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Most forecasting models can be grouped into one of two classes: intrinsic 
(or extrapolative) and extrinsic (or associative). By intrinsic models we mean 
those in which one forecasts future movements of a variable on the basis of an 
analysis of past movements of the variable, temporarily ignoring the influence of 
other variables upon the variable of interest. These models usually deal with a 
time series of observations on the given variable; they may be simple models such 
as linear or "straight-line" models and the forecasting may be little more than naive 
extrapolation of a linear function of time that is fitted to the data by visual or least- 
squares procedures, or they may be more sophisticated models such as exponential 
smoothing (Brown [4]) or adaptive exponential smoothing (Trigg and Leach [32]; 
Dunn, Williams, and Spivey [12]). No matter how sophisticated the assimilation 
of past data into the model may be, in this model class the influence of related 
variables is essentially ignored. 

In extrinsic or associative models, one attempts to relate the movements of a 
variable to movements in one or more related variables. One may do this through 
a regression model, through a system of econometric equations, or through a 
system of deterministic linear equations such as an input-output model. 1 Many 
of the forecasting models developed in recent years in the regional analysis literature 
have been of this class. Economic base studies are essentially associative models 
as are the econometric models of Anderson [1], Glickman [13], Bell [2], and Mattila 
[24]. 

Each of these model classes has its advantages and disadvantages. Intrinsic 
models are available in many kinds, they do not require a data base for related 
variables, and a sensitivity study of forecasting accuracy using different parameter 
values can be made fairly easily. They clearly suffer because they do not include 
influences from related variables, and the results of using them are sensitive to the 
way in which trend problems are dealt with in the data and in the model. The 
problem of trend in an economic time series is very complex and there is at present 
no clearly defined way of handling it well (the problem bedevils extrinsic models 
as well). 

Extrinsic models appeal to many because they often appear to express or 
capture interrelationships that one's knowledge of economics suggests are important. 

1 This classification is virtually the same as tha t  of  Isard et al. [18]; intrinsic models  essentially 
use direct techniques a n d  extrinsic models  are indirect  techniques.  
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However, very large quantities of data are required, it is difficult to assess forecasting 
accuracy against alternative models of the same class, and problems of autoregres- 
sion, aggregation, stochastic dependence, and multicollinearity are very difficult 
to deal with constructively. It is the view of the authors that data base problems 
alone are severely inhibiting in the use of these models for regional forecasting at 
the level of a state or a smaller region and that time-series methods emphasizing 
intrinsic models are worthy of additional study and experimentation. 

It seems obvious that one should be able to combine features of intrinsic and 
extrinsic models in forecasting, depending on the problem one faces. Interestingly 
enough, few examples of doing this can be found in the economics and statistics 
literature. Such a model, which for lack of a better term we call a hybrid model, 
would have appealing features for regional forecasting since it would offer the hope, 
if only a small number of associated variables are necessary, of reducing the problem 
of data gathering. 

The purpose of this paper is to present some of our experience in using various 
intrinsic models for regional forecasting, to indicate the nature of some of our 
supporting data analyses, to show how these studies influenced us in the model 
development, and, finally, to indicate some avenues for future research. As part 
of the latter we show the results we obtained with a hybrid model in which infor- 
mation from one associated variable was used. A comparison of the forecasting 
performance of this model with that of the others is given below and the reduction 
in forecast error, despite the tentative nature of the model, indicates that hybridiza- 
tion may well be a promising approach for future study. 

The models appear in the form of a case study discussion below, which explains 
how one can proceed from one model to another. Two of the models and some 
of the supporting data analysis appear in Dunn [10] and in Dunn, Williams, and 
Spivey [12]; the remainder of this section has been developed independently by the 

authors. 
We give only a brief discussion of each forecasting model used, citing the ap- 

propriate literature where additional detailed information can be obtained, and our 
approach is pragmatic: we look at the forecasting performance of each model 
and present a corresponding error analysis and, in most cases, some graphical output 
which shows the time series we are forecasting and the time series that is generated by 

the forecasting model. 

Statement of the Forecasting Problem 
We are addressing the problem of forecasting the growth in telephone demand 

in local areas of Michigan. By "local area" we mean a geographical area served 
by a telephone switching facility called a wire center. Such a facility can serve all 
or part of a county or all of or parts of two counties. Thus the usual problems of 
regional forecasting are present: there are grave data limitations, the region is not 
necessarily a political subdivision such as a city, county, or Standard Metropolitan 
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Statistical Area, and data on related variables are either scarce or nonexistent. More- 
over, the problem is an important operational one: the Bell System spends more 
than 2 billion dollars per year on new plant and equipment in wire centers (about 
$150 million per year in the region served by Michigan Bell alone) and these expen- 
diture decisions are based upon the forecasted growth of telephone demand in a 
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twelve- to eighteen-month time period into the future. Finally, there are more than 
300 wire centers in the region served by Michigan Bell for which forecasts are needed 
on at least an annual basis, so a forecasting model cannot be costly or cumbersome 
to use. A detailed statement of this problem setting appears in Dunn, Williams~ 
and Spivey [12]. The models and specific forecasts appearing below refer to forecasts 
developed for the Flint region, which includes all of Genessee county and parts 
of Lapeer county (the data are monthly from January, 1954, to December, 1969, 
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and are used with the permission of Michigan Bell Telephone Company). ~ 
The time series is shown in Figure 1. It looks like many economic time series 

in that it is "trending upward" over the entire time period but its trend is extremely 
difficult if not impossible to define. The extrapolation of a straight line fitted to 
all the data, for example, is clearly inappropriate and the extrapolation of  a straight 
line fitted to parts of  the data is unwise also because of the horizontal "drifts" or 

displacements that occur (but not with regularity). 

Data Analysis and Model Building 

No one model is necessarily best for all forecasting problems. Models should 
be data-oriented and responsive to the peculiarities of  the data one has to deal with. 
Sometimes sophisticated models lead one astray when based upon an inadequate 
study of the underlying data. The case for data analysis as an activity of  equal 
importance with statistical analysis and inference is persuasively made by Tukey 

[34] and Tukey and Wilk [35]. 
A useful tool of  data analysis is spectral analysis. In particular, the analysis 

of  the sample spectrum or of  the sample autocorrelation function of a time series 

may reveal periodicities, seasonal influences, or other features which may be ex- 
ploited in the development of  a forecasting model. A detailed discussion of how 
spectral analysis can be used in the course of  developing a forecasting model can 

be found in Dunn [10] and in Granger and Hatanaka [15]. 
Sometimes data analysis suggests that a time series can or should be decomposed 

into two or more component time series, each of which can be analyzed and fore- 
casted separately. The component forecasts can then be aggregated into a forecast 
of  the parent series and this approach may be superior to any procedure used on the 

parent series alone. 
Sometimes a decomposition can be suggested in a very simple way: a parent 

series, regarded as a random variable, may be the sum of two or more random vari- 
ables, and it may be more productive to deal with the component random variables 
individually. Such a case occurred in the Flint telephone problem: the time series 
one is working with is the number of residential telephones (main stations) on a 

monthly basis (this is the time series shown in Figure 1). 3 

2 It might be mentioned that early in the study of this problem regression analysis was used 
and a multiple regression equation was developed in which the independent variables were taken 
to be total covered employment, average hourly earnings, index of Michigan industrial activity, 
index of U.S. industrial activity, residential construction in square feet, and total dollar value of 
residential construction (all data except the indexes were for Genessee county). Very poor 
forecasting results were obtained by using regression procedures on these and other variables, so 
art intrinsic forecasting strategy was adopted. 

A residential main station is one or more instruments with the same telephone number. 
The switching capacity necessary to serve two or more instruments having the same number is about 
the same as that for serving one telephone, whereas two instruments with two numbers in the same 
location requires much more switching capacity. Hence a main telephone is the basic variable of 
interest. Moreover, for reasons set forth in Dunn, Williams, and Spivey [12], the time series of 
residential main stations is regarded as adequately representing residential telephone demand. 
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The change in the number of total telephones in a month is the sum of "con- 
nects" and "disconnects" in that month. It turned out that the latter two time 
series displayed different patterns over time so these series were analyzed separately, 
a model was developed for each, forecasts were generated, and these were combined 
to obtain a forecast of residential telephones. Handling the problem this way re- 
sulted in better forecasts than we were able to obtain by forecasting directly the 
parent series of residential telephones. (There are other and more sophisticated 
procedures for decomposing a time series; see, for example, Malinvaud [23]). 

An important aspect of data analysis is the study of residuals from some 
chosen fitting function. One may fit a straight line or higher order polynomial 
to a time series, determine the "spread" of the data points around this function 
(the difference between the function value and the corresponding observation value 
is called a residual). It may be that one encounters more success with forecasting 
procedures applied to the residual series than to the original series. In any case, 
an analysis of the residuals is often essential in order to develop an adequate un- 
derstanding of  the original data. 

Choosing a Forecasting Model 

Before comparing the forecasting performance of several models, it is appro- 
priate to comment on the criteria one is to use. Since a forecast can be regarded 
as a point estimate of E(X,+, IX t, X,_I, �9 where v is the lead time of the forecast, 
the conventional statistical criteria of point estimation seem to be a natural choice. 
For example, one might prefer an estimator that is unbiased and has minimum 
variance among the class of unbiased estimators. If  a loss function relating to 
forecast error can be determined, one might choose a point estimator which is 
optimal in the sense of minimizing the expected loss. Unfortunately, the above 
criteria are difficult if not impossible to apply for many forecasting models because 
the distribution of the forecast errors is unknown. 

Loss 

Forecast Error 

FIGURE 2 

Our approach to this problem is, as indicated earlier, pragmatic. We use a 
model to forecast for time periods for which we have actual observations. The 
resulting error is observed and this process is repeated until we exhaust the time 
periods for which data are available. This gives us a time series of observed fore- 
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casting errors; we calculate and present for each model the mean absolute value 
and the mean square value of these errors. The model which produces the minimum 
mean absolute value is regarded as "best" in this paper. The loss function which 
is implicit here is piecewise linear and is symmetric about the origin (see Fig. 2). 

CASE STUDIES IN FORECASTING WITH INTRINSIC MODELS 

Curve Fitting 
It is an unfortunate and often overlooked fact that a mathematical function 

which fits a set of data best is not necessarily a good model for forecasting. As 
an extreme example, it is possible to fit any time series exactly, no matter how com- 
plex, with a polynomial of sufficiently high degree. If  such a polynomial is used 
for forecasting, absurd predictions can result. Polynomials are poorly suited for 
forecasting and their deficiencies are discussed by Cowden in [8]. 

Exponentially Weighted Moving Average Methods 
One important deficiency in ordinary curve fitting is that all observations are 

given equal weight in determining the parameters of the fitted function. Exponen- 
tial smoothing methods give more weight to the observations in the immediate 
past than to those in the more distant past. 4 Specifically, weights which decline 
in accordance with a geometric series are assigned to the successively more remote 
observations. This weighting of the observations corresponds to an intuition that 
recent events contain more important information for forecasting than events that 
occurred in the more distant past. Still another advantage of these methods is 
that they can be represented by simple recursive relations. This makes the actual 
calculation of forecasts extremely easy. A third advantage of exponential smooth- 
ing methods is their "robustness." For a certain class of time series, it can be 
shown that exponential smoothing gives the minimum mean square error forecast 
of all possible methods utilizing linear combinations of past realizations (see Cogger 
[7], p. 97). By robustness we mean that when forecasting a time series which does 
not have the statistical properties of the class referenced above, exponential smooth- 
ing often continues to do reasonably well for short-term forecasting. This robust- 
ness has been observed for many years and has recently received theoretical support 
(Cogger [7]). 

Simple Exponential Smoothing 
The most elementary case of exponential smoothing (the "simple" case) can 

be represented by the recursive relation 

~f,+~ = ~ x ,  + (1 - ~)~',  (1) 

where X', is the value of the time series at time t, X, is the forecast value for time 

4 Exponential smoothing methods are synonymous with exponentially weighted moving aver- 
age methods. 
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t, and o: is a parameter to be chosen whose value is between 0 and 1. Although (1) 
seems to suggest that 8,+1 depends on only the two values X~ and 8~, it can be shown 
by expanding (1) that 

" t -1  

~c,+1 = .  Z ( l  - a )~x ,_~  + (l  - -)'x0, (2) 
k = 0  

where X0 is a starting value. Thus the forecast value -~'t§ is a function of all pre- 
vious observations in the time series. 

An examination of the role of a in equations (1) and (2) indicates that if a is 
close to 1, most of the weight is assigned to the more recent values of the time series 
and when ot is close to 0 the weight is spread more uniformly over the observa- 
tions. 

A starting value for the calculation made by the recursive relation (1) is some- 
times arbitrarily chosen to be the first observation in the time series and sometimes 
it is taken to be the mean of a small number of the earlier observations. Forecasts 
are sensitive to the choice of the starting value when the total number of observations 
in a series is not large. An extensive analysis of this problem is found in Cogger 
[7] and an empirical study of it appears in Wade [36]. 

Simple exponential smoothing has been shown to be a useful procedure in 
forecasting some time series when a large number of short-run forecasts must be 
produced routinely, and the relatively low cost has been an important aspect of its 
appeal in a variety of industrial situations. However, simple exponential smooth- 
ing did not turn out to be satisfactory in forecasting the time series of residence 
main stations. 

Adaptive Exponential Smoothing 
We make a distinction between weakly adaptive and strongly adaptive exponen- 

tial smoothing models. All exponential smoothing models are adaptive in the 
sense that forecast values are influenced by the new observations that are included 
in the time series under study--the forecast values, in short, show some adaptation 
to this new information. However, in the models discussed in the preceding section 
the smoothing parameter a is a constant. We call this a weakly adaptive model. 
In contrast to this, a strongly adaptive model is one in which the smoothing param- 
eter is assigned a value dynamically by making it a function of the sequentially 
observed forecasting error. In these models, there is adaptation not only to the 
new information but also through the change in the value of the smoothing param- 
eter itself. The latter type of model we will also call adaptive exponential smooth- 
ing; the model now reported on here is discussed in Dunn, Williams, and Spivey [12] 
and was originally develope~l by Trigg and Leach [32]. The smoothing constant 
t~ of equation (1) is replaced by the function tr(t), where 

S E ( t )  or(t) = ~ (3) 
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Smoothed Error = S E ( t )  = r e ( t )  + (1 --  r ) S E ( t  - -  1) (4) 
Smoothed Absolute Error = S A E ( t )  ---- ~'le(t)[ + (1 - -  r ) S A E ( t  - -  1) 

e( t )  = X t  - -  f(~ (5) 

where ~, called the adaptive smoothing constant, is in the interval 0 < ~" < 1 and is 

to be chosen. 
Given this function o~(t), we then have the following model, which is analogous 

to simple exponential smoothing, 

f ( ,+l  = o~(t)X, + (1 --  a ( t ) ) f ( ,  . (6) 

When several large errors of  the same algebraic sign occur, it is clear that S E  and 
S A E  will give a value for or(t) near 1. This results in a heavy weighting of the 
recent observations. On the other hand, when forecast errors tend to alternate 
signs and to be of  approximately the same magnitude, S E  tends to zero, S A E  

tends to some nonzero value, and a ( t )  approaches zero. This gives a model which 
weights recent observations less heavily and assigns instead more weight to the 

past history. ~ 
The choice of  the best value of ~" raises the following question: should one 

choose a large value of ~" so as to produce a model that adapts quickly to secular 
changes in a time series or a smaller value of ~- which yields more stable forecast 

values? There is no generally satisfactory answer to this question; however, since 
forecasts can be generated quickly with this model, one can experiment with a variety 
of  values of  ~', examine the forecast errors that result, and choose a value for ~" 
which minimizes the forecast error criteria indicated earlier, at least among the values 

of  ~" that one has examined. Again, it is clear that a knowledge of  the nature of  

the time series one is attempting to forecast is essential. 
The use of  adaptive exponential smoothing on the residence main station data, 

although superior to simple exponential smoothing, did not produce forecasts that 
were sufficiently good2 A more extensive analysis of  the data was then made. 

D a t a  A n a l y s i s  a n d  Ref ined Forecasts 

An investigation of the main station data indicated that it is in fact the sum 
of two other time series: the monthly series of  telephone connects and the monthly 
series of  disconnects. More precisely, if  MS(t) denotes main stations at time t, 

For a more detailed discussion of adaptive exponential smoothing models see Dunn, Williams, 
and Spivey [12]. 

6 A variant of the Trigg and Leach model, adaptive exponential smoothing with lag, has been 
indicated by Shone [29]. In this approach 

SE( t  -- 1) 
a(t)  ~ SAE( t  -- 1)" 

instead of (3). This guards against the undesirable influence generated bY ~176 sharp "spikes" 
in the data and may be useful for some problems. This variant was tried for the telephone data 
and the amount of improvement it offered was negligible. 



SPlVEY, WECKER: REGIONAL ECONOMIC FORECASTING 2 6 5  

Con(t) and Dis(t) denote, respectively, the connects and disconnects at time t, then 

MS(t) = MS(t -- 1) + Con(t) -- Dis(t). (8) 

The time series of connects and disconnects appear in Figure 3. 
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Both of these time series displayed strong seasonal patterns but the patterns 
differed from each other. The periodic behavior of these time series was further 
confirmed by an examination of their sample spectrum and autocorrelation func- 
tions. Roughly speaking, the spectrum of a time series can be regarded as display- 
ing the amount of variance in the series associated with various periodicities. For 
purposes of illustration, the sample spectrum of monthly changes (first differences) 
in Flint main stations is shown in Figure 4. The high power near a frequency of 
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84 cycles per month  corresponds to the twelve-month periodicity. The large or- 

dinate at a frequency of  zero reflects the trend in the series. 

Analyzing the spectrum provides one with an extremely sensitive means o f  

detecting periodic behavior in a stationary time series providing the history o f  the 
time series is sufficiently long. T Unfortunately,  most  time series in economics are 

neither stationary nor  long so spectral techniques have not proved to be as useful 
in analyzing economic time series as has been the case in some of  the engineering 

fields) 
Applying adaptive exponential smoothing to the series o f  connects and dis- 

connects and combining the results to obtain a forecast o f  residence main stations 

produced better results than did the use o f  this model on the latter series, but  the 

forecasts still were not  accurate enough. 
Since the time series had strong seasonal patterns and since no time-series 

methods appear  to accommodate  seasonal influences well, a further data decompo-  

sition was experimented with. The series of  connects was decomposed into twelve 
separate monthly  series in accordance with the conjecture that for a strongly seasonal 

series, a January  observation is perhaps more similar to January  observations o f  
other years than to observations for the adjacent months  in time of  December 

and February.  The series o f  disconnects was decomposed in the same way, and 

each of  the twenty-four monthly time series was forecast using adaptive exponential 
smoothing. It  should be noted that  each series has its own adaptive smoothing 

function a ( t )  and its own model. These forecasts were then aggregated into a 

forecast for residence main stations, producing a forecast with an appreciably lower 

average absolute forecast error than any of  the preceding methods. See Figure 5. 

A Fur ther  Extension:  The Box-Jenkins M e t h o d o l o g y  

Most  of  the procedures described above had their origin in attempts to deal 

with the practical problem o f  generating better forecasts. These procedures were 

7 The probability structure of the time series 
$(t)  = { . . . .  X-1,  Xo, X1, X2 . . . .  } 

is considered specified by the set of all finite dimensional distribution functions 
Ftl, t  z ..... t~(X~, X2 . . . . .  Xn) = e{~(h) < Xl, ~(t2) < X~ . . . .  ~(t~) < X~} , 

where tl, t2 . . . .  , t~ are any n elements of the index set {... - 1 ,  0, 1, 2 . . . .  }. A time series is said 
to be stationary if 

Ftl, t  ~ ..... tn(X1 . . . . .  Xn) = Ftl+r,t2+ . . . . . .  t~+r(X1, X2 . . . . .  Xn) 

where r is any integer. In particular, this definition means that all one-dimensional distribution 
functions F t ( X )  do not depend on t, so that the time series must have a constant mean value. All 
two-dimensional distributions must depend only on the difference t~ -- tl, so that the autocorrela- 
tion function p(r) must be a function of r alone and not of t. 

This is a strong condition and is rarely satisfied, even approximately, by economic time series. 
s Difficulties in estimating the spectral density function have also been a major barrier to the 

application of important theoretical results of Kolmogoroff [22] and Weiner [38] in the forecasting 
of time series generally. 
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seen originally to have worked well on some problems; they were later refined and 
extended, mathematical generalizations were developed, and statistical properties 
were studied. The development of the Box-Jenkins methodology follows a path 
which is the reverse of this: building on the early theoretical work of Yule [39], 
Walker [37], and others, Box and Jenkins [3] were able to develop a procedure for 
forecasting whose statistical properties were worked out in advance. Thus the 
forecaster can make use of a procedure which utilizes theoretical results which 
had not previously been exploited. 

In a strict sense, the Box-Jenkins procedures do not produce a forecasting model 
but rather a methodology for constructing a model, estimating its parameters from 
data, and analyzing its forecasting accuracy. 

The theory underlying the probabilistic analysis of time series draws heavily 
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on the concept of the autocorrelation functionY In particular, for a large class of 
stationary time series an optimal linear predictive relation is completely defined by 
the autocorrelation function of the series. A basic feature of the Box-Jenkins pro- 
cedure is an examination of the sample estimator of this function. By regarding 
the time series as an autoregressive process with a moving average residual, one 
can show that there is a functional relation between the value of the autocorrelation 
function with lag k and the values of the parameters of the forecasting model. 1~ 
The procedure is not clear cut because most economic time series one encounters 
are not in fact stationary and because the sampling properties of the autocorrelation 

a The autocorrelation function with lag k is given by 

p(k )  = E [ ( X t  - -  / t ) ( X t - k  - -  /t)l Coy  [ X t ,  X t - k ]  

~/E[(Xt - -  g ) 2 l E l ( X t - k  - g)~l = a~  " 
10 An autogressive process of  order p with a moving average residual of  order q is defined as 

X~ = 01Xt-1 + . . .  + CpX~-p + ~, 
where the random error  term e is given by 

where the e j" are mutually uncorrelated random variables f rom a fixed distribution with a mean 
of  zero and finite variance. 
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function are complex. Box and Jenkins suggest a four-stage, iterative forecasting 
procedure to deal with these difficulties. 

Stage 1. A useful class of  models is postulated, for example, the autoregres- 
sive-moving average class. 

Stage 2. By examining the sample autocorrelation function or the sample 
estimate of  the spectrum, using knowledge of  the data-generating process, and 
so forth, a particular model is chosen from the class of  stage 1. 

Stage 3. The tentative model is fitted to the data and its parameters estimated. 
Stage 4. Diagnostic checks are made on the residuals from the model with 

the object of  discovering systematic lack of fit and identifying the causes. If  such 
an inadequacy is discovered, a modification is made to the tentative model and the 
procedure is repeated starting with step 2. 

The Box-Jenkins procedure also employs various transforms and filters in order 
to force the time series into a form consistent with the theoretical notion of  a sta- 
tionary autoregressive-moving average random process. 

This procedure was applied to the time series of  connects and disconnects. 
We describe how this was done by discussing the situation first for the former and 
then considering the latter. 

Examination of the sample autocorrelation function of the first and higher 
order differences of the time series of connects suggested that one could regard the 
time series of  first differences as approximately stationary, n That is, the series 
{dr}, where 

dt : Cont -- Con,_1, 

appeared to have autocorrelation properties similar to an autoregressive moving 
average random process which is known to be stationary. The sample estimate of 
the autocorrelation function of dr, together with the estimated standard errors of 
the estimates, are shown in Table 1.~ Note that with the exceptions of lag 1 and 
lag 12, all estimates of  the autocorrelation function are less than two standard 
deviations from 0. These autocorrelations may be accounted for by assuming 
that 

11 The sample estimate fi~ of the autocorrelation function pk at lag k is given by 

ilk= ~k, 
To 

N - - k  

where ~k = (l/N) ~ (Xt -- X)(Xt+k -- )~) and .Y is the mean of the time series. The actual cal- 
t = l  

culations were performed on the logarithms of the time series of connects (no monthly decomposition 
was used with the Box-Jenkins procedure). 

12 The standard error of ilk, the value of the estimate of the autocorrelation function at lag 
k, is obtained from the following approximate relationship, 

1 Var(pk) = -~-{1 + 2 E (p02} . 
i = l  

This result, due to Bartlett, is cited in Box and Jenkins [3], p. 34. 
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dt = st - ,~ls~-1 - ,~1~t-1~, 

where st is defined in footnote 10. 
Thus the forecasting equation is 

where the value of  r is set equal to its expected value of  0 and the parameters ,~1 
and 2~2 are yet to be determined. 

To develop forecasts for lead times greater than one period in advance, the 
forecasting equation is used recursively. U n k n o w n  values of Xt are replaced by 
,~'~ and unknown values of st are replaced by 0. A modification was made in the 
usual Box-Jenkins method of estimating the parameters ,~1 and 212. In order to 
be consistent with the forecasting results of other models discussed in this paper, 
,~1 and ,/1~ were chosen so as to minimize the mean absolute value of the sequentially 
observed "twelve step ahead" forecast error of the time series of  main stations. 
The usual procedure, incidentally, is to select the parameters subject to minimizing 
the "one step ahead" mean-squared forecast error criterion. The latter, together 
with a normality assumption concerning the errors, enables one to state that the 
resulting estimates are asymptotically maximum likelihood estimates of the param- 
eteirs. 

The forecast equation resulting from the minimization of the absolute value of 
forecast error is 

,(',+~ = X~ -- . 30~ -- .0~,_u. 

An examination of the time series of forecast errors generated by this method 
indicated that they have the same statistical properties as uncorrelated random 
deviates. As a result, the model was regarded as satisfactory. 

A similar analysis applied to the time series of disconnects produced the forecast- 
ing equation 

s = X~ -- . 20~t + . 70~t_u -- .20st_12 . 

Combining the forecasts of the connects and disconnects to develop a forecast 
for main stations produced the forecasts shown in Figure 6. The mean absolute 
error of this model was 1344.0. 

Hybrid Models 
We indicated earlier that the combining of  an intrinsic and an extrinsic forecast- 

ing strategy in a hybrid model has some appeal and that surprisingly little formal 
work has been done in this area. Two possibilities suggest themselves immediately. 
One could retain an essentially extrinsic forecasting strategy and take advantage of 
an intrinsic model in some way. For example, in an econometric model one might 
choose to forecast an exogenous variable by time-series methods. Alternatively, 
one could use an intrinsic model and incorporate information on one or more 
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related variables into it. 
One should, moreover, be able to improve the performance of a forecasting model 

if an extrinsic influence can be found which leads the variable one is trying to forecast. 
In the spirit of a case study, we would like to present briefly an account of a crude 
attempt that was made by one of the authors in association with others (see Dunn, 
Williams, and Spivey [12]) that seems to confirm that using an extrinsic or exogenous 
variable in what is otherwise an intrinsic model holds promise for future develop- 

ment. 
Returning to the problem of forecasting telephone main stations, it is an obvious 

conjecture that new household formation is a leading indicator. I f  the sequence 
{ Y~} represents observations on new household formation in Flint, then one way of 
incorporating the exogenous variable is to begin with the adaptive exponential 

smoothing relation 

f~, = a(t)X~_l + [I -- a(t)]f~t-1 

and modify it into the relation 

~', ---- a(t) X,_l q- [1 -- a(t)]~',_l -F ~a(t)Y,_x (9) 

where a(t) is the smoothing function defined in (3) and where/~ is a constant (not 
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restricted to be between 0 and 1) chosen according to the criterion of minimizing 
the mean absolute deviation of forecast errors. By adaptively assigning the value 
of a'(t) one can include more of the effect of the observations Y, on the exogenous 
variable when forecast errors are large and reduce its contribution during relatively 
stable intervals. 
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Using equation (9) on the decomposed monthly series and aggregating back 
to a forecast for residence main stations resulted in forecasts for which the forecast 
error was 14 per cent less than for that for the best of the other adaptive forecasting 
models. This is all the more surprising when it is observed that a monthly time 
series on new household formation is not available for Flint and that observations 
taken at annual intervals were arbitrarily allocated to months assuming a constant 
growth rate over the months of a year and the resulting series used as the exogenous 
variable. An illustration of forecasts with this model and the time series of main 
stations is shown in Figure 7. 

The equation (9), of course, represents only a crude assimilation of exogenous 
information. One is naturally led to ask if more sophisticated procedures can be 
used and if their theoretical properties can be developed. Research into these 
questions by the authors is presently underway. 
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Summary 
In  Table 2 the mean absolute error  for  those models which performed best in 

the context o f  the telephone demand problem are shown, together with correspond- 

ing parameter  values. One sees that  the hybrid model  produced the most  accurate 

forecasts. I t  is in tere~mg to observe that  this model was superior to the vastly 

more  complex Box-Jenkins procedure.  

TABLE 2 

SUMMARY OF FORECASTS 

Forecasting Technique 

Trigg and Leach adaptive exponential 
smoothing with decomposition 
Decomposition with Shone variant of 
Trigg and Leach adaptive exponential smoothing 
Hybrid model using exogenous variable 

Box-Jenkins procedure 

Mean 
Absolute Parameter 

Error Values 
(12-month forecast) 

1226 ~ = .9 

1161 T = .9 
986 T = .1 

/~ = 10.74 
1344 Connects: ~1 = .30, ,tx2 = 0 

Disconnects: ,h = .20, 
~1~ = - -  . 7 0  

als = -- �9 20 

We conclude by stating our  belief that  intrinsic models, together with support-  

ing data  analyses, have much to offer the regional scientist. Al though  it cannot  

be said that  these models will be superior in a large number  o f  cases to other models 

currently available, their relatively modest  data  requirements and ease o f  implemen- 

tat ion provide a useful addition to the largely associative models that  appear  to be 

widely used today. 
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