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Abstract. We previously developed a clustering and classification algorithm—supervised
(CCAS) to learn patterns of normal and intrusive activities and to classify observed system ac-
tivities. Here we further enhance the robustness of CCAS to the presentation order of training
data and the noises in training data. This robust CCAS adds data redistribution, a supervised
hierarchical grouping of clusters and removal of outliers as the postprocessing steps.
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1. Introduction

Signature recognition learns signature patterns of intrusive (and normal) activities
from training data, and then in detection, matches these signatures with the observed
incoming data. Signature-recognition algorithms face great challenges in computer-
intrusion detection. First, activity data from a computer system can easily contain
millions of records per day. In addition, each record may have hundreds of data
fields. Thus, an algorithm to learn signature patterns in such data must be scalable.
Second, patterns of normal and intrusive activities very likely change over time,
and new forms of attacks emerge everyday. Hence, a data-mining algorithm must
have the incremental learning ability to update signature patterns as more training
data become available. Last, the distribution for normal and intrusive data may be
unclear.

Data-mining techniques, such as decision trees, association rules, artificial neural
networks and Bayesian networks, have been used as signature-recognition algorithms
for intrusion detection (Axelsson 2000). However, in many cases, they are not capable
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of learning signature patterns in a scalable, incremental manner. Moreover, several of
them, including Bayesian networks, require the understanding of domain knowledge
or data distribution.

Addressing the above challenge, we have developed an innovative algorithm,
called clustering and classification algorithm—supervised (CCAS) (Li and Ye 2002).
CCAS is based on supervised clustering for learning patterns of normal and intrusive
activities and instance-based learning to classify observed activities. Clustering relies
very little on the distribution of data, suitable for intrusion detection. Like other in-
cremental data-mining algorithms, CCAS shows sensitivity to the presentation order
of training data. Recently, grid-based and density-based methods have been used to
overcome this problem (Ester et al. 1998; Harsha and Choudhary 1999; Zhang 1997).
Built on concepts from these clustering methods, together with several innovative
concepts, we develop a robust extension of CCAS in this paper.

2. Original CCAS algorithm

Each data record has attribute vector X in p dimensions and a target class Y . Here
we consider only numeric attributes. A cluster L is represented by the centroid coor-
dinates XL of all the data points in it, the number of data points NL, and its class YL.
A weighted Euclidean distance is used to calculate the distance from a data point
D to a cluster L,

d(D, L) =
√
√
√
√

p
∑

i=1

(Xi − X Li)
2 r2

iY ,

where Xi and X Li are, respectively, the coordinates of D’s and L’s centroid on the
ith dimension and riY is the correlation coefficient between predictor Xi and target
variable Y . The distance between two clusters is calculated similarly by replacing
the data point’s coordinates with the cluster centroid’s coordinates.

The core of CCAS is a grid-based incremental supervised clustering. Each dimen-
sion is divided into a set of intervals within the range defined by the minimum and
maximum values of data points, separating the space into cubic cells. Grid configu-
ration could use different numbers of unequal intervals in different dimensions. We
simplify our study by using the same number of equal grid intervals for all dimen-
sions. At this research stage, we pick the best setting of this parameter from exper-
imentation and expertise. Using a heuristic, the original CCAS clusters the training
data points one by one based on the distance as well as the target class information.

The cluster structure represents the patterns of normal and intrusive activities.
We classify a new data point by comparing new data points with these clusters. For
the binary target variable, we assign a continuous value falling in [0, 1], describing
the closeness to the two target classes. We calculate the distance-weighted average
of the target values of the k nearest clusters as the target value Y of a new data
point D,

W j = 1/d2(D, L j)

Y =
k

∑

j=1

YL j W j/
k

∑

j=1

W j ,
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Fig. 1. The supervised clustering procedure

Fig. 2. Problems addressed by the steps in the robust CCAS

where W j is the weight for the jth nearest cluster. The target value of this cluster
is YL j .

3. Robust CCAS

3.1. Postprocessing

At any instant during the supervised clustering, the cluster structure considers only
the data points processed so far, reflecting a local view on training data. Presented
with the data points in a different order, normal and intrusive clusters could grow
differently if data points nearest in space do not come successively. Natural clus-
ters of the same class may merge into larger clusters due to such unusual input
order. Dividing the data space into grid cells and allowing the formation of clus-
ters only within grid cells help alleviate this problem. We further strengthen
CCAS with several postprocessing steps, listed with the problems they address in
Fig. 2.

(1) Redistribution of data points is a common way to remedy the localisation in
incremental clustering, as used in Zhang (1997). All training data points are clustered
again using the produced clusters as seeds. When a seed cluster with the same class
label is found to be the nearest to the incoming data point, this cluster is replaced
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Fig. 3. An illustration of the supervised hierarchical grouping algorithm in one dimension

with a new cluster, of which this data point is the centroid. We consider that the
initial cluster structure is not the reliable reflection of data distribution and it func-
tions as another facility to limit the growth of clusters here. We allow new clusters
to emerge and thus allow bigger adjustment to the cluster structure.

This redistribution process can be repeated many times. Classification perform-
ance improves with repetition but at additional computation cost. The cluster structure
becomes stable after several passes. Our experiments show that usually one round
of redistribution is sufficient.

(2) In the grid-based clustering, a natural cluster may correspond to several pro-
duced clusters falling into neighbouring grid cells. Hence, we employ a hierarch-
ical grouping procedure to regroup these clusters. This algorithm is different from
the traditional hierarchical clustering in that it combines a pair of clusters into one
larger cluster only when they not only are closest to each other but also have the
same class. A single linkage method (Jain and Dubes 1988) is used in determining
the distance between larger clusters. The distance between two clusters is defined
as the shortest distance between any two points belonging to the respective clus-
ters.

(3) Clusters that have few data points may represent noises in data samples and
can be removed. The threshold on the minimum number of data points could be
based on the average number of data points in clusters and be different for different
classes. However, this threshold is closely dependent on specific training data. For
example, there may be very few instances of certain attack. To keep the signatures
of this type of attack, the threshold for this attack type should be very small. We
set the threshold to 2 in our study, a very conservative number.

The robust CCAS supports the incremental update of cluster structure. The re-
distribution is incremental. After the supervised grouping, we still could incorporate
new available data points one by one, with or without the use of a grid. Another ad-
vantage of the robust CCAS is to support the local adjustment of the cluster structure,
attributed to the cluster representation and working procedures. Each step functions
independently, linked by the clusters.

3.2. Workflow

The clustering and postprocessing steps can be flexibly arranged. Figure 4 shows the
five phases with the corresponding actions in our application. Phase 1 calculates the
correlation coefficients in the distance measure. We apply the supervised grouping
in phase 5 again to get a more compact cluster structure.

Basically, we may use all the produced clusters after each phase to calculate the
target value of a new data point. However, this is not appropriate after the grid-
based clustering in which grid cells limit the formation of clusters. Therefore, after
phases 2 and 3, we use only the clusters in the grid cell of a data point. Grid
cells play no role in phases 4 and 5, and then we use all the clusters in classifica-
tion.
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Fig. 4. Workflow of the robust CCAS

3.3. Computational complexity

Let M be the number of the produced clusters after each phase and N the number
of data points. In grid-based supervised clustering, the upper bound on the compu-
tational complexity is O(pNM) if we search the clusters sequentially, where p is
the dimensionality of attributes. If we apply a more efficient cluster-storage struc-
ture, such as the one in Huang et al. (1992), the complexity can be reduced to
O(pN). For the supervised cluster grouping, the complexity has an upper bound,
O(MI (MI − 1)/2), on the number of pairwise distances of clusters, where MI is
the number of initial clusters. We inspect these distances in the hierarchical group-
ing beginning from the smallest one. The computation takes much less time because
inspection terminates very soon when more and more distances are associated with
clusters of different classes. The computational complexity of removing outliers is
O(M).

4. Evaluation experiments

We have applied the robust CCAS on one small data set and two large intrusion
detection data sets, summarised in Fig. 5.

(1) THY data is used in an empirical comparison of decision tree, statistical and
neural network classifiers (Lim et al. 2000). Taking advantage of its small size, we
investigate the robustness of the robust CCAS to the presentation order of training
data and the impact by the number of grid intervals. Classes 1 and 2 have much
fewer representatives (93 and 191, respectively) than class 3 (3,488). The supervised
grouping of clusters generates quite a few clusters for class 1 and 2, many of them
containing only one data point. Therefore, we do not perform the outlier removal
and Phase 5 because removal of outliers can be damaging.

(2) In 2000 data, we use an exponentially weighted moving-average (EWMA)
technique to obtain the smoothed occurrence frequency distribution of 284 audit-
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Fig. 5. Evaluation data sets

event types in Solaris operating system (Li and Ye 2002). Fifteen normal sessions
and seven attack sessions are in the data stream from the host machine, called Mill,
and 63 normal and 4 attack sessions in the other stream from machine Pascal. The
sessions are arranged sequentially, i.e., the data points of different sessions are not
mixed in time. We show the result using the Pascal data in training and the Mill
data in testing. Although using them the other way shows similar performance, more
attack sessions in testing make the performance change more distinctive. We use
two input orders in training to examine the robustness of this algorithm. We also
test its sensitivity to the grid parameter. We use 6 and 11 grid intervals for input
order 1.

(3) The KDD Cup 1999 contest data contain features extracted from network
traffic connections for the 1998 DARPA Intrusion Detection Evaluation Program.
The number of grid intervals on each dimension is set to three after several ex-
periments. In this study, we compare the accuracy of the robust CCAS with those
contest participants.

By looking for the nearest cluster, we use the classic 1-nearest neighbour method
for a categorical classification in calculating the confusion matrix. For the contin-
uous predicted-target value, we perform the receiver operating characteristic (ROC)
analysis. A false positive (false alarm) occurs when an event is predicted as intrusive
but it is in fact normal. A false negative occurs when a truly intrusive event occurs
without being signalled. If the target value is greater than the given signal thresh-
old, the data record is signalled as intrusive, considered as normal otherwise. The
hit rate is the ratio of the number of hits to the total number of the truly intrusive
data records. The false-alarm rate is the ratio of false alarms to the total number of
the truly normal data records. A ROC curve plots hit rates and false-alarm rates for
various signal thresholds. The closer it is to the top left corner, with 100 % hit rate
and 0 % false-alarm rate, of a chart, the better the performance.

In 2000 data, it is inappropriate to detect intrusions based on individual events
for the audit sessions. The same audit event may be common in both normal and
intrusive activities. We calculate a signal ratio for each session and plot the ROC
curves on sessions, with details in Li and Ye (2002). A parameter a is used in signal
ratio calculation.
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Fig. 6. Error rates versus the number of grid intervals for four input orders on THY data

Fig. 7. Error rates versus input orders on THY data

5. Result analysis

For THY data, the overall performance of the robust CCAS is comparable with
those classification algorithms in Lim et al. (2000), reporting error rates below 0.1.
Figures 6 and 7 plot the change of error rate with different grid intervals and input
orders. For input order 1–3, using one grid interval yields the best classification error
rate. Compared with class 3, classes 1 and 2 are poorly represented, with very few
data points in the training data set. The data points of three classes are well mixed
in input order 1 and 2. Class 3 points are at the beginning of input 3. Using just
the redistribution and supervised cluster grouping could achieve good performance.
However, using more grid intervals, more data points of classes 1 and 2 are correctly
classified. Input order 4 produces the worst performance without using grid intervals.
The training data points there are organised in the order of classes 3, 2, and 1. The
data records of the same class tend to group together, especially for class 3, which
has the majority of data points in training. However, the performance is comparable
with other input orders when using more grid intervals.

Figure 8 shows the session-based ROC analysis for using 11 grid intervals and in-
put order 1 on 2000 data. Three different a parameters generate three curves in each
chart. The performance after phase 2 or phase 3 is not satisfactory. After phase 4 or
phase 5, all seven attack sessions are detected without false alarms. We perform ROC
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Fig. 8. ROC curves for 2000 data using 11 grid intervals and input order 1

analysis for input order 2 with 11 grid intervals, shown in Fig. 9. Input order shows
impact, because the ROC curves for this input order are worse than input order 1
after phases 2 and 3. The following postprocessing steps improve the performance.
After phase 5, for two a, we again capture all attack sessions without generating
false alarms.

Figure 10 shows the ROC analysis using six grid intervals with input order 1.
There is a slight difference between six grid intervals and 11 grid intervals after
phase 2 for the same input order. However, after phase 5, they produce the same
detection performance. The robust CCAS shows robustness to the grid parameter to
some extent.
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Fig. 9. ROC curves for 2000 data using 11 grid intervals and input order 2

Generally, finer grids may produce better performance because they lead to more
clusters and thus allow important patterns of data points to be captured. However,
too small grid intervals force natural clusters into smaller clusters. In special cases,
this may generate poor cluster structures.

Figure 11 shows the ROC curves for KDD’99 data. The best classification per-
formance is improved after all postprocessing steps, closer to 90 % hit rate with near
0 % false alarm rate. The KDD Cup 1999 applies cost weights to confusion matrix
cells to obtain an average cost per data record. The lower this average cost, the bet-
ter the classification performance. The winning technique produces the average cost
of 0.2331, with 0.5 % false alarm rate and 91.8 % hit rate. The best 17 participating
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Fig. 10. ROC curves for 2000 data using 6 grid intervals and input order 1

algorithms have average costs from 0.2331 to 0.2684. Figure 12 shows the confu-
sion matrices and calculated average cost, hit rate and false-alarm rate for the robust
CCAS. The average cost is improved to be 0.2445 after phase 5, comparable with
the best participants. The false-alarm rate is about 0.9 % and the hit rate is 91 %.

6. Conclusion

We present the robust CCAS—a scalable and incremental data-mining algorithm.
The testing results show that the robust CCAS makes significant improvement in
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Fig. 11. ROC curves for KDD’99 data

Fig. 12. Confusion matrices for KDD’99 data

detection performance and robustness to input order of training data. One important
future research topic will be investigating the adaptive grid setting.
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