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A QUADRATIC FORM ON THE QUOTIENT OF A PERIODIC MAP 

P. E. Conner an~ Frank Raymond 

Dedicated to Professor A. D. Wallace on his 68th birthday. 

i. Introduction. 

This note is concerned with the Witt equivalence class 

of" the bilinear, symmetric and non-singular rational valued 

inner-product defined on H2n(M/T;Q) where (T,M 4n) is a 

diffeomorphism of prime period preserving the orientation 

of the manifold M 9n and M/T is the quotient space of" 

the periodic map. Let us first discuss the background ma- 

terial. Associated to every closed oriented manifold, 

M 4n , of dimension divisible by four is the integral in- 

variant signature, sgn(M) . It is a fundamental prin- 

ciple of surgery theory that the quadratic form defined on 

H2n(M;Z)/Tor is unimodular; that is, its determinant is 

± i , The value of this principle stems from the fact 

that the equivalence class in the rational Witt rings, ~ , 

oi" any such quadratic form is uniquely determined by the 

signature, [7, lem. 8.9]. By contrast, however, for a com- 

pact oriented manifold with Ooundary, B 4n , the determi- 

nant of the quadratic form on the image of 

j*:H2n(B, SB;Z) , H2n(B;Z)/Tor may take on any non-zero 

integral value. Indeed this form is unimodular if and only 

if im(j*) ~ H2n(B;X)/Tor is a direct sum~and. Thus in 
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general the signature would reveal nothing about the Hasse 

symbols of" the quadratic form oZ" those finite primes which 

divide twice the determinant. For this reason the equiva- 

lence class oi" the quadratic ~orm on im(j*) in the ra- 

tional Witt ring is introduced as the invariant w(B) c ~ . 

A difference class, w(B) - sgn(B) • ! , where i is the 

identity o~ the Witt ring, is also considered. This lies 

in the kernel oi" the signature homomorphism sgn: ~ , Z 

and so has order i, 2 or 4 . This di1~erence is a par- 

tial measure of" the failure o~ im(j*) to be a summand. 

If W is a second compact oriented manilold with SW = ~B 

then a closed mani~'old M = B U -W can be ~ormed and from 

the usual additivity arguments, together with the ~'act that 

M is closed, it follows that w(B) - w(W) = w(M) = 

sgn(M) • I = sgn(B) i - sgn(W) • i and there,'ore the 

di~'ference only depends on ~B . From this there is then 

defined for every closed, oriented, bounding (4n-l)-mani- 

fold, V , a peripheral invariant in ~ by per(V) = 

w(B) - sgn(B) i where B is any compact oriented mani- 

fold with ~B = V . For this peripheral invariant, 

per(V I U -V2) = per(Vl) - per(V2) and i~' M 4m is a closed 

oriented manifold then per(VxM) = per(V) sgn(M) The 

peripheral invariant is quite well suited as we see in 

section 4 to applications to the study carried out in [i], 

which was of particular influence on us. 

To return to the purpose of" this note, it seemed to 

us that the use of the rational Witt ring might be applied 

in the study of" orientation preserving periodic diffeomor- 

phisms on closed m~ui~olds to yield invariants which among 

other things, might fit in well with peripheral. For an- 

other usage oz" Witt rings in the study o~ PL-periodic maps 

we may re~'er the reader to [5]. Because we are concerned 

with the smooth case here our only candidate is the qua- 

dratic form on H2n(M/T;Z)/Tor since M/T in general has 

singularities and so the quadratic form may not be unimo- 

dular. Our results are incomplete, and therelore we shall 

only give a sketch of the ideas to outline questions 
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needing further study. 

Let (T,M 4n) denote an orientation preserving diffeo- 

morphism of prime period, p , on a closed manifold. Let 

e H4n(M;Z ) be the orientation class and into H2n(M;Q) 

introduce the symmetric, bilinear and non-singular inner- 

product (x,y) = p~xy, a> e Q where ~xy, o> denotes the 

result of applying the augmentation homomorphism to the 

cap-product xy N o e Ho(M;Q ) The induced T is an 

isometry with respect to this inner-product and as a con- 

sequence the averaging operator 

2~x = (x + Tx + "'' + TP-lx)/p is self-adjoint in the sense 

that (Zx,y) = (x,Zy) As an immediate corollary this 

Z exhibits the subspace of fixed vectors as an orthogonal 

summand oI" H2n(M;Q) Therefore, the restriction of the 

inner-product to the fixed vectors is still non-singular 

and the Witt class of this restriction is defined to be 

w ( T , M )  c . 

It is evident that w(T,M) only depends on the 

oriented bordism class [T,M 4hI ~ O4n(Zp) , [3], and is 

a~ additive homomorphism off this group into ~ . With re- 

spect to the MSO.(pt) module structure on O.(Zp) it is 

not difficult to see that for any closed, oriented mani- 

fold, K 4m , we have w([T,M][K]) = w(T,M) sgn(K) . Since 

Stong has shown for an odd prime that O.(Zp) is a free 

MSO.(pt) • module with a homogeneous basis it will follow 

that if 2[T,M] = 0 then w(T,M) = 0 e ~ , however, we 

have not been able to settle this point if" p = 2 . 

If ~:M * M/T is the quotient map then v isomor- 

phically identifies H2n(M/T;Q) with the subspace of 

T -fixed vectors in H2n(M;Q)~- . For this reason we denote 

by sgn(M/T) the signature oi" w(T,M) Let us show that 

w(T,M) - sgn(M/T) ~ I = 0 if (T,M) has no fixed points. 

In that case M/T is again a closed manifold with an 
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orientation 

But then for 

I 

~ K~n(M/T~Z ) for which v.(~) = P~ 

x,y [ H2n(M/T;Q) 

p <xy, a > p2<~*(x) (y),~/p> (~(x) = : ~ (y)) 

and thus in ~ , w(T,M) = sgn(M/T) • I 

We shall sum up what we do know about 

w(T,M) - sgn(M/T) • 1 We use <p> e ~ to denote the 

2 
Witt class of the quadratic form pr 

i.I THEOREM. Let (T,M 2n) be an orientation Preserv- 

in~ periodic diffeomorphism o~_~" ~rime period, p , o__n_n ~ 

closed mani~'old. Then 

(a) w(T,M) - sgn(M/T) • i depends ~ on the 

oriented bordism class oz" the fixed point data in (T,M) ; 

(b) i_~f p = 2 the___~n w(T,M) - sgn(M/T) • I take s o__nn 

a__ssvalues exgctly the elements in the ~ subgroup o~__~" 

order two ~enerated b_~y <2> - i ¢ ~ ; 

(c) i__ff p ~ 3 (mod 4) then w(T,M) sgn(M/T) i 

has as values exactly th___ee elements in the cyclic subgroup 

of order four generated by <p> - I ~ ~ . 

(d) i__~ p ~ 5 (mod 8) then the . yalue_______s oz 

w(T,M) - sgn(M/T) i lie i~_n ~ subgroup o_~f ~ isomorphic 

t~o Z 2 ® Z 2 which is ~_enerated by <p> - i and the Witt 

2 
class of (p_i/2)r I + (p+l)rlr 2 + (p - i/2)r~ . 

(e) if p ~ i (mod 8) then the values oY 

w(TjM) - sgn(M/T) • I lie . in ~ subgroup o~ ~ isomorphic 

t_oo Z 2 ® Z 2 , one of whose generat0rs i_~s <p> - i . 

(f) i_~f p = 3 the___~n W(T,M) - sgn(M/T) • i = 

sgn(F)(<3> - i) w her@ F c M i_~s th__~e se___~t oz' fixed points. 

(g) if p = 2 and (T,M) i~s weakly complex then 

w ( T , M )  - s g n ( M / T )  1 = s g n ( F ) ( < 2 >  - l )  

Statement (a) of course is an immediate corollary of 

the remarks preceding i.I. The special formulas in (f) 

and (g) are postponed to the following section. For parts 

(b) - (e) there are three steps involved. The first is a 

lemma in which Z(i/p) will denote the subring of 
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rationals with denominator a power oi" p . 

1.2 LEMI~A. I~_~'~ quadratic form with coeI'~'icients i_~_n 

Z(I/p) and determinant a unit in Z(i/p) also has 

vanishing si~natur e the_~n eithe_~ritoS rational Witt .clas____~s is 

zero, o_~r i__~t contains an anisotropic form with inte[ral co- 

e~'ficients, vanishing s_~nature and determinant ± p or 

p2 

The proof" of this lemma is also postponed until sec- 

tion 2. Now we have the problem o£ listing, up to ratio- 

nal congruence, all the anisotropic quadratic forms de- 

scribed in the conclusion oz" the lemma. Because the form 

is to have vanishing signature ~d be anisotropic (over Q) 

we need only consider binary and quaternary I'orms [4, 27d]. 

But then by [p. 40, 9b] the Hasse symbol c~(f) is ! , 

while the t'act that f has integral coefficients and de- 

terminant ± p or p2 tells us that for any 1'inite prime 

q ~ p or 2 we have Cq(f) = i also [4, sec. 12, 

Prop. i]. Then of course i'rom the product formula 

Cp(f)c2(f ) = I . It" p = 2 we are done as all Hasse sym- 

bols are + i which precludes a quaternary anisotropic 

£orm and leaves us a single binary case, r~ - 2r~ . 

For p 3 (rood 41 we write gl - and 

2 2 
g2 = Prl - r2 " Now from the discussion [4, sec. 13] o~" 

calculating c 2 we read of~" c2(gl) = -I = Cp(gl) and 

c2(g2) : + i : Cp(g2) . Thus gl ' g2 are the only two 

binary ~orms we need. There is also the quaternary ~'orm 

and determinant p2 . Since all its coefficients are 

+ i (mod 4) we again have c2(g I ® gl) = -i = 

Cp(g I @ gl) and thus this form is also anisotropic 

[~, Th. 19]. It is evident <gl > c ~ generates a cyclic 

subgroup of" order 4 and 3<gl> : <g2 > . 
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= 2 For P - 5 (mod 8) we again have g! r2 - Pr2 ' 

but this time c2(gl) = i = Cp(gl) . In addition, 

2 2 
pr I r 2 has exactly the same Hasse symbols and so 

2<gl> = 0 e 9~ in this case. Let us take instead 

g2  = (p  1 / 2 ) r 2  + ( P + l ) r l r 2  + (p - 1 / 2 ) r 2  " T h i s  i s  a s -  

s o c i a t e d  with the symmetric matrix(; - I/2+ 1/2 P +p _ 1/2) 1/2 

which has integral entires and determinant - p Using 

<( 0p_l)/2- (p+ll)/2~ ' and its transp°se' we z'ind g2 is 

congruent to (p - i/2)g I and hence 2<g2> = 0 e ~ also. 

Now i'rom property 3 oi" the Hasse symbols we would have 

c p ( g 2 )  = (p - 1 / 2 ,  p )p  

Next we apply property 5a, [~, p. 27], of the Hilbert 

symbols with a = ~i = p - 1/2 and B = P~I " BI = i . 

Thus a =  O ,  b ~ 1 and (p - 1 / 2 ,  p ) p =  ( p -  1 / 2 t P )  

This Legendre symbol is -I since p - 1/2 cannot have 

a square root mod p when P ~ 5 (mod 8) . Hence 

c2(g2) = -i = Cp(g2) and g2 is the other binary Yorm 

we need. Next we set 

= 2 1 / 2 ) r ~ .  g l  ® g2 r~ - pr  2 + lP - Z / 2 ) r ~  + < p + l ) r 3 r  ~ + IP - 

Then from property 4 o~" the Hasse symbols 

% ( g l  ® g2)  = - ( - 1 , - 1 ) p ( - p , - p ) p  

Using again property 5a of Hilbert symbols we Yind 

( - ! , - 1 ) p  : 1 , t r i v i a l l y ,  w h i l e  ( - p , - p ) p  : ( - 1 , p ) p  : 1 

because -i has a square root mod p Thus g! ® g2 

has determinant p2 , c2(g I ® g2) = -I = Cp(g I ® g2) 

and there1'ore is anisotropic. 
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Finally we come to p ~ i (mod 8) We may still 

2 _ pr~ with c2(gl) = Cp(gl) = i and write gl = rl 

2~gl> = 0 e ~ . But because p has a square root in the 

2-adic numbers there is no binary ~'orm g2 with determi- 

nant - p and c2(g2) = -i = Cp(g2) [4, Th. 29]. By the 

general existence theorem there is an integral quaternary 

~'orm g2 with determinant p , vanishing signature and 

c2(g2) = -i = Cp(g2) . This is anisotropic precisely be- 

cause p is a 2-adic square. We must also appeal to the 

existence theorem for the quaternary form g3 with in- 
2 tegral coefficients, vanishing signature, determinant p 

and c2(g3) = -I = ep(g3) . To find that the subgroup 

generated by <gl >, ~g2 >, <g3 > is indeed Z 2 ® Z 2 we 

form gl ® g2 ' a form in 6 variables with determinant 

_p2 and vanishing signature. Then c~(g I ~ g2) = -! 

while Cp(g I ® g2) = -l,-l)p(-p,p)p = -i Hence by the 

product formula, c2(g I ® g2) = +i Now add r~ - r~ to 

g3 This does not change ~g3 > e ~ . Call this sum g~ . 

It has vanishing signature and determinant _p2 so 

c (g4) = -i also. In addition 

Cp(g~) = - ( -1 , -1)p(p2, -1)p  
= -(-l,-l)p(l,-l)p = -i . 

Hence g4 is congruent to gl @ g2 and thus 

~g3> = ~gl> + ~g2> . The reader may show 2~g2> = 0 e ~ . 

We remarked that three steps were involved in parts 

(b) - (e). The third oi" course consists in showing that 

the first two steps really do apply to 

w(T,M) - sgn(M/T) • ! . We shall do this during the dis- 

cussion o5" (1.2). We point out that when p ~ i (mod 4) 

we do not know if w(T,M) - sgn(M/T) i actually takes 

on any value other than 0 and <p> - I . It is clear 
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that the fundamental problem is finding a general formula 

for w(T,M) - sgn(M/T) • i in terms of the fixed point 

data. 

Let us examine now the signi~'icance of' this dif~'erence 

class w(T,M) - sgn(M/T) • I Associated to (T,M) is 

the closed T-invariant normal tube, N , around the fixed 

point set. This is the union of small, non-intersecting, 

T-invariant normal tube, N , around the i'ixed point set. 

This is the union o~ small, non-intersecting, T-invariant 

normal cell bundles about each of" the components of" F . 

Then N is a compact oriented 4n-manii'old and we shall 

presently consider a technique I'or calculating w(N) . 

Now T acts freely on ~N/T is again a closed (4n-l)- 

manifold oriented so that the quotient map ~N 4 ~N/T 

has degree + p . Furthermore, ~N/T still bounds and 

so we may give a I'ormula i'or per(~N/T) 

1.3 THEOREM. Fg~ any- odd ~rime period 

per(bN/T) = (<p>w(N) - sgn(N).l) - (w(T,M) - sgn(M/T).l) 

Thus a 1"ormula ~'or w(T,M) - sgn(M/T).l would yield 

a computation oz' per(~N/T) From this I'or instance the 

peripheral invariant I'or every oriented (4n-l)-dimensional 

lens space L , with ~I(L) ~ Zp , would immediately 

~'ollow. 

We shall use the ~'ollowing invariant. Consider a 

pair (M4n+k,c) consisting or a closed oriented maniI'old 

together with a rational cohomology class c ~ ~(M;Q) 

For each j , 0 < j < 4n+k there is the annihilator 

Aj = [xlx c H j(M;Q), xc = 0] Since Aj = H j(M;Q) if 

j > 4n we can write the graded, commutative quotient 

V*(c) 
4n 

algebra with unit as = E 0 HJ(M;Q)/Aj Into 

H*(M;Q) we introduce the inner product (x,y) 
~xyc,~> ~ Q . An elementary application of" Poincare 

duality then shows that the radical o~ this inner-product 

is precisely the annihilator ideal and so the induced 
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inner-product on V*(c) is non-singular. Furthermore, it 

has the properties: 

(a) (xz,y) = (x,zy) for all x,y,z c V*(c) 

(b) ii" x e vJ(c), y ~ Vi(c) then (x,y) = 0 i~ 

i + j ~ 4n , while (x,y) = (-l)ij(y,x) if' i+j = 4n . 

Clearly V*(c) is a rational 4n-dimensional Poincar$ 

duality algebra. In particular v2n(c) receives a bili- 

near, symmetric and non-singular inner-product. The Witt 

class o~ the associated quadratic form is denoted by 

w(M,c) e ~ . Let us warn the reader that there is an 

oriented bordism theory 1'or such pairs, roughly 

MSO4n+k(K(Q,k)) , however, if" k ~ 0 then w(M,c) is in 

no sense a bordism invariant. 

Suppose c e ~(M;Z) is an integral class, then 

v~n(c) is the free abelian group obtained as the quotient 

oi" H2n(M;Z) by the subgroup of" all elements Yor which 

xc has ~'inite order. 

1.4 L~MMA. For an integral cohomology class the u~- 

dratic form on v~n(c) i_~sunimodular iY an___dd only ii' the 

image o~__j' 

~c:H2n(M;Z) . H2n+k(M;Z)/Tor 

is a direct summand. 

This is an elementary consequence oi" the Yact that 

the pairing 

(H2n(M;Z)/Tor) @ (H2n+k(M;Z)/Tor) ~ Z 

is unimodular. In case the image oi" ~c is a summand 

then o~ course w(M,c) = sgn(M,c) • I ~ ~ . 

Our introduction o~ V*(c) may have seemed unne- 

cessarily elaborate but it makes the product formula 

transparent. Let us sketch this point. Given (M4n+k,c) 

and (K4m+J,d) -, there is (M x K , c ® d) If we think 

of" V*(c) as the image o~" c:H*(M;Q) ~ H*(M;Q) , and 
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do the same for d and c ® d , then we have an identi- 

fication oi' V (c ® d) with the graded tensor product 

V (c) ® (d) Merely as a consequence of the definition 

o~" graded tensor product the three inner-products are re- 

lated by (Xr ® Ys ' Zgn-r ® W4m-s) = 

(-l)rS(xr, Zgn_r)(Ys,Wgm_s) Now we may apply the fa- 

miliar argument showing signature for closed manifolds is 

multiplicative in order to prove 

1.5 LEMMA. In 9~ 

w(H×K,c®d) : w(M,c)w(K,d) 

This w(M,c) is related to 1.3 as follows. Suppose 

g , M $n+2j is an oriented SO(2j)-bundle over a closed 

oriented manifold, then the total space or the associated 

closed 2j-disk bundle E(g) , M is a compact oriented 

4(n+j)-mani~'old. 

1.6 LEMMA. I~_ i e(g) e H2J(M;Z) denotes the Euler 

class of the bundle then w(M,e(g)) = w(E(g)) 

For a map of odd prime period the normal bundle to 

each component of the fixed set receives a natural complex 

structure, [3]. Thus 1.6 may be applied to the top Chern 

class of each of these normal bundles and when the result 

is summed over all components or F we obtain w(N) . 

We regard ~ both as the Witt classes of quadratic 

forms with non-zero determinant and as the ''cobordism,' 

ring of finite dimensional rational vector space equipped 

with bilinear, symmetric and non-singular inner-products. 

To illustrate this second viewpoint we mention 

1.7 L~. Suppose V is a finite dimensional no___nn- 

singular inner-product space, li__~ ~ L c V is a subspace 

with ortho~pnal s!~bspace L ± and tad(L) = L N L ~ , then 

rad(L ~) = rad(L) and in 
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~ >  = < L / r a d ( L ) >  + < L l / r a d ( L ) >  . 

2. Periodic Maps. 

We shall first complete the argument z'or parts 

(b) - (e) of i.I. The proof' of 1.2 goes as follows. We 

shall employ only the fact that Z(I/p) is a principal 

ideal domain. If V is a finitely generated ~'ree Z(i/p) 

equipped with a bilinear, symmetric and Z(!/p)-valued 

inner-product then V is strongly by non-singular if and 

only if the naturally associated homomorphism 

V * Hom(V,Z(i/p)) is an isomorphism. Equivalently we may 

think o~ a quadratic form with coei"ficients in Z(i/p) 

and determinant a unit in Z(i/p) Suppose V is 

strongly non-singular and that V ®Z(i/p)Q contains an 

isotropy vector. By clearing denominators we may assume 

the isotropy vector lies in V . Using the i'act that 

Z(I/p) is a p.i.d, we may choose x ~ V with (x,x) = 0 

and so that the submodule, L c V , generated by x is 

a direct summand. Let L ± = [yly ~ V,(x,y) = 0] Surely 

V/L ~ has no torsion so L ± is also a summand of V . 

There is induced on the free module V' = L~/L a 

Z(i/p)-valued inner-product which we must show is still 

strongly non-singular by proving that 

V' ~ Hom(V',Z(i/p)) . An element in Hom(V',Z(i/p)) is 

a homomorphism h:L ~ ~ Z(i/p) for which h(x) = 0 . 

Using that L ~ is a summand of V and that V is 

strongly non-singular there is a z e V such that 

(z,y) = h(y) for all y e L a In particular, 

(z,x) = h(x) = 0 so that z e L ± also. It is trivial 

to see that rank(V') = rank(V) - 2 If 1.7 is applied 

to L ® Q c V ® Q it follows that C~®Q> = <V ® Q> e ~ . 

This shows that if f is a quadratic form with co- 

efficients in Z(1/p) , determinant a unit in Z(1/p) 

and sgn(f) = 0 then either <f> = 0 c ~ or we may as 

well assume f is anisotropic over Q . In effect we 

know then that 2 or 4 variables are involved; that the 

(classical) index is 1 or 2 respectively; that 
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c~(i') = i and Cq(f) = i for all finite primes different 

from p and 2 This leaves us with only Cp(f), c2(f ) 

and of course Cp(f)c2(f ) = i . We are only concerned with 

rational congruence classes and in our discussion we ex- 

hibited representatives of these special anisotropic con- 

gruence classes which have integral coefficients and de- 

terminant ± p or p2 . Then knowing rational equivalence 

is determined by the number oi" variables, the index, the 

Hasse symbols and the determinant modulo non-zero rational 

squares, [4, Th. 1.5,28] the proof of 1.2 is complete. 

We must show that our discussion does apply to 

w(T,M) - sgn(M/T) • i . In the first place the quadratic 

form on H2n(M;Z)/Tor given by p~x2,~> surely has in- 

tegral coefficients and determinant a unit in Z(I/p) . 

In the second place we did not need to go all the way to 

Q to introduce the averaging operator. We may use 

H2n(M;Z(i/p)/Tor and Z will still exhibit the submodule 

of fixed elements as an orthogonal direct summand. Thus 

this submodule, V , is strongly Z(i/p) non-singular. 

Furthermore, if sgn(V) = n ~ 0 let ~ be the free 

Z(i/p)-module with generators ej,...,eln I and put 

(ei, ej) = - 6i, j if n > 0 or 5i, j if n < 0 . In 

either case V ~ W is still strongly Z(i/p) non-singular 

and <(V~W) ® Q> = w(T,M) - sgn(M/T) • i . This completes 

the proof of parts (b) - (e) in i.i. 

Next we would like to consider 1.3. We shall re- 

strict our attention to a non-trivial periodic map 

(T,M ~n) on a closed connected manifold with orientation 

class ~(M) ~ H4n(M;Z ) . We can write M = B D N where 

B is a compact T-invariant regular submanifold, N is 

the closed T-invariant normal tube around the fixed point 

set F and B n N = ~B = ~N . It is important to note 

that T acts freely on B . The orientation or 
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o(B) ~ H4n(B,~B;Z ) i s  the  image of  o(M) under 

H4n(M;Z ) . H4n(M,N;Z ) ~ H4n(B,~B;Z ) The o r i e n t a t i o n  

o(N) ~ H4n(N,~N;Z ) is similarly defined. Let us intro- 

duce the commutative quotient diagram 

H4n(M;Z ) ~ H4n(H,N;Z ) ~_ H4n(B,$B;Z) 

H4n(M/T;Z) -~ H%n(M/T,N/T;Z ) ~ H4n(B/Tj~B/T;Z) 

Since (T,B) is free there is a unique orientation 

o(B/T) ~ H4n(B/T, SB/T;Z ) w i t h  v . ( o ( B ) )  = pc(B/T) Now 

N/T , F is a fibre bundle over each component or F with 

fibre the cone over a certain lens space. Since p is 

odd, every component oi" F has codimension at least two 

a~d therefore H4n(N/T;Z ) ~ H4n_I(N/T;Z) = 0 . Now we 

hay e 

H4n(M;Z ) ~ H4n(M,N;Z ) ~_ H4n(B,~B;Z ) ~_ Z 

H4n(M/T;Z) ~_ H~n(M/T,N/T;Z ) --_ H4n(B/T,~B/T;Z ) ~_ Z 

From this we rind that there exists uniquely 

o(M/T) ~ H4n(M/T;Z ) ~ Z with ~.(o(M)) = po(M/T) ; that 

is, M/T has a uniquely defined ''orientation'' class. 

Let o(N/T) ~ H%n(N/T,~N/T;Z ) be the image of o(M/T) 

under  H%n(M/T;Z ) 4 H~n(M/T,B/T;Z ) m H4n(N/T,~N/T;Z) so 

that by naturality, v.(o(N)) = pc(N/T) . Using rational 

coefficients and the orientation classes o(M/T), c(B/T) 

and o(N/T) we may define w(M/T) = w(T,M), w(B/T) and 

w(N/T) just as we would for compact oriented manifolds. 

Since B/T is a compact oriented manifold with 

SB/T = SN/T we may say that per(~N/T) = -(w(B/T) - 

sgn(B/T) • i) The invariant w(-) here has an additi- 

vity property analogous to that of signature z or compact 

manifolds, therefore 
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W(T,M) - sgn(M/T)'l = (w(B/T) - sgn(B/T).l) 

+ (w(N/T) - sgn(N/T)-Z) 

: -per(~/T) + (w(N/T) - sgn(N/T).l) 

Clearly we only need to settle w(N/T) . Using the 

canonical complex structure on the normal bundle to each 

component of F , the action (T,N) can be extended to 

a fibre preserving action oi' U(1) on N . Therefore 

surely we may write 

H2n~, ~N; Q)_ 4 t{2n(N;Q).,~,... 
H2n(N/T, ~T/T;Q) .-. H2n(L~/T;Q.) 

This, together with the relation ~,(@(N)) = p@(N/T) , 

leads us to conclude that w(N/T) = <i/p>w(N) = <p>w(N) 

in ~ . Of course sgn(N) = sgn(N/T) so we have completed 

the proof that per(~N/T) = (<p>w(N) - sgn(N)-l) - 

(w(T,M) - sgn(M/T)'l) In the next section we shall 

establish 1.6 for w(N) . 

We shall only give an argument i'or part (f) in i.i 

as (g) is entirely similar. First we need a general 

lemma. 

2.1 L~MA. If the ~eriodic map (T,M 4n) can b~e e_Z_x- 

tended to h semi-free action of U(1) , then w(T,M) - 

sgn(M/T).l : sgn(F)(<p> - I) . If ever~ non-empty com- 

ponent oi_j" F has codimension exactl[ 2 , then 

w(T,H) - sgn(H/T).l : 0 

The two statements in the lemma are independent and 

both are trivial. If (T~M) extends to a semi-free 

U(1)-action then F must be exactly the set of stationary 

points under all of U(1) For a semi-free action on a 

closed oriented manifold, it is known that sgn(F) = 

sgn(M) , [6]. On the other hand, T is homotopic to the 

identity so we find from the definition that w(T,M) : 

<p>w(H) = <p>sgn(H) = sgn(F)<p> . 
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For the other part of the lemma the hypothesis 

guarantees that M/T is still locally Euclidean and hence 

the inner-product on H2n(M/T;Z)/Tor given by 

<xy, o(M/T)> = i/p <v*(x)v*(y),o(M)> is unimodular and 

thus w(M/T) = sgn(M/T).l . 

Let us turn now to p = 3 , and suppose first that 

F is a connected proper submanifold. With k = exp 2~i/3 

there is a complex structure on the normal bundle ~ ~ F 

in which T acts on each fibre as multiplication by k 

On the total space of the Whitney sum 9®C ~ F with a 

trivial line bundle a fibre preserving action of U(1) 

is given by t(~,z) = tv, z) . This will induce a fibre- 

wise semi-free action (U(1),CP(~C)) on the associated 

complex projective space bundle. The set of stationary 

points is the disjoint union of F with CP(~) Let 

(T, CP(~eC)) be the map of period 3 contained in the 

U(1)-action. Since CP(~) has dimension ~n-2 we obtain 

from 2.1 that w(T, CP(q~C)) - sgn(CP(~e)/T).l = 

sgn(F)(<5> - i) . 

Now we observe that the normal bundle to F c CP(~®C) 

is still N ~ F . Thus by removing the interior of a 

normal tube from around F in each of the manii'olds, a 

new (T',K) can be formed by identii~ing along the re- 

sulting boundaries so that the fixed set of (T',K) is 

exactly the codimension 2 submanifold CP(~) and 

[T',K] = [T,M] [T, CP(~®C)] in O4n(Z3) o Upon applying 

the second part oi" 2.1 to (T',K) we finally show 

w(T,M) - sgn(M/T) • 1 = sgn(F)(<3> - I) 

It is also clear how to proceed when F is not connected. 

There is a definite obstacle to extending this argument 

to larger primes; namely, the occurrence of several 

distinct eigenvalues expressing the action of T in the 

normal bundle to the fixed set. We must admit the pos- 

sibility that a general formula for w(T,M) sgn(M/T).l 

might involve this representation of Zp in the normal 

fibres to the fixed set in some essential manner. 
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3 .  w ( M , c )  . 

Obviously we may extend the definition of this inva- 

riant to a pair (B,b) consisting of a compact oriented 

manifold of dimension 4n+k and an absolute cohomology 

class b c Hk(B;Q) On the image of' 

j*:H2n(B,~B;Q) ~ H2n(B;Q) the inner-product is taken to 

be (j*(x),j*(y)) = <xyb,a> . From the Lefschetz duality 

theorem the radical consists of those j*(y) which an- 

nihilate b The quotient o~ im(j*) by this annihila- 

tor then represents w(B,b) c ~ We note that ii" 

0 ~ r c Q then w(B, r2b) = w(B,b) and furthermore, 

~ ( B , - b )  = w - B , b )  = - w ( B , b )  I f  k = 0 ~ d  

b = i e H0(B;Z) we simply obtain w(B) 

Consider now an oriented S0(2j)-btmdle ~ ~ B 4n+2j 

over a compact oriented manii'old and let E(~) ~ B,S(~) ~ B 

respectively denote the associated 2j-disk and (2j-l)- 

sphere bundles. If ~ 4 ~B denotes the bundle induced 

over the boundary, then E(~) is a compact oriented 

4(n+j)-manii'old with ~E(~) = S(~) 0 E(~) and 

S(~) n E(~) = S(~) * ~B . There is the Thom class 

U E H2J(E(~),S(~);Z) whose image under 

H2J(E(~),S(~); Z) ~ H2J(E(~); Z) m H2J(B~Z) is the Euler 

class e(~) Identii~ing H*(B,~B;Q) with 

H*(E(~),E(q);Q) and using the cup-product pairing oi" 

H*(E(~);Q) with H*(E(~),E(~);Q) into 

H*(E(~),S(~) U E(~),Q) we find that there is a 

u Hi(B,~B;Q) ~ Hi+2J(E(~),~E(~);Q) • 

From the exact sequence of the triple (E(~),6E(~),S(~)) 

it is clear that this is a relative Thom isomorphism for 

under the composition 
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HiJ(E(~),S(~);Z) ~ HiJ(s([) O E(q),S([);Z) 

H2J(E(~),S(~),Z) we see that U~ ~ U and so the i'ive 

lemma will apply. 

Next from the diagram 

// H2 (n+~) (E(g);a) 

H 2(~+j) (~(g),bE(g);a) > Hi(n+ i) (j(g),S(g);~) 
¢ 

H2n(B, bB;Q) ~= > H2n(B, Q) 

we find that we may identify the image of 

Hi(n+J)(E(g),~E(g);Q) ~ H2(n+J)(E(g);Q) with the image of 

the composite homomorphism 

@ 
Hin(B,~B;Q) J_~H2n(B;Q) ~e(g))H2(n+J)(B~Q) 

2 For  xy ~ H2n(B,~B;Q) we n o t e  t h a t  (U~x)(U~y) = U~(xy) = 

Ug(e(g)xy) ~ s4(n+J)(E(g),~E(g);Q) . Since the inner-pro- 

duct on im(j*) used in defining w(B,e(g)) is 

(j (x),j (x)) = ~xye(g),~) we have shown 

3.1 ~ .  i_an ~,w(E(~)) = w(B,e(~)) . 

This is just the relative form of 1.6. 

~. Directions of Applicatio ~. 

In this note we have tried to show how some current 

ideas about quadratic forms in topology; that is, the 

peripheral invariant and the invariant w(M,c) , can be 

fitted into the study of periodic diffeomorphisms. Con- 

sider (f) in i;i. The formula is surely straightforward, 
, 

indeed simple, and even ii" T is the identity on 

326 



CONNER et. al. 

H2n(M~Q)-- still yields the affirmative conclusion that 

sgn(M) ~ sgn(F)~od 4) In view of (b) - (e) it seems 

reasonable to hope for a rather cle~ formula in general. 

We would be especially interested in seeing how the group- 

ing of the odd primes by their mod 8 congruence classes 

works into the general I'ormula. 

In plumbing, [2, Ch. V], the peripheral invariant is 

recognized whenever the determinant of the plumbing matrix 

differs from ± i . Let us indicate the expected applica- 

tion of peripheral to questions raised in [i]. The 

authors have introduced a cobordism group e~ 2)" of closed 

oriented Z2-homology spheres wherein addition is by con- 

nected sum and the 0 element is represented by those 

Z2-homology spheres which bound Z2-homology disks. Now 

every Z2-homology sphere bounds some compact oriented ma- 

nifold so for n > i there is an additive homomorphism 

per: e (2) ~ ~ The real question, however, are the 
4n-i 

Z2-homology (4n-l)-spheres which bound odd framed mani- 

folds° These make up a subgroup bP! 2) c e~ which is 
~n 1 

analogous to bP4n . Indeed, bP4n c bP~ 2) and obviously 

perlbP4n is trivial so that there is an induced homomor- 

phism per: bP~)/bP4n- * ~ . In commenting on [i, 2.6] 

the authors noted that a problem obstructing the precise 

determination oi' bP~ ) was the need for the incorpora- 

tion of the Hasse symbols into some homomorphism. It 

appears to us that peripheral plays this role. 

4.1 THEOREM° If n > 2 then 

p e r :  

is an isomorphic embedding. Furthermore, an element in the 

kernel of sgn:~ * Z lies in this image if and onl~ if it 

i_~s re~resented b~ an integral ~uadratic form with odd de- 
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terminant and vanishing signature. 

In view of the importance of even quadratic forms in 

topology it is not unreasonable that we review them 

briefly as they relate the proof of 4.1. We follow [4] in 

denoting by F(2) the 2-adic number field and by R(2) 

the subring oi" 2-adic integers. We shall also use ~(2) 

to denote the Witt ring oz" the field F(2). Suppose V is 

a finitely generated free R(2)-module equipped with a bi- 

linear symmetric inner-product with values in R(2) We 

say V is even if and only if 

(a) v = Hom(V,R(2)) 

( b )  ( x , x )  e 2 R ( 2 )  for a l l  x e V 

Equivalently we may think oi" a quadratic form with coef- 

ficients in R(2) , determinant a unit in R(2) and 

which is improperly primitive. From [4, 33a] it now fol- 

lows that rank V = 2m and V admits an orthogonal direct 

m where sum decomposition into rank 2 submodules V = Z I Vj 

i'or i < j ~ m , Vj , is (~ ~) and V I is either (~ ~) 

or (~ ~) As a consequence we see that if V is even 

then in ~(2), <V> = 0 or <2r~ + 2rlr2+r~> , so 

2<V> = 0 always. 

Next suppose V Z is a finitely generated free abelian 

group equipped with a Z-valued inner-product. We say V Z 

is even if and only if V Z @ R(2) is even. The symmetric 

integral matrix representing the inner-product with re- 

spect to a basis of V Z has odd determinant and all dia- 

gonal entries divisible by 2 . 

If W z is a free abelian group with Z-valued inner- 

product, then associate to W z the ordered triple. 

(rank(Wz)(mod 8), det(Wz)(mod 8),c2(Wz) ) 

Now we can state a representation result, 
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4.2 L~M~{A. l~fth___~e triple associated to W z appears 

in the sequence (0,1,-1),(0,5,1),(2,7,1),(2,3,-1),(4,1,1), 

(4,5,-1),(6,7,-1),(6,3,1) then there is an even V z with 

ra~k W z = rank V z , det W z = det V z and W z rationally 

congruent to V z 

The sequence is found as follows. For each even 

rsauk 2n evaluate the triple associated to the n-fold sum 

of the hyperbolic rank 2 module (0 I ) with itself; then 

evaluate the triple associated to the sum ol (~ ~) with 

(n-l)-copies of the hyperbolic module. This produces a 

sequence of triples which upon inspection has period 8 in 

the rank. 

We wish to apply [4, Th. 46]. We need a new V z 

whose field invariants are all exactly those of" W and 
z 

whose ring invariants at all odd primes are still exactly 

those o~ W However, at the prime 2 we wish the ring 
z 

invariant of V z to be one o~" the two improperly primi- 

tive R(2)-forms. This fixes go2 and gi2 is trivial 

i~" i > 0 . This will impose the five compatibility con- 

ditions on the rank (Wz), det (Wz) and c2(Wz) Any 

triple listed in the sequence, however, will i'ulfill the 

compatibility at 2 . As an immediate corollary then. 

4.3 L~MMA. Suppose W z has odd determinant and 

sgn(Wz) = 0 then there is an even V z with 

~W z ® Q> = <V z ® Q> - sgn(Vz) • i i_~n ~ . 

Obviously rank W z is even. Consider the associated 

triple (rk(Wz)(mod 8), det(Wz)(mod 8),c 2) It may be 

necessary to adjust the rank of W z , without changing 

the other two invariants in order to get a term in the se- 

quence of 4.2. Since det (Wz) is odd this may be done 

329 



CONNER et. al. 

by adding copies oZ' (I 0 O) The even V z is formed then 

and by construction 

<W z ® Q> = <V z <9 Q> - sgn(Vz) • i . 

We need a version of Milnor's result on even integral 

froms which are unimodular [2, III.IA]. 

4.4 LEMMA. Let V z be an even inner-product module. 

I~_ i" N is the order or" ~ f z  ® Q> - sgn(Vz) . i then 

N sgn(Vz) ~ 0 (sod S) 

We shall use in ~ the identity 

<2r 2 + 2rlr 2 + 2r2> - 2 " ! = <r 2 - 3r2> . It is necessary 

to show 2r 2 + 2rlr 2 + 2r2 2 + r~ is rationally congruent to 

r I - 3r + r + r~ Note both forms are quaternary and 

have determinant -3 so it is necessary only to observe 

that the Hasse symbols at 2 are both -i . 

Now suppose <V z ® Q> = sgn(Vz) • i c ~ . Since 

sgn(Vz) = 2m we can consider 

m<2r  2 + 2 r l r  2 + 2 r 2 >  - C~ z ® Q> 

= m ( < 2 r  2 + 2 r l r  2 + 2 r 2 >  - 2 • i )  

= m(l - < 3 > )  

Since the direct sum of two even I'orms is still even this 

tells us that in 7(2) the element m(l - <3>) contains 

a representative which is even over R(2) . Thus either 

m(l - <3>) = 0 or m(l - <3>) = <2r 2 + 2rlr 2 + 2r2> . 

Since i - <3> still has order 4 in 2#(2) it might 

appear that 2(1 - <3>) = <2r 2 + 2rlr 2 + 2r2> is still 

possible, but r~- 3r 2 + r~- 3r~ is an anisotropic 
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quaternary form while 2r~ + 2rlr 2 + 2r~ is an anisotropie 

binary form. Thus m ~ 0 (mod 4) is the only possibility 

which means sgn(Vz) ~ O (mod 8) In general, if N = 1,2 

or 4 is the order of ~z ® Q~ - sgn(Vz) . I then 

N<V z ® Q> = N sgn(Vz) • i and hence N • sgn(Vz) = 

o (mod 8) 
Finally, then, we can return to 4.1. As noted in [i], 

since n > 2 an element in bP! 2) can be represented by 
• ~ n  

plumbing together a family o f  2n-spheres according to a sym- 

metric integral matrix with odd determinant and all diago- 

nal entries divisible by 2 and then killing the fundamen- 

tal group of the boundary. Thus if K 4n-I is the result- 

ing Z2-homology sphere and V z is the even inner-product 

module associated to the matrix then 

(al i f  and only i f  < V  ® Q > = O  

(b) per [K] ~ ~ ® Q> - sgn(Vz) i . 

If per [K] = 0 then by 4.4, sgn(Vz) ~ 0 (mod 8) We 

use this fact to plumb together a homotopy (4n-l)-sphere 

in bP4n which represents [K] It follows then that 

p e r :  bp(~2)/bP4n * 9~ 

is an isomorphic embedding. The image is found by 4.3. 

Using the peripheral invariant it is easy to see that 

bp(2)/bP~n is a direct summand oi" o(2!i/bP~n . 

We shall close by mentioning an invariamt which we 

feel may be of value in future studies of diffeomorphisms 

of odd prime period on homotopy spheres. We shall show 

how the formula in (f) of i.i may be used to extend the 

definition of the peripheral invariant to dirfeomorphisms 

or period 3. 

Let (T,B ~n) be am orientation preserving dirfeomor- 

phism of period 3 on a compact manifold. On the image of 
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H2n(B,~B;Q)-- . H2n(B;Q)-- we introduce as before the inner- 

product (j*(x),j*(y)) = 3<xy, a> . Using Z we exhibit 

the subspace of fixed vectors in im(j*) as an orthogonal 

direct summand. The Witt class of the restriction of this 

inner-product to the fixed vectors is taken as w(T,B) 

The signature of w(T,B) is sgn(B/T) Every component 

of the fixed set F c B has a canonical orientation. 

Next w(F) e ~ is obtained by assigning to each component 

of F , whose dimension is divisible by 4 its Witt ring 

invariant and summing over all such components. If a com- 

ponent is closed; that is, lies in the interior of B 

then it contributes its signature multiplied by i e ~ to 

the sum. The difference 

(w(T,B) - sgn(B/T) l) - w(F)(~> - I) 

only depends on (T, SB) and we may denote it by 

per(T,~B) We can also write 

p e r ( T , ~ B )  = ( w ( T , B )  - s g n ( B / T )  1 )  - p e r ( ~ F ) ( < 3 >  - l )  

- sgn(F)(<3> - l) 

If (T,B) is fixed point free then per(T,~B) = per(SB/T) 

while if T is the identity then per(T,~B) = per(~B) 

This should provide additional motivation toward finding 

the generalization of the P = 3 formula. 

Our sincere appreciation is expressed to Alexander, 

Hamrick and Vick of the University of Texas, Austin for 

their interest and suggestions. In particular 4.1 was 

strongly conjectured by Hamrick during our discussions. 
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