COMPUTATION OF THE CORRESPONDENCE OF
GEOGRAPHICAL PATTERNS
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Geographical research often requires estimates of the amount of agreement
between patterns shown on geographical maps. These patterns may be con-
sidered to consist of points, lines, areas, intensities, or flows. The correspond-
ence to be estimated may comprise various combinations of such elements.'
For example, what is the percentage agreement between the observed distri-
bution of cities within Europe and Christaller’s theoretical arrangement of
central places, A somewhat more complicated situation, for which conven-
tional statistical methods seem inadequate, might require computation of the
spatial correspondence between the pattern of railroads and the pattern of
roads in the United States. The objective of a number of recent studies has
been the elucidation of methods of computing some such spatial correlations.”

A procedure is presented here for the estimation of the degree of corres-
pondence between two patterns of point locations, In more geographical terms,
the technique allows computation of the amount of agreement between two dot
distributions. The method is comparable to the ordinary product moment
(Pearsonian) correlation and least squares regression procedures, extended for
comparisons of two-dimensional distributions. The difference is that instead
of paired one-dimensional observations {of the form x;; v;) one has paired loca-
tions (of the form x;, y;; u;, ;). From these paired couples one can compute
a spatial correlation. Note that in the ordinary correlation one associates pheno-
mena at the same location, for example, fertilizer applied and corn yields ob-
tained at the same spot. In the spatial correlation, one associates locations,
for example, place of current residence and place of birth for one individual.
As formulated, the method requires an a priori pairing of locations.> ‘The method
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seems particularly useful to geographers but has applications in other fields.*
The spatial regression is not new® but does not appear to have been applied in
the social sciences. The development given here extends the geographical work
of the past decade or so on centrographical methods, which have dealt with
concepts of mean location and standard distance.® Bachi has come the closest
to making the transition from these descriptive notions to the spatial regression
model and gives an outline for weighting the observations, along with a num-
ber of examples including normative models comparing even and random dis-
tributions with observed patterns.’

For the mathematical development, let the symbols W; and Z; represent
the j* observation pair, where j=1,2,..., N. These symbols can be inter-
preted as complex numbers of the form

Wi = (u; + tv;) and Z; = (x5 +iy5) »
or as vectors of the form
W; = (u;, vs) and Z; = (x;, y;)'
where the primes denote the transpose. These two interpretations lead to

slightly different results. In both cases, however, the elements («, v, x, ¥) can
be considered rectangular coordinates on a geographical map.! The objective

¢ Aside from the obvious ecological situations, see the biological mappings given in
D’Arcy W. Thompson, On Growth and Form (Bonner Abridgement), (Cambridge: Uni-
versity Press), 1961, pp. 268-325.

5 The formulation in terms of complex variables can be traced to C.F. Gauss. Also
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T. H. Ellison, ““On the Correlation of Vectors,” Quarterly Journal of the Royal Mete-
orological Society, LXXX, 343 (1954), pp. 93-6.
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Force Contract 19 (604)-2060, AFCRC TN-58-230 (1958), 16 pp.

R. W. Lenhard, Jr., A. Court, and H. Salmela, ‘“Reply,” Journal of Applied Meteoro-
logy, 11, 6 (1963), pp. 812-15.
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8 The restriction to two components is suggested by the geographical subject matter.
The development given here is for a plane.
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in each instance is to use least squares methods to estimate the coefficients, A
and B, in the transformation

Wj=A+BZj

such that the residual is a minimum. The mathematical details are easily ef-
fected. The regression can be considered a mathematical mapping from one
plane, the xy-plane, to another plane, the gp-plane, just as the ordinary regres-
sion line

V=a+0bX

can be considered a mapping from one line, the X-axis, to another line, the Y-
axis. The regression coefficients are given by the elements of B. Confidence
limits may be established in a manner analogous to ordinary regression, if the
necessary conditions are established. The coefficient of determination, R?, can
be defined as the ratio of the regression variance over the total variance, and
the spatial correlation, R, is then given by the square root of this value. The
sign of the correlation coeflficient can be taken to be the sign of the determi-
nant of the transformation.

When the observations are treated as complex numbers, the constants to
be determined are

A = (a, + ia,) and B = (b, + ib,)
and the equation to be minimized is
SIW— Wil
=1
The complete transformation equations are then, separating the real and im-
aginary parts,
ﬁj =a + blxj —_ bzyj
;= @ + box; + b1y5 .
This transformation consists of a rigid rotation, translation, and change of scale,
It is proposed that this be referred to as the complex or Euclidean regression
and correlation,

When the observations are treated as components of a vector the constants
become

by b
— , ! d — 11 12>
A=(a,a) and B (bn ”

and the equation to be minimized is

Wi— Wi (Wi— Wy .

1

Mz

i

The complete transformation is therefore of the form

f; _<d1> <b11 b12><xj>
('I’)\j)" as + boy b/ \3;/)°
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These are the equations of an affine transformation, and it is proposed that the
regression, and correlation, be referred to by this name. The term vector cor-
relation, however, has been applied to this transformation.” In terms of the
simple correlations and variances, this affine correlation is given by Court'® as

RWZ - Gi(r:u -+ r;u - zra;uryuracy) |- 0'12)(792:1/ + 7130 - 27’a:117’yv7:v11) .
(02 + D)1 — 72,)
This is not symmetrical, and Ryz is not equal to Rzy.
Hotelling also gives a different definition of vector correlation in conjunc-
tion with his canonical correlation." In this case, the problem is to find @ such
that the (ordinary) correlation between the canonical variates

w; = aw; + ey and z; = asx; + a,y;

is as large as possible. From our point of view, this approach has the disad-

vantage that, given x;, y;, and a, it is not possible to obtain a unique pair
g, 05

as is the case with the spatial regression models given above.

Curvilinear spatial regression can also be established” but is more com-
plicated. One reason the ordinary linear regression is so simple is that there
is only one straight line which can be fitted to the data, given the least squares
criterion.'”® In fitting a transformation from one plane to another plane, the
general linear mappings defined here yield similarly unambiguous results. Choice
of the model in ordinary curvilinear regression is considerably more difficult,
since there are many curves from which to choose. The same is true of map-
pings from one plane to another. Knowing only that the mapping is to be
curvilinear does not specify the transformation equations sufficiently. Poly-
nomials seem advantageous since solution of the normal equations is relatively
simple. On the other hand, the form of the curvilinear model should be chosen
on the basis of theoretical expectations. This is perhaps more difficult for two-
dimensional transformations than in the case of ordinary regression, but geo-
graphers have an advantage in that they are acquainted with the closely related

% See Court, op. ¢it., and Lenhard, et al, op. cit.

10 Court, op. ¢it., equation 6.7, p. 12.

i1 H. Hotelling, ¢‘Relations between Two Sets of Variates,”” Biometrika, XXVIII (1936),
pp. 321-77.

1z Ellison, op. ctt., p. 95, gives the treatment for vectors. The conformal transforma-
tion defined by a complex polynomial is employed in photogrammetry; see G.H. Schut,
“Development of Programs for Strip and Block Adjustment at the National Research Council
of Canada,” Photogrammetric Engineering, XXX, 2 (1964), pp. 283-91. Bunge has sug-
gested as geographically interesting a least squares approach to the problem of forcing dis-
tributions into Christaller’s hexagonal central place pattern. A differential equation de-
fining the restrictions on the transformation for this problem is given in W.R. Tobler,
‘‘Geographical Area and Map Projections,” The Geographical Review, LIII, 1 (1963), pp.
59-78.

13 This is not strictly true. See R.L. Miller and J.S. Kahn, Statistical Analysis in
the Geological Sciences (New York: John Wiley & Sons, 1962), p. 204.
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subject of map projections. As an example, if one wishes to estimate the
correspondence between current residence and immediately previous residence
within an urban area in order to investigate whether or not migration to the
suburbs is within the same sector, then it might be appropriate to employ a
curvilinear mapping, since one suspects that people in the suburbs are more
mobile than people living near the center of town; this is a fairly common
feature of geographical movement.

For an equivalent to the ordinary multiple regression, one considers loca-
tions in the #p-plane as being dependent on locations in an xy-plane and on
locations in an m#n-plane, and so on. That is, one wishes to explain, in the least
squares sense, one geographical pattern on the basis of several, &, other geo-
graphical patterns. The observed information then consists of 2 -~ 1 pairs of
coordinates possibly for several time periods. The mathematical details are fairly
simple; Ellison gives the treatment for vectors.™

Information made available through the courtesy of Pitts, of the University
of Pittsburgh, has been employed for a numerical example. This information
consists of 767 pairs of latitudes and longitudes giving the premarital residential
locations of brides and grooms in the rural area south of Takamatsu City, Japan,
for the year 1951. The material was collected by Professor Pitts in 1962. Dis-
cussion of the appropriateness of the model for these data is deferred until
presentation of the numerical results. The form of the data, after conversion
to cartesian coordinates in miles from an arbitrary origin at 34°N latitude and

TABLE 1
OBSERVATIONS
Observation Groom Bride
Number “ » w v

1 56.23 13.86 55.99 13.23
2 62.42 20.74 59.99 22.15
3 57.23 15.58 59.45 21.36
4 58.70 17.16 59.23 21.11
5 57.11 23.76 59.68 21.67
6 75.34 17.49 62.99 23.77
7 66.30 19.30 61.83 21.42
8 57.08 18.59 61.32 21.08
9 62.39 20.50 61.26 21.32
10 61.18 20.74 60.10 21.10

First 10 of 767 observations.

g bride easting y bride northing

4 groom easting ¢ groom northing

Values are in miles east and north of 34°N, 133°E.

14 Ellison, op. cit., p. 95.
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FIGURE 1. OBSERVED LOCATION PAIRS

133°E longitude, is given in Table 1 and Figure 1. The summary measures
are given in Table 2, The affine regression equation is

[ﬁ] . [30.11] + [ 0.5047 —0.0105] ] [x]

vl |22.84 —0,1372  0.2569 y

and has a standard error of (5.84, 3.56) miles.”® This equation can be inter-
preted as transforming every grid square in the plane of the independent ob-

TABLE 2

CORRESPONDENCE OI‘; LOCATIONS OF BRIDES AND GROOMS
(RESULTS OF COMPUTATION)

x =59.74 ¥ =21.16 % = 60,04 v = 20.07
gz = 3.38 oy = 2.90 ox = 6.08 gy = 3.65
cov(zy) = 1.33 r(zy) = .14 ozy = 4.45
cov(zgu) = b5.74 r(xu) = .28 dzu = 6.96
cov (gv) = —1.22 . rxy) = ~.10 Gao = 4.97
cov (yu) = 0.58 r(yu) = .03 oyu = 6.74
cov (yv) = 1.98 riyv) = .19 oye = 4.67
cov (uv) = 4.98 r(uy) = .22 Ouy = 7.09

Complex correlation: R(xy, uv) = 0.007.
Affine correlation: R(azy, uv) = 0.266, R(uv, zy) = 0.263.
Sverdrup’s vector correlation == .003.
Hotelling’s vector correlation = .003.
Bachi’s index of association = .22.
Bachi’s index of nonrandomness = .25.

15 The computations were performed with the assistance of the University of Michigan
Computing Center. Copies of the computer program can be made available to interested
parties for a limited time.
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FIGURE 2. GRAPHIC ILLUSTRATION OF THE REGRESSION
(Mapping of the xy-plane onto the yuy-plane)

servations (brides) into a parallelogram to obtain an estimate of locations of
the dependent observations (grooms), as illustrated in Figure 2. The predicted
locations for a number of observations are given in Table 3 and Figure 3.
The results of this numerical example are such that one can predict the
location of a groom, with an average error of about seven miles, when given
the location of a bride in a certain region in Japan. This is presented solely
as a numerical example and is of little serious theoretical interest, except per-

TABLE 3
PREDICTED GROOM LOCATIONS
Ob; ﬁg;gon Predicted Grooril Deviation Miles
u v U — U v—=7

1 58.23 18.55 2.00 4.69 5.10
2 60.16 20.29 —-2.27 —0.45 2.31
3 59.89 20,16 2.66 4.58 5.30
4 59.78 20.13 1.08 2.97 3.16
5 60.00 20.21 2.89 —3.55 4.58
6 61.65 20.30 —-13.69 2,81 13,97
7 61.09 19.85 —5.07 0.55 5.10
8 60.84 19.84 3.76 1.24 3.96
9 60.81 19.91 ~—1.59 —0.59 1.69
10 60.22 20.01 —0.96 —0.73 1.21

First 10 of 767 observations.
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haps for matrimonially inclined females. The affine correlation is low, 0.266,
and the theoretical justification meager. From a mathematical point of view,
a least squares fit of this type can always be obtained and can be employed
for empirical estimates of correspondence and prediction. This is comparable
to the fitting of trend lines in order to extrapolate population growth in some
region. The method is employed in practice, but suffers from a paucity of
theoretical insight.'* This can be contrasted with the stimulus response inter-
pretation of a regression equation, where, for example, it can be anticipated
on theoretical grounds that an increased application of fertilizer will be fol-
lowed by an increase in crop yields.

The two-dimensional interpretation might be that a change in one geo-
graphical pattern is followed by a change in a second geographical pattern.
Unless the form of such a change can be anticipated on theoretical grounds,
the analysis must remain statistical and devoid of fruitful substantive inter-
pretation. The interesting situations are most generally nonlinear, and formu-
lation in terms of curvilinear least squares mappings seems appropriate, but
these also are more complicated mathematically.

The general method presented here has the advantages and disadvantages
of any single equation regression model. One should not attempt to fit a
straight line to data which, when plotted on a scatter diagram, appear to lie
on a circle, If one does, the resulting low linear correlation cannot be inter-
preted as implying that no relation exists. Similarly, the intermarital distance
frequencies in the foregoing numerical example display the decline with in-
creasing distance typical of many geographical interactions. One must also

16 W. Isard, Methods of Regional Analysis (New York: John Wiley & Sons, 1960).
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avoid many-to-one situations, as for example, place of employment and place
of residence when large employment centers are involved in the analysis. Sub-
stitution of the mean employee residence may be appropriate in such cases.



