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Abstract Currently there is a wide variety of logic control
design methodologies used in industrial logic design. These
methodologies include ladder diagrams, function block dia-
grams, sequential function charts, and flow charts, but driven
by a desire for verifiability, academics are developing additional
logic control design methodologies, such as modular finite state
machines and Petri nets. Using these, important properties of
programs can be verified and some logic can be generated auto-
matically from a part plan. The main contribution of this paper
is to define methods for measuring programs written in different
methodologies, so that the performance of the methodologies can
be compared.

We demonstrate these methods of measurement using four
program samples that perform similar functions on the same ma-
chine, written in four logic control design methodologies: ladder
diagrams, Petri nets, signal interpreted Petri nets and modular
finite state machines.

Keywords Comparison of logic design methods - Logic
control - PLC program complexity

1 Introduction

In the automotive manufacturing industry, machines are becom-
ing increasingly complex. This complexity is driving up the cost
of the controls required to ensure each machine is as safe and
productive as possible.

Standard methods of writing control logic are being pressed
to their limits, and a number of academic alternatives have been
proposed, which may be more efficient and more reliable. How-
ever, there is currently no consensus on the merits of any particu-
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lar logic control design methodology, and no method of measur-
ing or comparing them.

There are many ways that the effectiveness of a logic con-
trol design methodology could be measured. Some measures
include: the number of elements required to create a certain
program, the ease of extracting information from an existing pro-
gram, the time required to create a program, the amount of reuse
typical in a certain methodology, the time and manpower re-
quired to install and debug a program on a machine, and the time
and manpower required to change an existing program.

Many methods of measuring the effectiveness of a logic con-
trol design methodology require that an industrial-sized project
be developed, installed, debugged, and modified. This in turn
requires the prior development of a fully featured development
environment. In short, these methods of measurement could be
prohibitively expensive.

In contrast to this full development, we have chosen to meas-
ure two properties: the number of elements required to gener-
ate a particular program, and the difficulty of answering cer-
tain questions based on an existing program. These can be used
to measure existing programs using uniform metrics. However,
high quality development environments are not required. For
example, the modular finite state machine sample discussed in
Sect. 4.5 was primarily developed using pencil and paper.

In the next section we will review previous efforts to meas-
ure logic control design methodologies, and summarize the
methodologies that we will use as demonstrations. In Sect. 3
we will present the measurements developed. In Sect. 4 we will
demonstrate the measurements on previously published code
samples written using four logic control design methodologies.
Then Sect. 5 discusses the measurements and possible future
work.

2 Review of relevant literature

There are two main areas of research that are relevant to this
work. First we will review several logic control design method-
ologies that will be used as examples in Sect. 4, and then we will



review existing methods of measuring the effectiveness of logic
control design methodologies.

2.1 Summary of logic control design methodologies used

As mentioned previously, there are many logic control design
methodologies available for logic control development. The IEC
61131-3 standard includes five languages. Ladder diagrams are
the most common, and will be described below. Sequential func-
tions charts are a method of controlling the execution of program
segments, and are used in some specific problems. Function
block diagrams are a method of programming using data flow
graphs; although they are rarely used now, they are the basis for
the emerging standard 61499 [1]. In addition instruction list and
structured text are text based languages, roughly analogous to as-
sembly and Pascal, respectively. They are rarely used in the U.S.
In addition, a nonstandard flow chart language is used by some
developers [2].

In academia, alternative logic control design methodolo-
gies have been developed. Most of these are based on Petri
nets, a well-known method of analyzing manufacturing systems,
which can be adapted for control. Petri net methods should be
easy to write and debug while allowing some structure. In add-
ition some work has been done using modular finite state ma-
chines. Modular finite state machines should allow for substan-
tial structure and code reuse.

For this paper we will study programs written using four
logic control design methodologies: ladder diagrams, Petri nets,
signal interpreted Petri nets, and modular finite state machines.
These methods were chosen to compare a reasonable breadth of
academic methodologies as well as the industry standard ladder
diagrams. In this section we provide details on each of the logic
control design methodologies considered in this paper.

2.1.1 Ladder diagrams

Ladder diagrams are the primary industrial logic control design
methodology used in American industry today [3]. This method
is the end result of a gradual evolution from the physical relays,
which electricians had previously used to control machining sys-
tems. A ladder diagram consists of individual rungs, which are
executed sequentially (see Fig. 1). In general, each rung is the
sole control for a single output or internal state variable. Inter-
nal state variables are minimized to preserve as simple a path as
possible between inputs and outputs.
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Fig. 2. Example of a portion of a Petri net. The ovals are called places, and
each can hold one or more fokens, represented by the small dark circles. The
places and transitions are connected by directed arcs under the restriction
that each arc connects a place and a transition. When a transition fires, it
removes one token from each place with an arc to the transition, and adds
one token to each place with an arc from the transition. A transition will fire
whenever its condition (usually a sensor value, in italics) is true, and firing
will not cause any places to have a negative number of tokens. Output (in
italics) is generated by the places whenever they contain at least one token

2.1.2 Petri nets

Petri nets are well established in academia as a means of mod-
elling discrete event systems. They are particularly useful for
systems that exhibit parallel and concurrent operations [4].

Petri nets can be extended to provide for active control of
systems by assigning inputs and outputs to the places and tran-
sitions of the net (see Fig. 2). A program that implements this
concept has been written at the University of Kentucky [5, 6] and
methods of generating and verifying Petri net controllers have
been developed by E. Park et al. [7, 8].

The program studied in this paper was written using the tools
developed in [5, 6] and using the format developed by E. Park.
The complete program is contained in [9].

2.1.3 Signal interpreted Petri nets

Signal interpreted Petri nets (SIPNs) are a variation on the stan-
dard Petri nets framework developed by Frey et al. [10, 11] (see
Fig. 3).

The primary differences between SIPNs and standard Petri
nets are:

dFig-;; Examp%eh_of_a ;ingle rung é)f a lad- | IR1 Part_On_1 IR2 IR2 |
er diagram. This is the rung used to con-

trol the Convl output. Conv1 is turned on |==+-[ 1--[/]-==----- t=t=[ ]-mmmmmo M U R +===()-|
by either IR1 and NOT Part_On_1, or | | Part_Trans | | Part_Trans | | Part_On_2 | Convil |
by Part_Trans. It is turned off by either I s D N 4 D N %

NOT IR2 and Part_Trans or IR2 and I + +-[/] + +-[/] + |
Part_On_2. This rung comes from an un- | | Convi | |
published program that uses two conveyors | +-[ ]-————==————- + |

to transport parts, under the constraint that
no conveyor ever contains two parts simultan-
eously.
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Fig. 3. Example of a portion of a signal-
interpreted Petri net. Transitions fire
when their conditions are true, and fir-
ing will not cause any transition to have
less then zero or more then one to-
ken. Outputs are generated by combin-
ing the output conditions of all active

T3h1

True

P3h3 .
OFF Drill Motor Up

places. Hierarchical nets are allowed Move the
(not shown) Drill Down ON Drill Motor Down
b 4
P3h2 OFF Drill Conveyor T_3h3 L. i
Drill at ON Lower Limit Switch

Drilling On

Evolution A transition in SIPN will only fire if there is one to-
ken in each in-place, and there are no tokens in any out-place.
Therefore no place will ever contain multiple tokens. In add-
ition, if the firing of one transition enables another to fire, the
second will fire during the same scan cycle. The absence of
racing conditions resulting from this firing rule can be veri-
fied by the development environment.

I/O A Boolean equation on input signals may be placed on
a transition as a firing condition. Each place defines the state
for each system output as either O (off), 1 (on), or — (don’t
care). The actual output is the sum of the outputs of each
place that contains a token. The development environment
ensures that the output is fully defined and not contradictory.

Hierarchy The SIPNs used to generate this program allow hier-
archy. A subnet may be placed within a single place of a Petri
net. Conditions are defined in [10] to ensure deterministic
behavior.

The program studied in this paper was developed by Klein [12].
The complete program is shown in [13].

Additional variants on Petri nets are occasionally used in
literature. For example, Uzam et al. [14] use Petri nets with in-
hibitor arcs to control a model system. They use reachability
graphs to validate the system, and then generate ladder diagrams
via “token-passing logic.” Peng and Zhou [15] survey the state
of research regarding conversion between Petri nets and ladder
diagrams, and generally find conversion schemes lacking.

2.1.4 Modular finite state machines

Modular finite state machines are an extension of the standard fi-
nite state machine formulation. A modular finite state machine
program consists of a set of modules, each of which contains
a trigger/response finite state machine, and instructions for com-
municating with other modules. This method attempts to pre-
serve the formality and verifiability for finite state machines in
a modular framework (see Fig. 4). Details can be found in [16].

ON Drill Spindle

Lower Limit

P3h31 OFF Drill Motor Up
Wait OFF Drill Motor Down
4 seconds
T3h31 True

The program studied in this paper was created using the software
tools developed in [17]. A report on this coding effort is in [18].

2.2 Existing logic measurement methods

A few attempts at a more direct comparison of logic control de-
sign methodologies have been made, although these comparisons
are all in a restricted domain.

Venkatesh et al. [19] devised a method of comparing the
complexity of programs written using ladder diagrams and Petri
nets using a “basic element approach.” Their method was based
on counting the number of elements required to represent a par-
ticular program. An “element” was chosen to be a place, transi-
tion, or arc for Petri nets or a contact, coil, rung or branch for
ladder diagrams.

Conveyor 1 Mod.

C1_On, C1_Off
~S2/C1_Off |S2/C1_off, C1_Ready —>
4—

X—fer/C 1 O
C l_RCad)i TX.fer

Fig. 4. Example of a single module of a modular finite state machine. This
module has four states, exactly one of which is always active. Trigger events
arrive from one of the two ports, and cause a transition to fire. Firing a tran-
sition can cause a change in the active state and/or the transmission of
a response event. Ports can connect either to the physical I/O or to another
module. For example, if the module is in the “empty” state, and event S1
occurs, the module transitions to the “active” state and the event C1_On
will be sent out the right-hand port (either to the environment or to another
module)

S1, 82, ~S1, ~82




A somewhat more sophisticated method of measuring the
complexity was presented by Lee and Hsu [20], which converts
the Petri and ladder programs into Boolean expressions, and then
counts the number of Boolean operators and equations required.

Both of these methods found that Petri nets were more effi-
cient than ladder diagrams for the samples tested.

In addition to methods of comparing logic control design
methodologies, there are a number of ways of measuring tra-
ditional, text-based languages. The most common metric is the
lines of code (LOC) required to create a program. A number of
more complex measurement methods have risen based on “soft-
ware science” [21], which counted the number of operators and
operands required, and how often they are used. Conte et al. [22]
discusses many of these methods of measurement, which typ-
ically involve measuring code based on either the number of
lines, operators, operands, functions, modules or similar objects.
These measurements can then be used to estimate size, num-
ber of errors, or time required, usually using empirically derived
equations. For example, one such derived equation is S; = 102+
5.31 VARS, where S; is the size of the program in lines of code,
and VARS is the number of variables required. These methods
have provided insights into how programs are written. However,
they are of limited use when evaluating a new programming lan-
guage since empirical data can vary. In addition, it is not clear
how they apply to the more graphically based logic control de-
sign methodologies.

The metrics presented in this paper can be used to measure
the logic in a manner that is consistent across logic control design
methodologies.

3 Methods of analysis

To analyze the generated programs we will use two methods: dir-
ect measurement and examination of which data can be easily
retrieved as described below.
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3.1 Direct measurement of programs

In traditional programming languages (such as C, C++ or Pas-
cal) the complexity of a piece of code is generally measured
by the number of lines. However, since these logic control de-
sign methodologies are quite different from one another, com-
mon elements must be found to allow for reasonable meas-
urements. The common elements that we define are: opera-
tion, state variable, cause of operation, effect of operation, and
module.

Definition 1 (Operation). A single, inseparable action or set of
actions that can be performed by the program.

Definition 2 (State variable). A single object that maintains
state.

Definition 3 (Cause of operation). If an operation X can enable
or disable an operation Y, then X is a cause of Y.

Definition 4 (Effect of operation). If an operation X can enable
or disable an operation Y, then Y is an effect of X.

Definition 5 (Module). A set of operations that are grouped by
the program designer to perform a function is called a module.
Note that in some logic control design methodologies modules
are very well defined, and in others they are only defined by their
positioning and comments.

Interpretations of these terms for each methodology consid-
ered in this paper are shown in Table 1. These terms are used to
define the following three measures of complexity for a single
piece of code:!

! The meanings for these three measures were developed in [23] as part of
a framework for subjectively evaluating visual programming environments,
although formal metrics were not defined. In that paper they were referred
to as diffuseness, abstraction gradient, and hidden dependencies. The names
have been changed to size, modularity, and interconnectedness to make the
concepts easier to understand.

Table 1. Interpretations of terms for different programming languages. Each of the logic control design methodologies can be broken into similar parts
as shown in this table. These definitions (operation, state variable, cause of operation, and effect of operation) will be used extensively when discussing

measurement details

Operation

State variable
Cause of operation X

Effect of operation X

Module

Ladder diagram

A single grouping  of
sets/resets and the logic
which controls their
implementation

Any internal or output bit
Any input or operation which
sets a bit which is a condition
on X

Any output which is set by X
or operation whose conditions
contain a bit set by X

A set of related rungs grouped
by their position and/or com-
ments

Petri net

A single transition and the
annotation associated with
the transition and destination
states

A single place

Any input which is a condi-
tion on X, or any operation
with an out-place that is an in-
place of X

Any output which is set by an
out-place of X, or any oper-
ation whose in-places contain
an out-place of X

A set of related places and
transitions grouped by their
positions and/or comments

Signal interpreted Petri net

A single transition and the an-
notation associated with the
transition and attached states

A single place

Any input which is a condi-
tion on X, or any operation
attached to a place to which X
is attached

Any output which is set by
an out-place of X, or any op-
eration attached to a place to
which X is attached

A single net or subnet

Modular finite state machine

A single transition as well as
the annotation associated with
that transition

A single state

Any input which is a trigger
on operation X, or any opera-
tion whose response is a trig-
ger on X

Any output which is a re-
sponse to X, or any operation
whose trigger is a response to

A single module
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Measurement 1 (Size) The size of a piece of code can be meas-
ured two ways: the number of operations in the code

N, = number of operations, (1)

and the number of state variables in addition to the I/O defini-
tions

N, = number of state variables. 2)

The following definition is not a measure, but will be used in
further definitions.

Definition 6 (The size of a module). A module is a conceptual
unit of code that is generally less than the whole. The number of
operations in module i will be denoted as:

N! = number of operations in module i. 3)

This will be used to determine the size of a module, since the
number of state variables in a module is not always well defined.

Measurement 2 (Modularity) The modularity of a piece of code
will consist of two measures: the number of modules in the piece
of code

Ny = number of modules, 4)

and the size of the largest module in relation to the size of the
entire code as measured by number of operations:

1
g max N, . )
Ny

More abstract code (with more, smaller modules) is generally
easier to reconfigure and maintain, although it can sometimes be
more difficult to understand.

Measurement 3 (Interconnectedness) Interconnectedness con-
sists of two measures: the number of possible causes for an
operation, averaged over the number of operations:

n'C = number of possible causes for operation I, (6)
|
_ i
IC. = N, § n', 7

and the number of possible effects for an operation, averaged
over the number of operations:

n’e = number of possible effects for operation i ®)
1 &

IC, = N Zn’e . ©))
o

i=1

As the interconnectedness of a program decreases, it is likely to
be easier to understand and debug.

The direct measurements will determine the complexity of
the code generated, and should correspond with development
time and cost.

Table 2. Description of scale used to evaluate the accessibility of data in the
various logic control design methodologies

Value Description

Easy No search of the entire code or mental simulations needed

Moderate Searching through most of the code and/or simple mental
simulations are needed

Hard Either multiple searches through the entire code or com-

plex, multi-state simulations are needed

3.2 Accessibility of data

Another measure of each logic control design methodology is the
accessibility of the information in the program. That is, how well
can a programmer solve problems using the code. To measure
accessibility we define four general styles of questions, which
a designer may attempt to answer using the logic. We also de-
fine a method of describing the difficulty of answering these
questions.

To utilize this measurement method, a researcher must first
create specific questions based on the particular application, then
examine the methods of answering these questions using the
tools that would likely be available. Examples will be given in
Sect. 4.

The following types of information are typically required of
a portion of logic:

Single output debugging Specific questions regarding specific
unexpected behavior in the machine.

System manipulation Questions regarding how the user can
manipulate the machine to achieve a desired state.

Desired system behavior Questions regarding the desired be-
havior of the machine when examining only the schematics
and the logic.

Unexpected system behavior Questions regarding the system’s
response to unexpected events.

While these scenarios certainly do not represent all questions that
may be asked about a program, they represent a reasonable var-
iety of information that may be required from a program.

The difficulty of answering the question in each scenario will
be judged as easy, moderate or hard according to the scale in
Table 2.

4 Demonstration of measurements

To demonstrate these measurement techniques we will use four
existing programs. These programs were generated at separate
times by separate people, and therefore do not constitute an
experimentally controlled set. However, they have all been de-
signed to control similar actions on the same test-bed. In this
section we will analyze each program individually according to
the methods described in Sect. 3.

Each program was developed to control the flexible manufac-
turing test-bed (see Fig. 5). This test-bed has a drilling station,
a vertical milling station with a tool changer, and a horizontal
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Fig. 5. Flexible manufacturing test-bed

milling station. The parts can be moved from station to station by
three conveyor belts. This system has 15 binary outputs and 15
binary inputs. For more information on this test-bed see [24].

The desired part plan is, for each part: drill once, operate
with each tool in the vertical tool changer, and then perform two
passes with the horizontal mill. Parts should be moved to the next
station as soon as it is clear.

The programs were generated prior to this study and most
have been previously published.

4.1 Specification of accessibility scenarios

The accessibility of the program data will be determined by ana-
lyzing the difficulty of answering the following questions about
the controlled system. These scenarios are specific examples of
types of scenarios described in Sect. 3.2.

Scenario 1 (Single output debugging)
Situation: The system is currently running, and the first conveyor
has not turned on when a new part was placed at the start.
Question: Why hasn’t the drill conveyor turned on?

This sort of question is often used as an example of why lad-
der diagrams are so simple.

Scenario 2 (System manipulation)
Situation: The system was processing a single part when that
part was removed unexpectedly. The user must now manually de-
press sensors as needed to manipulate the system state.
Question: What needs to be done to return the system to the
“idle” state?

This should not be tried with a real system due to safety con-
siderations, but it is a reasonable approximation of situations that
occur in industrial systems.

Scenario 3 (Desired system behavior)

Situation: The user only has access to the logic and a description
of the machine.

Question: What happens to a part after it has been drilled?

Scenario 4 (Unexpected system behavior)

Situation: The user only has access to the logic and a description
of the machine.

Question: What happens if an additional part is added to the
vertical mill conveyor mid-stream?
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4.2 Analysis of a ladder diagram solution

The ladder diagram was professionally generated by the manu-
facturer of the test-bed [25]. The complete code can be found
at [24].

4.2.1 Direct measurements

The ladder diagram contains 27 separate rungs of code, and each
rung represents a distinct operation; therefore N, = 27. The lad-
der diagram requires four latches (Boolean state variables), two
counters and two timers. In addition, each of the 15 outputs can
be read by any rung, and effectively becomes a state variable.
Therefore there are 23 state variables, therefore Ny = 23.

The rungs in the ladder diagram do not follow an obvious
order, and there is no separation of the ladder into separate parts.
Therefore there is only one module, containing 100% of the
code, therefore N,, =1 and S =1.0.

In order to find all the causes or effects of a single rung,
each rung of code must be searched in turn. Therefore for this
piece of code, 27 separate operations must be searched to find all
the causes or effects of a single operation. However, since each
output or state variable is controlled from a single rung, once
a programmer is familiar with the code he will be able to turn
directly to a particular rung. Since there are an average of 4.2
elements per rung, only 4.2 rungs on average need to be searched
to find all possible causes. Therefore IC. = 4.2 and IC, = 27.
Note that many ladder editors provide a “cross reference table”,
which maintains a list of all rungs that are affected by an output
or state variable, in addition to providing direct access to the rung
that maintains the output or state.

These numbers are summarized in Table 3.

4.2.2 Accessibility of data

Scenario 1 (Single output debugging)

In this ladder diagram (as in most), each output is controlled by
exactly one rung, the position of which is usually known. There-
fore, to determine why a particular rung has not turned on, one
needs to find the single appropriate rung, and examine the inputs
and state variables that affect it. In fact, some ladder program-
ming systems highlight the elements that are logically true, so

Table 3. Direct Measurement Summaries: These terms are defined in
Sect. 3.1. Lower numbers represent smaller and/or simpler programs

Size Modularity Interconnectness

N, N N S 1C, 1C,
Ladder diagram 27 23 1 1.00 27 4.2
Petri net 49 63 3 0.38 2.18 2.02
SIPN 50 68 7 0.20 3.30*  3.66
Modular FSM 128 80 19 0.16 8.73 9.60

4 Using a slightly different definition of effect this number is 7.34. We
believe that the number 3.30 most accurately represents this value. See
Sect. 4.4.1 for more details
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that a quick visual scan can determine the cause of the problem.
In many cases the problem can be pinpointed to a single input
that is in the wrong state.

Since this problem requires neither searching the code or
complex simulation, we will judge it easy.

Scenario 2 (System manipulation)

While it seems very easy to determine the cause of a single un-
expected output, it is not clear how the rungs relate to each other.
This means that in general, it is very difficult to plan more than
one step into the future without substantial understanding of the
nature of the system.

However, this ladder diagram contains a very prominent latch
called the Reset Latch, which appears in 12 rungs. It is clear
from a casual reading of the code that the Reset Latch will
cause the system to return to the “idle” state when the system is
powered down or the on/off switch is turned off.

Since this problem did not require any hard operations, it
may be judged easy. It should be noted that this problem was
solved by the variable names chosen for the program. A simi-
lar problem (e.g., cause the system to continue as if a removed
part never existed) would be require the operator to manually
simulate the entire ladder diagram, a hard operation.

Scenario 3 (Desired system behavior)

It is difficult to determine what will happen to the part after
it has been drilled at the first station. There is a latch called
the Drill Done Latch, which appears in the rungs con-
trolling the Vertical Mill Conveyor, the Drill Press
Conveyor Motor, and the drill press motors (both up and
down). It seems reasonable to assume that this latch is important
to understanding this scenario, see Fig. 6.

This variable is set when the drill press has been on and
the lower limit switch for the duration specified in the Drill
Press Timer (requires knowledge of the rung controlling the
Drill Press Timer, not shown). It is unset by the Reset
Latch. It can also be unset both by having no part at the Drill
Press IR Sensor and either a part at the Vertical Mill
Position Switch or the vertical mill leaving it’s upper pos-
ition. That is, the drilling is considered “done” from when the
drill operation is completed to when the part has left the drill sta-
tion and arrived at the vertical mill station. Therefore it stands to
reason that the part moves to the vertical mill station after it has
been drilled.

Drill Press Drill Press

Drill Press IR

This kind of reasoning must be continued through five ad-
ditional rungs before the actions on a part can be fully under-
stood. The five rungs control: Vertical Mill Head Motor
Down, Vertical Drill Down Latch, Vertical Mill
Conveyor Motor, Vertical Mill Rotate Motor, and
the Drill Count counter.

This scenario required the mental simulation of multiple in-
dependent rungs of the logic. Therefore we will judge this prob-
lem hard.

Scenario 4 (Unexpected system behavior)

If an unexpected part is added where it can be detected by the
Vertical Mill Position Switch when the system is
waiting for a part to arrive there, the effects are easy to under-
stand, since the system cannot distinguish the unexpected part
from the expected one. However, this will leave another part in
the system. This can be determined just from knowledge of the
system, without consulting the ladder diagram.

If an unexpected part arrives when no part is expected, it
could potentially affect all rungs that read that sensor. There are
four such rungs. That sensor is used to:

1) Turn off the Drill Press Conveyor Motor when a part
arrives

2) Turn off the Vertical Mill Conveyor Motor when
a part arrives

3) Turn off the Vertical Drill Down Latch when a part
leaves

4) Ensure that the vertical mill head only lowers when a part is
present

In each of these cases, the arrival of an unexpected part does not
immediately cause a change of state. In addition, various inter-
locks (such as condition 4 above) ensure that certain forbidden
operations will never take place.

However, while it is not too difficult to determine that the ar-
rival of an unexpected part will not cause the system to crash,
or forbidden operations to occur, it is not clear from the code if
the extra parts on the conveyor will ever clear themselves out,
or if there will always be an extra part between the drill and the
vertical mill.

To solve this without running the program, the programmer
would need to simulate mentally both the entire program and the
test-bed for many cycles. Therefore we will judge this problem
hard.

|
|
Drill Done |
|

|

|

| Lower Limit Timer Reset Latch Sensor

| Switch Latch
[-+-[/]1-——————~ [1-————- +--[/]---- +-[/]--—-— +-( )= |
[ ] | Vertical Mill | |
| | Drill Done | Upper Limit Vertical Mill | |
| | Latch | Switch Position Switch | |
| 4= Jmmmmmmmmmmmmm e + L [ J-mmmmmmmmmmmmm- + |

Fig. 6. Example of a single rung from the sample program. The Drill Done Latch will turn on when the drill press reaches its lower limit switch, and
remains there for the duration of the drill press timer. It will turn off when the Reset Latch is set, or the part leaves the drill press sensor and either reaches
the vertical mill position switch, or the vertical mill leaves its upper limit switch. (All physical switches are normally closed.)



4.3 Analysis of a Petri net solution

The Petri net program for the test-bed was generated by Golla-
pudi [9]. A portion of the logic is shown in Fig. 7.

4.3.1 Direct measurements

The Petri net contains 63 places and 49 transitions. Therefore the
N, =49 and N; = 63, since all states and operations are directly
represented by places and transitions. The program consists of
three modules. It has a module for the drill station, the vertical
mill station, and the horizontal mill station. The largest module
has 19 operations, or 0.38 of the total. Therefore N,, =3 and
S=0.38.

The interconnectedness values are: IC. = 2.02 and IC, =
2.18. The program consists primarily of transitions with one con-
dition between two places with one output. Therefore most of the
transitions have two possible causes (the condition on the tran-
sition and the previous transition) and two possible effects (the
output on the out-place and the next transition).

These values are summarized in Table 3.

4.3.2 Accessibility of data

Scenario 1 (Single output debugging)

In a Petri net a particular output can be turned on from a variety
of places. To determine why the drill conveyor had not turned
on in this particular case, it would be necessary to determine the
place that was supposed to be active at this point by searching
the code. After finding the desired place, the programmer would
need to determine what condition was needed to activate that
place from the current state. Finding the desired place would re-
quire a search of all 16 places within the appropriate module.
Then the user would need to trace back to the program path to the
current state, and determine the unsatisfied condition.

This requires a search of the entire code for the desired state,

followed by relatively simple reverse search for the missing con-
dition. This problem will be judged moderately difficult.
Scenario 2 (System manipulation)
In a Petri net the flow of the system can usually be determined
easily from the layout of the program. Therefore, given a current
state, and a desired state, it is generally straightforward to deter-
mine the quickest path to the desired state, and the programmer
then needs to check the condition of each transition in turn.

Therefore, since this requires neither searching nor mental
simulation, this problem is easy.

Scenario 3 (Desired system behavior)

Since Petri nets express a sequence of events, most sequential
data is readily available. For example the question “What does
the drill do after it moves down?” is directly available from the
diagram. However sequential data based on the part is not as
readily available, since it relies on knowledge of the physical sys-
tem. In this case, after the part has been drilled the program waits
for a synchronizing operation, and then turns on the drill con-
veyor. The part then triggers a sensor in the next module, which
starts the next operation.
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Fig. 7. Portion of the measured Petri net logic from the section controlling
the drill station. Items in the left column are used to control the drill spin-
dle and up/down motors; items in the right column are used to control the
conveyor. The software used to construct this example was a preliminary
academic verison; it was not commercial grade, as can be seen from the poor
quality of the user interface.
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In this scenario the user must perform a simple mental simu-
lation of the part and the program. However each is a simple
sequential simulation and needs only to cover a couple of states.
Therefore this problem is moderately difficult.

Scenario 4 (Unexpected system behavior)

As with the ladder diagram, from knowledge of the system sen-
sors it can be determined that if the system is waiting for a part
then the introduced part will be treated as the expected one,
leaving a part in the system. Because Petri nets only scan ex-
pected inputs, if the part is introduced at a sensor when no part
is expected it will be ignored by the system until some part is ex-
pected from the drill station. In this case the drilled part will not
be moved, and will effectively be another unexpected part, now
at the drill station.

However, to determine what will happen to the extra part
from the Petri net requires a mental simulation of the entire Petri
net and the physical system over a large number of interacting
states. This problem is hard.

These measurements are summarized in Table 4.

4.4 Analysis of signal interpreted Petri nets (SIPNs)

The signal interpreted Petri net sample was written by Klein [12].

4.4.1 Direct measurements

The signal interpreted Petri net consists of 68 places and 50 tran-
sitions. Therefore Ny = 68 and N, = 50.

The program is built of one main Petri net with four sub-
nets. Three of the subnets have a single subnet of their own for
a total of eight modules. The largest module, which controls
a single horizontal milling cycle, contains 10 operations. There-
fore N, =8 and S = 10/50 =0.2.

The average number of causes which must be searched to de-
termine the cause of a transition is 3.66. Most transitions must
check one transition connected to its pre-place, one transition
connected to its post-place, and a condition on its input. Many
require more. The average number of effects which may be the
result of a transition is 7.34. This number is greater than the
number for standard Petri nets because every output is always ex-
plicitly defined in SIPN, whereas the program used in Sect. 4.3
implied that all outputs, which were not turned on, were turned

Table4. Accessibility summary. Accessibility of information for the sce-
narios detailed in Sect.4.2.2. Accessibility is judged subjectively as
easy/moderate/hard based on the analysis presented in Sect. 4, with easy
being the most useful to a programmer

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Ladder Easy Easy?® Hard Hard
Petri net Moderate Easy Moderate Hard
SIPN Moderate Easy Moderate Hard
MFSM Moderate Hard Easy Hard

2 This problem is easy since it was specifically thought of by the logic
designer. Other similar problems are likely harder. See Sect. 4.2.2 for details

off. If defining an output to be off is not considered an effect, then
the average number of effects to be searched is 3.30. Since this
definition is closer to that used by other methodologies, we will
use IC. = 3.66 and IC, = 3.30.

4.4.2 Accessibility of data

Scenario 1 (Single output debugging)

There are two modules that control the drilling station of the test-
bed. These two modules contain a total of 11 transitions and 15
places. Looking over the modules, the first transition in the first
module is the only one that turns on the drill conveyor. In add-
ition this transition had no conditions. That makes this scenario
seem straightforward.

However, the drill module will not be made active unless all
of the modules have correctly completed their respective cycles.
Therefore if the drill conveyor will not start, most likely the prob-
lem is actually with one of the other modules. Therefore a search
of the other modules will be needed to determine where the pro-
gram has hung up.

Since this requires a search of most of the program, we will
judge this scenario to be moderately difficult.

Scenario 2 (System manipulation)

Manipulating the system of signal interpreted Petri nets is very
similar to the more typical Petri nets discussed in Sect. 4.3.2.
Therefore this problem will be judged easy.

Scenario 3 (Desired system behavior)

The signal interpreted Petri net is laid out such that it is very
easy to determine what a particular module will do next. How-
ever, as in the typical Petri net, to follow a part through requires
somewhat more work. In this case the user must have a mini-
mal knowledge of the physical system to determine what mod-
ule will the part will enter next, and then must find the correct
module to determine what will happen there. Once the correct
module has been found, the user will find that there is a mod-
ule (called “VMill_2”), which defines the sequence Down, Wait,
Up, Rotate Tool. This sequence is activated three separate times
by the module “VMill_1.” This required some searching by the
user, and some mental simulation. However, each step was fairly
simple.

Since this did not require multiple searches or complex sim-
ulations, we judge this moderately difficult.

Scenario 4 (Unexpected system behavior)

As with standard Petri nets, signal interpreted Petri nets only
scan for expected inputs. So an unexpected part will have no ef-
fect until some part is expected at that location. This will leave
an extra part in the system. It is nearly impossible to determine
what will happen to that extra part. Doing so requires mentally
simulating the entire program and physical machine.

Since this scenario requires a complex mental simulation, we
will judge it hard.

4.5 Analysis of a modular finite state machine solution

The modular finite state machines for this study were generated
over a period of about four months by an inexperienced under-



Fig. 8. Portion of the measured modu-
lar finite state machine logic. This is the
module called
Drill_Controlplan_4holes; it
commands the drill module to drill four
holes in sequence (noted by each of the
four drilling states). For example, when
the system is in the “drilling 1 state,
and receives an event “done” from port
3, it sends an event “shortmove” to
port 2 and transitions to the “moving
2” state. If a “done” event is received
from port 2, then another “drill” com-
mand will be sent to port 3 and the
system will make a transition to the
“drilling 2” state. In addition, some ba-
sic error handling has been added to the
system, represented here by the transi-
tions surrounding the Off Part state.
This controller was written by hand
with pencil and paper. The software that
executes MFSM controllers only has
a text-based interface, A full-featured
development environment with a graph-
ical user interface is not yet available.
The control logic must be typed in
by the developer using a text file in
a certain format. Even without a sophis-
ticated user interface, the measurement
methods described in this paper can be
applied to the MFSM logic control de-
sign method

graduate working at the University of Michigan with occasional
assistance from other members of the research group. The com-
plete logic is contained in [18]. A portion of the logic is shown in
Fig. 8.

4.5.1 Direct measurements

The program has 80 states in all of its modules combined and 128
transitions. Therefore the N, = 128 and Ny = 80, since all states
and operations are directly represented by states and transitions.
The MFSM program has 19 separate modules, which are in-
stances of 13 separate state machines. There are three instances
each of a “conveyor coordinator” and “transfer conveyor” and
four instances of a “slide.” The largest module contains 20 tran-
sitions, or 16% of the total. Therefore N,, =19 and S = 0.16.
To find the cause or an effect of an operation in MFSMs,
a programmer must search through all the transitions in the ap-
propriate connected module. Inputs and outputs are assumed to
be a set of one and can be immediately found (i.e., n’. = 1 if the
cause of operation i is known to be an input). Using these criteria
the average number of possible causes for an operation is 9.60.
The average number of possible effects of an operation is 8.73.
These numbers are summarized in Table 3.

4.5.2 Accessibility of data

Scenario 1 (Single output debugging)
In the MFSM framework, each output is controlled by a single
module. To find the reason that the conveyer has not turned on
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the programmer must look at the state of the module controlling
the drill conveyor, which is an instance of the transfer conveyor
module. Within this module there are eight states and 20 tran-
sitions, and any of the transitions can cause the conveyor to be
turned on. Therefore the programmer must determine which state
the machine should be in, and which transitions need to occur.
Since the states are intelligently named the correct state can
generally be found. Then the programmer must determine what
event must occur for the correct transition to fire, and if needed
follow that event back to the module generating it. In total there
are four modules between the start sensor and the command to
turn the conveyor on. These four modules contain a total of 31
states and 56 transitions.

While each module has a limited number of states to search
though, and intelligent names should help considerably, there are
still four possible modules which could be the cause of the prob-
lem. This is a considerable search, and therefore this problem is
hard.

Scenario 2 (System manipulation)

To manipulate this system back to the idle state all 19 intercon-
nected modules must be manipulated, even those that do not have
direct I/O points, but are only controlled through other modules.
This will involve the mental simulation of the entire system of
19 modules. This process can be simplified somewhat by manip-
ulating only a few of the modules and trusting the program to
manipulate the rest, however this is still not an easy task.

An easier method, if the exact error is known, is to simu-
late the motion of the removed block through the conveyors. This
method utilizes a mental model of the controlled physical sys-
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tem, not the program. It will also not work if the exact error is not
known.

While generating this program the most common observed
method of dealing with this problem was to trip the infrared part
sensors haphazardly until either the part system was in the cor-
rect state or the user gave up and restarted the program.

Since this involves a complex simulation, this problem is
hard.

Scenario 3 (Desired system behavior)

To determine what happens to a part after it has been drilled,
a programmer would first need to examine the drill control plan
module. That module demonstrates explicitly that the part will be
drilled another three times after its first drill. That information is
very accessible.

This does not involve any searches or mental simulation, so
this problem is easy.

Scenario 4 (Unexpected system behavior)

To determine what will happen if a part is added unexpect-
edly might involve a full mental simulation of the entire con-
troller/system combination. Most of the information needed can
be obtained from the conveyor coordinators, which are three
instances of a single conveyor coordinator module. (This mod-
ule has six states and nine transitions.) However, even with this
simplification this requires a mental simulation of three fairly
complex modules.

This problem is hard.

4.6 Summary of measurements

Measurements of the sample programs are shown in Tables 3
and Table 4.

The size of the program (measured either by number of states
or number of operations) appears inversely related to its modu-
larity. Petri nets are the most simply connected, followed by sig-
nal interpreted Petri nets, modular finite state machines, and lad-
der diagrams. Each framework seems to be good at some scenar-
ios, while poor at others. This agrees with the “match-mismatch
hypothesis” [26], which noted that “subjects performed best on
‘matched pairs’ of tasks and languages.”

These measures were, and always must be, based on existing
samples of logic. It is possible that as designers become aware
of methods that are easier or more difficult to use or debug, that
the measures will change. For example, logic written in ladder
diagrams can be made somewhat modular by careful design. In
addition, careful design can make otherwise difficult scenarios
easy, for example scenario 2 in Sect. 4.2.2.

5 Conclusions and future work

The measurements introduced in this paper provide two ways
of comparing logic developed in different logic control de-
sign methodologies: direct, numerical measures, which provide
quantitative measurements of the size, modularity and intercon-
nectedness of logic regardless of which logic control design

methodology is used to represent it; and scenario-based mea-
sures, which provide a qualitative, user-oriented measure of the
effectiveness of a logic control design methodology at represent-
ing information.

Based on the measurements of logic samples, it is clear that
the method of representation affects the nature of the logic. The
ladder representation is smaller, but is very interconnected. The
Petri net representations are the least interconnected, although
they are significantly larger. The modular finite state machine
representation is the most modular, although it is also the larg-
est and is more interconnected than the Petri net based solutions.
In addition the difficulty of responding to the different scenar-
ios demonstrates that the method of solution varies significantly
across scenarios. These differences will affect the time and cost
of developing and maintaining logic.

Although the metrics here provide a basis for comparison,
this work does not yet represent a complete understanding of
what logic control design methodology is appropriate for a par-
ticular application. There are two main areas of future work that
will help researchers and practitioners. First, measurements of
logic samples that are larger and contain more exception hand-
ling will provide more insight into the nature of each logic con-
trol design methodology. The samples presented in this paper
control a system with 15 inputs and 15 outputs, and contain no
exception handling. Industrial scale systems can easily contain
10000 I/O points, and must handle many error conditions cor-
rectly. An important second area of research is to understand the
nature of the current logic design process. Understanding the cur-
rent process will demonstrate the nature of the current problem,
and allow future researchers to better match a solution with the
problem. This work has begun in [27].
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