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A ¯exible manufacturing system (FMS) is highly capital-intensive and FMS users are concerned with achieving high system
utilization. The production planning function for setting up an FMS prior to production should be developed in order to make the
most of the potential bene®ts of FMSs. We consider two production planning problems of grouping and loading a ¯exible ¯ow
system, which is an important subset of FMSs where the routing of parts is unidirectional. We show that considering this routing
restriction as well as limited machine ¯exibility strongly a�ects both the solution techniques and the quality of the solutions.
Because of the complexity of the problem, we present a heuristic approach that decomposes the original problem into three
interrelated subproblems. We show that the proposed approach usually ®nds a near-optimum solution and is superior to an
approach that exists in the literature of FMS production planning. We also introduce e�ective heuristic methods for two new
subproblems that arise because of the unidirectional ¯ow precedence and ¯exibility constraints. Computational results are reported
and future research issues are discussed.

1. Introduction

A ¯exible manufacturing system (FMS) consists of
computer numerically controlled machines that are cap-
able of performing many di�erent operations and linked
by a material handling system (MHS). All operations and
material movements are monitored and controlled by a
computer system. An FMS combines automation suitable
for mass production with ¯exibility suitable for job shop
production. The type of FMSs studied in this paper are
¯exible ¯ow systems (FFSs), where the routing of parts is
unidirectional. An FFS is very common for both assem-
bly and machining systems due to easy production con-
trol and the e�ciency of a ¯ow system. Such an FFS
includes most ¯exible assembly systems [1], and ¯exible
machining systems with U-layouts [2], loop layouts [3],
and some group-technology-based layouts.

Making the most of potential bene®ts of such expensive
FMSs requires well-thought out production planning
before it begins production for each upcoming time per-
iod. Stecke [4] has provided ®ve categories of production
planning problems for FMSs, which are part type selec-
tion, machine grouping, loading, resource allocation, and
production ratio determination. The focus of this paper is
on two of them, namely, grouping and loading problems.
The machine grouping problem is to partition the ma-
chines of the same type into identically tooled machine
groups. Each machine in a particular group is able to

perform the same operations. The loading problem is to
assign operations and their tools to machine groups
subject to some technological constraints, such as preced-
ence and which machine tools are capable of performing
which operations.
Several researchers have studied grouping and loading

problems for FMSs, using di�erent techniques such as
mathematical programming, queueing networks, and
simulation. Stecke and Solberg [5] and Dallery and Stecke
[6] have addressed the grouping and loading problems,
using closed queueing network models for FMSs. They
have provided useful guidelines on maximizing system
throughput. They found that: (1) fewer groups are better;
(2) unbalanced con®gurations of assigned machines are
superior to balanced ones; and (3) unbalanced workloads
are better than balanced ones. They reported that there
can be signi®cant di�erences in the throughput from
balanced versus unbalanced con®gurations/workloads.
Stecke [4] has provided a nonlinear mixed integer for-

mulation for various realistic loading problems and given
a linearization solution method. Berrada and Stecke [7]
have developed a branch-and-bound algorithm to solve a
similar formulation in a more user-friendly manner with
the workload balancing objective. Kim and Yano [8]
viewed the loading problem as a multi-dimensional bin-
packing problem and have presented a heuristic approach
using multi-pass algorithms. Some researchers study
loading problems with two objectives. Shanker and Tzen

0740-817X Ó 1998 ``IIE''

IIE Transactions (1998) 30, 669±684



[9] tried to balance workloads, while minimizing the
number of late parts. Ammons et al. [10] had the objective
of minimizing workload imbalance and material move-
ments between machines. Lashkari et al. [11] have pre-
sented a nonlinear mixed integer formulation for loading
with the joint objectives of minimizing the transport load
and also the re®xturing activities. There are also studies
[12,13] which address the loading problem in conjunction
with FMS scheduling problems.

Some researchers address both grouping and loading
problems for FMSs. Stecke [14] has presented a hierar-
chical framework in which the grouping problem is
solved and then the loading problem is solved using the
input from the grouping problem. Several loading ob-
jectives are discussed within the framework. Some itera-
tion is recommended until a satisfactory solution is
obtained. Kim and Yano [15] have presented an iterative
and hierarchical approach to also address these two
problems with part type selection. They simplify the part
type selection problem by using a prioritized list of part
type orders. For selected part types, the iterative ap-
proach resorts to an exhaustive search method to solve
®rst the grouping problem and then the loading problem.
These approaches model FMSs using closed queueing
networks. The interested reader is refered to Templemeier
and Kuhn [16] for a comprehensive survey of FMS
planning papers.

In this paper, the grouping and loading problem for
FFSs are studied for the ®rst time, to our knowledge.
What is unique in this problem is the consideration of
both the unidirectional part ¯ow in FFSs in conjunction
with limited machine ¯exibility. This part ¯ow restriction
imposes a new type of constraint on the loading problem
since there are precedence relations among operations
and parts do not revisit a machine group in FFSs. We
show that this ¯ow restriction also a�ects the choice of
machine groups. The previous approaches do not con-
sider material ¯ow and handling aspects of FMSs because
there are no ®xed precedence relationships for all part
types in FMSs and so it was not important to consider
part transfer times. This new constraint clearly makes the
problem more di�cult and greatly a�ects the solution
techniques to be employed. We present a heuristic
method that elegantly decomposes the original problem
into three subproblems each of which is manageable. We
show through numerous test problems that the proposed
method usually ®nds a near-optimum solution and im-
proves on the approach proposed by Kim and Yano [8]
both in e�ectiveness and e�ciency. This approach, how-
ever, does not consider precedence requirements and
some modi®cation is necessary for the comparative study.

This problem is similar to the line balancing problem
[17] in that both involve the assignment of operations
among machine groups in a ¯ow line and precedence
relations among operations place an important restriction
on the operation assignment. However, the line balancing

problem deals with only a balanced con®guration, typi-
cally one machine per machine group, and assumes no
limitation in machine ¯exibility.
The remainder of the paper is organized as follows. In

Section 2, we discuss the model for FFSs and state the
mathematical formulation for the problems. In Section 3,
we present the decomposition-based heuristic approach
and the solution methods for the three subproblems. We
present our numerical results in Section 4. Finally, in
Section 5 we summarize our ®ndings and discuss some
future research directions.

2. Problem formulation

Given available resources such as machines and material
handling devices, part types to be produced simulta-
neously for an upcoming period, and their production
requirements, the problem of grouping and loading FFSs
is to simultaneously ®nd machine groups and assign op-
erations among the machine groups. The objective here is
to maximize the system throughput or system utilization.
An FMS is highly capital-intensive and FMS users are
concerned with achieving high system utilization [18]. A
key objective of planning FMSs that produce part types
having independent demands is the maximization of
system utilization [19]. By maximizing throughput over
the short term, we can also accomplish other goals, such
as meeting due dates or reducing operating costs [15]. The
system or equipment, however, cannot reach 100% uti-
lization since there are limits on the work in progress
(WIP) allowed into the system (i.e., because of a limited
number of pallets) and there is randomness in the system.
This objective is considered here under the two con-

straints of the unidirectional ¯ow and limited ¯exibility
capacity. In order to meet this ¯ow constraint, the load-
ing problem needs to explicitly address precedence rela-
tions among operations. The ¯exibility capacity
constraint limits the maximum number of operations that
can be assigned to each machine group. Each machine
type in FFSs has a ¯exibility capacity, which is measured
in terms of the number of operations that this machine
type can perform one after another with negligible setup
times between operation changes [20]. For example, in
¯exible machining systems, CNCs performing various
metal-cutting operations are equipped with tool maga-
zines which can hold a certain number of cutting tools,
and among these tool changes there are negligible
changeover times. The tool magazine capacity is typically
30, 60, or 120 slots in commercial ¯exible machines [21].
In ¯exible assembly systems, automatic insertion ma-
chines or assembly robots perform a limited number of
assembly tasks because they have a ®nite work space due
to their physical con®gurations and component feeding
mechanisms associated with each assembly task use some
of the ®nite work space [10,22].
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We use a product-form closed queueing network
(CQN) model to represent the FFSs. CQN models have
been widely-used to represent FMSs [1,5,23,24] since
Solberg [25] ®rst suggested its use for FMSs. This is be-
cause these models can capture the aspects of material
handling systems and product ¯ows, of resource conten-
tion, and of random events occurring in FMSs in a rea-
sonably adequate and robust manner. They take into
account the interactions and congestion of parts com-
peting for the same machines and represent in an aggre-
gate manner the stochastic behavior of work ¯ows due to
the uncertainty and dynamics in FMSs. Our intent here is
not to validate CQN models but to use a CQN model to
solve production planning problems for FFSs.

For the FFSs being considered, the throughput per
period, TH , is computed from the CQN model as a
function of the following eight parameters: (a) the num-
ber of machine groups M ; (b) the number of pallets cir-
culating in the system N ; (c) a machine vector
�S � �S1; S2; . . . ; SM ), where Si is the number of identically-
tooled machines at machine group i; (d) workload vector
W � �W1;W2; . . . ;WM�, where Wi is the sum of the
weighted average operation times assigned to group i (i.e.,
the average processing time required to process one of the
aggregate parts); (e) processing capacity vector
�P � �P1; P2; . . . ; PM �, where Pi is the total available pro-
cessing time of a machine at group i per period; (f) av-
erage material handling time required to produce one
part Wo; (g) the number of automated guided vehicles
(AGVs), So, if used; and (h) the total available material
handling time (by an AGV or conveyor) per period Po.
See Reiser and Lavenberg [26] for the CQN TH formula.

In the CQN, one aggregate part type, an average part,
collectively represents the individual part types. Prece-
dence diagrams of all part types are merged and repre-
sented as one super precedence diagram for the aggregate
part. This precedence representation is common in mixed-
model production, where di�erent part types are simul-
taneously produced [22,27,28]. Demand and operation
times for the aggregate part are speci®ed as the sum of
demands and the weighted average operation times
among the individual part types, respectively. Processing
times lost from small but regular disturbances such as
tool jams or tool replacements are also added as part of
the average operation time. See Lee and Johnson [22] for
an example of an aggregate part.

The problem of simultaneously grouping and loading
FFSs can be mathematically stated below. The notation
used throughout this paper is as follows:

Ac = set of groups using machines of type c;
C = number of machine types;
d = demand of the aggregated part;
fj = the ®rst machine group in the visit sequence to

which operation j can be assigned;
Kc = number of available machines of type c;

lj = the last machine group in the visit sequence to
which operation j can be assigned;

�L = �Li�, where Li is the lower bound of the work-
load at group i, Wi;

M = number of machine groups in the system;
Mo = the smallest M possible;

n = total number of operations in the aggregate
part;

N = number of pallets circulating in the system;
p��� = a permutation function among elements of a

vector;
Po = total available material handling time by a

transporter or conveyor per period;
�P = �Pi�, where Pi is the total available processing

time by a machine at group i per period;
Rc = ¯exibility capacity of machines of type c;
So = number of AGVs or transporters if required;
�S = �Si�, where Si is the number of machines at

group i;
�Su = lexicographically ordered �S such that

S1 � � � � � SM ;
tj = average processing time of operation j of the

aggregated part;
Vi = set of operations that can be assigned to ma-

chine group i, i.e., Vi � fj j fj � i � ljg;
�U = �Ui�, where Ui is the upper bound of the

workload at group i, Wi;
Wo = average total material handling time required to

produce a part;
W = �Wi�, where Wi is the workload (average total

processing time) at machine group i required to
produce a part;

W u = optimal workload allocation that maximizes
TH for a given �Su under no workload bound
constraints;

TH = throughput of the CQN for given N , M , Po, So,
Wo, �P , �S and W ;

TW = total workload (i.e., average total processing
time) required to produce a part;

Xij = the assignment variable

=
1 if operation j is assigned to group i;
0 otherwise.

n
�z = zigzag target workload vector.

P0: Maximize TH�N ; �S;W �;
subject to: X

i2Ac

Si � Kc; c � 1; . . . ;C;

Xn

j�1
tjXij � Wi; i � 1; . . . ;M ; �1�

Xn

j�1
Xij � Rc; i � 1; . . . ;M and i 2 Ac; �2�

Xij � 0 or 1; i � 1; . . . ;M ; j � 1; . . . ; n; �3�
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XM
i�1

Xij � 1; j � 1; . . . ; n; �4�

XM
i�1

i Xij �
XM
i�1

i Xik;

when operation j must precede operation k: �5�
Equation (1) de®nes Wi, the workload at machine

group i, as the sum of the operation times assigned to
group i. Constraint (2) is the ¯exibility capacity constraint
which limits the number of operations assigned to each
group. Constraints (3) and (4) are assignment constraints
which force each operation to be assigned to exactly one
group. Constraint (5) models the precedence relations
among operations and ensures that a part does not revisit
any group in the ¯ow system. Decision variables are M , �S
and �Xij� and Problem P0 is a nonlinear integer pro-
gramming problem with a complex objective function,
which is clearly hard to solve optimally.

3. Solution approach

We propose a heuristic method which decomposes the
decision variables into two groups: the assignment of
operations to groups and the rest of the decisions. The
assignment of operations to groups represents the ma-
jority of the decision variables, and the two sets of deci-
sions are nicely related through the workloads, W . Thus,
instead of solving the original problem, the methodology
solves a relaxed problem where the decision of assigning
operations to groups is replaced by the decision of con-
tinuously allocating the total workload to machine
groups. This replacement allows a reduction in the
number of decision variables from nM to M .

For a given number of machine groups, the proposed
method solves three subproblems in order. The ®rst
subproblem is the workload bound problem (WBP),
which is to ®nd workload upper and lower bounds at
each group, such that workloads outside the bounds
cannot be achieved by any operation assignment. The
second subproblem is the workload allocation and
grouping problem (WAGP), which is to solve the relaxed
problem with the workload bound constraint from the
WBP. Since the WAGP deals with the relaxed problem
instead of the original problem P0, the maximum
throughput obtained here serves an upper bound on the
maximum throughput of P0. The WAGP also provides
target workloads as part of the solution, which are input
to the third subproblem, the operation loading problem
(OLP). The OLP concerns only the assignment of oper-
ations among groups so that the resulting workloads are
as close as possible to the target workloads. The rationale
behind this decomposition is that the CQN throughput
function, TH , is unimodal and well-behaved with respect

to the workloads, W [29,30]. The relationship, input, and
output among the three subproblems are shown in Fig. 1.
The proposed method can iterate over the di�erent

number of groups, starting with the smallest number and
incrementing by one until it equals the total number of
machines. The general guideline, however, favors the
smallest number [5,6]. The smaller number of machine
groups allows larger resource pooling, which results in
not only larger throughput but also larger routing ¯exi-
bility and reliability. In the remainder of this section, we
discuss the mathematical formulation and solution
method for each subproblem. For simplicity of presen-
tation, we focus on P0 with a single type of ¯exible ma-
chine �C � 1�, which is capable of performing all
operations.
A similar decomposition approach was taken by Lee

et al. [31] to solve a complex design problem for ¯exible
assembly systems, where the decision variables include
not only operation assignment but also capacities of
machines and material handling devices with the objective
of minimizing total design cost. They presented a meth-
odology which decomposed the design problem into six
subproblems. The focus of their work is a framework of
the methodology and relationships among the six sub-
problems. No details of solution methods for those sub-
problems were addressed. In this paper, we show that

Fig. 1. The proposed decomposition method: relationship
among three subproblems.
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some of the subproblems can be used to solve a pro-
duction planning problem in FFSs. Solution methods for
the WBP and the OLP are presented for the ®rst time
with experimental results. We show that the proposed
method performs better than an existing method in the
literature.

3.1. The workload bound problem (WBP)

The ®rst subproblem, WBP, identi®es the feasible region
of workload allocation. The WBP ®nds tight workload
upper and lower bounds at each machine group subject to
the machine ¯exibility and unidirectional ¯ow con-
straints. Thus, the resulting target workloads from the
WAGP become more achievable, and consequently, eas-
ier to ®t in the OLP than those from the WAGP without
the workload bounds. The visit sequence is the sequence
in which a part visits machine groups and is 1; . . . ;M . The
following example clari®es the WBP.

Example 1. We use an aggregate part of Fig. 2. Let the
machine ¯exibility R � 5, and M � 2. Denote Ui and Li as
the workload upper and lower bounds at group i, res-
pectively. Then, U1 is the sum of the ®ve largest operation
times that can be assigned to group 1, that is,
U1 � t1 � t2 � t3 � t4 � t6 � 19. The ¯exibility limit of
R � 5 prevents group 1 from having more than ®ve op-
erations assigned. Although t5 > t3, operation 5 cannot
replace operation 3 because assigning operation 5 to
group 1 makes a part visit group 1 twice. At the ®rst visit,
operations 1 and 2 can be processed but operations 4, 5,
and 6 cannot due to precedence requirements. On the
other hand, L1 is the sum of the two smallest operations
that can be assigned to group 1, that is, L1 � t1 � t2 � 9.
Less than two operations cannot be assigned to group 1
since group 2 can have at most 5 operations assigned due
to the limited ¯exibility. Replacing either operation by
any other operation would require a part to revisit
group 1. Similarly, U2 � t3 � t4 � t5 � t6 � t7 � 20 and
L2 � t5 � t7 � 10.

Before we present the solution method to the WBP, we
give three lemmas which state how many operations
should be assigned to each group at the workload
bounds. Denote Mo as the smallest number of groups, i.e.,
Mo � dn=Re, where dxe is the smallest integer greater than
or equal to x. Also let r � nÿ R�Mo ÿ 1�.

Lemma 1. When Mo � M < n� 2ÿ R, Ui is the sum of R
operation times for every i.

Lemma 2.When M � Mo, Li is the sum of r operation times
for every i.

Lemma 3. When M > Mo, Li is only one operation time for
every i.

The lemmas can be easily proved by using the pairwise
interchange argument [32]. For example, in Lemma 1,
suppose Rÿ 1 operations are assigned to group i and
nÿ �Rÿ 1� operations assigned to the other M ÿ 1
groups, without violating precedence requirements for a
¯ow system. Then, it is always possible to move an op-
eration to group i through pairwise interchanging be-
tween two adjacent groups without violating precedence
requirements. This movement increases total workload
assigned to group i. We now present the solution proce-
dure to the WBP.

3.1.1. Procedure 1. A solution procedure to the WBP

Step 1. For each j, ®nd the ®rst and last groups, fj and
lj, in the visit sequence to which operation j can
be assigned. Find the sets of operations, Vi, for
i � 1 to M , which can be assigned to group i as
follows: Vi � fj j fj � i � ljg, where fj and lj are
obtained from the following equations [33]:
fj � d(1 + the number of operations preceding
operation j)/Re and
lj � M � 1ÿ d(1 + the number of operations
following operation j)/Re.

Step 2. Find Ui for i � 1 to M , where Mo � M < n �
2ÿ R. From Lemma 1, this involves ®nding a set
of R operations in Vi which maximizes the sum of
their operation times and allows no revisit by a
part to any group.

Step 3. Find Li for i � 1 to M . When M � Mo, from
Lemma 2, this involves ®nding a set of r opera-
tions in Vi which minimizes the sum of their op-
eration times and allows no revisit by a part to any
group. When M > Mo, Li is simply the smallest
operation time in Vi according to Lemma 3.

We use fj and lj in Step 1 in order to ®nd tighter
workload bounds in Steps 2 and 3. This is done by ex-
ploiting precedence relations among operations and ex-
cluding operations which cannot be assigned to a
particular group.
Step 2 is di�cult to formalize and solve optimally. We

transform Step 2 into a variant of a graph problem that is
easier to solve but may provide looser workload bounds.
Consider a directed graph Gd that is induced by Vi and the
precedences among operations in Vi. We use notation
j < k for j and k in Vi when there is a directed path fromFig. 2. Precedence diagram for an aggregate part.
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operation j to operation k, and j <n k when there is no
directed path from j to k.

3.1.2. Procedure 2. Transformation into the maximum-
weight connected graph problem (MCGP)

Step 1. Create an undirected graph Gi from Gd by re-
placing any precedence arc in Gd with an edge
and by adding an edge between j and k when
j <n k and k <n j.

Step 2. Find a connected subgraph of Gi with R nodes
(i.e., operations) that maximizes the sum of their
operation times. We call this problem the max-
imum-weight connected graph problem (MCGP),
where tj is viewed as the weight of node j.

The motivation behind this transformation is that it is
not easy to check for a possible revisit in Step 2 but there
is a very e�cient algorithm to check connectivity of a
graph [34]. Note, by de®nition of fj and lj, that the opti-
mal solution must include those operations which have
both fj and lj equal to i. A similar technique can be ap-
plied to ®nd Li in Step 3 for the use of minimization in-
stead of maximization. The following example clari®es the
transformation and the MCGP to ®nd workload bounds.

Example 2. Consider the aggregate part of Fig. 2. First
®nd (fj, lj) for j � 1 to 7. These pairs are (1,1), (1,1),
(1,2), (1,2), (1,2), (1,2), and (2,2). V1 � f1; 2; 3; 4; 5; 6g and
V2 � f3; 4; 5; 6; 7g. Note that operations 1 and 2 must be
assigned to machine group 1 since their fj and lj's are
equal to 1. Similarly, operation 7 must be assigned to
group 2. Figure 3 shows the transformed undirected
graphs. Two edges are newly added in both G1 and G2. In
G1, one edge is added between operations 1 and 2 and the
other between 5 and 6, since there are no directed paths
between them. Since R � 5, n � 7, M � Mo � 2, we have
r � 3. To ®nd U1, the MCGP ®nds ®ve operations that
form a connected subgraph of G1 and maximizes the sum
of their operation times. Since the ®ve operations must
include operations 1 and 2, U1 � t1 � t2 � t3 � t4 � t6
� 19. U2 and L1 are directly obtained as U2 � t3 � t4
�t5 � t6 � t7 � 20 and L1 � t1 � t2 � 9. To ®nd L2, the
MCGP ®nds two operations that form a connected sub-
graph of G2 and minimizes the sum of their operation
times. Since the two operations must include operation 7,
L2 � t5 � t7 � 10. Note that all four bounds obtained
here happen to be the same as the ``true'' workload
bounds obtained in Example 1.

Lee and Dooly [35] have presented solution methods
for the MCGP, using a variant of the Balas additive
method with an imbedded connectivity test and other
fathoming methods. Although the workload bounds of
the MCGP are theoretically looser than those of the
WBP, we show, in the experimental results of Section 4.2,
that they are quite e�ective in ®nding a near-optimal
solution to P0.

3.2. The workload allocation and grouping problem
(WAGP)

Given the numbers of available machines, AGVs, and
pallets, (K, So, and N ), the WAGP is to determine the
allocation of K machines among M groups and the con-
tinuous allocation of total workload, TW �Pn

j�1 tj,
among the groups. The objective is to maximize the
throughput, TH , subject to a constraint that the allocated
workloads must lie between the lower and upper bounds
obtained from the WBP. Since a continuous allocation of
workloads is permitted, the resulting throughput serves as
an upper bound to the optimal throughput of the original
problem P0. A mathematical formulation of the WAGP
is:

WAGP : Maximize TH��S;W ��;
subject to: XM

i�1
Si � K;

XM
i�1

Wi � TW ; Li � Wi � Ui for i � 1; . . . ;M ;

where the decision variables are �S and W , which will be
referred to as a con®guration hereafter. WAGP is a
nonlinear mixed integer programming problem and the
details of the solution method appear in Lee et al. [36]. In
practice, we ®nd it useful to ®nd all con®gurations that
meet the aggregate demand rather than to ®nd only one

Fig. 3. Transformed undirected graphs for the MCGP.
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con®guration maximizing throughput. This is because
some con®gurations may be not possible to implement
because of other technical and operating issues that
cannot be captured in a mathematical formulation.
The solution method to WAGP is modi®ed for this pur-
pose.

3.3. The operation loading problem (OLP)

The OLP involves assigning operations to groups such
that the actual workloads are as close as possible to the
given target workloads, subject to the ¯exibility capacity
and unidirectional ¯ow constraints. A formulation of the
OLP can be stated as:

OLP: Minimize D�W ;W
��

subject to: �1�; �2�; �3�; �4�; and �5�;
where D�W ;W

�� is a function which measures the close-
ness of the actual workload vector W to the target
workload vector W

�
. Kim and Yano [8] tested several

functions for D�W ;W
�� for a di�erent FMS loading

problem, and suggested D�W ;W
�� � maxi�Wi ÿ W �

i �=W �
i .

With this substitution, OLP is rewritten as:

OLP0 : Minimize d

subject to: constraints (2) through (5) andXn

j�1
qij Xij � d i � 1; . . . ;M ; �6�

where qij is equal to tj=W �
i . We develop an e-optimal

solution procedure for OLP0 by generalizing an optimal
algorithm for the assembly line balancing problem
(ALBP). OLP0 without the ¯exibility capacity constraint
(2) is a variant of the traditional ALBP. In fact, OLP0

with R � 1 and balanced target workloads (i.e., W �
i

equals W for all i) is exactly the type II assembly line
balancing problem as de®ned by Baybars [17], which is to
®nd the minimum d given the number of groups M . Thus,
OLP0 can be solved by applying a bisection search
method to specify trial values of d and solving the gen-
eralized ALBP for each trial value of d. The solution
procedure for OLP0 is given as follows.

3.3.1. Procedure 3. A solution procedure for OLP0

Step 1. Find lower and upper bounds, dL and dU , on d.
Set the iteration number to 1.

Step 2. If dU ÿ dL < e, a small value used as a termina-
tion tolerance, then terminate with an e-optimal
solution. Otherwise, set d to (dL � dU �=2 and go
to Step 3.

Step 3. Apply an algorithm for the generalized ALBP to
determine whether a feasible solution exists for
OLP0 for the given d. Increase the iteration
number by one.

Step 4. If a feasible solution exists, then update the in-
cumbent solution (operation assignment) and set
dU to maxi�

Pn
j�1 qijXij�; otherwise, increase dL to

d. Go to Step 2.

Constraint (6) is violated for any d < 1. When d � 1,
we have a perfect ®t, i.e., W �

i � Wi for all i. Thus, the
initial dU and dL are speci®ed as follows. For the initial
dU , an arbitrarily large value can be speci®ed to ensure a
feasible solution, but this requires a large number of it-
erations before termination. Instead, an initial dU is set to
2 and increased by one until the ®rst feasible solution is
found. The initial dL is set to dU ÿ 1 and the resulting
dL � 1. We found that d � 2 is usually large enough to
ensure a feasible solution since with d � 2, the OLP tries
to ®t operations to a bin with its capacity two times larger
than the ideal bin size, W �

i . In order to solve Step 3, we
generalize Johnson's [37] branch-and-bound algorithm
for the traditional ALBP, and the details appear in Lee
[38].
The WAGP usually ®nds several con®gurations which

have just di�erent permutations of a machine vector �S.
Solving Procedure 3 for each con®guration is time-con-
suming for even small M since Procedure 3 requires a
solution of an integer program several times. Using the
fact that the product-form CQN throughput is permu-
tation-invariant, i.e., TH��S;W � � TH�p��S�; p�W �� for any
permutation p, we now present a procedure that reduces
computation by considering at most two such permuta-
tions. When the WAGP ®nds multiple con®gurations, we
permute the machine vector for each con®guration in
lexicographic order such that S1 � � � � � SM and eliminate
any duplicates. We denote this ordered machine vector as
�Su. For each �Su, we solve the workload allocation prob-
lem without the workload bound constraints and ®nd the
unconstrained workload vector, W u, that maximizes TH .
We derive two con®gurations by permuting ��Su;W u�

and use them in Procedure 3 for the OLP. There are two
reasons why we use the (permuted) W u as the target
workload vector for the OLP. First, the CQN throughput
function, TH , is unimodal (maximal at W u) and well-be-
haved with respect to the workload vector [5, 9, 30].
Thus, the closer the actual workload vector obtained
from the OLP is to W u, the higher is the resulting
throughput. Second, those con®gurations associated with
one �Su may have several workload vectors of which lex-
icographically ordered W 's are not identical. This hap-
pens when one or more workload bound constraints bind
for some con®gurations. In this case, W u serves a col-
lective representative for them.
Procedure 4 below ®nds two e�ective orderings (i.e.,

permutations) of ��Su;W u�. These orderings have small and
large target workloads ordered alternately in a zigzag
fashion (the machine vector is also ordered accordingly).
One ordering starts with a large target workload and the
other with a small workload. One reason for this is the
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opportunity to assign operations with larger processing
times, which tend to be the most di�cult to ``®t'' in the
context of the OLP, to various machine groups spread
throughout the system. We found this to be preferable to
having machine groups with large target workloads clus-
tered in one portion of the ¯ow system. This is because
clustering target workloads makes it di�cult to achieve
actual workloads close to the targets while simultaneously
satisfying the ¯exibility capacity and unidirectional ¯ow
constraints. Since there are still a large number of possible
orderings for each of the two ordering patterns, this pro-
cedure uses the workload bounds obtained from the WBP
and ®nds a unique ordering for each pattern. This is
achieved by matching large (small) target workloads with
large (small) Uis (Lis). These two ordered workload vec-
tors are referred to as the zigzag target workload vectors
and denoted as �z1 and �z2, respectively. This procedure is
appropriate only for the unbalanced target workloads since
all orderings are identical when the target workloads are
balanced. The procedure consists of two parts. The ®rst
®ve steps of the procedure describe how to ®nd �z1, while
Step 6 describes how to ®nd �z2.

3.3.2. Procedure 4. A procedure to ®nd the two zigzag
target workloads, �z1 and �z2

Step 1. Partition elements of the target workload vector
W u into two sets, ZL and ZS , such that the car-
dinalities of ZL and ZS are dM=2e and bM=2c,
respectively, and any workload in ZL is greater
than or equal to every workload in ZS .

Step 2. Assign workloads in ZL to the odd numbered
groups by matching the largest workload in ZL
with the largest Ui among the odd numbered
groups and the second largest workload in ZL
with the second largest Ui among the groups and
so on. If there is a tie, choose one match arbi-
trarily.

Step 3. Do pairwise interchanges among the workloads
assigned in Step 2 until interchanging any two
workloads does not reduce the amount of in-
feasibility (i.e.,

P
odd i maxfz1i ÿ Ui; 0; Li ÿ z1i g).

Step 4. Assign workloads in ZS to the even numbered
groups by matching the smallest workload in ZS
with the smallest Li among the even numbered
groups and the second smallest workload in ZS
with the second smallest Li among the groups
and so on. If there is a tie, choose one which
makes the resulting workloads more zigzagged
(i.e., max i e I jz1i ÿ z1iÿ1j, where I is a set of groups
that are tied and even numbered). If there is still
a tie, choose one arbitrarily.

Step 5. Do pairwise interchanges among the workloads
assigned in Step 4 until interchanging any two
workloads does not reduce the amount of in-
feasibility.

Step 6. To ®nd �z2, repeat Steps 1 through 5 with the
following changes: in Step 1, exchange the sizes
of ZL and ZS ; in Step 2, replace the odd num-
bered groups by the even numbered groups; in
Step 4, replace even by odd.

Example 3. Suppose M � 5, W u � �10; 18; 30; 32; 35�,
�L � �3; 33; 4; 4; 20�, and �U � �28; 45; 47; 48; 35�. In this
example, there are 120 possible orderings of W u and
Procedure 4 provides two potential orderings among
them. After Step 1, we have ZL � f30; 32; 35g and ZS �
f10; 18g for �z1, and after Step 5, we have �z1 �
�30; 18; 35; 10; 32�. Similarly, for �z2, we have ZL � f32; 35g
and ZS � f10; 18; 30g. Initially, 32 in ZL is matched with
U2 � 45 and 35 with U4 � 48, but they are interchanged
to reduce the amount of infeasibility. Thus, �z2 �
�10; 35; 18; 32; 30�. We show the e�ectiveness of these
zigzag orderings in the experimental results of Sec-
tion 6.1.

3.4. The proposed methodology

We now present the overall methodology to solve Prob-
lem P0, using the subproblems and their solution meth-
ods discussed in the previous sections. An example
follows.

3.4.1. Procedure 5. Methodology to solve problem P0

Step 1. Solve the WBP using Procedures 1 and 2.
Step 2. Solve the WAGP and ®nd all con®gurations,

��S;W �, that meet demand. If none, terminate.
We either need to acquire more resources or ®nd
another set of part types. Otherwise, sort con-
®gurations in decreasing order of throughput.
Order a machine vector in each con®guration
lexicographically from the top of the sorted list,
and eliminate any duplicates. Pick the ®rst con-
®guration in the list.

Step 3. If the current con®guration is balanced, then
solve the OLP using Procedure 3 with balanced
target workloads and go to Step 4. Otherwise,
solve the workload allocation problem without
the workload bound constraints and ®nd two
zigzag target workload vectors from Proce-
dure 4. For each of the two vectors, solve the
OLP using Procedure 3.

Step 4. Calculate the actual throughput using the oper-
ation assignment from the OLP. If this
throughput is greater than the incumbent value,
then update the incumbent solution.

Step 5. If either all con®gurations in the list are ex-
hausted, or the incumbent throughput is not less
than the theoretical throughput found from the
WAGP for the next con®guration in the list, then
write the incumbent solution and terminate. (In
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the latter case, a better solution cannot be found
from the remaining con®gurations since the
theoretical throughput from the WAGP is not
less than its corresponding actual throughput
from the OLP). Otherwise, pick the next con®g-
uration and go to Step 3.

Example 4. Suppose that an aggregate part consists of 14
operations with their processing times and precedence as
shown in Fig. 4a. The ¯exibility capacity, R, is set to 5.
Suppose that the aggregate demand, d, is 650 parts per
period and the processing capacity, P , is 10 000 minutes
per machine per period. Conveyors are used to move
parts and the total material handling time for one part,
Wo, is 20 minutes. Available resources, �K;N�, are (8, 7).
The number of groups, M , is set to the minimum, which is
3. The workload bounds from Step 1 of Procedure 5 are
obtained as �L � �18; 11; 11� and �U � �34; 34; 33�. The
WAGP in Step 2 provides two con®gurations which meet
the demand: (a) �S1 � �3; 3; 2�, W

�
1 � �29:9; 29:9; 15:2� and

(b) �S2 � �3; 2; 3�, W
�
2 � �29:9; 15:2; 29:9�. Their through-

puts are TH � 657:4. The second con®guration is elimi-
nated in Step 3, since �S2 can be permuted into �S1. W

�
1 is

optimal for the unconstrained workload allocation
problem, since �L < W �

1 < �U . The two zigzag target
workload vectors found in Step 3 are (29.9, 15.2, 29.9)
and (29.9, 29.9, 15.2). The solution of the OLP with the
®rst workload vector is the higher throughput of 653.1
with the actual workload W � �31; 18; 26� and
�S � �3; 2; 3�. The corresponding operation assignments

are shown in Fig. 4b. For this small problem, we can
verify that this solution is optimal for P0 by enumerating
all feasible operation assignments and machine vectors
and computing the corresponding throughputs.

4. Experimental results

This section consists of three parts of experimental re-
sults. The ®rst part shows the e�ectiveness of the zigzag
target workload vectors obtained from Procedure 4. The
second part shows that Procedure 5 ®nds a near-optimal
solution for P0. The third part shows that Procedure 5
outperforms the existing method in both e�ectiveness and
e�ciency.

4.1. E�ectiveness of the zigzag target workload vectors

A number of experiments were conducted to investigate
the e�ectiveness of the two zigzag target workload vectors
that Procedure 4 identi®es. M is equal to four or ®ve. This
limits the maximum number of orderings to be 24 and
120, respectively, which we considered to be reasonable
for enumeration. In addition, the following set of pa-
rameters are used to generate test problems: (a) two
numbers of operations (n � 20 for M � 4 and n � 30 for
M � 5); (b) two densities of precedence diagram (0.05 and
0.50), where density is de®ned as the ratio of a number of
present precedent arcs to the total number of possible
precedent arcs, i.e., n

2

ÿ �
, and precedent arcs are randomly

generated such that each arc is equally likely; (c) opera-
tion time tj is randomly generated from a discrete uni-
form distribution between 1 and 9 minutes; (d) aggregate
demand per period d � 400; (e) processing capacity per
machine per period P � 10 000 minutes; (f) ¯exibility
capacity R � 6; and (g) use of a conveyor with 5 minutes
for average material handling time between two ma-
chines. The numbers of available machines and pallets,
i.e., �K;N� are assigned such that the maximum
throughput from the WAGP is greater than or equal to
the demand, 400. Five problems are tested for each of
four combinations (two values each of both M and den-
sity) of the parameter set. Procedure 3 is solved with the
termination tolerance e replaced by the number of itera-
tions limited to ®ve.
The following two statistics are collected for each un-

balanced con®guration found by the WAGP that meets
demand: (i) ranking recorded as a/b which means that the
zigzag workload vector with the larger throughput of the
two achieved the ath largest throughput among the b
distinct p�W u�s; (ii) two throughput percentages (zigzag,
worst), where `zigzag' is the throughput achieved by the
better zigzag workload vector divided by the largest
throughput among all distinct p�W u�s and `worst' is the
smallest throughput divided by the largest throughput.
The `b' is usually less than the maximum number, since

Fig. 4. (a) Precedence diagram for example 4 and (b) the
grouping and loading solution for example 4.
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many p�W u�s are identical when several Wiu's are equal.
These statistics are summarized in Tables 1 and 2.

Experimental results show that the zigzag workload
vectors are very e�ective. When M � 4, the better zigzag
workload vector of the two achieved the largest
throughput 10 times out of 17 unbalanced con®gurations.
The better zigzag workload vector also had at least the
third largest throughput 16 times out of 17. On average,
the zigzag workload vector achieved 99.8% of the largest
throughput for both densities. When M � 5, the better
zigzag workload vector achieved the largest throughput
11 times out of 21 and at least the third largest
throughput 20 times out of 21. On average, the workload
vector achieved 99.7% for density � 0:05 and 99.1% for

density � 0:50. Further evidence on the e�ectiveness of
the zigzag workloads is presented for M > 5 in the fol-
lowing section. The results also reveal that the ordering of
the target workload vector can signi®cantly a�ect the
quality of the solution. For example, in Table 2, when the
density is 0.50, the ordering that gives the smallest
throughput was only 72.7% of the largest throughput for
the second con®guration of Problem 3, and only 77% for
the ®rst con®guration of Problem 2.

4.2. Experiments with procedure 5

A number of experiments were conducted for the pro-
posed method to solve P0, Procedure 5. Procedure 5 was

Table 1. Experiments with the zigzag target workloads for M � 4

Density = 0.05 Density = 0.50

Replication number Ranking Throughput percentage Ranking Throughput percentage
(K, N) a/b Zigzag Worst a/b Zigzag Worst

Problem 1 (1)& 1/4 100 98.8 1/4 100 97.7
(7, 7)
Problem 2 (1) 1/4 100 99.6 2/4 99.9 98.8
(7, 7) (2) 2/12 99.5 85.9 1/12 100 87.0
Problem 3 (1) 2/12 99.9 97.2 3/12 98.4 90.6
(8, 7) (2) 3/6 99.3 92.3 1/6 100 89.6
Problem 4 (1) 1/6 100 95.8 1/6 100 90.5
(6, 7) (2) 1/4 100 95.1 ±* ± ±
Problem 5 (1) 1/4 100 99.0 2/4 99.9 99.8
(7, 9) (2) 4/12 99.1 92.5 1/12 100 86.5
Average 99.8 95.1 99.8 92.6

& (i): i indicates the ith unbalanced con®guration found by the WAGP that meets demand for the associated test problem.
*For Problem 4, the WAGP ®nds two con®gurations that meet demand when density = 0.05, but it ®nds only one con®guration when
density=0.50.

Table 2. Experiments with the zigzag target workloads for M = 5

Density = 0.05 Density = 0.50

Replication number Ranking Throughput percentage Ranking Throughput percentage
(K, N) a/b Zigzag Worst a/b Zigzag Worst

Problem 1 (1)& 1/5 100 99.7 1/5 100 97.5
(11, 12) (2) 3/30 99.8 85.4 ±* ± ±

(3) 1/10 100 84.0 ±* ± ±
Problem 2 (1) 3/20 99.9 90.9 1/20 100 77.0
(10, 10) (2) 2/30 99.9 86.0 ± ± ±
Problem 3 (1) 1/5 100 98.0 1/5 100 84.1
(9, 9) (2) 3/30 99.8 84.2 4/30 97.4 72.7

(3) 3/10 98.4 86.2 ± ± ±
Problem 4 (1) 1/5 100 98.6 3/5 96.4 95.4
(11, 10) (2) 2/30 99.9 83.8 ± ± ±

(3) 1/10 100 91.3 ± ± ±
Problem 5 (1) 2/5 99.5 98.6 1/5 100 84.0
(9, 10) (2) 1/30 100 87.3 1/30 100 79.5

(3) 3/10 99.1 93.2 ± ± ±
Average 99.7 90.5 99.1 84.3

& (i): i indicates the ith unbalanced con®guration found by the WAGP that meets demand for the associated test problem.
* For Problem 1, the WAGP ®nds three con®gurations that meet demand when density = 0.05, but it ®nds only one con®guration when
density = 0.50.
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coded in PASCAL and FORTRAN and run on a main-
frame computer, IBM 3090-600. The same parameter
values are used as before except for the following ones.
The two demand levels are d � 100 and 200. The number
of operations, n, is 100. Two di�erent ¯exibility capacities
are R � 15 and 30, since R � 30 was used by Ammons
et al. [10] for a PCB assembly system manufacturing
computers. Average material handling between
two groups is 10, about the average processing time for
two operations. Conveyors or stop-and-go AGVs are
used to move pallets between groups.

Experimental results for three aggregate parts, eight
problems for each aggregate part, are summarized in
Tables 3±5. For each problem, the following statistics are
recorded: the �K;N� used, the upper bound on through-
put obtained from the WAGP, the number of Su's, the
actual throughput and machine vector obtained from the
proposed method, the ratio of the actual throughput to
the upper bound, the number of operations assigned to
each group, and the CPU time.

The proposed method found a feasible solution for
20 problems. It did not ®nd a feasible solution for
four problems, although their upper bound throughputs
are greater than the target demand. These four problems
occurred when R � 15 and d � 200 for aggregate parts
1 and 3. When R � 30, the FFS needs only four groups to
accommodate 100 operations, compared to seven groups

required for R � 15. Machines that are spread over a
smaller number of groups lead to a smaller number of
material handling operations and a larger number of
parallel machines (i.e., the more pooling of resources).
Consequently, under the larger ¯exibility capacity (i.e.,
when R � 30), the proposed method achieves an average
of 13.6% higher throughput than when R � 15. A smaller
M results in a larger number of �Su's to which OLP can be
applied, and consequently, a longer CPU time. A larger
number of parallel machines also enhances both system
reliability and routing ¯exibility. When R � 30, a better ®t
is achieved in the operation assignments of the OLP. The
actual throughput deviates from its upper bound by an
average of 0.8% when R � 30, compared to 2.9% when
R � 15. This is due to the fact that more ¯exible machines
can process a larger number of operations, allowing more
freedom to maneuver operation assignments.
As demand increases from 100 to 200, a larger numbers

of machines and pallets are required, which leads to a
larger number of �Su's and longer CPU time. As density
increases from 0.05 to 0.50, there are more precedence
arcs among operations. This leads to tighter workload
bounds from the WBP, a smaller upper bound through-
put, and a smaller number of �Su's from the WAGP that
meet demand, and shorter CPU time. The actual
throughputs obtained are insensitive to density except for
one case, where R � 15 and d � 200 for aggregate part 3.

Table 3. Experiments with the proposed method: aggregate part 1

Demand/period 100

Density d 0.05 0.50

Problem number P-1 P-2 P-3 P-4
Flexible capacity R 15 30 15 30
Mo, N, K 7, 25, 7 4, 25, 7 7, 25, 7 4, 25, 7
Number of �Su's 1 3 1 2
Upper bound TH* 111.6 124.7 111.4 123.8
Actual TH 111.6 123.8 109.3 123.8
Adopted �S (1,1,1,1,1,1,1) (1,2,2,2) (1,1,1,1,1,1,1) (2,2,2,1)
Operation assignment (10,15,15,15,15,15,15) (10,30,30,30) (15,14,13,15,15,14,14) (27,28,30,15)
Actual TH/TH* 100% 99.3% 98.1% 100%
CPU time (second) 2.7 5.7 0.4 0.2

Demand/period 200

Density d 0.05 0.50

Problem number P-5 P-6 P-7 P-8
Flexible capacity R 15 30 15 30
Mo, N, K 7, 35, 12 4, 35, 12 7, 35, 12 4, 35, 12
Number of �Su's 3 11 1 7
Upper bound TH* 201.3 220.7 201.0 218.6
Actual TH 194.0 217.9 194.0 217.1
Adopted �S (2,2,2,2,1,2,1) (4,2,4,2) (2,2,2,2,1,2,1) (2,4,3,3)
Operation assignment (15,15,15,15,14,15,11) (30,17,30,23) (15,15,15,15,14,15,11) (16,30,29,25)
Actual TH/TH* 96.4 98.7% 96.6% 99.3%
CPU time (second) 11.0 29.7 0.2 1.8
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Table 4. Experiments with the proposed method: aggregate part 2

Demand/period 100

Density d 0.05 0.50

Problem number P-9 P-10 P-11 P-12
Flexible capacity R 15 30 15 30
Mo, N, K 7, 25, 7 4, 25, 7 7, 25, 7 4, 25, 7
Number of �Su's 1 3 1 2
Upper bound TH* 108.2 120.9 108.2 120.0
Actual TH 108.2 120.0 108.1 120.0
Adopted �S (1,1,1,1,1,1,1) (2,1,2,2) (1,1,1,1,1,1,1) (2,1,2,2)
Operational assignment (10,15,15,15,15,15,15) (29,13,30,28) (14,15,13,15,14,15,14) (29,13,30,28)
Actual TH/TH* 100% 99.3% 99.9% 100%
CPU time (second) 2.5 10.2 0.3 0.3

Demand/period 200

Density d 0.05 0.50

Problem number P-13 P-14 P-15 P-16
Flexible capacity R 15 30 15 30
Mo, N, K 7, 35, 13 4, 35, 13 7, 35, 13 4, 35, 13
Number of �Su's 4 14 3 8
Upper bound TH* 211.8 232.3 209.7 229.9
Actual TH 210.2 229.2 208.0 227.9
Adopted �S (2,2,2,2,1,2,2) (4,1,4,4) (2,2,1,2,2,2,2) (2,4,3,4)
Operational assignment (12,15,15,15,14,14,15) (30,10,30,30) (15,15,10,15,15,15,15) (15,30,25,30)
Actual TH/TH* 99.3% 98.7% 99.2% 99.1%
CPU time (second) 13.0 25.6 0.7 2.3

Table 5. Experiments with the proposed method: aggregate part 3

Demand/period 100

Density d 0.05 0.50

Problem number P-17 P-18 P-19 P-20
Flexible capacity R 15 30 15 30
Mo, N, K 7, 21, 7 4, 21, 7 7, 21, 7 4, 21, 7
Number of �Su's 1 3 1 2
Upper bound TH* 112.3 127.6 112.2 126.3
Actual TH 112.2 126.4 111.7 126.2
Adopted �S (1,1,1,1,1,1,1) (2,2,1,2) (1,1,1,1,1,1,1) (2,2,2,1)
Operation assignment (10,15,15,15,15,15,15) (21,30,19,30) (13,14,15,13,15,15,15) (27,28,30,15)
Actual TH/TH* 99.9% 99.1 99.6% 99.9%
CPU time (second) 1.7 13.0 0.2 0.3

Demand/period 200

Density d 0.05 0.50

Problem number P-21 P-22 P-23 P-24
Flexible capacity R 15 30 15 30
Mo, N, K 7, 30, 12 4, 30, 11 7, 30, 12 4, 30, 11
Number of �Su's 3 11 2 7
Upper bound TH* 206.6 227.3 203.9 224.7
Actual TH 193.4 223.4 169.1 223.2
Adopted �S (2,2,2,1,2,1,2) (2,4,3,3) (2,2,1,2,2,2,1) (4,2,3,3)
Operation assignment (14,15,15,11,15,15,15) (11,30,29,30) (15,15,13,15,15,15,12) (30,16,27,27)
Actual TH/TH* 93.6% 98.3% 82.9% 99.3%
CPU time (second) 8.9 24.8 0.6 2.0
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In this case, the throughput decreases from 193.4 to 169.1
as density increases from 0.05 to 0.50. This insensitiveness
was against our expectation that the high density of the
precedence diagram restricts the assignment of operations
in the OLP and results in poor ®t and low throughput.
One possible interpretation for this is that the ¯exibility
capacity R � 15, which allows machines to accommodate
up to 15 operations, is still large enough to temper an
adverse e�ect of additional precedence arcs on operation
assignment.

Overall, the proposed method works very well under
various experimental conditions, providing a near-opti-
mal solution most of the time. The average di�erence
between the actual throughput and the corresponding
upper bound throughput is only 1.8%. This also gives
evidence that the workload bounds obtained from Pro-
cedures 1 and 2 to solve the WBP are e�ective and serve
the tight workload bound constraint for the WAGP. All
24 problems require less than 30 seconds of CPU time
when �K;N� does not exceed (12,35). Twenty-one prob-
lems among them require less than 15 seconds. This is
reasonable since this problem is addressed in short-
term planning and would be solved about once a day or
week.

4.3. Comparison with an existing method

Although solving the grouping and loading problem
simultaneously for FFSs has not been studied before, we
took a solution method for FMSs reported in the litera-
ture by Kim and Yano [15] and modi®ed it for compar-
ative study with our proposed method. The Kim and
Yano method (KY) is basically an enumeration scheme
that consists of the following three steps: (1) generate all
possible machine group con®gurations; (2) ®nd the ideal
continuous workload allocation that maximizes
throughput with no workload bounds for each con®gu-
ration; (3) rank con®gurations in decreasing order of
throughput and solve the loading problem one by one in
the sorted list until either a feasible solution is found or
the list is exhausted.

In order to solve the loading problem in (3) for KY,
Procedure 3 is used for a given ordering since KY con-
sider a special case with density 0.0, i.e., no precedence
relations among operations. Since it is not realistic to
evaluate all possible orderings (for example, 5040 order-
ings for M � 7), Procedure 4 is applied to generate two
zigzag orderings with workload bounds speci®ed as
Li � 0 and Ui � TW for every group. In order to avoid
unnecessary computation for KY, all con®gurations with
their ideal throughputs less than demand are eliminated
after (2). KY is applied to the same set of test problems
that were used in the previous section. The results are
summarized in Tables 6±8 including the following statis-
tics: the number of �Su's with their ideal throughputs no
less than demand, the actual throughput and machine

vector obtained, ratio of the actual throughput to the
ideal upper bound throughput, and CPU time. However,
the tables exclude those cases where K � 7 and M � 7. In
these cases, there is only one possible �Su which is bal-
anced, and both methods found the same solution.
The proposed method is superior to that of KY in both

e�ectiveness and e�ciency. The proposed method ®nds
solutions with an average of 9.5% (i.e., 14.2 parts) larger
throughput than KY. There is no signi®cant di�erence in
CPU time when the demand is 100, but when the demand
is 200, KY requires an average of 156% (i.e., 10.3 sec-
onds) longer CPU time than the proposed method. This is
because KY deals with a larger number of �Su's, since the
ideal throughput is obtained without the workload bound
constraints. We expect that this will become more evident
for higher demand since higher demand requires the
larger number of machines K and the total number of �Su's
exponentially increases with respect to K.
Ranking �Su's in decreasing order of ideal throughput in

Step 3 also causes longer CPU time since larger ideal

Table 6. Comparison among the methods: aggregate part 1

Problem
number

KY Proposed
method

P-2 Number of �Su's 3 3
Adopted �S (3,1,2,1) (1,2,2,2)
Upper bound TH* 126.2 124.7
Actual TH 114.8 123.8
Actual TH/TH* 91.0 99.3
CPU time (second) 7.2 5.7

P-4 Number of �Su's 3 2
Adopted �S (1,2,1,3) (2,2,2,1)
Upper bound TH* 126.2 123.8
Actual TH 103.0 123.8
Actual TH/TH* 81.6 100
CPU time (second) 0.4 0.2

P-5 Number of �Su's 7 3
Adopted �S (2,2,2,1,2,1,2) (2,2,2,2,1,2,1)
Upper bound TH* 207.9 201.3
Actual TH 179.8 194.0
Actual TH/TH* 86.5 96.4
CPU time (second) 27.6 11.0

P-6 Number of �Su's 15 11
Adopted �S (5,1,3,3) (4,2,4,2)
Upper bound TH* 226.1 220.7
Actual TH 205.2 217.9
Actual TH/TH* 90.8 98.7
CPU time (second) 42.9 29.7

P-7 Number of �Su's 7 1
Adopted �S (1,2,1,2,2,2,2) (2,2,2,2,1,2,1)
Upper bound TH* 207.9 201.0
Actual TH 154.6 194.0
Actual TH/TH* 74.4 96.6
CPU time (second) 1.4 0.2

P-8 Number of �Su's 15 7
Adopted �S (1,4,3,4) (2,4,3,3)
Upper bound TH* 226.1 218.6
Actual TH 202.7 217.1
Actual TH/TH* 89.7 99.3
CPU time (second) 2.0 1.8
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throughput is associated with more unbalanced �Su's and
more unbalanced ideal workloads, but may not be
achievable in Step 4 due to limited ¯exibility capacity and
tight precedence relationships. As a result, a feasible so-
lution is not found on many occasions until the lower
part of the ranked list is reached. On the other hand, the
proposed method avoids this problem by obtaining ef-
fective workload bounds from the WBP. These workload
bounds are used in the WAGP to give more realistic
target workloads and ideal throughputs. Thus, ordering
�Su's based on these throughputs in Step 2 of Procedure 5
helps to ®nd a good solution faster than ordering by KY.
Another advantage of the proposed method over the
other is that it always gives a tighter upper bound on the
throughput from the WAGP, which better serves in de-
termining the quality of the solutions obtained from the
heuristics. The proposed method achieves an average of
97.7% of its upper bound throughput, whereas KY
achieves an average of 87.2%.

5. Summary and future research issues

In this paper, we studied two important production
planning problems for FFSs: grouping and loading
problems. We present a method which solves these two
problems simultaneously with the objective of maximiz-
ing system utilization. With the precedence requirements,
the complex throughput function and the machine ¯exi-
bility constraint inhibit seeking an optimum solution. We
present a heuristic method which decomposes the large
optimization problem into three interrelated subprob-
lems. The speci®c contributions and ®ndings are sum-
marized as follows:
(1) We show that the proposed method is e�ective and

®nds a near-optimum solution most of the time for a
moderate size of problems with up to 100 operations,
seven groups, 12 machines, and 35 pallets. Experiments
with 24 various test problems show that the throughput
of the solution obtained is within an average of 1.8% of

Table 7. Comparison among the methods: aggregate part 2

Problem
number

KY Proposed
method

P-10 Number of �Su's 3 3
Adopted �S (1,2,1,3) (2,1,2,2)
Upper bound TH* 122.3 120.9
Actual TH 103.7 120.0
Actual TH/TH* 84.8 99.3
CPU time (second) 10.4 10.2

P-12 Number of �Su's 3 2
Adopted �S (2,2,2,1) (2,1,2,2)
Upper bound TH* 122.3 120.0
Actual TH 119.9 120.0
Actual TH/TH* 98.0 100
CPU time (second) 0.6 0.3

P-13 Number of �Su's 11 4
Adopted �S (2,2,2,2,2,1,2) (2,2,2,2,1,2,2)
Upper bound TH* 219.3 211.8
Actual TH 200.1 210.2
Actual TH/TH* 91.3 99.3
CPU time (second) 42.1 13.0

P-14 Number of �Su's 18 14
Adopted �S (1,6,3,3) (4,1,4,4)
Upper bound TH* 237.7 232.3
Actual TH 201.3 229.2
Actual TH/TH* 84.7 98.7
CPU time (second) 54.5 25.6

P-15 Number of �Su's 11 3
Adopted �S (2,2,2,2,2,1,2) (2,2,1,2,2,2,2)
Upper bound TH* 219.3 209.7
Actual TH 198.2 208.0
Actual TH/TH* 90.4 99.2
CPU time (second) 3.1 0.7

P-16 Number of �Su's 18 11
Adopted �S (4,4,4,1) (2,4,3,4)
Upper bound TH* 237.7 229.9
Actual TH 220.0 227.9
Actual TH/TH* 92.5 99.1
CPU time (second) 3.6 2.3

Table 8. Comparison among the methods: aggregate part 3

Problem
number

KY Proposed
method

P-18 Number of �Su's 3 3
Adopted �S (3,1,2,1) (2,2,1,2)
Upper bound TH* 129.5 127.6
Actual TH 118.1 126.4
Actual TH/TH* 91.2 99.1
CPU time (second) 7.3 13.0

P-20 Number of �Su's 3 2
Adopted �S (3,1,2,1) (2,2,2,1)
Upper bound TH* 129.5 126.3
Actual TH 101.0 126.2
Actual TH/TH* 78.0 99.9
CPU time (second) 0.4 0.2

P-21 Number of �Su's 7 3
Adopted �S (2,2,2,1,2,1,2) (2,2,2,1,2,1,2)
Upper bound TH* 212.2 206.6
Actual TH 193.4 193.4
Actual TH/TH* 91.2 93.6
CPU time (second) 26.1 8.9

P-22 Number of �Su's 15 11
Adopted �S (4,3,4,1) (2,4,3,3)
Upper bound TH* 233.8 227.3
Actual TH 217.8 223.4
Actual TH/TH* 93.2 98.3
CPU time (second) 38.3 24.8

P-23 Number of �Su's 7 2
Adopted �S (2,2,2,1,2,1,2) (2,2,1,2,2,2,1)
Upper bound TH* 212.2 203.9
Actual TH 155.9 169.1
Actual TH/TH* 73.5 82.9
CPU time (second) 1.2 0.6

P-24 Number of �Su's 15 7
Adopted �S (5,1,3,3) (4,2,3,3)
Upper bound TH* 233.8 224.7
Actual TH 202.7 223.2
Actual TH/TH* 86.7 99.3
CPU time (second) 1.7 2.0
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its upper bound. Computation time is also reasonable
without exceeding 30 seconds on a mainframe computer.

(2) We show that the proposed method is superior to
an existing method from the FMS literature. Experiments
with 18 test problems show that the proposed method
achieves 9.5% larger throughput than the existing meth-
od. The proposed method is also more e�cient than the
iterative approach, which is based on an enumeration
scheme. The latter requires 156% longer CPU time when
demand is 200 parts per period. This becomes more evi-
dent as the number of machines or demand increases.
This result shows the importance of addressing the
grouping and loading problems for FFSs simultaneously
rather than hierarchically. Another advantage of the
proposed method is that it always provides a tighter up-
per bound on the throughput than the other, which helps
to better assess the quality of the solution obtained.

(3) We de®ne the WBP for the ®rst subproblem and
present a solution method. Even this subproblem is hard
to solve optimally due to a complex combinatorial nature
and so we present a heuristic method by exploiting the
¯exibility capacity and part ¯ow constraints and trans-
forming it to the MCGP, which is easier to solve. Ex-
perimental results show that workload bounds obtained
by this method are e�ective since the upper bound
throughput from the WAGP with these workload bounds
is close to the actual throughput obtained.

(4) We de®ne the OLP for the third subproblem and
present a solution method. Since this subproblem is more
di�cult than the assembly line balancing problem, a
heuristic method is developed. The ordering of the target
workload vector elements can make a signi®cant impact
on operation assignment and the actual throughput. This
is unique and is not shared with FMS loading problems
and the line balancing problem. FMS loading problems
do not need to deal with precedences and are independent
of the ordering, whereas the line balancing problem
considers precedences but only deal with a balanced
con®guration. We develop a procedure which ®nds two
e�ective zigzag orderings. Experiments with 38 test
problems in Section 4.1 show that the throughput from
the OLP with these two orderings is at least 96.4% and
average 99.5% of the maximum throughput obtained
from all possible orderings. The e�ectiveness of these two
orderings is further reinforced by experimental results
with an additional 24 test problems in Section 4.2.

We leave two issues for future research. First, a similar
proposed method can be applied to other types of ¯ow
systems such as open asynchronous lines which can be
modeled as an open tandem queueing network. In this
case, the objective is to minimize the total number of
WIP parts rather than to maximize the system utiliza-
tion. The same proposed method can be applied except
that the WAGP requires a di�erent solution method like
that given by Calabrese [39]. Second, the scope of the
proposed method can be broadened to include other

planning problems such as part type selection. Some-
times, all part types required to be produced for one
period cannot be produced at the same time because
machine ¯exibility is limited and all the necessary tools
cannot be loaded into tool magazines. Then the issue is
how to divide part types into batches so as to minimize
total makespan to complete all production requirements.
To each selected batch of part types, the proposed
method can be applied.
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