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We present an analytical approach to approximate the expected waiting times of move requests (customers) served by a single
handling device (server) that operates according to the First-Encountered-First-Served (FEFS) rule, which is a common rule
employed for polling-based material handling systems. Under the FEFS rule, the device inspects each station according to a
prespeci®ed polling sequence and serves the ®rst move request it encounters. Polling resumes as soon as the device completes
serving a move request. The expected waiting times are important for estimating the expected Work-In-Process (WIP) levels at
individual stations and to gauge the overall performance of the system. Moreover, the polling sequence itself can a�ect the expected
waiting times. If the device meets the throughput requirement under more than one polling sequence, the results we present can
also be used to evaluate alternative polling sequences. In fact, using the analytical results and a numerical example, we show that
alternative polling sequences, even if they impose the same ``workload factor'' on the device, can lead to signi®cantly di�erent
expected WIP levels.

1. Introduction

In this paper we are concerned with developing an ana-
lytical approach to approximate the expected waiting time
experienced by move requests (``customers'') served by a
single-device handling system. The move requests arrive
randomly, one at a time, at one of the ``stations'' served by
the device (``server''), and the device is assumed to serve
(i.e., move) only onemove request (i.e., one load) at a time.
There are a number of single-device handling systems

used in industry. They include overhead cranes (such as
bridge cranes), gantry robots, microload Automated
Storage/Retrieval (AS/R) systems, (tandem) Automated
Guided Vehicle (AGV) systems, freight elevators, and
vertical reciprocating conveyors, among others. In each
of the above systems, there is a single-device that serves a
set of stations and the device moves one load at a time.
(For further information on the handling systems above,
the reader may refer to Tompkins et al. (1996)).
There are two fundamental approaches to device con-

trol in a material handling system. Under the ®rst ap-
proach, known as centralized control, a central computer
keeps track of the state of the system and it decides when
each move request will be served (and by which device if
there are multiple-devices); i.e. the device(s) are ``dis-
patched'' by the central computer.

Under decentralized control, on the other hand, a
central computer is not required; each device is prepro-
grammed to follow a certain set of instructions based on
the state of the station they visit. A common method to
implement decentralized control is based on the well-
known polling concept in queueing, where the device
``polls'' each station until it locates a move request. This
method is also known as the First-Encountered-First-
Served (FEFS) rule, which has been used in material
handling (Bartholdi and Platzman, 1989) and data re-
trieval in computer systems (Stone and Fuller, 1973).
Following service, i.e., when the load is deposited at, say,
station j, the device resumes polling starting at station j.
There are certain cost and performance tradeo�s be-

tween centralized and decentralized control. Although
examining such tradeo�s is well beyond the scope of our
paper, centralized control, generally speaking, o�ers a
potential gain in system throughput but with an increase
in cost, while decentralized control o�ers simplicity and
reduced cost but a potential loss in system throughput.
(Note that, under centralized control, the computer must
exchange information with each device, which often re-
sults in radio dispatched devices). The device in our study
is assumed to operate under the FEFS control rule.
In the next section we introduce basic de®nitions and

review related past work. In Section 3, we present the
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``basic throughput model'' that was developed in Bozer
and Srinivasan (1991). In Section 4, we state all our as-
sumptions (including those that are unique to the ex-
pected waiting time model) and, building on the results
given in Bozer and Srinivasan (1991), we derive the
expected waiting times. Last, in Section 5, we present
numerical results and state our conclusions.

2. Basic de®nitions and literature review

Consider the FEFS rule and M stations that are polled by
the device in a cyclic fashion following the sequence
1; 2; . . . ;M . That is, if there are no move requests at sta-
tion i when it is polled by the device, the device travels
(empty) to station i� 1 and polls it. Otherwise, the load
at the head of the queue at station i is served; i.e., the
device picks up the appropriate load at station i, travels
(loaded) to station j, deposits the load and resumes
polling at station j. Since it can move only one load at a
time, no polling is performed as the device travels loaded
from station i to j.
Note that, if i � M and there is no move request at

station M , the next station to be polled is station 1 (i.e.,
M � 1 � 1). Also note that each station is polled exactly
once as the polling sequence is repeated. Such a (cyclic)
polling sequence ± where each station is polled exactly
once ± is suitable only in those cases where the stations
are located around a closed-loop path or similar con®g-
uration, which is the focus of this study. (We will later
discuss the polling sequence itself and its impact).
A single device operating under the FEFS rule is a

special type of nondeterministic polling system. Using the
notation given by Srinivasan (1991), in a nondeterministic
polling system, if there are no requests at station i when it
is polled, the ``server'' next polls station j with probability
eij. Letting pij denote the probability that a load picked
up at station i is destined to station j, the FEFS policy we
study here describes a polling system where ei;i�1 � 1, and
pij takes arbitrary values between zero and one. (It is
assumed that pii � 0 since a station does not send loads to
itself ).
For user-de®ned pij and eij values, Srinivasan (1991)

derives cycle times and stability conditions for single-
server, nondeterministic polling systems under various
service disciplines. (The cycle time, Ci, denotes the ex-
pected time between two successive visits by the server to
station i). He also develops conservation laws and obtains
expected waiting times. However, for the nonexhaustive
service discipline (i.e., exactly one customer is served if
the queue at station i is nonempty at the polling instant),
the expected waiting time is derived only for systems with
two stations. (The material handling system we are con-
cerned with falls under the nonexhaustive service disci-
pline). Srinivasan also treats the special case where
eij � pij, which does not apply to our system.

As a possible device control rule in material handling,
the FEFS rule was ®rst proposed and analyzed by Bart-
holdi and Platzman (1989) for a single AGV traveling
around a simple, closed-loop path. The authors show that
the FEFS rule is particularly e�ective in such con®gura-
tions. (Of course, the polling sequence 1; 2; . . . ;M corre-
sponds to the physical sequence of the stations around
the loop).
The FEFS rule was also studied by Bozer and Srini-

vasan (1991) in the context of tandem AGV systems,
where the stations are ®rst divided into nonoverlapping
zones and each zone is served by a single AGV. The
authors derive the cycle times and the stability condition
for a single AGV serving a set of stations under FEFS.
(In Bozer and Srinivasan (1991), the stations are not re-
quired to be located around a loop). In deriving the ex-
pected waiting times, we will build on the results obtained
in Bozer and Srinivasan (1991).
Previous work in expected waiting times is also reported

for handling systems running under centralized control.
Assuming First-Come-First-Served (FCFS) device dis-
patching (i.e., the oldest move request in the system
always gets served ®rst regardless of the location of the
empty device), Chow (1986) models a microload AS/R
system ± which is a single-device system ± as an M/G/1/
FCFS queue. With such an approach, the expected
waiting time is averaged across all the stations; i.e., ex-
pected waiting times for individual stations are not cap-
tured. Bozer and Kim (1996) obtain the expected waiting
times (at individual stations) for single- and multiple-de-
vice systems operating under the FCFS rule. Last, Bozer
et al. (1994) derive the expected waiting times for a single
device operating under the MOD FCFS rule, which tends
to reduce empty device travel compared to FCFS. (With
the MOD FCFS rule, when the device delivers a load at
station i, it ®rst inspects station i; if a load is waiting at
station i, it is served regardless of its status; otherwise, the
oldest move request in the system is served).

3. The basic throughput model and system stability

The results presented in this section are taken from Bozer
and Srinivasan (1991); we made minor changes to sim-
plify or generalize them. Recall that the polling sequence
is given by 1; 2; . . . ;M , where M denotes the number of
stations. Let ki denote the rate at which loads arrive at the
move request queue of station i (for brevity we will refer
to it as queue i). Likewise, let Ki denote the rate at which
the device delivers loads to station i. In steady state, ki
may or may not be equal to Ki for each i. However, ¯ow
is assumed to be globally conserved; i.e.,

P
i Ki �

P
i ki,

provided that the device is able to meet the demand
placed on it.
Suppose the number of loaded trips per unit time that

the device must perform from queue i to station j is

56 Bozer and Park



denoted by fij. Note that ki �
PM

j�1 fij and Ki �
PM

j�1 fji,
by de®nition. Let sij denote the mean travel time for the
device to perform a loaded trip from queue i to station j;
this consists of the time it takes to pick-up the load at
queue i, transport it to station j, deposit the load at sta-
tion j, and inspect queue j for move requests. If queue j
is empty, the device travels empty from station j to j� 1.
The time that it takes to perform this empty trip, which
includes the time to inspect queue j� 1 is a random
variable with mean rj;j�1. Lastly, let rj;i denote the ex-
pected empty device travel time from station j to station i
following the polling sequence, that is:

rj;i �
Piÿ1

k�j rk;k�1; if j < iPM
k�j rk;k�1 �

Piÿ1
k�1 rk;k�1; if j > i,

(
�1�

where M � 1 � 1.
The throughput requirement (or workload) imposed on

the device is determined by computing the workload
factor x. Let af denote the expected fraction of time the
device is traveling loaded. Since the ¯ow data and mean
travel times are given, af is given by Bozer and Srinivasan
(1991) as:

af �
XM
i�1

XM
j�1

fijsij: �2�

Note that af is independent of the device dispatching rule.
If af � 1, the device will not be able to meet the required
throughput (regardless of the dispatching rule used).
Let Ci denote the expected time between two successive

inspections by the device at station i. The term Ci is de-
rived in Bozer and Srinivasan (1991) as

Ci � v
1ÿ af ÿ /i � kiv

; �3�

where v �PM
i�1 ri;i�1 and /i �

P
j 6�i�Kj ÿ kj�rj;i.

Let qi denote the probability that queue i is empty at
the polling instant. In Bozer and Srinivasan (1991) it is
shown that:

qi � 1ÿ kiCi: �4�
Note that qi is non-negative, which implies that we must
have kiCi < 1. Using Equation (3), in Bozer and Srini-
vasan (1991) it is shown that under the FEFS dispatching
rule, the device will meet the required throughput (i.e., the
system will be stable) if the workload x meets the fol-
lowing condition:

x � af � / < 1; �5�
where

/ � max
i

/i � max
i

X
j 6�i

�Kj ÿ kj�rj;i

" #
: �6�

Note that, if ¯ow is conserved at a station, i.e., kj � Kj,
its contribution to /i is zero. In Bozer and Srinivasan

(1991), / is interpreted as ``mandatory'' empty device
travel which results from empty device travel between
stations with unbalanced ¯ow. Also, the larger the x
value in Equation (5), the ``harder'' the device must work
to satisfy throughput. However, as we show later in the
paper, substantially di�erent expected waiting times may
be incurred under the same x value.

4. The expected waiting times

We ®rst present the mathematical assumptions under-
lying the model:

(1) The move requests (i.e., the loads) arrive at the
move request queue of each station randomly, one
at a time, following an independent Poisson pro-
cess.

(2) The device serves (i.e., moves) only one load at a
time, and it operates under the First-Encountered-
First-Served (FEFS) rule, following the cyclic
polling sequence 1; 2; . . . ;M . (When traveling
loaded, the device does not poll the stations.)
Polling resumes always at the destination station of
the last load delivered by the device.

(3) A load picked up at station i is destined to station j
with probability pij independent of the state of the
system. A station does not send loads to itself (i.e.,
pii � 0).

(4) Flow is not necessarily conserved at each station.
However, ¯ow is globally conserved; i.e.,P

i Ki �
P

i ki.
(5) The system is stable; that is, af � / < 1.

We next present an additional assumption that
may be mathematically inconsistent but necessary
to make the analysis tractable:

(6) Loads are delivered at the stations by the device at
random points in time.

Assumptions (2), (3), and (4) govern the movement of
loads in the system, while assumption (5) can be easily
checked using the results given in Bozer and Srinivasan
(1991), which were repeated here. The validity of as-
sumption (1) depends on how actual move requests arrive
and it too can be checked if there are data on request
arrivals. (However, as we discuss later in Section 5, in a
manufacturing setting, assumption (1) may be a source of
error for some of the stations).
Assumption (6), on the other hand, is needed for

analytical tractability. Its e�ect (as a source of error) is
di�cult to assess but, as discussed in Srinivasan et al.
(1994), it generally works well when the pij-matrix induces
some randomness and there is a su�cient number of sta-
tions in the system. In Section 5 we will present simulation
results to assess the impact of assumptions (1) and (6).
We now derive the approximate expected waiting time

at station i using the ``tagged customer'' approach.
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Consider a (tagged) load that arrives at queue i. Since
loads are assumed to arrive in a Poisson fashion, and
such arrivals see time averages (i.e., the well-known
PASTA property applies (Wol�, 1982)), the tagged load
®nds the steady-state distribution of loads at queue i. If
Pi�n� denotes the probability that n loads are present at
queue i, and Wi�n� denotes the conditional expected
waiting time for the tagged load given that n loads are
present at queue i when the tagged load arrives, then the
expected waiting time at queue i for the tagged load is
given by

Wi �
X1
n�0

Pi�n�Wi�n�: �7�

Equation (7) is divided into two cases, n � 0 and n > 0,
as follows:

Wi � Pi�0�Wi�0� �
X1
n�1

Pi�n�Wi�n�: �8�

Consider ®rst the case where n � 0. Let afj denote the
probability that the device is serving station j (i.e., the
device is performing a loaded trip from station j) at a
random point in time. Then,

afj �
X

k

fjksjk: �9�

Likewise, let aej denote the probability that the device
is performing an empty trip from station j to j� 1 at a
random point in time. Using the results shown in Bozer
and Srinivasan (1991), it is straightforward to show
that

aej � �qjrj;j�1�=Cj; �10�
where qj (see Equation (4)) is the probability that queue j
is empty at the polling instant, and Cj (see Equation (3))
is the expected cycle time between two successive in-
spections by the device at queue j.
Furthermore, let Sj

i represent the expected time re-
quired for the device to arrive at queue i and inspect it
given that it was serving a move request from station j
(when the tagged load arrived). Likewise, let �Sj

i represent
the expected time required for the device to arrive at
queue i and inspect it given that it was traveling empty
from station j to j� 1 (when the tagged load arrived).
Using Sj

i and �Sj
i , we obtain the expected waiting time for

the tagged load when there are no other loads present in
queue i as

Wi�0� �
X

j

afjS
j
i �

X
j

aej �Sj
i : �11�

Note that Wi�0� also refers to the expected waiting time
experienced by the ®rst, or Head-Of-Line (HOL), load in
the queue when the tagged load arrives.
Consider next the case where n > 0. For this case, Wi�n�

is equal to the expected waiting time experienced by the

HOL load and the expected time required to pick-up the
remaining nÿ 1 loads plus the tagged load itself. That is,

Wi�n� � Wi�0� � nCi: �12�
The expected waiting time with n > 0 is therefore given byX1

n�1
Pi�n�Wi�n� � Wi�0�

X1
n�1

Pi�n� � Ci

X1
n�1

nPi�n�: �13�

Since
P1

n�1 Pi�n� � 1ÿ Pi�0�, and
P1

n�1 nPi�n� � kiWi
from Little's Law, we substitute Equations (11) and (13)
into (8) and simplify the result to obtain

Wi �
P

j afjS
j
i �

P
j aej �Sj

i

1ÿ kiCi
�
P

j afjS
j
i �

P
j aej �Sj

i

qi
; �14�

leaving Sj
i and �Sj

i as the unknowns to be determined.
Consider ®rst Sj

i , i.e., the expected time required for the
device to arrive at queue i and inspect it given that it was
serving a move request from station j when the tagged
load arrived. Let k denote the destination of the move
request picked up from station j. Furthermore, let dki
denote the time required for the device to arrive at
queue i and inspect it given that it just completed in-
specting station k. Since we assume that loads arrive at
random points in time, we have

Sj
i �

X
k 6�j

s�2�jk =�2sjk� � Dki

h i
pjk; �15�

where Dki � E�dki�, and s�2�jk is the second moment of sjk.
Note that the ®rst term in the above summation repre-
sents the residual loaded travel time from station j to
station k (Kleinrock, 1975). Also, Dii � 0 by de®nition.
Hence, given the Dki values (which we will derive shortly),
one can obtain the Sj

i values.
Consider next �Sj

i , i.e., the expected time required for the
device to arrive at queue i and inspect it given that it was
traveling empty from station j to j� 1 when the tagged
load arrived. Since loads are assumed to arrive at random
points in time, we have:

�Sj
i � �r�2�j;j�1=�2rj;j�1�� � Dj�1;i; �16�

where r�2�j;j�1 is the second moment of rj;j�1.
We now derive the Dyx values that are needed in

Equations (15) and (16). Recall that dyx is the time
required for the device to arrive at queue x and inspect
it given that it just completed inspecting station y. Let
�Qy (Qy) represent the event that, upon inspection, the
device ®nds (does not ®nd) a load at queue y. Hence,
we have:

Dyx � E�dyx� � E�dyxj �Qy �P � �Qy � � E�dyxjQy �P �Qy �; �17�
where y 6� x. Note that P � �Qy � � �qy and P �Qy � � qy , by
de®nition. (See Equation (4) for qy).
The ®rst conditional expression in Equation (17),

E�dyxj �Qy �, represents the expected time the device spends
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to deliver a load from station y and then arrive at queue x
and inspect it. In other words, E�dyxj �Qy � is the expected
loaded travel time from station y to station z (z 6� y) plus
the expected time required for the device to arrive at
queue x and inspect it given that it just completed
inspecting station z. Hence,

E�dyxj �Qy � �
X
z 6�y

�syz � Dzx�pyz: �18�

Note that z may be equal to x, in which case Dxx is equal
to zero, by de®nition.
The second conditional term in Equation (17),

E�dyxjQy �, represents the expected time required for the
device to travel empty from station y to y � 1, plus the
expected time required for the device to arrive at queue x
and inspect it given that it just completed inspecting
station y � 1. That is,

E�dyxjQy � � ry;y�1 � Dy�1;x: �19�
Again, if y � 1 � x;Dxx � 0.
Substituting Equations (18) and (19) into Equation

(17), we rewrite the expression for Dyx as follows:

Dyx �
�

qy

X
z 6�y

�syz � Dzx�pyz

�
� qy�ry;y�1 � Dy�1;x�; �20�

where y 6� x on the left-hand side, and if z � x on the
right-hand side, Dxx � 0. Let sy denote the expected
loaded travel time out of queue y; that is, sy �

P
z6�y syzpyz.

Next, let by denote the expected travel time out of
queue y. That is, by � qy sy � qyry;y�1. Rewriting the
right-hand side of Equation (20), we obtain:

Dyx � by �
�

qy

X
z6�y

pyzDzx

�
� qyDy�1;x: �21�

For M stations, the number of Dyx values we need to
compute is equal to M�M ÿ 1�. We also have M�M ÿ 1�
linear equations, one for each Dyx as obtained from
Equation (21). Furthermore, the M�M ÿ 1� equations
with M�M ÿ 1� unknowns partition into a set of M
equations with each set containing M ÿ 1 equations with
M ÿ 1 unknowns.
For example, if M � 4 we have 12 unknowns and 12

equations. However, the ®rst three equations contain
only the terms D21;D31, and D41; the next three equations
(fourth through sixth) contain only the terms D12;D32,
and D42; the next three equations (seventh through ninth)
contain only the terms D13;D23, and D43; and the last three
equations contain only the terms D14;D24, and D34.
Hence, instead of solving 12 equations in 12 unknowns,
we need to solve four sets of equations where each set
contains only three equations in three unknowns.
Despite the above simpli®cation, proving that the

equations in question will always have a (unique) solution
for arbitrary sy and pyz (0 � pyz � 1) values is not
straightforward even when we know that the system is

stable; i.e., af � / < 1. We solved a large number of
problems and consistently obtained a unique solution for
the Dyx values as long as the system is stable.
Hence, based on empirical observations, we can only

state that the linear system of equations given by Equa-
tion (21) appears to have a unique solution as long as the
system is stable. Given the Dyx values, we simply substi-
tute Equations (9), (10), (15), and (16) into Equation (14)
to obtain the expected waiting time at queue i as follows:

Wi � 1

qi

X
j

X
k

fjksjk

 ! X
k 6�j

s�2�jk pjk

2sjk
�
X
k 6�j

Dkipjk

 !" #

� 1

qi

X
j

qjrj;j�1
Cj

� �
r�2�j;j�1
2rj;j�1

� Dj�1;i

 !" #
: �22�

The expected queue length at queue i is equal to kiWi by
Little's Law. In the next section we present two numerical
examples to show empirically the performance of the
model.

5. Numerical examples and conclusions

The two examples we present in this section are inspired
by tandem AGV systems (Bozer and Srinivasan, 1991)
used in a manufacturing setting, where each station may
serve either as an ``I/O station'' (i.e., entry and exit point
for ``jobs'' processed through the system) or a ``processor
station'' (where the loads are processed one at a time).
The device picks up a load from one of the I/O stations
and moves it to the appropriate processor station, say,
station i. As they are delivered by the device, each load
queues up in front of the processor at station i and waits
for processing. When processing at station i is complete,
the load enters the move request queue of station i (i.e.,
queue i) and waits for the device to move it to the next
processor station or an I/O station, whichever is appro-
priate. Loads delivered to an I/O station exit the system
immediately.
The processing times at each processing station are

assumed to be exponentially distributed. The mean pro-
cessing time at each processing station is such that the
average processor utilization is equal to 0.80. Note that,
at processor station i, even with exponential processing
times, move requests will not necessarily enter queue i in
a Poisson fashion (unless of course the loads delivered by
the device happen to follow a Poisson distribution).
Hence, in manufacturing applications with processor
stations, assumption (1) (which assumes Poisson arrivals
at each move request queue) becomes a source of error
for processor stations. (The other source of error is as-
sumption (6), which assumes that loads are delivered by
the device at random points in time).
The jobs processed through the system and the stations

visited by each job type is speci®ed by the user. In both
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examples, ¯ow is assumed to be conserved at each pro-
cessor station. However, since a job may enter from one
I/O station and exit from another, ¯ow is not necessarily
conserved at the I/O stations.
We used a GPSS/H-based simulation model to obtain

simulated values for the expected WIP at each queue. All
simulation results are based on 10 replications and 3000
loaded trips per replication. In the simulation model,
move requests arrive at the I/O stations in a Poisson
fashion. However, move request arrivals at processor
stations are governed by the simulation model ± we did
not force them to follow a Poisson pattern. Hence, given
Poisson external arrivals at the I/O stations, and expo-
nential processing times at the processor stations, the
simulation model mimics ``actual'' load/device move-
ments in the system. Therefore, errors observed between
the simulation and analytical results are due to assump-
tion (6) at I/O stations, and assumptions (1) and (6) at
processor stations.
The ®rst example is based on a single, bidirectional

AGV serving a set of eight stations as shown in Fig. 1a.
Stations 1 and 8 serve as I/O stations while the remaining
stations are processor stations. Each grid in Fig. 1 (a and
b) measures 10 feet. In traveling from one station to
another, the AGV is required to follow the (shaded)
guidepath. For example, the distance from station 1 to
station 2 is 3 grids (30 feet). The AGV travels at a speed
of 150 fpm (empty or loaded), and it takes 0.15 minutes
to pick-up or deposit a load. (The pick-up/deposit time is
simply added to the travel time when the AGV moves a
load).
Six job types are processed in the system; the ¯ow rate

and stations visited by each job type are given as follows:
Job 1 (3/hr) 1-2-3-4-8; Job 2 (7/hr) 8-7-6-5-1; Job 3 (2/hr)
1-2-3-4-7-6-5-1; Job 4 (2.5/hr) 8-7-6-5-2-3-4-8; Job 5 (2/
hr) 1-5-6-7-8; and Job 6 (1/hr) 8-4-3-2-1. The resulting
from-to chart for the above problem is presented as
Table A1 in the Appendix.
Suppose the polling sequence is given by 1-2-3-4-8-7-

6-5; i.e., the AGV polls the stations in a near-clockwise
fashion. The AGV is able to meet the throughput re-
quirement; i.e., the system is stable since af � / � 0:814.
Since a single AGV (with no other vehicles sharing the

guidepath) is likely to show little or no variation in travel
times, we simulated two types of AGV travel times: de-
terministic and uniform (where the latter is assumed to be
within �20% of the mean). The analytical and simulated
expected WIP levels (i.e., expected number of loads
waiting at each station) are shown in Table 1, where the
``abs. error'' column represents the absolute di�erence
between the analytical result (``Analy.'') and the sample
mean obtained from simulation (``Sim.'').
The analytical model performs reasonably well with

small absolute errors (and acceptable percent errors).
There is little or no di�erence in expected WIP levels
between deterministic and uniform AGV travel. This is

perhaps due to the small variation we used in the uniform
distribution.
Consider the opposite polling sequence, i.e., the near±

counterclockwise sequence 1-5-6-7-8-4-3-2. It is straight-
forward to show that the above polling sequence has a
workload factor of af � / � 0:814, which is the same
workload factor obtained under the original near-clock-
wise polling sequence. However, assuming deterministic
travel times, in Table 2 (see the two columns labeled

Fig. 1. Layouts (a and b) for Example 1 (with alternative
locations for station 4).
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``analy. ± Fig. 1a'') we observe that the expected total
WIP level obtained with the near-counterclockwise poll-
ing sequence is more than twice of that obtained with the
near-clockwise sequence. (The analytical model correctly
identi®es the preferred polling sequence). Considering
that the workload factor is the same between the two
polling sequences, the large di�erence above in expected
WIP levels underlines the importance of the proposed
model.
We also use the ®rst example to show that the expected

WIP level is not necessarily proportional to the workload
factor, which is a signi®cant observation considering that
the workload factor determines whether the system is
stable or not. Suppose station 4 in Fig. 1a is moved out
slightly, resulting in the layout shown in Fig. 1b. (This is
the only change made).
With reference to Table 2 (please see the two columns

labeled ``Analy. ± Fig. 1b''), the near-clockwise polling
sequence yields a workload factor of 0.865 and a total
expected WIP of 11.73 loads (assuming deterministic
travel times), while the near-counterclockwise polling
sequence yields a workload factor of 0.852 and a total

expected WIP of 19.93 loads. Although the latter polling
sequence has a smaller workload factor, it results in sig-
ni®cantly larger expected WIP! (The workload factor is
computed using mean travel times. Any di�erence in
af � /, no matter how small, is a ``real'' di�erence).
The second example is a two-zone tandem AGV system

serving 12 stations numbered 1 through 12. Stations 1
and 9 serve as I/O stations and the remaining stations are
processor stations. Also, two additional stations (13 and
14) serve as transfer stations between the two zones;
please refer to Fig. A1 in the Appendix. Zone 1 consists
of stations 1 through 6 (plus station 13), while zone 2
consists of stations 7 through 12 (plus station 14). Each
grid in Fig. A1 measures 10 ft and each AGV travels at
150 fpm (empty or loaded). The time required to pick-up
(or deposit) a load is equal to 0.20 minutes. All loads
going from one zone to another must go through stations
13 and 14. (Two one-way conveyors are assumed to be
provided between stations 13 and 14).
Three job types are handled by the AGVs; the ¯ow rate

and the stations visited by each job type are given as
follows: Job 1 (2/hr) 1-6-3-13-14-7-11-10-8-9; Job 2 (2/hr)

Table 1. Analytical and simulated expected WIP results for Example 1

Station Analy. Deterministic/exponential Abs.
error

Analy. Uniform/exponential Abs.
error

Sim. 95% CI Sim. 95% CI

1 0.52 0.52 0.45±0.60 0.00 0.52 0.58 0.52±0.64 0.06
2 0.57 0.63 0.52±0.73 0.05 0.57 0.59 0.54±0.64 0.02
3 0.57 0.62 0.53±0.70 0.05 0.57 0.56 0.50±0.61 0.01
4 0.56 0.55 0.48±0.61 0.01 0.56 0.58 0.53±0.63 0.02
5 1.40 1.29 1.11±1.46 0.11 1.40 1.31 1.09±1.52 0.09
6 1.43 1.40 1.15±1.65 0.03 1.44 1.46 1.24±1.69 0.03
7 1.46 1.41 1.19±1.63 0.06 1.47 1.57 1.19±1.95 0.11
8 1.20 1.32 1.08±1.57 0.12 1.20 1.31 1.07±1.55 0.11

Average abs. error 0.05 0.06
Percentage abs. error (%) 5.35 5.44

Table 2. Impact of polling sequences on expected WIP, Example 1

Polling 1,2,3,4,8,7,6,5 1,5,6,7,8,4,3,2 1,2,3,4,8,7,6,5 1,5,6,7,8,4,3,2
sequence Analy.±Fig. 1a Analy.±Fig. 1a Analy.±Fig. 1b Analy.±Fig. 1b

Station
1 0.52 1.01 0.70 1.24
2 0.57 2.01 0.75 2.60
3 0.57 2.27 0.74 2.80
4 0.56 2.02 0.73 2.47
5 1.40 1.91 2.23 2.38
6 1.43 1.99 2.29 2.44
7 1.46 2.18 2.34 2.60
8 1.20 2.54 1.92 3.40

Analy. WIP 7.72 15.92 11.73 19.93
Sim. WIP 7.74 17.48 10.93 22.71
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1-2-5-6-2-4-13-14-12-14-13-3-1; and Job 3 (2.5/hr) 1-5-13-
14-7-8-7-10-7-11-9. (The resulting from-to chart is pre-
sented as Table A2 in the Appendix).
The polling sequence for zone 1 and zone 2 is given by

1-6-5-13-4-2-3 and 7-11-10-9-12-14-8, respectively. Both
zones are stable since the af � / value for zone 1 and
zone 2 is equal to 0.851 and 0.708, respectively. As before,
we simulated two types of travel times for the AGVs:
deterministic and uniform (where the latter is assumed to
be within �20% of the mean).
The results for each zone are shown in Table 3. Al-

though there are only a few stations in each zone (and the
move requests from processor stations do not necessarily
follow a Poisson pattern as required by assumption (1)),
the analytical model performs reasonably well. Of course,
another source of error is the fact that the AGVs do not
necessarily inspect the stations at random points in time
as required by assumption (6).
In general, for the conditions under which we tested the

model, it estimates the expected WIP levels reasonably
accurately to show the relative di�erences between the
stations and to evaluate alternative polling sequences. In
those cases where the coe�cient of variation for the pro-
cessing times at the processor stations are small, however,
the model accuracy may deteriorate since assumption (1)
would be less tenable. Nevertheless, we believe such
results will be useful in the design and evaluation of
polling-based single-device handling systems.

A possible future research direction is to generalize the
results presented in this study by allowing the device to
poll some of the stations twice or more during a polling
cycle. Such an extension would make it possible to ana-
lyze con®gurations where the stations are not necessarily
located around a closed-loop or similar path.
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Table A2. Flow matrix for Example 2 (Loads/hr)

To/
From

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 2.5 2
2 2 2
3 2 2
4 2
5 2 2.5
6 2 2
7 2.5 2.5 4.5
8 2.5 2
9
10 2.5 2
11 2.5 2
12 2
13 2 6.5
14 4.5 2 2

Device Speed: 150 ft/min.
Grid Conversion: 10 ft/distance unit.
Pickup/Deposit Time: 0.20 min.

Table A1. Flow matrix for Example 1 (Loads/hr)

To/
From

1 2 3 4 5 6 7 8

1 0 5 0 0 2 0 0 0
2 1 0 7.5 0 0 0 0 0
3 0 1 0 7.5 0 0 0 0
4 0 0 1 0 0 0 2 5.5
5 9 2.5 0 0 0 2 0 0
6 0 0 0 0 11.5 0 2 0
7 0 0 0 0 0 11.5 0 2
8 0 0 0 1 0 0 9.5 0

Device Speed: 150 ft/min.
Pickup/Deposit Time: 0.15 min.

Fig. A1. Layout for Example 2, two-zone tandem AGV system.
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