T HE UNIVERSITY O F MICHIGAN

Memorandum 36

THE CAMA INTERPRETER
T. J. Dingwall

L. J. Julyk
L. W. Wolf

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449 ,
F. H. Westervelt, Director

supported by :
DEPARTMENT OF DEFENSE

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

September 1970

7 21,,/«*;\ v

MG

ABSTRACT

The CAMA interpreter allows subroutines to be dynam-
ically loaded and executed, and data to be entered into
the CAMA data structure. It also allows modes of data
types and sizes of data regions to be specified easily.
And, in addition, it allows the user to perform tasks
immediately the necessity for which he may not have anti-
cipated. Through its connection with the macro processor
the interpreter also allows a convenient and dynamically

expandable command languages for use in CAMA.

iii

PREFACE

Since this report was written, we have implemented a

more advanced version of the interpreter, superseding the

one described here. The new version has a number of addi-

tional features and some changes in syntax. The principal

features are:

1.

2.

The new version is reentrant.

Instead of being limited to four modes, an
indefinite mode-defining and -supplementing
capability has been added.

A component structure feature has been added
which allows structures up to a depth of five
to be referenced.

Increased default capabilities which make it
easier to specify defaults have been included.
A feature has been added which allows the user
to specify easily his own subscripting algorithm
at each of the five component levels for up to

four subscripts per level.

TABLE OF CONTENTS

Abstract. . . .+« ¢ ¢ + ¢ < .

Preface . .« ¢ ¢« o ¢ o « o o =

1.

2.

3.

Introduction.
Glossary. . « « « .« . .

Examples. . . . « « « « . .

vii

1. INTRODUCTION

To enhance the capabilities of the CAMA (Computer-
aided Mathematical Analysis) system,l-3 we have written
a primitive interpreter. 1In conjunction with a parser
and the macro processor,4 it permits the creation of
flexible and powerful interpretive languages. Also,
the interpreter and macro processor together form the
command language for CaMA.

The interpreter can do two things: it can call sub-
routines, and it can enter data into the data structure.
Both capabilities require little more than argument-
management routines. Hence, the majority of code in
the interpreter is concerned with arguments, both con-
stants and variables. To call a subroutine, its name
and arguments are given. The arguments are collected
into a parameter list, and the subroutine is dynamically
loaded and executed.

One of the principal uses of the interpreter is to
augment compiled programs. When a compiled program is
coded, it is not always possible to anticipate all the
results that need to be printed or displayed. Further-
more, some calculations can be performed only after a
preliminary examination of the results of the run. When
the CAMA data structure is in use, the interpreter can

perform side calculations, and display curves and inter-

mediate printed data.

Data entry merely involves the movement of data be-
tween arguments.

The interpreter handles several types of constants,
including integers and floating point numbers, character
strings and hexadecimal data. Processing of constants
consists merely of conversion to internal form.

Variables are divided into two classifications ac-
cording to their lifespan. Temporary variables are ex-
pected to be uéed for a very short time, at the most for
the duration of a single CAMA run. Permanent variables,
on the other hand, can be saved and restored across runs,
along with the rest of the structure.

Variables are also classified according to data type.
Presently the available types are arithmetic (scalar),
matrix, polynomial, and character string.

In short, through its ability to call subroutines
and manipulate arguments, this program provides the most
basic capabilities of an interpreter. When augmented
with the macro processor and a parser, we arrive at a

useful and easily modifiable full-scale interpreter.

2. GLOSSARY

Interpreter

An interpreter is a program whicﬁ accepts statements
in a given language, and immediately performs, statement-
by-statement, the actions requested by those statements.
This is in contrast to a compiler, which translates the
statements of a language as a whole program into an inter-
mediate form for execution at a later time. Interpreters
are most often used in an interactive mode with a time-

sharing system.

Argument

In the CAMA interpreter, an argument is simply a
value. This value can be a constant, either integer
or floating-point numeric, a character string, or hexa-
decimal data; or it can be a variable. A variable can
be either a scalar quantity, a matrix, a polynomial, or

a character string.

Leading Argument

If a subprogram call statement begins with a scalar
variable followed by an equal sign, the subroutine is
assumed to be a function type, and the value returned
is stored in the scalar variable. This variable is

called a leading argument.

Temporary Variable

A temporary variable is a CAMA variable which is
not retained for a long period of time. Usually, inter-
mediate results of calculations will be stored in tem-
porary variables.

Any time an 'END' statement is passed to the inter-
preter, all temporary variables are destroyed. No tem-

porary variables are saved past the end of a CAMA run.

Permanent Variable

A permanent variable is a CAMA variable which con-
tains information that will be needed for a relatively
long period of time. Permanent variables can be saved

and restored across CAMA runs.

Mode

A mode is a descriptor of a CAMA variable data type.
Allowable modes at present are arithmetic (scalar), matrix,

polynomial, and character.

Attribute

An attribute gives information about an argument
which is not otherwise apparent. An attribute may speci-
fy such things as mode, problem, permanent or temporary

variable, real or integer, etc.

Problem
A problem is a grouping of related permanent CAMA

variables.

Operation of the Interpreter

There are, at present, four modes in the CAMA inter-

preter. They are

A arithmetic or scalar mode,
M matrix mode,

P polynomial mode,

C character mode.

The data and operations called by the interpreter vary
depending on the mode of variables.

The mode of all temporary variables is set by the
user at the beginning of a run, and becomes the default
mode for the remainder of the current operation. If the
user wishes to process the variable in another mode, he
can do so by changihg the mode attribute. Permanent
variables have their mode set in an association table
connected with a given problem name.

Attributes are set by denoting the argument variable
or constant followed by an "at" sign (@), followed by one
of nine sets of symbols representing the attribute being
set. These are

@x identifies the variable being set

as hexadecimal

@QR& identifies the variable being set
as O-byte real

@R4 identifies the variable being set

as 4-byte real

@I2

@I4

@M=mode

@P=problem

@s

@=(m) or (m,n)

identifies the variable being set

as 2-byte integer

identifies the variable being set

as 4-byte integer

changes the mode of a variable from
default mode to current operating
mode

used when a variable is used from a
different problem from the current

operating problem

denotes the variable as a system or

temporary variable.

sets the dimension of a polynomial

or an array

The first five of these are used only on the left-

hand side of a "function type" subprogram call. They

allow the data to be stored according to the proper for-

mat.

Variables are distinguished by an alphabetic char-

acter in the lead position followed by seven or less

characters.

These can be chosen from the entire reper-

tory of characters, with the exception of those used as

delimiters.

The delimiters are:

B
@

(blank)
(at sign)
(comma)

(semicolon)

and ((left parenthesis)
Right parenthesis is only truncated as a delimiter if
it is preceded by a left parenthesis.

Numeric constants are denoted by a numeric char-
acter as they are in FORTRAN, with the following slight
modifications. An integer without any modifying attri-
bute is considered to be defaulted to a four-byte integer.
A floating-point real number without a modifying attribute
is defaulted to a four-byte real number. If the user
wishes to treat the integers as two-byte integers, he
must attach the attribute @I2. Similarly, if the user
wishes to store a real constant as a double-precision
number, he must attach the attribute @RS.

Variables may be subscripted in the same way that
they are subscripted in FORTRAN. At present, this is
applicable only in the case of the matrix mode or poly-
nomial mode.

The operation of the interpreter is started by
giving the symbols (INTERP). The next line gives the
mode, problem, and problem-name, each enclosed in a
separate sct of parentheses to be used as defaults
throughout the remainder of the operations. If the
problem name is not given, the problem defaults to SYSTEM,
which implies that only temporary variables are being
used. If the mode is not given, the mode is defaulted

to arithmetic mode.

An interpreter run is terminated by the word END
enclosed in parentheses (END). This destroys all tem-
porary (default) data.

Data are entered into variables by means of the
data entry statement, which consists of a variable, a
double equal-sign, and the data. The data may be a
single constant value, a variable, or an array. All
of these fields are delimited by a single blank, a
multiple blank, a comma, or a comma with or without as
many blanks as desired.

Subroutine calls are made by listing the subroutine
name and the arguments in the proper calling sequence.
Use of the function type subprogram is similar; however,
the variable to which the result is to be assigned pre-
cedes the name of the subprogram, with a single equal-
sign between. All the fields are delimited by blanks

and commas as in the data assignment statement.

3. EXAMPLES

These simple examples assume that the following
subroutines exist and that they perform the appropriate
operations on matrices:

AD adds two matrices,

SB subtracts two matrices,

MM multiplies two matrices,

TR forms the trace of a matrix,

SC a scalar times a matrix.

(INTERP)
(MAT) (ROUGH)

This puts the user in the CAMA interpreter, sets
the default mode to matrix mode, and sets the problem
name to ROUGH. It implies that the data will be found
in the data structure by accessing the list ROUGH. The
first left parenthesis must be in column 1. If the
mode is not specified, the interpreter will look for the
mode information in an association table associated with
the problem name. If none is available, error comments
will be issued. When the problem name is not specified,
the interpreter defaults to SYSTEM or temporary as the
storage for the problem. If, under these circumstances,
the variable name has not been defined, an error comment

is issued.

10

MM A B C

This multiplies the matrix A times the matrix R and
stores the result in C. Dimension and size information
are assumed to be already stored in the matrices. It
also assumes proper data in A and B. Note: blank de-

limiters must be present.

72 == 4.3
This stores the real*4 number 4.3 into Z as a scalar
quantity. Note: blank delimiters must be present.

Double-equals is assignment.

sC,Z,A,D@S

This multiplies the scalar Z times the matrix A and
stores the result D in the temporary storage, not in the
storage under the problem-name ROUGH. Note that commas

can replace blanks as delimiters.

A@D=(3,4) == 3.5,2.3,0.

This sets the dimensions of A to a 3x4 matrix and
stores the succeeding values beginning with A(1,1) by
rows according to the CAMA matrix format. Note commas

and blanks are used as delimiters.

V(3,2) == Vv(3,3)
This sets the matrix element V(3,2) to the same

value as V(3,3).

11

AD A BC;SBCQUR;ADRXY

This adds the matrix A to B and puts result in C.
Then it subtracts Q from C and stores result in R. Then
it adds X to R and stores it in Y. Note the use of a

semicolon to delimit more than one statement on a line.

(POLY)

This changes the mode to polynomial mode, but leaves

the problem name the same, ROUGH.

() (EASY)

This leaves the mode the same but changes the problem

hame.

(MAT) (ROUGH)
This changes both the mode and the problem-name

back to their original designations.

R@M=P == 6.4,9.1,-13.6,1.4E-01

The values on the right-hand side of the assign-
ment statement are stored and treated as a polynomial,
not as a matrix. R must have been specified as a poly-

nomial in some previous run.

GALOP@P=HARD == 6.17
The value 6.17 is stored in GALOP(l,l) in problem

HARD.

12

MM A,GALLOP@P=HARD,M@S
The matrix A of the problem ROUGH is multiplied
by GALLOP of the problem HARD. The result is stored

in the temporary data structure in the matrix M.

A*G@R4 = TR A
The trace of the matrix A is stored in the variable
A*G. Note the * is not an arithmetic operator but a

character in the variable name.

Al1@P=JOE@M=A ==,-1,E+4
This sets the real*4 number in problem JOE, whose
mode is scalar, to the value 10,000. Note: the multiple

blanks and comma are alternate delimiters.

BOY@R8 == 1.763479189
This sets the double-precision variable BOY to

1.763479189.

CAT@I2 ==

CAT is set to the two-byte integer wvalue 6.

13

Example 1. Storing and Printing a Polynomial

(INT) (POLYNOMIAL)\ This sets the default mode of
temporary variables to poly-

TK 6530 nomial

POLY == 4.0 3.0 2.0 1.0\ The polynomial 'POLY' in tempor-
ary storage is created and given

TK 6530 values

LIMIT 0.0 1.0 0.1\ LIMITS are set for polynomial
evaluation

P POLY The polynomial is evaluated

POLY POLY POLY POLY POLY POLY

POLY(0)= 0.4000000E 01 = 0.0 VALUE= 0.4000000E 01
POLY(1)= 0.3000000E 01 X= 0.100 VALUE= 0.4320999E 01
POLY(2)= 0.2000000E 01 = 0.200 VALUE= 0.4687999E 01
POLY(3)= 0.1000000E 01 = 0.300 VALUE= 0.5106998E 01
= 0.400 VALUE= 0.5583999E 01
= 0.500 VALUE= 0.6124998E 01
= 0.600 VALUE= 0.6735997E 01
= 0.700 VALUE= 0.7422997E 01
= 0.800 VALUE= 0.8191997E 01
= 0.900 VALUE= 0.9048997E 01
= 1.000 VALUE= 0.9999994E 01
X= 1.000 VALUE= 0.1000000E 02
POLY POLY POLY POLY POLY POLY
TK 6530

The reverse slash (\) is generated by CAMA as an
indication that the line has been received. TK6530 is
returned by CAMA to indicate that it is prepared to reo-

ceive a new line.

14

Example 2. Use of Character-String Mode

(INT) (CHARACTER)\ Default mode is set
to character

TK 6530

STRING == THIS IS A CHARACTER STRING\ Character variable
is created and set

TK 6530

SPRINT STRING 26Q@I2 0 O\ Character string

_ used as argument
THIS IS A CHARACTER STRING

TK 6530

15

Example 3. Use of Function-Type Subprograms and Hexa-
decimal Constant

(INT) (ARITHMETIC)\ default mode set to arithmetic

TK 6530

master directory pointer fetched
and stored in MPTR

MPTRQI4 = MASPTR\
TK 6530

FN MPTR 6F000000@X 6F000000@X\ master directory pointer

DUMP OF MASDIR

used for dump. Note use
of hexadecimal constants.

FILELN 00502500
MASASSO 00517A70
ATPL 005091cCoO
BUFFERPL 00514FD8 6F is hexadecimal for (?)
COMTAB 00502B40 The two question marks
DFREADPL 00509FF0 say dump everything in
LPARPACK 00516F88 the list.
MLANGDIR 00501E98 Whenever the address
MPROB 005013B8 portion is null (000000)
MSYMTBL 00502FDO the contents are printed
NAMEFLAG 00509138 on the output device.
PAUSEPL 0050AFEO
PROBLEM 00509170
PROBLIST 00516D20
QUE/LIST 00509100
READPL 00591E8
SSG 0051B020

TK 6530

The hexadecimal constants 6F000000 are equivalent to
a question-mark left-justified, padded with zeros. When
given as the second and third arguments dump the whole

master list.

16

Example 4. Use of Permanent and Temporary Storage
under Different Problem Names

(INT) (MATRIX) (PROB1)\ default mode set to matrixj; de-
fault problem set to PROB1

TK 6530
PM MAT1@S@D=(2,2)\ temporary 2x2 matrix created,
zeroed, and used in call to
print routine.
If the dimension were not specified
MAT]l would have been created 25x25
zeroed and printed.
MAT 1 2 ROWS 2 COLUMNS Page 1
COLUMN 1 2
ROW 1 0.0 00
ROW 2 0.0 0.0
TK 6530
MAT1@S == 2.0 3.0 1.0 5.0; PM MAT1@S\ MAT1 given values
and printed.
MAT 1 2 ROWS 2 COLUMNS PAGE 1
COLUMN 1 2
ROW 1 0.200000E 01 = 0.300000E 01
ROW 2 0.100000E 01 0.500000E 01
TK 6530
MAT2 == 7.0 1.5 3.7 -8.2)\ permanent matrix MAT2
TK 6530 given values
TK 6530
MAT2(2,1) == 6.0 ; PM MAT2\ an individual element of
: MAT2 given a value. MAT2
is printed. Matrices are
stored by rows. Dimension
information for MAT2 had
been previously specified.
MAT?2 2 ROWS 2 COLUMNS PAGE 1

COLUMN 1 2

ROW 1 0.700000E 01 0.150000E 01
ROW 2 0.600000E 01 -0.820000E 01
TK 6530

17

MA MAT1@S MAT2 MAT3@P=PROB2\
TK 6530

PM MAT3@P=PROB2\

MAT3 2 ROWS
COLUMN 1

ROW 1 0.900000E N1

ROW 2 0.700000E 01
TK 6530
(INT) (END)\
TK 6530
FMTS\
TK 1375 0

$5.73

MAT1 and MAT2 are added
and the result stored in
MAT3, a permanent variable
in PROB2.

MAT3 is printed out.

2 COLUMNS PAGE 1

2

0.450000E 01
-0.320000E 01

END statement — all tempor-
ary variables destroyed,
and all defaults cleared.
Control is returned to MTS.

REFERENCES

Julyk, L.J., The CAMA Operating System, Memorandum
30, Concomp Project, University of Michigan,
Ann Arbor, August 1970.

Julyk, L.J., The CAMA Data Structure, Memorandum 29,
ibid.

Wolf, L.W., CAMA (Computer-Aided Mathematical Analysis):

A General Description, Memorandum 33, ibid.

Dingwall, T., Julyk, L.J., and Wolf, L.W., The CAMA
Macro Processor, Memorandum 35, ibid.

18

19

UNCLASSIFIED
Security Classification
. ‘ DOCUMENT CONTRCL DATA-R & T
(Security classi‘ication of title, body 0. . .osrract mnd NGO LU L Dt Tt G vr 8 overall repore L clngs ned,

S IPOARYT SE:L;F*..'\:Y CLASSIFICATION
Unclassified

2éi.

1. ORIGINATING ACTIVITY (Corporate author)

UNIVERSITY OF MICHIGAN

2s. SRCUP

P N

CONCOMP PROJECT

3. REPORT TITLE

: The CAMA Interpreter

&, DESCRIPTIVE NOTES ‘Tvpe of repor: and irciusive dates)
Memorandum

S. AUTHORIS) (First name, middie nitial, last name)

T.J. Dingwall, L.J. Julyk, and L.W. Wolf

E. REFORT DATE ‘:7u. TISTAL NO. OF PAGES s,""a. N>, CF REFS
i :
: September 1970 . 18 i 4
8a. CONTRACT OR GFRANT NC. gia. ORIGINATOR'S REPORT NUMBERIS)
\
DA-49-083 0SA-3050 }
b PROJECT NO. i Memorandum 36
ESb. OTHER REPORT NO(S) (Any other numbers that may be assigned
‘ €. ¢ this report)
A
|
d. H

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

. eiea eme v

11 SUPE_EMETNTARY NOTES “2. SPONSORING MILITARY ACTIViTY

Advanced Research Projects Agency

13. ABSTRACT

The CAMA interpreter allows subroutines to be dynamically
loaded and executed, and data to be entered into the CAMA data
structure. It also allows modes of data types and sizes of
data regions to be specified easily. And, in addition, it
allows the user to perform tasks immediately the necessity for
which he may not have anticipated. Through its connection with
the macro processor the interpreter also allows a convenient and
dynamically expandable command language for use in CAMA.

\
DD lF:oR:‘es1473 Unclassified
Security Classification

Unclassified 20

Security Classification
14, LINK A LINK LINK C
KEY WORDS noLe | wr ROLE wT ROLE WY
{
[}

CAMA interpreter
interpreter

Security Classification

T

2829 9843

