a forgetting 
factor is used in the M(t) (Appendix A) and the parameter 
estimates are the least-squares estimates with discounted 

The properties of matrices U(t) and D(t) are explained in the 
following remarks. The proof can be found in [9]. 
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measurements. This makes it feasible to track a time-varying 
process. 

Table 1. The procedure for the recursive on-line system modelling. 

Step l: construct 

Remark 2. D(t) is a (2n + 1) x (2n + 1) diagonal matrix. 
In the diagonal components, Jk(t), (k = 1, 2 . . . .  , n) is the 
criterion that is minimised to determine the weighted least- Step 2: calculate 
squares estimates for the kth-order model. In other words, 
Jk(t) (see Appendix for definition) is the weighted sum of and 
the squares of the residuals for a kth-order model at time t. Step 3: let 
If no forgetting factor is applied in the algorithm, Jk(t) is the 
unweighted sum of the squares of the residuals (RSS) for the Step 4: calculate 
kth-order model. Thus, the information contained in the 
matrix D(t) can be used in the order determination. 

Remark  3. In the U(t) and O(t) matrices, J~(t) and 0k(t) 
(k = 1, 2 . . . . .  n - 1) are obtained as part of the UDIf r 
factorisation form of the M(t). They are intermediate variables 
and have no physical significance. Step 5: 

In practice, a recursive algorithm is used to get the UDU r Step 6: 
factorisation form of the M(t). The recursive algorithm, 
including the model order determination algorithm, is summar- 
ised in Table 1. The notations and explanations for Table 1 Step 7: 
are given in Remark 4. 

Remark 4. 

1. Dz(t  ) and Uq(t) are the components of matrix D(t) and 
U(t), respectively. 

2. Ri(t) is the sum of the squares of the residuals of the ith 
model at time t; and R~(t, N)  is the sum of the squares of 
the residuals of the ith model at time t over time interval 
[t - N, t]. 

3. Fi,/is the statistic of the ith- and flh-order model and will 
be used in the F-test for the order determination. 

4. k(t) in step 4 is a forgetting factor; N in steps 8 and 9 is 
the window width designed for order determination of a 
time varying process. 

5. ei(t ) is the residual of the jth-order model at time t. 

6. All other variables are intermediate variables or vectors. 

Step 8: 

Step 9: 

and let 

for 

calculate 

calculate 

eb(t) = [y(t - n), u(t - n) . . . . .  y(t - 1), 
u(t - i), y(t)] r 

fit) = U~(t - 1)~(t), g(t) = D( t -  1)f(t) 

U(0) = 0; D(0) = pl (p > 0, is a large number). 

%(0 = X(t) for j = 1, 2 . . . . .  2nrnax + 1, repeat 
steps 4 to 6; 

%(0 = aj-l(t) + fi(t)gi(t), 
~. %-a(t)D~(t- 1) 

Djj(t) = ,~b) i , ( t )  

s j ( t )  = g j ( t ) ,  e j ( t )  = f j ( t )  

i = 1, 2, . . . ,  ] - 1, repeat step 6; 

Uq(t) = Uq(t - i) + si(t)e/(t); 
s , ( t )  = s i ( t  - 1 )  + u , j ( t )  sj(t) .  

R , ( t ) = R , ( t - 1 )  + h(t) ( ~ -  l ) J i ( t - 1 )  

with initial condition Ri(0) = Ji(0). 

calculate: 

Ri(t, N) = Ri(t) - R,(t - N) (when t > N), 

R~(t, N) = R,(t) (when t -< N) 

calculate Fq(t)= 

n,( t - i,N) - R]( t - j,N) / Rj( t - j,N) 
/ Min(t - j,N) - 2j 

F(2(i - ]), Min(t - j,N) - 2/') 

where i, j are the model orders, and 

Min(t,N) = ( tN, ' t > N  
t < N  • 

2.2 Predictive Control 

A predictive control algorithm is used in the proposed 
supervisory adaptive control. The predictive control algorithm 
consists of three steps at each sampling instant. First, the 
effects of the control variables on the output are predicted. 
Secondly, the control action is determined by minimising a 
receding quadratic cost function of the predicted output errors 
and the control steps. Finally, the resulting control action is 
applied to the system. The above three steps are repeated at 
every sampling interval. A complete recent survey of predictive 
control is given in [10]. 

For simplicity of derivation, the A R X  model is transformed 
into state space form: 

X ( k  + 1) = A X ( k )  + B U ( k )  + W ( k )  

r ( k )  = C X ( k )  + V(k )  (7) 

where X ( k )  E R n, Y ( k )  ~ R 1, W ( k )  ~ R", V (k )  @ R 1 and 
U ( k )  ~ R 1. 

Assuming U(k + i ) =  O, (i = 1, 2 . . . . .  Np), the /-step 
ahead prediction of the output l?(k + i I k) can be obtained 
from its expected value, as 

f ( ( k  + ilk ) = A i f ( (k )  + A i-I B U ( k )  

Y ( k  + ilk ) = C A i 2 ( k )  + CA i-~ B U ( k )  (8) 

where ~ (k)  is the state estimation from a Kalman filter. 
To get a predictive control law, consider the following 

receding control index: 

J ( k ) = ½ g  i=~ ~ ( k  + i l k ) +  R U 2 ( k )  (9) 

where Np is the prediction horizon; R is the weighting 
coefficient and R > 0. 

By minimising the control index (9), i.e. setting dJ(k) /  
dU(k) = 0, the predictive control law is obtained as: 
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U(k) = - ( i = 1  ( CA*-IB)r ( CAI-'B) + R 

{i=~ (CA~-~B)r (CAiX(k))} 

(10) 

2.3 Superv isory  St ra tegy  

Order Determination by F-test 

In the proposed on-line modelling approach, the system model 
order is determined by checking the significance level of 
model residual error decrease. The F-test is used in the order 
determination. However, the F-test is a statistical test with a 
probability of having errors greater than zero. As a result, 
some incorrect results may occur from a statistical point of 
view. This problem can be avoided in the order determination 
strategy by adding the supervisory rule: a newly determined 
model order is acceptable if, and only if, the number of 
consecutive Ftests consistently indicate an order change that 
is greater than a pre-set threshold N s. 

Supervision of the Measurement Noise Mean 

In the on-line modelling, the measurement mean is assumed 
to be zero. If the noise means is not zero, the estimate will 
have a bias which could lead to unstable performance. To 
get a reliable estimation result, an estimate of the mean value 
is used in the on-line modelling algorithm. The estimate of 
the observation mean at the kth instant is 

= k - 1  
M(k) - - - ~  M ( k -  1) + l y ( k )  (11) 

Detection of Identifiability Conditions 

In a closed-loop system, the variation of the process input 
and output signal can become rather small when the controller 
works well and when no external disturbances are exciting 
the control loop. Thus, no dynamic information about the 
process can be gained from the measured input and output 
signals. In many cases, this will result in the "bursting" 
problems in parameter estimation [12]. This situation is 
usually indicated by an increasing variance of parameter 
estimates which drifts to wrong values. 

To overcome this problem, a simple remedy is to automati- 
cally switch off the parameter estimation if the identifiability 
condition is violated. The identifiability conditions can be 
detected by checking the model information matrix M(t) 
(Appendix A). 

If the M(t) matrix is not positive definite, the identification 
problem may become unsolvable. The parameter estimation 
process should be stopped immediately and continued only 
when the system is identifiable again. 

Detection of Abrupt System Dynamic Change and 
Reaction 

In an adaptive control system, an abrupt change in the system 
dynamics may lead to unstable on-line modelling or control 
performance. Unexpected and abrupt changes in system 

dynamics should be detected and responded to as soon as 
they occur. Different algorithms and approaches have been 
developed [ 13]. In this paper, a recursive F-test and cumulative- 
sum (CUSUM) control chart detect approach is proposed 
using the residual sequence obtained from the on-line modelling 
algorithm. To simplify the abrupt change detection algorithm, 
only the residual from the model with the highest model 
order in the candidate model set is used in the test. The 
residual is represented as e(t), and e(t) = enm~(t). 

Recursivo F-test. The F-test is used to detect variance shift 
in the residual sequence process. Two sliding windows are 
used consequently to calculate the standard deviation of 
residuals. Thus, we have 

1 g-N2-1 1 g 
P'I - -  N 1  q- 1 E e(j),  P,2 - E e(j)  

]=k--N1-N2-1 N 2  ~- 1 l=k_N2 

(12) 

and 

1 k-~-I 
]=k-N2-,%-1 

1 k 
k~ - [e(j) - pal 2 (13) 

The statistic, f = ~ / ~ ,  follows F distribution with (N2, NI) 
degrees of freedom. By specifying a confidence level et, the 
following rules apply: 

H0: no significant change in standard deviation (no 
jump); 

HI: with a significant change in standard deviation 
(jump); 

If f < F~, accept He; otherwise, reject He and accept 
/4,. 

where F~ is obtained from an F distribution table. 

The Cumulative-Sum (CUSUM) Chart. The CUSUM chart 
is used to evaluate the hypothesis that if the process has 
remained stable, the true mean of the residuals should be 
zero. If the hypothesis is contradicted by the data, there is a 
significant reason to believe that a change has occurred which 
has affected the mean of the residuals. If the hypothesis 
cannot be disproved by the data, it is assumed that no fault 
has occurred which would affect the mean of the residuals. 

The CUSUM chart has been introduced in many quality 
control books. The calculation of the positive and negative 
CUSUMs follows [14]: 

Sn(i) = max [0, e(i) - b + SH(i - -  1)] 

SL(i) = max [0, -e(  i) - b + SL(i -- 1)] (14) 

where b = h/2, h is the shift in the mean of residuals which 
is being monitored. 

A sporadic fault is indicated at time k if SH(i)> h or 
SL(i) < h, where h and h are the parameters of CUSUM 
chart. In general, the values of h and h determine test 
sensitivity. 
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Supervision of the Adaptive Control While the On-line 
Modelling is in the Transient Period 

In the adaptive control, an on-line modelling method is used 
for the system control loop. However, there is always a 
transient period required for the on-line modelling technique 
to converge to an adequate model. During this transient 
period, the identified model is generally inadequate. If the 
transient model is used directly "in adaptive control, a poor, 
or even unstable, control performance may result. 

The supervision of the adaptive control during the transient 
period of the on-line modelling is application dependent. 
Some alternative control approach, such as PID controller, 
fuzzy controller, expert controller and dual controller, etc., 
can be applied. In this paper, a supervisory control rule is 
proposed for CMM vibration control and is presented in the 
next section. 

3. Implementation on the CMM Structural 
Vibration Control 

3 .1  E x p e r i m e n t a l  S e t - u p  

The structure of the CMM used in the experiments is shown 
in Fig. 2. The CMM is a three axis (referred to as the X, Y 
and Z axes) horizontal arm CMM driven by three d.c. servo 
motors. In this paper, the symbols, Xm~, Ym~, and Zm~, 
are used to indicate the maximum travel limit of the Xo, Y-, 
and Z-axes, respectively. The X-axis is selected to demonstrate 
the effectiveness of the developed supervisory adaptive control 
approach. 

The servo system and vibration control loop for the X-axis 
is shown in Fig. 1. An EG&G d.c. servo motor drives the 
carrier along the X-axis. A tachometer and an encoder are 
used for speed and position feedback. A servo system 

controller controls both speed and position along the X- 
axis. The vibration signal is measured using a PCB 308A2 
accelerometer (1000 mv/g high sensitivity) and a Kistler 5004 
dual mode amplifier. A step reference control signal provides 
the input to the CMM controller. The active vibration control 
signal, generated b y  a digital signal processor (DSP) board 
(TMS320C30) integrated with a Dell 386 PC computer, is 
added to the reference input signal to suppress the vibration 
of the CMM horizontal arm in the direction of the X-axis. 

The vibration signals are prefiltered by a low-pass filter 
with a cut-off frequency of 50 Hz before reaching the DSP 
board. An A/D channel of the DSP board is used to sample 
the sensor signal. The DSP processor computes the supervisory 
adaptive control command signal and sends it through the D/ 
A output channel of the DSP board. The command signal is 
sent directly to the EG&G velocity servo controller which 
drives the d.c. motor. 

In the experiment, the position control loop was not 
included. 

3 . 2  S p e c i a l  S u e p r v i s o r y  C o n c e r n s  in  t h e  C M M  

E x p e r i m e n t s  

Characteristics of CMM Horizontal Arm Vibration 

The vibration of the horizontal arm of the CMM has three 
essential variational characteristics: length of arm dependency, 
direction of x-motion dependency, and a time variational 
dependency. 

First, consider the length of arm dependency. From the 
structure of the CMM, it is obvious that the CMM will have 
different vibration modes with the horizontal at different 
extensions. For example, the vibration characteristics with the 
horizontal arm fully extended will be very different from 
those with the horizontal arm fully retracted. Figure 3 shows 
the vibration spectrum of the horizontal arm in the extended 
and retracted positions. It is clear that the vibration spectrum 
at the fully extended position has more peaks than at the 
fully retracted position: there are noo peaks at 21.2 Hz, 
26.5 Hz and 34.2 Hz at the fully retracted position. 

Another important property is the direction of motion in 
X-direction. Figure 4 shows the difference in vibration spectra 
when the CMM is moving in the positiive and negative 

probe 

Fig. 2. The coordinate measuring machine (CMM). 
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Fig. 3. Position dependent characteristics. A at position (0,0,0); B at 
position (0,), Z ~ ) .  
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Fig. 4. Direction dependent characteristics at position (0,0,Zm,~). A: 
movement in +X direction; B: movement in - X  direction). 

directions along the X-axis. One example is the peak at 
30.8 Hz. This peak is absent when the arm is moving in the 
negative X-direction. 

The time-varying property of the CMM vibration is due to 
the movement of the horizontal arm during measurement. 
The direction-dependent property and the position-dependent 
property will be reflected as time-varying properties. However, 
if an on-line modelling technique is applied to the system 
input and output, a time-varying model can be obtained. 

These characteristics indicate that the CMM vibration is a 
dynamic system with time-varying model order and parameters. 
Thus, when the adaptive control scheme is used, both the 
model order and parameters should be identified simul- 
taneously. Also, since the CMM vibration model is direction 
dependent, the system model undergoes a sudden change 
when the direction of travel is reversed. Thus, the on-line 
modelling passes through a transient period at each direction 
change. This will pose a greater challenge to the adaptive 
control problem. 

Control Strategy During the Transient Modelling Periods 

The concept of the supervisory strategy is to use a priori 
knowledge of the CMM horizontal arm vibration system. 
When the arm motion is reversed, an abrupt change occurs. 
In this event, the on-line modelling algorithm needs a transient 
time to converge to the system model. Thus, the supervisory 
strategy will be applied to the system first. After the transient 
modelling period has passed, the adaptive control is used to 
control the vibration directly. 

In this application, the prior knowledge used is that the 
vibration control can be reduced by smoothing the reference 
input. However, smoothing the reference input signal will 
also reduce the CMM throughput. A trade-off between 
vibration and through-put must be achieved. In the experiment, 
the supervisory control input is designed as: 

u,(k) = u,(k - 1) + as (u,ef(k) - u, (k - 1)) (15) 

where Uref is the reference input; us is the input after the 
supervisory rule is applied to the system; as (0 < as -< 1) is 
the trade-off coefficient to balance the vibration and the 
throughput. If as is small, a small vibration signal can be 
achieved. However, the CMM throughput will be lowered 
owing to the smaller reference control signal. If as is large, 
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the CMM may have higher throughput, but the vibration 
signal will be larger. 

Supervision of the Kalman Filter for the State Estimation 
when the Vibration Model Switches 

If an abrupt change occurs, the Kalman filter used in the 
state estimation will also have a transient time. However, 
since the Kalman filter gain converges to its static value 
(generally it is a small value), it would be difficult for the 
Kalman filter to track the state variable after the model 
switches. To improve the tracking ability of the Kalman filter 
when the model switches, the state covariance matrix P(t) 
has to be reset. Thus, the following strategy is used: 

IF { An abrupt process dynamic change is detected} 

THEN { Let P(s) = P~ * I }. Ps is a predefined positive 
number which can cover the maximum parameter change 
during the model switches; I is the identity matrix. 

3.3 Experimental Results 

The supervisory adaptive control algorithm is programmed 
using the SPOX C language, combined with assembly language, 
and implemented in a digital signal processor (TMS320C30). 
In the experiments, the following parameters are selected: 

1. Data acquisition: sampling frequency, 400 Hz; low-pass 
filter, 50 Hz. 

2. On-line modelling: maximum order of the candidate model 
set: n = 8; the initial model order: 2; initial coefficient values: 
zero; forgetting factor: 0.99; receding window length used in 
the on-line order determination: 120; the confidence level 
used in the on-line order determination: 0.99. 

3. Predictive control: predictive horizon: Np = 4; weighting 
coefficients R = 0.05. 

4. Supervisory strategy: order determination N: = 3; abrupt 
change detection N1 = N2 = 50, F~ = 2.73 and A = 0.1; 
a, = 0.95 in the supervisory control input equation (15). 

On-line Modelling Experimental Results 

For supervisory adaptive control purposes, the input signal 
given by equation (15) is used to drive the CMM. The output 
signal is measured with an accelerometer. Both the input and 
output signals are used for the on-line modelling. Equation 
(2) is selected as the candidate model set in the experiment. 
No further assumptions are made about the system model 
order or parameters. 

The on-line DDS modelling experiment was performed with 
the horizontal arm at position (0, 0, Zm,x). The on-line order 
determination result is shown in Fig. 5. Figure 6 shows the 
two-step-ahead output prediction, based on the identified 
model, compared with the real output. From the figure, we 
see that the identified model is adequate. It should be 
emphasised that the model used in Fig. 6 was obtained using 
the on-line DDS method without any assumptions on, 
or knowledge of, the vibration system model order and 
parameters. 
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Fig. 6. The output two-step forecasting based on the on-line DDS at 
position (0,0,Z=,,). 

Discussions: 

1. The on-line DDS approach can simultaneously identify the 
model order and parameters. The digital signal processor 
was able to complete both the coefficient estimation for 
the candidate model set ARX(n ,n  - 1) (n = 1, 2 . . . . .  
8) and the on-line determination within a sampling interval 
of 2.5 ms. The speed of the on-line DDS modelling makes 
it feasible for real-time applications. 

2. A lower-order model, comparing the model obtained with 
the off-line modelling techniques, can be used for real- 
time applications using the on-line modelling technique. If 
the system is time varying, the on-line modelling technique 
provides a time-varying model, which can always track the 
most dominant modes at the current moment.  However, 
an off-line model uses a single time invariant model to 
cover all the system responses in a batch of data. Thus, a 
high model order has to be used to capture all the vibration 
frequencies. However, these vibration modes may not 
occur simultaneously and a lower model order can be used 
in on-line modelling. 

3. In the application, the length of the receding window will 
influence the on-line order determination results. A larger 
window length wilt lead to smoother order determination, 
but reduces the order tracking ability. Another  important 
parameter in one-line order determination is the confidence 
level of the F-test. 
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Fig. 8. The performance of the supervisory adaptive control. 

Supervisory Adaptive Control Experimental Results and 
Analysis 

The predictive control law (10) is obtained according to the 
system output prediction. Thus, the /-step ahead prediction 
performance is critical for the control performance. Figure 7 
compares the two-step-ahead output prediction value, based 
on state estimates, with the real output. 

The supervisory adaptive controller was used to control the 
CMM vibration. Figure 8 shows the experimental results. 
From the figure, we see that the controller reduces both the 
vibration magnitude and the vibration settling time. Figure 9 

0.08" 

0.06" 

0.04 "l 
~ 0.02' 

0.00 t 

A without control 
/ \ with control 

/ ' ;  ~, A 
" t #~ . ~ ,  

I ~ X -  \ t t  I~ z t \  
r -x.X. \ ~', / II ;;  ",t.~ 

t 

10 20 30 40 50 60 
Frequency (Hz) 

Fig. 9. The comparison of the output spectrum with and without 
control. 
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Table 2. Summary of the experimental results using index (16) 

J(s) status start (+X) stop (+X) start ( -X)  stop ( -X)  

Without control 37.9 31.1 25.6 33.6 
With control 7.19 6.34 6.78 8.03 
Improvement 81.0% 79.6% 73.5% 76.1% 

4. Conclusions 

shows a comparison of the output spectrum. A summary of 
the experimental results is shown in Table 2, where the 
control performance index J(s) is defined as the sum of the 
squares of the vibration signal. 

256 

J(s) = ~ y2 (k) (16) 
k=l 

where s represents the control status: y~(k) is the vibration 
magnitude under the control status s. 

Discussions: 

1. Supervision of the model order determination is important 
in implementation. Very often model order switching 
results in improper system performance owing to the 
transient time required in the adaptive control scheme. A 
pre-set threshold N r is used to eliminate the unnecessary 
model order changes due to the statistical nature of the F- 
test. In fact, a controller generally has a robust boundary 
which can tolerate a certain amount of model mismatch. 
It is therefore recommended that for the on-line order 
determination, one should consider not only the results of 
the F-test (statistically if the model order changes or not), 
but also the robust boundary of the controller (if it is 
necessary to change the model order regarding the system 
stability concern). If the robust boundary can cover the 
mismatch of the model and system, then, the model order 
may be kept the same, even though the F-test indicates 
that the adequate model order should be changed. The 
approaches for the robust boundary determination can be 
found in [15] and [9]. 

2. In the application, the supervision of the noise mean is 
critical to the stability of the on-line system identification 
and adaptive control. The experiments have shown that 
the on-line modelling and state estimation will diverge if 
no supervision is applied. 

3. Though the "detection of the identification condition" is 
generally important for system identification, it was 
removed in the design of the controller for this application 
because there was no identification condition failure 
observed throughout the experiments. 

4. In the abrupt change detection, both the recursive F-test 
and CUSUM chart have proved to be very effective. The 
abrupt changes mostly occur when the CMM changes its 
direction of travel in the X-axis. The detection algorithm 
is finally modified to simplify the adaptive controller. 
Instead, information of changes in CMM motion X- 
direction, which is available in the CMM measurement 
program, is used as an indicator for the supervisory rules 
to detect occurrences of abrupt changes in the system. 

A supervisory adaptive controller is designed for the structural 
vibration control of a coordinate-measuring machine. Exper- 
imental evaluation demonstrated that a 75% peak-to-peak 
reduction in the vibration magnitude and an 80?/0 reduction 
in the vibration settling time have been achieved. Though the 
improvements are comparable with the results presented in 
Lu et al. [1], the experiments presented in this paper were 
conducted under normal CMM operating conditions, without 
tightening the belts to their maximum tension. Thus, the 
supervisory adaptive controller is more attractive in practical 
applications. 

In the realisation of the controller, the forgetting factor 
selection is very important for the on-line modelling. A 
general rule is that a smaller forgetting factor (around 0.95) 
corresponds to a faster CMM speed, and vice versa. However, 
a trial and error approach was used in the experiments. It 
should be noticed that once the parameter is selected for a 
specific CMM speed, it can be applied for all the CMM 
movements in the working space under the speed. For a given 
CMM, a database may be developed for the forgetting factors 
corresponding to different CMM movement speeds. Further 
study on the forgetting factor selection is desirable. 

Though the supervisory adaptive controller was developed 
and tested for the CMM structural vibration control, the 
generic controller structure, algorithm, and TNS320C30 board 
implementation can be applied for many applications. As an 
example, the implementation and further development of 
the supervisory adaptive controller in a machining chatter 
prevention project is on-going, and the results will be presented 
in another paper. 
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Appendix A. Model Information Matrix and JK(t) 

A model information matrix is defined using the system input and 
output information. To define the model information matrix for a 
piecewise stationary process, let us define the following vectors 

yk(t) = [f3(t,n)y(k), fS(t,n + 1)y(k + 1) . . . . .  

~(t,t - 1)y(t - n + k - 1), fS(t,t)y(t - n + k)]~ . . . .  1~ 

uk(t) = [~(t,n)u(k), f3(t,n + 1)u(k + 1), ..., 

~3(t,t - 1)u(t - n + k - 1), ~(t,t)u(t - n + k)]~-n+l) 

where t (t ~ n) is the time index, k = 0, 1, 2, . . . ,  n, and [3(t,i) 
(n -< i -< t) are the weighting coefficients. Also define 

Xk(t) = [yo(t), U0(t) . . . . .  yk- l ( t ) ,  Uk-i(t),  y~(t)]( . . . .  1) × ~z~+t) 

Then, the model information matrix, M(t) ,  is defined as 

The Jk(t) used in the D matrix (see equation (3)) is expressed as: 

Jk(t) = (yk(t) -- Hk(t) t~k(t)) T (yk(t) -- Hk(t) Ok(t)) 

where Jo(t) = y~(t) yo(t) and Hk(t) is defined as 

nk(0  = [x~_l(t),  n~_l(t)] 


