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The Effect of a Fusion of Subpopulations on the 
Total Fixation Index 
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Summary. A general mathematical expression is found for the decrease in the fixation index of a population where 
subpopulations with different gene frequencies fuse. It is shown that the use of Wright's formulas for a hierarchic struc- 
ture will not necessarily give the correct result in this situation, since the conditions for their application are usually not 
satisfied. Two examples are given, one with fusions among subpopulations with a continuously distributed gene fre- 
quency, and one with data from real observations producing a discrete distribution. 

I n t r o d u c t i o n  

Yasuda (t968, pl 4) has extended the usual Wah- 
lund principle (Wahlund, t928) to a population 
divided into continuously distributed subpopulations, 
or subpopulations having a mixed distribution which 
is neither discrete nor continuous. He also considers 
the effect of fusion of some of the subpopulations, 
but  only in the ordinary case with a finite number of 
such subpopulations (Yasuda, t968, p. 3 and appen- 
dix I). I t  is the purpose of this paper to establish the 
results of such fusions in the general case. However, 
we will also allow local inbreeding within each sub- 
population. 

T h e  D e c r e a s e  in  F I  T 

We consider one autosomal locus with only two 
alleles A and a in diploid organisms. The results of 
subdivision will be compared with those of inbreed- 
ing, and, as pointed out by Li (1969), this cannot 
easily be done with multiple alleles. We imagine 
that  we have any number of subpopulations, count- 
able or not, each with a certain degree of local in- 
breeding. Each subpopulation may be regarded as 
an element o) in a sample space, over which there is 
defined a probabili ty measure with respect to an 
appropriate ~-algebra. The value assigned by this 
measure to a set of subpopulations is assumed to be the 
relative size of the set. In real applications the num- 
ber of subpopulations would always be finite, but  in 
spite of this the general model should be useful in 
some situations. The case treated in Yasuda /968, 
appendix I will be obtained with a probability dis- 
tr ibution assigning probabilities w~, w 2 . . . .  , w~ to 
the n subpopulations. I t  should be noted that  all 
probabili ty distributions are introduced for the pur- 
pose of describing the variation of certain quantities 
in nature, and that  they have no connection with 
actual random sampling from the populations. 

The gene frequency p of A and the fixation index 
(or inbreeding coefficient) F may now be considered 

as random variables, tha t  is, as (measurable) func- 
tions p = p(o)) und F =/V(o)) of the sample point (~, 
since it is assumed that  each subpopulation has its 
~pecific values of p and F. The f requency/ (AA)  of 
genotype AA will be a random variable given by 

/ (AA) - -  (1 - - F )  p2 + F p  = p 2  + F p q ,  

with q - -  t - - p .  The frequency of AA in the total 
population is then found by taking the mean, 

E([(AA)) = E(p 2) + E(F p q) , 
and the frequency of the A gene is E(p). If we had 
a fixation index F i r  in the total popula t ion  then the 
frequency of AA would be (E(p)) ~ + FIT E(p) E(q). 
Thus the effect of subdivision and local inbreeding 
is the same as that  of total  inbreeding FIT given by  

F l r =  [Var (p) + E(F p q)l/EE(p) E(q)l , (1) 

which may also be written as 

F~r -- [(1 -- E(F)) Var (p) +Cov (F, p q)]/ 
[E(p) E(q)] + E(F). (2) 

For a finite number of subpopulations this expression 
is equivalent to eq. (15) in Nei (1965). 

Now consider fusion of the original subpopulations 
into new greater subpopulations. This fusion will be 
specified by a (measurable) function s = s(~o), with 
the convention that  each new subpopulation should 
consist of original subpopulations co having the same 
value s(~o). In this new situation we assume that  the 
frequency of A in a subpopulation will be the mean 
of the frequencies in the original subpopulations 
forming the new one. In a new subpopulation with 
s(m) = s this value is the conditional mean E(pis). 
We also make the assumption that  the level of in- 
breeding will be stabilized to the mean E(FIs ), 
although this is probably less realistic in some cases. 
(It is assumed that  we can construct actual conditio- 
nal probabili ty measures, and that  the conditional 
means are actual means with respect to these mea- 
sures.) The total fixation index F ) r  corresponding 
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to the new situation is now found by replacing p 
with E(pls ), q with E(qls ) and F with E(F!s) in (t) 
or (2). Using the rules E(E(pls)) = E(p), E(E(FIs) = 
= E(F), we then obtain from (2) 

F I T =  [(t -- E(F)) Var E(p]s) + C o v  (E(F]s) 
E(pls) E(q]s))]/IE(p ) E(q)-j + E(F) . (3) 

Hence the decrease FB in the total  fixation index due 
to creation of larger subpopulations is 

FB = F i r  --  V ; r  = [(t - -  E(F)) E Var (pls) + 
+ Cov (F, p q) -- Cov (E(F]s), E(p[s) E(q]s))]/ 

EE(p) E(q)],  (4) 

where we have applied 
Var (p) = E Var (pls) + Var E(p]s) . (5) 

F B may also be expressed in various other ways, for 
instance as 

F B = [E Vat (Pls) + E ( V p  q) -- 
-- E(E(Fls) E(pls) E(q!s))l/IE(p) E(q)],  (6) 

derived from (t). 
Equat ion (4) is particularly instructive when both 

F and p q are uncorrelated and E(FIs) and E(pls ) • 
• are uncorrelated. Then 

F B = (1 -- E(F)) E Var (p]s)/(E(p) E(q)), (7) 

and since F~T = (t -- E(F).) Var (p)/(E(p) E(q)) + 
+ E(F) and F ; r  = (1 E(F)) Var E(pJs)/(E(p) E(q)) 
+ E(F), the relation F~T = F;T + FB in this case 
simply reflects the general rule (5), expressing the 
total  variance of p as the mean of the variances of p 
within the new subpopulations plus the variance of 
the new subpopulation gene frequencies. The con- 
ditions for (7) to hold true are satisfied when F and p 
are stochastically independent and at the same time 
E(FIs) and E(p[s) are independent.  In many prac- 
tical situations this would be correct to a high degree 
of approximation. I t  is, however, not sufficient that  
only F and p are stochastically independent.  

The expression given by Yasuda (1968, p. t8) for 
the effect of fusion among certain of a finite number 
of subpopulations having relative sizes wi and gene 
frequencies Pi (with no internal inbreeding) is 

F ~  = x x ,  >j ~, ~ (p, - pj)~/(? (1 - ~) w ) .  (8) 

Here the first summation is over all new subpopu- 
lations, and W is the sum over w i for old subpopu- 
lations absorbed in the particular new subpopulation 
considered, fi is the total  mean over all Pi. With our 
notat ion we find in this case 

Var (p[s) = Zi wi (Pi -- Ps)2/w 
= & > i  w~ w i (pc  - p i ) ~ / w  ~ , 

where the summations are to be taken over sub- 
populations in the group given by  the particular 
value of s. f ,  is the mean of Pi among these sub- 
populations. Then 

E Var (p[s) = Z W ~i>j Wi Wj (Pi --  Pi)2/W2 , 
proving that  (8) is a special case of (7). 

Yasuda calls the subpopulations "isolates" and 
considers the fusion to be a result of breakdown of 
barriers. In our model the various subpopulations 
need not be isolated, since we are not concerned 
about the variation of p and F over any interval  of 
time. If all values p and F are correct immediately 
before the fusion and V'lr is to be the fixation at 
once afterwards, then there is no need for p and F 
to be constant  in time. 

Compar i son  w i t h  Wright's  Hierarchic  Structure 
I t  might be supposed that  the decrease FIT --F'IT 

also could be found from Wright 's  relations for a 
hierarchic structure. We have (Wright, t943, 1965) 

I - - F I r =  (1 - - F s r  )(1 - - F i s  ) ,  (9) 
where F,s  is the mean of local fixation indices in 
subdivisions, and Fsr  is the correlation, relative to 
the total  population, between gametes drawn at 
random from the same subdivision. With both pri- 
mary  (S) and secondary (R) subdivisions 

I - F i r  = (1 --  F s r )  (1 - -  FRs)  (1 - -  F I R )  (10) 

(Wright, 1951, 1965). In our situation we would use 
(t0) with the original subpopulations co as the secon- 
dary subdivisions and the groups of subpopulations 
that  are going to fuse as the pr imary ones. After the 
fusion, (9) might be applied with the same Fsr, 
with F ;T  instead of F1T, and, under the assumption 
of maintenance of local inbreeding, with Fxs = F1R. 
Thus (9) and (10) would give 

F , ~  - -  F ~  = (1 - -  ~ ' s ~ )  F R s  (1 - -  & ~ ) .  (11) 

We will now show how the relations (9) and (10) 
could be derived in our model. The necessary con- 
ditions will however be rather  restrictive, so (t t) will 
have much less generality than (4) or (7). Consider 
first the case with only one set of subdivisions. At 
the moment  these may be taken as the subpopu- 
lations ~o, and then (2) implies tha t  

r . .  = (I -- E(F)) Var (p)/(E(p) E(q)) + E(F) 

when Coy (F, p q) = 0. Substituting Fis  = E(F) and 
F s r  = Var (p)/(E(p) E(q)) we readily obtain (9). But 
the condition for (9) to hold true is tha t  F and p q 
are uncorrelated, which is particularly correct if F 
and p are stochastically independent.  The lat ter  as- 
sumption is made in the derivation in Wright (1965), 
and the derivation given above is actually only a 
formalization of tha t  one. A corresponding relation 
could be constructed in the general case without any 
such condition, as done by  Barrai (1971), but  then 
the simplicity is lost. Crow and Kimura (t970, 
section 3.12) have derived (9) in a different manner, 
interpret ing Fls,  Fsr,  and Fzr  as probabilities. 
However, they define F m and Fsr  with respect to 
only one particular subpopulation, making the situ- 
ation Somewhat different. 

We now pass to the case with both pr imary and 
secondary subdivisions, where the subpopulations oJ 
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const i tute  the secondary divisions, and the sets of o) 
with the same value s(~o) the p r imary  ones. For any 
part icular  p r imary  subdivision s we now find from (9) 

I - -  F1,  = (t --  FR, ) (1 -- FrRs) , 

where FzR , = E(F[s) and FR, = Var (p[s)/(E(p]s) • 
• E(q!s)), under the condition tha t  

Coy (F, p qls) = 0 (12) 

for this s. Fur thermore ,  (9) applied to the to ta l  
populat ion with p r imary  subdivisions gives 

I -- FrT = (1 --  F s r  ) (1 --  F2s) , (13) 

where we now mus t  define F i s  = E(Fls)  and 
FST = Var E(p[s)/!IE E(pJs) E E(qls)] = Var E(pls)/  
(E(p)E(q)). This is valid under the condition 

Coy (F,s, E(pls) E(q[s)) = O . (14) 

When (t2) is correct, then F i s  may  here according 
to (2) be expressed as 

(t --  E(F]s)) Var (pis)/[E(pls) E(qls)] + E(F!s) . 

We now find 

I -- FIS = E (1 - -  Fis  ) 
- -  ( 1  - ( 1  - , 

and if we introduce 

F~R = E(FIR,)  = E E(FIs ) = E(F) 
and 

F , s  = E(FR,) = E LVar (pls)/(E(pls) E(qls))J , 

subst i tut ion of (15) in (t3) produces (10). A necessary 
(and sufficient) condition for (t5) to hold t rue is, 
however,  tha t  

Coy (Fn,, FIR,) = 0 .  (16) 

To obtain ( t l )  we must  apply (9) to the si tuation 
after  the fusion, and this is permit ted  only if 

Coy (E(V[s), E(pis) E(qis)) -- O. (17) 

Thus finally we get the expression (1 t) for FIr  -- F'tr, 
but  only under  the conditions (12) (for almost all s), 
(t4), (16) and (t7). 

In comparison with the conditions Coy (F, p q) = 0 
and Coy (E(FIs), E ( p [ s ) E ( q l s ) ) =  0 for (7) to be 
correct, (t 2), (14), (t 6) and (t 7) seem very  restrictive. 
I t  is for instance not sufficient to assume tha t  at  the 
same t ime F and p are independent  in all conditional 
distr ibutions given s, E(pls) and E(F[s) are inde- 
pendent ,  and F and p are independent .  (No single 
one of these three restrictions, or any pair  of them 
implies any  other.) If we assume tha t  (12) is correct 
and tha t  the pair (E(p[s), Var (pls)) is independent  
of E(Fls),  then the only condition left for (11) to 
hold t rue is the (reduced) equat ion (14): 

Coy (Var (pls)/(E(pls) E(qls)), 

E(1,1~) E(qts)) = o .  ( ~ 8 )  

In  part icular ,  this is the only restriction if F is 
identical  to a constant.  But  even now (t8) imposes 

conditions on the distr ibution of p which will fre- 
quent ly  not be satisfied. Wha t  causes the difficulties 
is tha t  the "inbreeding coefficient" Fx s also includes 
a component  due to secondary subdivision, and 
reasonable assumptions concerning actual  local in- 
breeding coefficients will not apply  to the effect of 
such subdivision. If  we insert the values of FST, FRS 
and FIR in (1t), the expression found will in the 
general case be quite different from (4) or (7). 

I t  also follows from the t r ea tmen t  above tha t  one 
should be cautious when applying (10) in other kinds 
of situations. 

E x a m p l e  t 

Suppose tha t  a population is evenly dis tr ibuted 
over the quadrat ic  region given by  0 < x < I,  
0 < y < I with respect to a coordinate system. The 
collection of individuals at each point co = (x, y) is 
considered as a subpopulat ion.  Since the density is 
constant ,  we may  regard x and y as independent  
random variables with a uniform distribution over 
the in terval  ~0, 1]. Let  the original frequency of the 
gene A in the subpopulat ion at (x, y) be p = (x + y  - -  
-- xy)[2.  The fixation index F is supposed to be 
identical for all such subpopulations.  The fusion is 
now assumed to create new subpopulat ions such tha t  
all individuals at points (x, y) with identical  y will 
belong to the same new population.  Thus we have 
st,o) = s(x, y)  = y .  

This model does not necessarily require a fusion 
of subpopulat ions with different geographical po- 
sitions. Tile y coordinate might  for instance des- 
cribe the variat ions among social groups living in the 
same place, and we would then find the consequences 
of an elimination of social barriers. 

We now find Var (ply) = (1 --  y)~/48, E(p) = 3/8, 
giving a decrease in inbreeding due to fusion of sub- 
populat ions equal to 

FB = 4(t --  F) /135 ,  

found from (7). We also have E(ply) = (1 + y)/4, 
Var E(ply) = 1/192, giving F ' I T  = 3(t - -F) /135 + F, 
and Var (p) = 7/576, giving F,T = 7 ( I - - F ) / t 3 5 + F .  
For example,  when F = 0, a little more than  half 
the amount  of apparent  to ta l  inbreeding is lost in the 
fusion. 

The quantit ies used in (t 1) are found to be FIR-= F, 
FST = 1/45 and 

1 

Fgs = f (t -- Y)~/(3 (1 + y) (3 -- Y)) dy 
0 

= ( l o g  3 - 1 ) / 3 .  

The result f rom eq. (11), which is really not appli- 
cable, will then be 

FIT  - - -  F)T = 44 (log 3 --  1) (1 --  F) / t35 , 

or approximate ly  0.032t" (t - - F ) ,  which is 8.3% 
greater  than  the correct value 0.0296 �9 (t --  F) found 
above. 
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E x a m p l e  2 

Among  the western g roup  of the Y a n o m a m a  In-  
dians in Southern  Venezuela, it is possible to recog- 
nize three village clusters, based on historical  rela- 
t ionships (Ward,  t972). All of the Shamatar i ,  
Namowei ta r i  and Wanabowei t a r i  clusters are known 
to descend f rom single villages, and the cons t ruc t ion  
of a genetic ne twork  for the to ta l  western group 
shows tha t ,  as a general  rule, villages within each 
cluster  are closely related. Our model  will be applied 
to the M / N  locus (disregarding S/s), with the to ta l  
popula t ion  consist ing of all three clusters, the pri- 
m a r y  subpopula t ions  s(~o) of the individual  clusters, 
and  the secondary  subpopula t ions  ~o of the  villages. 
Thus  we are in teres ted in wha t  would happen  to F1T 
if all villages fused within each cluster. 

The dis t r ibut ions  of geno types  in samples f rom the 

different directions) f rom r andom mating,  (8) gives 

FB = 0.0287.  

The indices required in (11) are FIR = 0.0082, 
FRS = 0.0279 and F s r  = 0.0422. Hence (1t) would 
give 

FB = 0.0265 . 

The values for FB given by  (8) and (11) are 27.6% 
and 17.8% greater  t han  the correct  one given by  (6). 
Now all condit ions (12), (14), (16) and (17) are 
violated.  The covar iances  in (t 2) are given in Table t, 
and the covar iances  in (t4), (16) and (t7) are found 
to be 0.001t,  0 .00t6 and 0.0007. 

Table 1. The variation of parameters among clusters in 
example 2 

villages are known (Gershowitz et al., 1972). 
villages belonging to the Shamata r i  cluster  are 03 D, 
03H, I I G  and I I H I ,  to the Namowei ta r i  cluster, 
03A, 03B,  03C and 0 8 A B C ,  and to the Wanabo -  
weitari  cluster,  03E, 03F, 03G, 03I,  08N,  08S and 
08T. The clusters are assigned s-values 1, 2 and 3, 
respect ively.  Our model  is concerned with ac tual  
pa rame te r  values ra ther  t han  est imates,  bu t  since 
a large p ropor t ion  of each village was sampled (for 
mos t  villages over  70%), it seems justif ied to use the 
es t imated  values as our  values for p and F.  The 
es t imate  for the gene f requency  p of M for each 
village is found  by  gene count ing  in the usual  way,  
and F is ob ta ined  f rom 

F ~- I - - / ( M N ) / ( 2 p q ) ,  

w h e r e / ( M  N) is the (observed) relat ive f requency  of 
he terozygotes .  Means (and variances) are compu ted  
b y  giving village i weight  N , / N ,  where N i is the 
to ta l  popula t ion  size of the village, and N is the 
to ta l  size of all three clusters. The value for Ni does 
no t  coincide with the sample size, but  is " the  appro-  
x imate  village size" given in Gershowitz  et al., 1972, 
Table  I. Condi t ional  means  are found with weights  
Ni/%, where n s is the size of cluster  s, and means  
over  variables depending  on s are found using weights  
ns/N. 

The quant i t ies  needed for each cluster  are given 
in Table 1. Using (6), we then find a decrease in F~T 
equal to 

F B = 0.0225 . 

Actual ly ,  (l) and (3) give F i r  - 0.0757 and F S r  = 
= 0.0532. Ignor ing  the original local depar tu res  (in 

s ~s E(pls ) Va~,(pl s) E(F/s) FRs Coy (F, pq!s) 
Tile 

1 397 0.793 o.00o7 --0.o287 o.oo44 --o.ooo09 
2 417 0.562 0.0029 -0 .0424 o.ot19 -0.00057 
3 421 o.614 o.o156 0.0930 0.0659 -0.00231 
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