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This article considers a tool loading problem whose objective is to minimize the number of tool switches over time in order to
process several parts on a ¯exible machine. New heuristics are presented and compared. Some of these are shown to be superior to
existing methods.

1. Introduction

We consider the following Tool Loading Problem (TLP)
encountered in ¯exible manufacturing. A series of n parts
of di�erent types, each requiring a particular set of tools
of di�erent sizes are to be produced on a single ¯exible
machine. The tools are to be loaded in a magazine con-
taining c slots. Each part type requires at most c tools,
but the total number of tools required for all part types
typically exceeds c, so that tool switches between part
types are usually necessary. Each tool can be placed in
any slot of the magazine. Before processing a part, all
tools required by that part must be installed. Since the
time required for tool switches can be signi®cant relative
to processing time, it is desirable to limit the amount of
time associated with tool switches. The TLP consists of
determining a sequence of parts and the corresponding
sets of tools loaded in the magazine at any time in order
to minimize the completion time of all parts.

Here we examine a TLP over time for a single ¯exible
machine. The solution of this problem is a ®rst step to-
wards solving the more general ¯exible manufacturing
problem of selecting part types over time. Scheduling
¯exible manufacturing operations over time typically in-
volves selecting overlapping batches of part types. When
the production requirements of a part type are completed,
its tools can be taken out of the tool magazines and the
tools for new part types entering can replace these [1,2]. It
is ideal to sequence the processing of the di�erent part
types so as to minimize reloading tools that have been
previously used. The TLP addressed here is a ®rst step
towards solving the more general problem. Since the
processing time of each part is sequence independent, we
are only concerned with the time associated with tool

switches. Some authors such as Tang and Denardo [3]
minimize the number of switching instants, i.e., the
number of times at which one or more tools must be
changed in the magazine in order to process the next part.
Alternatively, one can minimize the number of tool
switches, i.e., the total number of tools changes during the
whole process. This approach is used in the work of Bard
[4], Tang and Denardo [3], Kiran and Krason [5],
Oerlemans [6], Gray et al. [7], Crama et al. [8], Follonier
[9], Sodhi et al. [10], Hertz and Widmer [11], and Avci and
Akturk [12]. This paper deals with the latter objective.
As shown by Crama et al. [8], the TLP is NP-hard by

reduction from the Matrix Permutation Problem [13].
However, once the part sequence is known, optimally
loading the tools in the magazine is easily accomplished
by application of a `Keep Tool Needed Soonest (KTNS)'
policy as discussed by Bard [4], and Tang and Denardo
[3]. This policy states that when tool changes are neces-
sary, those tools which are required the soonest for an
upcoming part should be the ®rst to be kept in the
magazine.
When each part requires exactly c tools the TLP re-

duces to a Traveling Salesman Problem (TSP) with dis-
tances d�i; j�, where

d�i; j� � 1
2 jTi [ Tjj ÿ jTi \ Tjj
ÿ � � cÿ jTi \ Tjj;

and Ti is the set of tools required by part i. Since a TSP
solution is a tour, not a path, one can simply introduce a
dummy job 0 with d�0; j� � d�j; 0� � 0 for all j [8]. This
procedure disregards the cost of loading the magazine for
the ®rst part and of unloading it after the last part. Dis-
tances may of course be de®ned di�erently if the situation
warrants it. In general not all parts require c tools, but
standard TSP algorithms can still be applied to provide a
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heuristic solution to the problem, as suggested by Tang
and Denardo [3] and Crama et al. [8], for example.
However, all known algorithms based on this approach
are myopic in the sense that they account for interactions
of two parts at a time without a global view of the entire
solution. As we show in this paper, this can be partly
remedied by de®ning more adequate distances and by
designing a more holistic TSP-based heuristic. We elab-
orate on these two points in Sections 2 and 3, respectively.
In Section 4, we present computational results showing
the relative e�ciency of the proposed approach. The
conclusion follows in Section 5.

2. Distance de®nitions

We have considered several ways of de®ning a `tooling'
distance between two parts. Here we restrict our attention
to the ®ve most interesting de®nitions. The ®rst two dis-
tances are simply:

d1�i; j� � cÿ jTi \ Tjj;
and

d2�i; j� � jTi [ Tjj ÿ jTi \ Tjj:
Both are equivalent to d�i; j� when jTij � c for all i. These
two distances are natural in the sense that they take a
larger value when part types i and j have few tools in
common. The ®rst is an upper bound on the number of
tool switches between i and j. The next distance:

d3�i; j� � maxf0; jTi [ Tjj ÿ cg;
used by Crama et al. [8] represents a lower bound on the
number of tool switches between i and j. This is stronger
than the lower bound jTi [ Tjj ÿ c presented by Tang and
Denardo [3] since it never has negative values. Note that
if j immediately follows i, the value jTjnTij (and not jTinTjj
as suggested by Crama et al. [8]) is a valid upper bound
on the number of switches from i to j, but it is not
symmetric.

The previous three distances only consider the inter-
action between two parts and do not take into account
the cÿ jTij tools present in the magazine when going from
i to j nor those required by parts following j. We will
present two new distance metrics that improve upon d3
and d2 by giving di�erent weights to their terms. The ®rst
of these distances improves on d3 by subtracting a
quantity smaller than c if the tools required by i or j are
not likely to be required before i or after j, and a larger
quantity if they are more likely to be required before i or
after j. For this, we compute kk�i; j� as the number of
parts, apart from i and j, requiring tool k 2 Ti [ Tj, and
K�i; j� �Pk2Ti[Tj

kk�i; j�. The larger the K�i; j�, the more
likely it is that the tools of jTi [ Tjj are required for other
parts. Observe that K�i; j� � �nÿ 2�jTi [ Tjj. Hence we
de®ne:

d4�i; j� � max 0; jTi [ Tjj ÿ h
K�i; j�

�nÿ 2�jTi [ Tjj
� �

c
� �

;

where h is a parameter in �0; 1�. Thus d4 subtracts from
jTi [ Tjj a quantity in �0; c�, which is larger if the tools of
jTi [ Tjj are frequently utilized.
In the same spirit, we introduce a variation of d2 by

de®ning:

d5�i; j� �
�

c� 1

c

� �
jTi [ Tjj ÿ jTi \ Tjj

� �nÿ 2�jTi [ Tjj
maxfK�i; j�; 0:5g
� �

:

The factor �c� 1�=c can vary between 1 and 2. It gives a
larger weight to jTi [ Tjj if the size of the magazine is
small, i.e., if more tool changes are probable. The second
bracketed factor is similar to that used in d4. It is always
at least equal to 1 and becomes larger if the tools of
jTi [ Tjj are seldom utilized. The value 0.5 is used to avoid
dividing by 0 when K�i; j� � 0.

3. Algorithms

A natural decomposition strategy for the TLP is to ®rst
solve the associated TSP using one of the distances de-
®ned in Section 2, and then determine an optimal tool
sequence using a KTNS policy. Crama et al. [8] have
applied this approach. They obtain the best heuristic re-
sults using the Golden and Stewart [14] Farthest Insertion
(FI) Fheuristic with all possible starting parts, combined
with d3. In heuristic FI, a tour is gradually constructed as
follows:

3.1. The FI heuristic

Step 1. Consider a starting part i and a part j furthest
from i. Construct the current tour �i; j; i�.

Step 2. For each part k not on the tour, compute the
shortest distance d�k� between k and all parts on
the tour. Select part k� maximizing d�k� and in-
sert this part between two consecutive parts on
the tour in order to minimize the extra length
of the tour. Repeat this step until all parts are on
the tour.

3.2. The GENI heuristic

A better construction heuristic is GENI, proposed by
Gendreau et al. [15]. This algorithm can be summarized
as follows. Starting from three arbitrary parts, GENI

inserts at each step a part k not yet on the current tour,
between two parts i and j already on the tour and among
the p closest neighbors of k. GENI is more than a standard
insertion procedure as each insertion is executed simul-
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taneously with a local reoptimization of the tour. Its
complexity is O�np4 � n2�, where n is the number of parts.

A postoptimization phase, called US was developed,
based on these generalized insertions. In US, each part is
in turn removed from the tour using the reverse GENI

operation, and the part is then reinserted in the tour using
GENI. The procedure ends when no further improvement
can be obtained by removing and reinserting any part.
The complexity of GENIUS cannot be determined is terms
of n and p as it can be applied as long as the objective
function improves. The GENIUS heuristic ([15]) consists of
executing US after GENI. On randomly generated TSP
instances and on problems described in the literature,
GENIUS has produced highly competitive results. Com-
putation time and solution quality both increase with p.
In practice selecting p in the range [3,7] produces good
results.

3.3. Heuristics based on the TLP objective

In both FI and GENI, it is necessary to select at each step a
part to be inserted in the current tour and its best position
in the tour. The determination of the best insertion can be
based on one of the distance functions de®ned in Section
2. We propose an improvement by which the TLP ob-
jective is used directly: for each tentative insertion, com-
pute the number of tool switches using a KTNS policy,
and perform the insertion yielding the smallest number of
tool switches. This principle can be applied to any con-
struction or improvement heuristic. Note that the dis-
tance criterion is still used to determine which part to
insert in FI and to compute the neighborhoods in GENI.
We point out that Crama et al. [8] have applied a similar
idea within the framework of a nearest neighbour (NN)
heuristic: parts are sequentially added in the last position
of the tour according to the TLP objective. They have
also developed a 2-opt improvement procedure based on
the number of tool switches.

4. Computational results

We now describe the results of extensive tests performed
to assess the performance of several algorithms, using the
®ve distances described in Section 2 and data sets pos-
sessing di�erent characteristics.

4.1. Data sets

We have produced sixteen types of problem instances as
in Crama et al. [8]. Each instance type is characterized by
the vector of parameters �n; m; min; max; c�, where

n = number of parts
m = number of tools

min = lower bound on the number of tools required
for any part;

max = upper bound on the number of tools required
for any part;

c = tool magazine capacity.

The various instance types generated are described in
Table 1. For each type, ten instances were randomly
generated as in Crama et al. [8], resulting in a total of 160
instances.

4.2. Algorithms

We have ®rst tested the following four basic heuristics.

FI1: successively apply FI using each part as a
starting point. Select the shortest tour and
apply KTNS to it;

FI2: successively apply FI using each part as a
starting point and apply KTNS to each of the
n tours. Select the solution with the least
number of tool switches;

GENI: apply the GENI heuristic followed by KTNS.
In our implementation, we use a neighbor-
hood size p � 6 in GENI;

GENIUS: apply GENIUS (with p � 6), followed by
KTNS;

In the next ®ve heuristics, the TLP objective is used at
each step to guide the search as explained in Section 3.3.

FI* : successively apply FI by considering each part
as a starting point and using the TLP objec-
tive to determine the best insertion. Select the
best overall solution;

GENI* : apply GENI (with p � 6) using the TLP ob-
jective to determine the best insertion;

GENIUS*: Apply GENIUS (with p � 6) using the TLP
objective to determine the best insertion;

NN*: apply the nearest neighbour heuristic (called
`Greedy' in Crama et al. [8]) using the TLP
objective to select the next part to be added to
the current partial solution;

2-opt* : apply the 2-opt interchange mechanism using
the TLP objective.

4.3. Tests

We have run the nine algorithms just described, all pro-
grammed in Pascal, on each of the 160 instances gener-
ated. For each of the ®rst seven algorithms we

Table 1. Instance types

n m min max c

10 10 2 4 4, 5, 6, 7
15 20 2 6 6, 8, 10, 12
30 40 5 15 15, 17, 20, 25
40 60 7 20 20, 22, 25, 30

Heuristics for minimizing tool switches 691



successively used the ®ve distances described in Section 2.
For NN* and 2-opt*, there is no distance involved. Pre-
liminary tests were performed to determine the best value
of h in d4. The value h � 0:25 seems to be the best and it
was used in all subsequent tests.

The computational results are summarized in Table 2.
For each algorithm/distance combination, we report two
average statistics over the 160 instances:

%: deviation, in percent, of the value of the TLP
objective function (number of tool setups, equal
to c plus the number of tool changes) over the
best known value;

Sec: computation time in seconds on an SG Indigo
machine (100 MHz, IP20 Processor).

These results indicate that there are clearly three classes
of algorithms. The ®rst four methods, FI1, FI2, GENI, and
GENIUS, are fast, but not the best in terms of solution
quality. The three algorithms FI*, GENI*, and GENIUS* are
much slower, but produce better solutions. The two al-
gorithms NN* and 2-opt* are both dominated by other
strategies. Among the ®rst four algorithms, FI1 is domi-
nated by GENI, and GENIUS for all ®ve distance functions.
The fastest algorithm is GENI, and the best in terms of
solution value is FI2. Of all distance functions, d3 is clearly
the least interesting and d5 is usually better than d1, d2
and d4. It is interesting to note that Crama et al. used the
FI1/d3 combination in their tests. Within this class of al-
gorithms, FI2/d2, d4 and d5, and GENI/d1, d2, d4 and d5 are
worthwhile combinations. Some algorithms of the second
group are dominated by FI2/d4 and d5. Otherwise, if so-
lution quality is of prime concern, GENIUS* with d1 or d2 is
probably the best choice.

In order to compare the behavior of the various
problem types, we report in Table 3 the percentage value
corresponding to the best version of each algorithm/dis-
tance combination for each problem type. It can be seen

from this table that running time is directly related to
problem size (m and n) and is almost always independent
from the remaining parameters (except for 2-opt* when
n � 30). The problem di�culty is directly a�ected by the
value of c. Large values of this parameter tend to produce
solutions containing fewer tool switches and, in this case,
it is likely that several heuristics generate optimal or near-
optimal solutions.

5. Conclusion

We have proposed several new families of heuristics for a
di�cult tool loading problem arising in ¯exible manu-
facturing. With respect to previous algorithms, we have
introduced two new distance functions to guide the
search, we have considered the use of generalized inser-
tion methods (GENI and GENIUS), and we have developed
new families of methods driven by the TLP objective.
Tests performed on several sets of generated instances
indicate that some of the proposed strategies yield very
fast algorithms, or solution values that rank among the
best available. In a given industrial context, the choice of
the most appropriate method should depend on whether
computation time or solution quality is the determinant
factor.
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Table 2. Comparison of several algorithms and distances

Distance

d1 d2 d3 d4 d5 None

Algorithm % Sec % Sec % Sec % Sec % Sec % Sec

FI1 15.8 4.1 12.2 4.4 25.9 3.9 12.4 4.3 13.1 4.5 ± ±
FI2 8.5 5.0 6.5 5.2 17.0 4.5 5.9 5.1 5.7 5.4 ± ±
GENI 10.9 0.5 11.6 0.6 25.6 0.3 12.3 0.5 10.4 0.6 ± ±
GENIUS 10.3 2.8 10.7 2.7 25.3 1.7 9.5 2.6 8.7 3.8 ± ±

FI* 7.7 437.1 3.9 455.9 4.5 460.6 3.1 462.0 3.8 454.4 ± ±
GENI* 3.7 187.4 4.3 195.1 6.9 189.4 6.9 187.0 4.4 190.5 ± ±
GENIUS* 1.0 1002.7 0.9 1206.1 2.8 1210.4 2.6 1168.0 1.3 1083.2 ± ±
NN* ± ± ± ± ± ± ± ± ± ± 5.4 221.2
2-opt* ± ± ± ± ± ± ± ± ± ± 7.8 124.4
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