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Abstract. In this paper we analyze the matrix differential system X ′ = [N , X 2],
where N is skew-symmetric and X (0) is symmetric. We prove that it is isospectral
and that it is endowed with a Poisson structure, and we discuss its invariants and
Casimirs.

Formulation of the Poisson problem in a Lie–Poisson setting, as a flow on a dual
of a Lie algebra, requires a computation of its faithful representation. Although the
existence of a faithful representation, assured by the Ado theorem and a symbolic al-
gorithm, due to de Graaf, exists for the general computation of faithful representations
of Lie algebras, the practical problem of forming a “tight” representation, convenient
for subsequent analytic and numerical work, belongs to numerical algebra. We solve
it for the Poisson structure corresponding to the equation X ′ = [N , X 2].
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1. Introduction

The subject matter of this paper is the matrix system of ordinary differential equa-
tions,

X ′ = [N , X2], t ≥ 0, X (0) = X0 ∈ Sym(n), (1.1)

where N ∈ so(n) is given. Here Sym(n) and so(n) denote the symmetric space of
real n × n symmetric matrices and the Lie algebra of real n × n skew-symmetric
matrices, respectively. It is easy to observe (and will be formally proved in the
sequel) that X (t) ∈ Sym(n) for all t ≥ 0.

Our interest in the system (1.1) is motivated by four reasons. First, it is trivial
to verify that (1.1) can be rewritten in the form

X ′ = [N , X ]X + X [N , X ], t ≥ 0, X (0) = X0 ∈ Sym(n), (1.2)

where [A, B] = AB − B A is the standard matrix commutator. Since [N , X ] ∈
Sym(n) for N ∈ so(n), X ∈ Sym(n), the system (1.2) is a special case of a
congruent flow

X ′ = A(X)X + X A�(X), t ≥ 0, X (0) = X0 ∈ Sym(n), (1.3)

where A: Sym(n) → M(n) is sufficiently smooth: here M(n) denotes the set
of real n × n matrices. It is easy to verify that X (t) = V (t)X0V�(t), where
V ′ = A(V X0V�)V , V (0) = I . In other words, the solution of (1.1) is an outcome
of the general linear group GL(n) acting on Sym(n) by congruence. This implies
the presence of a number of invariants: the signature of X (t) is constant, and so is
the angular field of values, F ′(X) = {y∗Xy: y ∈ Cn\{0}} (Horn and Johnson [14]).

Having said so, action by congruence per se is not very interesting and systems
(1.3) have never attracted much attention. However, intriguingly, the differential
system (1.1) is subject to another group action: it is acted on by the special or-
thogonal group SO(n) by similarity. Specifically, letting B(X) = N X + X N , we
can write it in the form

X ′ = [B(X), X ], t ≥ 0, X (0) = X0 ∈ Sym(n). (1.4)

Any system of the form (1.4), where B(X): Sym(n) → so(n) (as it does in our
case) is isospectral: the eigenvalues of X (t) are invariant. The underlying reason,
which we have already indicated, is an SO(n) action by similarity,

X (t) = Q(t)X0 Q−1(t), t ≥ 0, (1.5)

where Q ∈ SO(n) is the solution of

Q′ = B(Q X0 Q−1)Q, t ≥ 0, Q(0) = I.

Note, incidentally, that, by virtue of orthogonality, Q−1 = Q�, therefore an
isospectral flow is a special case of congruent flow. Having said so, isospectral flows
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have received much greater attention than their congruent counterparts, since their
invariants are considerably more interesting and feature in a number of important
applications,

• The Toda lattice equations of near-neighbor interaction between unit-mass
particles can be translated to this form. This is an important tool in their
analysis (Flaschka [12]; Toda [21]).
• The familiar QR method for the computation of matrix eigenvalues can be

interpreted as sampling a specific isospectral flow at unit intervals (Symes
[20]). This insight into the connection between processes in numerical linear
algebra and differential flows is fundamental and has spawned much further
research (Deift, Nanda, and Tomei [10]; Watkins [23]; Chu [7]).
• The identification of linear-algebraic processes with differential flows has led

to new algorithms for several important problems. An excellent example is
the work of Chu [6] on the inverse eigenvalue problem for symmetric Toeplitz
matrices. Another relevant reference is Bloch, Brockett, and Ratiu [3].
• Letting B(X) = [N , X ], where N ∈ Sym(n), leads to the double-bracket

flows, which have attracted a great deal of attention in the last decade (Brock-
ett [5]; Chu and Driessel [8]; Bloch et al. [3]; Bloch, Brockett, and Crouch
[2]; Bloch and Iserles [1]).
• The structure of the matrix N plays a key role in the theory and applications

of double-bracket flows. In particular, it assumes a special diagonal form
in generalized Toda flows (Bloch et al. [3]) and takes various other forms
in linear programming and related problems (Brockett [5]). It may also be
time dependent in certain applications of this theory to computing. This is a
significant point to emphasize, since it might be of interest to consider special
forms of N in (1.1) and eventually time-dependent N and N = N (X). We
do not pursue this issue further in this paper.

To recap, the differential system (1.1) is evolving under two distinct group
actions. This makes it fairly unusual (although by no means unique) and worthy
of further analysis.

Another aspect of equations (1.1) that renders them interesting is that they are,
in a sense, dual to the generalized rigid body equations

M ′ = [�,M], t ≥ 0, M(0) ∈ so(n),

where M = �J + J�, J ∈ Sym(n) (therefore,� ∈ so(n)) (Manakov [16]). This
point will be further elaborated on in Section 3.

Our final motivation for the study of (1.1) originates in the apparent behavior
of their solutions. Thus, for example, we have computed numerically the solution
of the system for

N =

 0 1 0
−1 0 1

0 −1 0


 .
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Fig. 1. The phase portraits (x1,2, xk,l ) for (k, l) = (1, 1), (1, 3), (2, 2), (2, 3), (3, 3), with a random
initial condition.

In Figure 1 we display the phase portraits of the solution. Clearly, the solution
displays a great deal of regularity and apparently it evolves on invariant tori. Similar
behavior is obtained for other matrices N , also in a larger number of dimensions.

It is fair to say that this kind of regular behavior seldom arises at random.
Typically it is an indication of a deeper structure, often either Hamiltonian or
related to Hamiltonian. The purpose of this paper is to probe and understand this
structure and this is discussed further in Bloch, Iserles, Marsden, and Ratiu [4].

In Section 2 we prove that the matrix system (1.1) can be, at the first instance,
written as a set of almost-Poisson equations,

x′ = S(x)∇H(x), t ≥ 0, x(0) = x0 ∈ R(1/2)n(n+1). (1.6)

Here x is the upper-triangular portion of the symmetric matrix X , “stretched” as a
vector, the smooth function S ∈ so

(
1
2 n(n + 1)

)
is linear and homogeneous and the

Hamiltonian H is smooth and nonnegative. Moreover, we verify that the structure
matrix S obeys the Jacobi identity: for every p, q, r = 1, 2, . . . , 1

2 n(n + 1) it is
true that

(1/2)n(n+1)∑
k=1

[
∂Sp,q

∂xk
Sk,r + ∂Sq,r

∂xk
Sk,p + ∂Sr,p

∂xk
Sk,q

]
= 0. (1.7)
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Therefore

{ f, g} = (∇ f )�S(∇g)

defines a Poisson bracket and (1.6) is a Poisson system. This has important implica-
tions, which we discuss briefly and which will be discussed more comprehensively
elsewhere.

Section 3 is devoted to a preliminary investigation of a critical aspect of Poisson
flows, focussing on their invariants and Casimirs. We prove that (1.1) has ≈ 1

4 n2

invariants and at least two Casimirs: det X and 1�N X1. A forthcoming paper
discusses the integrability of (1.1) in detail, identifies all the Casimirs in two
relevant Poisson structures, and proves involutivity of the relevant integrals of
motion (Bloch et al. [4]).

The main computational content of the paper is Section 4. A Poisson system
can be written in a Lie–Poisson form, as a flow over an orbit in a dual g∗ of
a Lie algebra g which is determined by the elements of the structure matrix S.
Specifically, recalling that S is linear and homogeneous in x, there exist structure
constants cr

p,q , p, q, r = 1, 2, . . . ,m, where m = 1
2 n(n + 1), such that

Sp,q(x) =
m∑

r=1

cr
p,q xr , p, q = 1, 2, . . . ,m.

Skew-symmetry of S is equivalent to

cr
p,q + cr

q,p = 0, p, q, r = 1, . . . ,m, (1.8)

while the Jacobi identity (1.7) is equivalent to

m∑
i=1

(ci
p,qcs

i,r + ci
q,r cs

i,p + ci
r,pcs

i,q) = 0, p, q, r, s = 1, 2, . . . , n. (1.9)

Now, (1.8) and (1.9) are precisely the conditions for the {cr
p,q} to form structure

constants of a finite-dimensional Lie algebra (Olver [18]). Let us denote this algebra
by g and assume that {E1, E2, . . . , Em} is its basis. Moreover, let us suppose that
{F1, F2, . . . , Fm} form the basis of the dual g∗ (the linear space of linear functionals
acting on g) and that 〈Fk, El〉 = δk,l , k, l = 1, 2, . . . ,m, where

〈Y, Z〉 = tr(Y�Z)

and δk,l is the familiar Kronecker delta. The following construction is general to
all Poisson systems (Marsden and Ratiu [17]). We associate with x, the solution
of (1.6), an element of g∗, namely

Y (t) =
m∑

k=1

xk(t)Fk .
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With minor abuse of notation, we let H(Y ) = H(x). Then (1.6) is equivalent to

Y ′ = − ad∗H ′(Y ) Y, t ≥ 0, Y (0) =
m∑

k=1

xk(0)Fk, (1.10)

where ad∗ is the adjoint operator in g∗ and H ′(Y ) = (∂H(Y )/∂Yp,q)p,q=1,...,m .
The formulation of a Poisson system as a flow in g∗ is advantageous for a

number of analytic and numerical reasons (Engø and Faltinsen [11]; Lewis and
Simo [15]; Marsden and Ratiu [17]). However, practical implementation of (1.10)
requires a representation of F1, F2, . . . , Fm by matrices. In principle, this can be
done since, by the Ado theorem, every finite-dimensional Lie algebra possesses
a faithful representation (Varadarajan [22]). Yet, the Ado theorem falls short of
providing such a representation in an explicit form. In principle, it is possible to use
symbolic algebra to this end: in a beautiful paper, de Graff [9] demonstrated how to
render Ado’s original proof into a constructive algorithm. Yet, this falls short of our
requirements. First, the algorithm delivers the Ek’s, but not a biorthogonal basis
of g∗. Second, and more importantly, the size of matrices in de Graff’s algorithm
increases exponentially with m, while practical work with (1.10) requires either a
minimal representation or, at the very least, one which is fairly small. In Section 4
we introduce a numerical, linear-algebraic algorithm that performs this task for
our specific Lie–Poisson flow and produces matrices of size (2n − 2)× (2n − 2).

Assuming without significant loss of generality that n is even, any N ∈ so(n)
can be reduced by a real similarity transformation to a tridiagonal matrix with
2 × 2 skew-symmetric blocks along the diagonal. Since we can subject X0 to a
similar transformation, we could have assumed at the outset that N is of this form.
Occasionally this leads to simplification, often it does not. Our impression is that,
overall, it is more convenient to assume that N is a general so(n)matrix, but more
detailed examination of specific aspects of (1.1) might well benefit from such a
similarity transformation (Bloch et al. [4]).

Inasmuch as this is a paper on a specific Lie–Poisson system and the repre-
sentation of “its” Lie algebra, we address ourselves to a particular instance of
a considerably more general problem. Given structure constants {cr

p,q} that obey
(1.8) and (1.9), hence being within the conditions of the Ado theorem, determine
a small faithful representation of the underlying free Lie algebra. This is, essen-
tially, a problem of numerical algebra which, to our knowledge, has been never
addressed by numerical algebraists. A major goal of the present paper is to demon-
strate that, at least in one case, this problem is tractable. The general case remains
as a substantive challenge.

2. From a Differential Flow to a Poisson System

An ordinary differential system is said to be almost Poisson if it is of the form

x′ = S(x)∇H(x), t ≥ 0, x(0) = x0 ∈ Rm, (2.1)
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where H : Rm → R (the Hamiltonian) and the linear, homogeneous matrix function
S: Rm → so(m) (the structure matrix) are sufficiently smooth. The constants
{cr

p,q}p,q,r=1,...,m such that

Sp,q(x) =
m∑

r=1

cr
p,q xr , p, q = 1, . . . ,m,

are called the structure constants of (2.1) with respect to a basis of Rm implicitly
defined by the representation of x. Note that

cr
p,q + cr

q,p = 0, p, q, r = 1, . . . ,m. (2.2)

Our contention is that (1.1) is almost Poisson. Writing (1.1) in a coordinate-by-
coordinate fashion, it becomes

x ′p,q =
n∑

r=1

n∑
s=1

(np,r xr,s xq,s − nr,s xp,r xq,s − nr,s xp,s xq,r + nq,r xp,s xr,s)

for p, q = 1, . . . , n. By virtue of N ∈ so(n), however, once we swap the indices
r and s we have

n∑
r=1

n∑
s=1

nr,s xp,s xq,r =
n∑

s=1

n∑
r=1

ns,r xp,r xq,s = −
n∑

r=1

n∑
s=1

nr,s xp,r xq,s .

Thus, taking into account the symmetry of X , we obtain m = 1
2 n(n+1) equations

x ′p,q =
n∑

r=1

(np,r xq,r + nq,r np,r )xr,r

+ 2
n−1∑
r=1

n∑
s=r+1

(np,r xq,s + nq,r xp,s)xr,s, (p, q) ∈ Jn, (2.3)

where

Jn = {(p, q): 1 ≤ p ≤ q ≤ n}.
Writing (1.1) in an almost-Poisson form, we need to “stretch” {xp,q}(p,q)∈Jn

into
a vector x ∈ Rm . It is helpful to retain both indices of the elements of X , while
ordering them lexicographically: for example, for n = 3 we have m = 6 and

x = [x1,1 x1,2 x1,3 x2,2 x2,3 x3,3]�.

Note that we may occasionally use xp,q with p > q, since this makes our presen-
tation more transparent. In that case, of course, xp,q = xq,p.

We set

H(x) = 1
2‖X‖2

F = 1
2

n∑
r=1

x2
r,r +

n−1∑
r=1

n∑
s=r+1

x2
r,s, (2.4)
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hence (2.3) can be rewritten in the form

x ′p,q =
n∑

r=1

n∑
s=r

(np,r xq,s + nq,r xp,s)
∂H(x)
∂xr,s

, (p, q) ∈ Jn.

This form looks tantalizingly similar to (2.1), except that letting S(p,q),(r,s)(x) =
np,r xq,s+nq,r xp,s does not lead to a skew-symmetric matrix. However, identifying
xq,p = xp,q yields

x ′p,q = x ′q,p =
n∑

r=1

n∑
s=r

(nq,r xp,s + np,r xq,s)
∂H(x)
∂xr,s

, (p, q) ∈ Jn.

We now average the two expressions: the outcome is

x ′p,q = 1
2

∑
(r,s)∈Jn

(np,r xq,s+np,s xq,r +nq,r xp,s+nq,s xp,r )
∂H(x)
∂xr,s

, (p, q) ∈ Jn.

This is consistent with the almost-Poisson form (2.1), once we define the Hamil-
tonian H by (2.4) and let

S(p,q),(r,s)(x) = 1
2 (np,r xq,s+np,s xq,r+nq,r xp,s+nq,s xp,r ), (p, q), (r, s) ∈ Jn.

(2.5)
If S obeys the Jacobi identity (1.7) (with 1

2 n(n+ 1) replaced by m), the almost-
Poisson equations (2.1) are said to be a Poisson (or, alternatively, Kostant–Kirillov–
Lie–Souriau) system (Marsden and Ratiu [17]). In that case, as already stated in
Section 1, the structure constants obey the identities

m∑
i=1

(ci
p,qcs

i,r + ci
q,r cs

i,p + ci
r,pcs

i,q) = 0, p, q, r, s = 1, . . . ,m. (2.6)

Theorem 1. The system (2.1) with the Hamiltonian (2.4) and the structure matrix
(2.5) is Poisson.

Proof. The matrix S is linear and homogeneous in x. Moreover, N ∈ so(n) and
X ∈ Sym(n) imply at once that S ∈ so(m). The system is thus almost Poisson.

The structure constants associated with S are

c(k,l)(p,q),(r,s) = 1
2 [δ(k,l)(q,s)np,r + δ(k,l)(q,r)np,s + δ(k,l)(p,s)nq,r + δ(k,l)(p,r)nq,s],

(p, q), (r, s), (k, l) ∈ Jn, (2.7)

where δ(k,l)(i, j) is the “symmetrized” Kronecker delta,

δ
(k,l)
(i, j) =

{
1, (i, j) = (k, l) or (i, j) = (l, k),
0, otherwise.
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It is possible to prove directly that the above structure constants satisfy the Jacobi
condition (2.6). This requires a great deal of fairly tedious algebra. Instead, we
follow a (gratefully acknowledged) suggestion of Peter Olver, which identifies
the structure constants (2.7) with an unusual Lie algebra. Let Y, Z ∈ Sym(n),
N ∈ so(n), and let

[Y, Z ]N = Y N Z − Z NY. (2.8)

This is a proper Lie bracket, since [Z , Y ]N = −[Y, Z ]N and

[X, [Y, Z ]N ]N + [Y, [Z , X ]N ]N + [Z , [X, Y ]N ]N

= {X N (Y N Z − Z NY )− (Y N Z − Z NY )N X}
+ {Y N (Z N X − X N Z)− (Z N X − X N Z)NY }
+ {Z N (X NY − Y N X)− (X NY − Y N X)N Z}

= O

—hence the Jacobi identity. Since Sym(n) is a linear space, it follows at once that,
once accompanied by the bracket (2.8), it is a Lie algebra, hn(N ), say.

We now define

Hp,q = 1
2 (epe�q + eqe�p ), (p, q) ∈ Jn, (2.9)

where ek ∈ Rn is the nth unit vector, and note that {Hp,q : (p, q) ∈ Jn} form a basis
of Sym(n). A straightforward computation confirms that

[Hp,q , Hr,s]N = 1
2 (np,r Hq,s + np,s Hq,r + nq,r Hp,s + nq,s Hp,r ),

(p, q), (r, s) ∈ Jn,

where we identify Hp,q = Hq,p. Therefore, (2.7) are the structure constants associ-
ated with the underlying basis. Hence they satisfy (2.6) (with obvious amendments
to cater for “double” indices), we deduce the Jacobi identity, and conclude that the
system (2.1) is indeed Poisson.

In Section 4 we are concerned with a faithful representation of the Lie alge-
bra associated with the structure constants (2.7). Here we just state the obvious:
(2.8) is not a representation, faithful or otherwise: a representation is defined with
the standard matrix commutator [Y, Z ] = Y Z − ZY . To the contrary! Once we
derive a faithful representation of the Lie algebra associated with the structure
constants (2.7), motivated by our goal to represent (1.1) as a Lie–Poisson flow, we
simultaneously obtain gratis a faithful representation of hn(N ).

Further discussion of the Poisson structure for the system (1.1) is given in Bloch
et al. [4].
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3. Invariants

3.1. Lax Pairs and Their Consequences

It is of interest to compute the invariants for the flow of the system (1.1). We bear
in mind that, by virtue of the isospectral representation (1.2), we already know that
the eigenvalues of X or, alternatively, tr Xk for k = 1, 2, . . . , n− 1, are invariants.
This section represents preliminary investigation into the integrability of (1.1) and
we mention in passing that, since the completion of this paper, the issue has been
settled out comprehensively in Bloch et al. [4].

One way to compute additional invariants is to rewrite the system as a Lax
pair with parameter. One can do this in a fashion which is similar to that for the
generalized rigid body equations, see Manakov [16].

Theorem 2. Let λ be an arbitrary time-independent parameter with values in R.
The system (1.4) is equivalent to the Lax pair system

(X + λN )′ = [N X + X N + λN 2, X + λN ]. (3.1)

Proof. The proof is a computation. In particular, we can verify that the coefficient
of λ on the right-hand side of equation (3.1) is given by

λ
(
[N X + X N , N ]+ [N 2, X ]

)
= λ(N X N + X N 2 − N 2 X − N X N + N 2 X − X N 2),

which is zero.

We recall from Manakov [16] and Ratiu [19] that the left-invariant generalized
rigid body equations on SO(n) may be written as

M ′ = [M, �], t ≥ 0, M(0) = M0 ∈ so(n), (3.2)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of the
body), � = Q−1 Q′ ∈ so(n) is the body angular velocity, and

M = J (�) = ��+�� ∈ so(n)

is the body angular momentum. Here J : so(n)→ so(n) is the symmetric, positive
definite (and hence invertible) operator defined by

J (�) = ��+��,

where � is a diagonal matrix satisfying �i +�j > 0 for all i �= j . For n = 3 the
elements of �i are related to the standard diagonal moment of inertia tensor I by
I1 = �2 +�3, I2 = �3 +�1, I3 = �1 +�2.
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In this case the generalized rigid body equations as Lax equations with param-
eter due to Manakov take the form

d

dt
(M + λ�2) = [M + λ�2, �+ λ�]. (3.3)

Note the contrast with our setting: in the Manakov case the system matrix M
is in so(n) and � is a symmetric matrix, while in our case X is symmetric and
N ∈ so(n).

For the generalized rigid body the nontrivial coefficients of λ in the traces of
the powers of M + λ�2 then yield the right number of independent integrals in
involution to prove integrability of the flow on a generic adjoint orbit of SO(n)
(identified with the corresponding coadjoint orbit).

Similarly in our case the nontrivial coefficients of λ in the traces of the powers
of X + λN yield conserved quantities of motion:

tr(X + λN )k = const, k = 1, 2, . . . , n − 1, λ ∈ R.

Therefore, expanding the power and assembling equal powers of λ,

tr
∑
|i|=r

∑
|j|=k−r

X i1 N j1 Xi2 · · · Xis N js = const,

r = 1, . . . , k, k = 1, . . . , n − 1.

Here i is a multi-index and |i| =∑q iq . However, since a trace of a matrix equals
the trace of its transpose, X ∈ Sym(n) and N ∈ so(n), it is true that

tr Xi1 N j1 Xi2 · · · Xis N js = (−1)|j| tr N js X js · · · Xi2 N j1 Xi1 .

Therefore, if k − s is odd, then, necessarily,

tr
∑
|i|=r

∑
|j|=k−r

X i1 N j1 Xi2 · · · Xis N js = 0

and only even k − s qualifies as an invariant. Thus, we are left with the invariants

tr
∑
|i|=k−2r

∑
|j|=2r

X i1 N j1 Xi2 · · · Xis N js , k = 1, . . . , n−1, r = 0, 1, . . . ,

⌊
k − 1

2

⌋
.

(3.4)
Altogether, this results in ⌊n

2

⌋
×
⌊

n + 1

2

⌋

invariants. Building upon the results of this subsection, independence and involu-
tion of these integrals are addressed in Bloch et al. [4].
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3.2. Casimirs

It is natural to attempt an analysis of Casimirs for our system with our given
Poisson structure. Recall that given two smooth functions f, g: Rm → R and the
skew-symmetric function S(y) from (2.5), the Poisson bracket is

{ f, g} = [∇ f (y)]�S(y)∇g(y) =
m∑

i=1

m∑
j=1

∂ f (y)
∂yi

Si, j (y)
∂g(y)
∂yj

.

A Casimir of the Lie–Poisson system (2.1) is a function C which is in invo-
lution (with respect to the above Lie bracket) with all other functions on the
Poisson manifold (Marsden and Ratiu [17]). According to the Darboux theorem,
if S(x) is (locally) of constant even rank m − α, say, where α ≥ 1, then there
exist α Casimirs, c1, c2, . . . , cα , say, which are themselves in involution. They
satisfy

{ck, g} = 0 for all smooth g. (3.5)

Each Casimir is a first integral of the Lie–Poisson system.
Extensive experimentation with MATLAB, generating a large number of matrices

S using random N ∈ so(n) and X ∈ Sym(n), seems to indicate that α = �(n +
1)/2�. Note that, in that case, m − α = 2�n/2� × �(n + 1)/2� is indeed even.

Lemma 3. Suppose that n ≥ 3 and X0, N �= O , where O is the zero matrix.
Then it is true for the system (2.1) with the structure matrix (2.5) that α ≥ 2.

Proof. We will demonstrate that α ≥ 2 by singling out two linearly independent
eigenvectors v,w ∈ Rm that correspond to a zero eigenvalue, Sv = Sw = 0.

We first assume that both X and N are nonsingular. The elements of the eigen-
vectors will be denoted by the usual double indices. We first let

vp,q =
{

1
2 (X

−1)p,p, p = q,
(X−1)p,q , p < q.

Therefore, using (2.5) and exploiting as necessary symmetry of X and V and
skew-symmetry of N ,

(Sv)p,q =
∑

(r,s)∈Jn

S(p,q),(r,s)vr,s

= 1
2

n∑
r=1

n∑
s=r

(np,r xq,s + np,s xq,r + nq,r xp,s + nq,s xp,r )vr,s

= 1
4

n∑
r=1

n∑
s=1

(np,r xq,s + np,s xq,r + nq,r xp,s + nq,s xp,r )(X
−1)r,s
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= 1
4

[
n∑

r=1

np,r

n∑
s=1

xq,s(X
−1)s,r +

n∑
s=1

np,s

n∑
r=1

xq,r (X
−1)r,s

+
n∑

r=1

nq,r

n∑
s=1

xp,s(X
−1)s,r +

n∑
s=1

nq,s

n∑
r=1

xp,r (X
−1)r,s

]

= 1
4 (np,q + np,q + nq,p + nq,p) = 0.

Therefore, indeed, Sv = 0.
Likewise, we set

wp,q =
{

1
2 (N

−1)p,p, p = q,
(N−1)p,q , p < q.

The proof of Sw = 0 follows in an identical manner, because each S(p,q),(r,s) is
symmetric in X and N .

The requirement that X and N are nonsingular can be easily lifted, replacing the
inverse by an adjugate matrix, as necessary: because of our assumptions, v,w �= 0.
Since X ∈ Sym(n) cannot be a multiple of N ∈ so(n), the vectors v and w are
linearly independent. This concludes the proof.

Note that, in a sense, v and w are “dual” to each other: while v = v(x), but is
independent of N , w is dependent solely on N .

The following result identifies two Casimirs of the system (1.1).

Theorem 4. Let c1(X) = det X . Then, for every (p, q) ∈ Jn , it is true that

1

c1(X)

∂c1(X)

∂xp,p
= (X−1)p,p, k = 1, 2, . . . , n,

1

c1(X)

∂c1(X)

∂xp,q
= 2(X−1)p,q

and c1 is a Casimir of the system (1.1). Likewise,

c2(X) = 1
2 1�(adj N )X1,

where adj N is the adjugate matrix of N and is a Casimir of (1.1) for N �= O . (We
may replace adj N by N−1 if N is nonsingular.)

Proof. We denote by Ap,q a matrix A from which we have excised the pth column
and the qth row. Thus,

(X−1)p,q = (−1)p+q det Xq,p

det X
= (−1)p+q det X p,q

c1(X)
.

Therefore, it is enough to prove that

∂c1(X)

∂xp,p
= det X p,p,

∂c1(X)

∂xp,q
= 2(−1)p+q det X p,q , p �= q.
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For p = l the element xp,p appears just once in X and taking the derivative of
c1(X) = det X with respect to xp,p replaces the pth row and the pth column by
e�p and ep, respectively. Thus, ∂ det X/∂xp,p = det X p,p.

For p �= q the term xp,q appears twice in X and the derivative is thus a sum
of two determinants: one when the pth row is replaced by e�p and the qth column
by eq and the other when the pth row and the qth column are replaced by e�q and
ep, respectively. Because of symmetry, both determinants equal (−1)p+q det X p,q .
This completes the proof.

Consequently, c1(X) = det X is a Casimir iff

n∑
r=1

S(p,q),(r,r)(X
−1)r,r + 2

n−1∑
r=1

n∑
s=r+1

S(p,q),(r,s)(X
−1)r,s = 0

for every (p, q) ∈ Jn . This, however, follows at once from the proof of Lemma 3,
once we observe that the partial derivatives of c1, scaled by c−1

1 (X), are precisely
the elements of the vector v therein.

The proof that c2 is a Casimir follows from the observation that, once we
consider the “reduced” system with m = 1

2 n(n + 1), it is true that

∂c2(X)

∂xp,q
=
{

1
2 (adj N )p,p, p = q,

(adj N )p,q , p < q,
(p, q) ∈ Jn.

This, according to Lemma 3, is an eigenvector of S: the proof therein was for
N−1 = (det N )−1adj N but, as already remarked, it is equally valid for the adjugate
matrix.

Of course, we already know that det X is an invariant of (1.1), since the latter’s
equivalence with the isospectral system (1.2) implies that the product of the eigen-
values of X is constant. This, of course, does not mean that all invariants implied
by isospectrality are Casimirs. For example, letting c(X) = tr X , we readily have

∑
(r,s)∈Jn

S(p,q),(r,s)
∂c(X)

∂xr,s
=

n∑
r=1

S(p,q),(r,r) =
n∑

r=1

(np,r xq,r + nq,r xp,r ) = [N , X ]p,q ,

which cannot be expected to vanish for all (p, q) ∈ Jn .
Needless to say, we do not claim that c1 and c2 are the only Casimirs of (1.1).

The full resolution of integrability, Casimirs, and other invariants of the system
are deferred to Bloch et al. [4].

4. Lie-Algebraic Representation and Its Computation

We proved in Section 2 that {c(k,l)(p,q),(r,s): (p, q), (r, s), (k, l) ∈ Jn} obey (2.2) and
(2.6), hence are structure constants of an m-dimensional algebra g. This algebra
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is defined formally as a free Lie algebra

g = FLA(Ep,q : (p, q) ∈ Jn), (4.1)

where Ep,q are (for the time being) purely formal letters, equipped with the com-
mutation relation

[Ep,q , Er,s] = 1
2 (np,r Eq,s + np,s Ep,s Eq,r + nq,r Ep,s + nq,s Ep,r ),

(p, q), (r, s) ∈ Jn, (4.2)

(see (2.5) or (2.7)). In other words, elements of g are linear combinations of the
Ep,q ’s (which are presumed linearly independent) and its closure under commu-
tation is assured by (4.2).

4.1. The Algorithm

We recall from Section 1 that our ultimate goal it to construct representations
of g and of g∗ which are orthogonal to each other with respect to the Frobenius
inner product 〈Y, Z〉 = tr(Y�Z). Note, however, that once we determine a faithful
representation of g which is orthogonal—for every (p, q), (r, s) ∈ Jn , 〈Ep,q , Er,s〉
is zero if (p, q) �= (r, s) and πp,q > 0 if (p, q) = (r, s)—we may take Fp,q =
π−1

p,q Ep,q . This follows at once from the Riesz representation theorem for linear
functionals once we observe that 〈 · , · 〉 is the standard Euclidean vector inner
product, hence defining a Hilbert space.

Although, as mentioned in Section 1, the existence of a faithful representation
of g is assured by the Ado theorem, the latter does not provide us with specific
linearly independent matrices Ep,q (without fear of confusion, we use the same
notation for formal words in (4.1) and for their representation). This motivates the
work of this section, central to the entire paper. We consider the problem of finding
a faithful representation of (4.1) as an exercise in numerical algebra and present
an algorithm to this end.

Let us assume first that ‖N‖ = 1, where ‖ · ‖ is the standard Euclidean matrix
norm. Clearly, we may exclude the trivial case N = O , hence our assumption is
merely a time-reparametrization of the system (1.6): Once we find a representation
subject to ‖N‖ = 1, we can generalize it immediately for any N �= O , multiplying
each Ep,q in (4.1) by ‖N‖.

Proposition 5. The Hermitian matrix I+i N is positive semidefinite and singular.

Proof. The proposition follows at once from the observation that σ(I + i N ) =
1 + i σ(N ), σ(N ) ⊂ i R, and ρ(N ) = ‖N‖ = 1, where σ and ρ denote the
spectrum and the spectral radius, respectively.
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We seek an n × n complex upper-triangular matrix R such that

R∗R = I + i N ,

and which is in a standard form: For each row k the first nonzero term (if any)
is Rk,ik > 0, where the ik’s form a strictly monotone sequence, and all zero rows
are at the bottom. Note that Proposition 5 implies that the bottom row of R is
necessarily composed of zeros. (The term “standard form” is borrowed from the
usual terminology of QR factorization (Golub and van Loan [13]).) Precise details
of how to compute R are deferred to the next subsection.

We now remove the bottom row of R and denote the new matrix by R̃. If R has
more rows of zeros, we excise them as well but in the sequel we treat merely the
generic case when R̃ is (n − 1) × n—an extension to the general case is trivial.
Let

B = ReR̃, C = ImR̃.

Moreover, we set

A =
[

B
C

]

and denote its columns by a1, a2, . . . , an ∈ R2n−2.

Proposition 6. The following is true:

B�B + C�C = I, (4.3)

B�C − C�B = N , (4.4)

a�p aq = δp,q , p, q = 1, 2, . . . , n, (4.5)

a�p Jaq = np,q , p, q = 1, 2, . . . , n, (4.6)

where J =
[

O I
−I O

]
is the standard (2n − 2)× (2n − 2) symplectic matrix.

Proof. Recalling the definition of R,

R̃∗ R̃ = R∗R = I + i N .

On the other hand, R̃ = B + i C implies that

R̃∗ R̃ = (B� − i C�)(B + i C) = (B�B + C�C)+ i(B�C − C�B).

Taking real and imaginary parts proves (4.3) and (4.4), respectively.
To prove (4.5) and (4.6), we denote the columns of B and C by b1, . . . , bn ∈

Rn−1 and c1, . . . , cn ∈ Rn−1, respectively, and compute directly while exploiting
(4.3) and (4.4):

a�p aq = [b�p c�p ]

[
bq

cq

]
= (b�p bq + c�p cq) = (B�B + C�C)p,q = δp,q
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and

a�p Jaq = [b�p c�p ]

[
O I
−I O

] [
bq

cq

]
= b�p cq−c�p bq = (B�C−C�B)p,q = np,q .

Theorem 7. Let

Ep,q = (apa�q + aqa�p )J, (p, q) ∈ Jn. (4.7)

Then

(a) The set {Ep,q : (p, q) ∈ Jn} obeys the commutation relations (4.2) and
therefore is a representation of the Lie algebra g.

(b) The above representation is faithful and, moreover,

tr E�p,q Er,s =



1
2 , p = q = r = s,
1, (p, q) = (r, s), p < q,
0, (p, q) �= (r, s),

(p, q), (r, s) ∈ Jn. (4.8)

Proof. We prove (a) by direct computation, repeatedly using (4.6) as necessary.
Let (p, q), (r, s) ∈ Jn . Then, using the skew-symmetry of N ,

[Ep,q , Er,s] = 1
4 [(apa�q + aqa�p )J, (ar a�s + asa�r )J ]

= 1
4 {(a�q Jar )apa�s + (a�p Jar )aqa�s + (a�q Jas)apa�r

+ (a�p Jas)aqa�r − (a�s Jap)ar a�q − (a�r Jap)asa�q

− (a�s Jaq)ar a�p − (a�r Jaq)asa�p }J
= 1

4 {np,r (aqa�s + asa�q )+ np,s(aqa�r + ar a�q )+ nq,r (apa�s + asa�p )

+ nq,s(apa�r + ar a�p )}J
= 1

2 (np,r Eq,s + np,s Eq,r + nq,r Ep,s + nq,s Ep,r ).

This confirms that the Ep,q ’s obey (4.2) and thereby proves (a).
To prove part (b) of the theorem we observe that J ∈ O(n) and use (4.5):

tr E�p,q Er,s = tr Ep,q E�r,s = 1
4 tr[(apa�q + aqa�p )J J�(ar a�s + asa�r )]

= 1
4 tr[(apa�q + aqa�p )(ar a�s + asa�r )]

= 1
4 tr[(a�q ar )apa�s + (a�q as)apa�r + (a�p ar )aqa�s + (a�p as)aqa�r ]

= 1
2 (δp,rδq,s + δp,sδq,r ),

where we have used the identity tr aka�l = a�k al . This proves (4.8).
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Since the Ep,q ’s form an orthogonal set (with respect to the Frobenius norm),
they are in particular linearly independent. Therefore the representation is
faithful.

4.2. The Computation of R

We have used just a single feature of the matrix R, namely that R∗R = I+i N . (The
fact that the bottom row is zero and, indeed, that all zero rows are at the bottom of the
matrix, is helpful in deriving smaller matrices but not required for the construction
of the faithful representation at the first place. Hence, at least in principle, we may
abandon the requirement that R is in a standard form, reconciling ourselves to
larger matrices.) One procedure that is assured to produce R in a standard form is
the QR factorization Q R of the Hermitian, positive semidefinite, singular matrix
(I + i N )1/2, where Q ∈ U(n) and R is upper-triangular and in a standard form.
Once we abandon the requirement that R is upper-triangular, hence reconciling
ourselves to somewhat larger matrices, an alternative is a polar decomposition
I + i N = Q R, where Q ∈ U(n) and R is Hermitian and positive semidefinite.
However, the most promising route is the Cholesky factorization, which factorizes
a positive definite matrix into the product R∗R, where R is upper-triangular with
real, positive diagonal.

We note in passing that we can replace R at will by P R, where P ∈ U(n).
(Indeed, it is trivial that the manifold of all n × n complex matrices R such that
R∗R = I + i N is acted multiplicatively from the left by U(n).) Alternatively, we
can bypass R altogether and construct a matrix A, with n columns and an even
number of columns, such that

A�A = I, A� J A = N ,

except that this is not necessarily the easiest route.
There exist perfectly good routines (e.g., LINPAKC’s CCHDC and NAG’s

f01bnc) that produce the Cholesky factorization of a Hermitian positive defi-
nite matrix, and they are based on a well-known comprehensive theory (Wilkinson
and Reinsch [24]). Moreover, the LINPAKC (a complex extension of LINPACK)
routine works with positive semidefinite matrices. Yet, there is a problem with
standard Cholesky factorization in our setting. As long as the underlying Hermi-
tian matrix is positive definite, R is by definition upper-triangular with positive
elements along the diagonal. If it is of rank p, p ≤ n − 1, and its principal p × p
minor is nonsingular, the algorithm produces a matrix R with n − p zero rows at
the bottom and, otherwise, the diagonal elements are positive. However, if the rank
is p ≤ n − 1 but the principal p × p minor is singular, a Cholesky factorization
requires pivoting and it is no longer true that R∗R = I + i N .

We wish the best of both worlds: both R in a standard form and a Cholesky-
like algorithm, that produces R without any need to compute square roots. This
is provided by the following straightforward extension of the Cholesky algorithm.
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We progress successively forming the kth row of R for k = 1, 2, . . . , p, where
p = rank(I + i N ) ≤ n − 1.

Let M = N . Supposing that the first k−1 rows of R are available, we note that

k∑
j=1

|rj,k |2 =
n∑

j=1

|rj,k |2 = 1.

Thus,

k−1∑
j=1

|rj,k |2 ≤ 1. (4.9)

If the inequality above is sharp, we let

rk,k =
(

1−
k−1∑
j=1

|rj,k |2
)1/2

> 0

and set

rk,l = 1

rk,k

(
i mk,l −

k−1∑
j=1

r̄j,krj,l

)
, l = k + 1, k + 2, . . . , n.

It is trivial to confirm that the kth row of R is consistent with R∗R = I + i M .
If there is an equality in (4.9) we replace R with R Pk , where Pk is the permuta-

tion matrix that cycles the columns k, k + 1, . . . , n to k + 1, k + 2, . . . , n, k and,
simultaneously, replace M by P�k M Pk ∈ so(n). Form the new sum

∑k−1
j=1 |rj,k |2:

if it is strictly less than one, continue as above, otherwise continue cycling. We
can cycle at most n− k times. If the sum equals one in each case, then necessarily
rank(I + i N ) = k and we can pad the bottom n − k rows of R with zeros.

The outcome of this procedure is an upper-triangular matrix R and a product P̂
of permutation matrices, such that R∗R = I + i M = P̂�(I + i N )P̂ . We finally
replace R by R P̂�, whereby R∗R = I + i N , as required. Note that, unlike as in
standard Cholesky factorization, it is entirely possible that elements of R vanish
along the diagonal, but that the matrix is in a standard form.

We mention in passing an obvious amendment to the above procedure, full row
pivoting of R: instead of cycling the k, k + 1, . . . , n columns when rk,k is zero,
we exchange columns in each step so that the new pivot element rk,k is the largest
possible. For large dimensions this procedure has the virtue of better stability.

As an example of our algorithm, consider

N =




0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0
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and note that ‖N‖ = 1. For k = 1 we obtain r1,1 = 1, r1,2 = i and r1,3 = r1,4 = 0,
but k = 2 results in an equality in (4.9). We thus let

M ← P�2 M P2 =




0 0 0 i
0 0 0 0
0 0 0 0
− i 0 0 0


 , R =




1 0 0 i
0 × × ×
0 × × ×
0 × × ×


 .

Now (4.9) is sharp and r2,2 = 1, r2,3 = r2,4 = 0. Likewise, for k = 3 we have
r3,3 = 1, r3,4 = 0. Finally, for k = 4 we have a row of zeros. Since P̂ = P2, we
finally set

R← R P̂ =




1 i 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ,

in a standard form. It is trivial that, indeed, R∗R = I + i N .

4.3. An Example

Let

N =

 0 a b
−a 0 c
−b −c 0


 ,

where a, b, c ∈ R, a2 + b2 + c2 = 1. It is easy to check that ‖N‖ = 1. Assuming
for simplicity that |a| < 1, the procedure of Subsection 4.2 yields

R =




1 i a i b

0
√

b2 + c2
−ab + i c√

b2 + c2

0 0 0


 .

Once we excise the bottom row, we obtain

A =




1 0 0

0
√

b2 + c2 − ab√
b2 + c2

0 a b

0 0
c√

b2 + c2


 ,

consequently, by (4.7),

E1,1 =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,
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E1,2 =



− 1

2 a 0 0 1
2

√
b2 + c2

0 0 1
2

√
b2 + c2 0

0 0 1
2 a 0

0 0 0 0


 ,

E1,3 =




− 1
2 b − c

2
√

b2 + c2
0 − ab

2
√

b2 + c2

0 0 − ab

2
√

b2 + c2
0

0 0 1
2 b 0

0 0
c

2
√

b2 + c2
0



,

E2,2 =




0 0 0 0
−a
√

b2 + c2 0 0 b2 + c2

−a2 0 0 a
√

b2 + c2

0 0 0 0


 ,

E2,3 =




0 0 0 0
b(a2 − b2 − c2)

2
√

b2 + c2
− 1

2 c 0 −ab

−ab − ac

2
√

b2 + c2
0 −b(a2 − b2 − c2)

2
√

b2 + c2

− ac

2
√

b2 + c2
0 0 1

2 c



,

E3,3 =




0 0 0 0
ab2

√
b2 + c2

abc

b2 + c2
0

a2b2

b2 + c2

−b2 − bc√
b2 + c2

0 − ab2

√
b2 + c2

− bc√
b2 + c2

− c2

b2 + c2
0 − abc

b2 + c2



.

The above basis does not share the symmetry implicit in reversing the order of
rows and columns of N . This is hardly an impediment, except perhaps on æsthetic
grounds, but we note as a matter of interest that, at least for n = 3, we can single
out a “symmetric” basis,

E1,1 =




0 1
2 (a + c) 1

2 (a − c) b
0 0 0 0
0 0 0 0
0 0 0 0


 ,
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E1,2 =



− 1

2 a − 1
2 b 1

2 b 1
2 c

0 1
4 (a + c) 1

4 (a − c) 1
2 b

0 1
4 (a + c) 1

4 (a − c) 1
2 b

0 0 0 0


 ,

E1,3 =



− 1

2 b 1
4 (a − c) − 1

4 (a + c) 0
0 0 0 0
0 0 0 0
0 1

4 (a + c) 1
4 (a − c) 1

2 b


 ,

E2,2 =




0 0 0 0
−a −b b c
−a −b b c

0 0 0 0


 ,

E2,3 =




0 0 0 0
− 1

2 b 1
4 (a − c) − 1

4 (a + c) 0
− 1

2 b 1
4 (a − c) − 1

4 (a + c) 0
− 1

2 a − 1
2 b 1

2 b 1
2 c




E3,3 =




0 0 0 0
0 0 0 0
0 0 0 0
−b 1

2 (a − c) − 1
2 (a + c) 0


 ,

which is consistent with the commutation relations (4.2).
We mention in passing that it is possible—not by our algorithm, though—to de-

rive unfaithful representations for sufficiently sparse matrices N . For example, for

N =

 0 1 0
−1 0 0

0 0 0




we might take

E1,1 =



−
√

2

4
−1

2
−
√

2

4
0

1

2
−
√

2

4

√
2

4
0

0 0 0


, E1,2 =



−
√

2

4

√
2

4
0√

2

4

√
2

4
0

0 0 0


,

E1,3 =

0 0 −1−√2

0 0 1
0 0 0


, E2,2 =




√
2

4
−1

2
+
√

2

4
0

1

2
+
√

2

4
−
√

2

4
0

0 0 0


,
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E2,3 =

0 0 1

0 0 1+√2
0 0 0


, E3,3 =


0 0 0

0 0 0
0 0 0


.

Clearly, E3,3 = O and the representation is not faithful. This, at the very least,
demonstrates the care that must be exercised in the construction of representations
for general N , since the absence of faithfulness might often be less obvious.

5. Concluding Remarks

Having commenced from equation (1.1), we proved that it is endowed with a Pois-
son structure and investigated invariants. Because of the relationship of Poisson
structures with flows along orbits in the dual to the corresponding Lie algebra g, we
have explored the issue of faithful representations and their numerical generation.

The problem of the faithful representation of a Lie algebra has been treated in
symbolic algebra and de Graff [9] has provided a very interesting algorithm. Yet,
the very generality of this algorithm is its downfall in specific applications, since
it produces representations of very large size. Ideally, we strive for minimal repre-
sentations, in practice we are willing to compromise on “tight” representations. In
Section 4 we have presented an algorithm that generates faithful representations
for commutation relations (4.2). Clearly, the algorithm is application-specific and
it is unlikely that a similar approach can be applied to a wider (or a different) set
of structure constants.

The construction of faithful Lie-algebraic representations has never, to the best
of our knowledge, been considered in a numerical-algebraic setting. We firmly
believe that, insofar as “tight” representations are concerned, this is the right way
forward. In the course of our research into more general isospectral flows and
Poisson systems, we have assembled a significant collection of structure constants
that obey the Jacobi identity. Only in a few cases are their faithful representations
known. A common thread running through all the cases when we have managed to
identify a faithful representation is that matrices are low-rank (in our case they are
of rank 2). It is premature to hypothesize whether this represents a valid general
approach.
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