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Summary. A one locus model has been developed to describe parthenogenetic populations restoring diploidy by central 
fusion, terminal fusion and gamete duplication. I t  was found that in the absence of selection all populations become 
homozygous. With selection, however, it is possible to maintain heterozygotes and homozygotes. The conditions re- 
quired to yield such an equilibrium are a function of (I) the proportions of the various diploid restoring mechanisms 
(2) linkage to the kinetochore and (3) theintensity of selection. The model was then used to derive one-generation likeli- 
hood functions. These likelihoods were used in deriving estimation procedures for the frequency of gamete duplication 
which is important in forming isogenic lines and for the probability of a heterozygous female giving rise to a heterozygous 
zygoid. Next, n-generation likelihood functions with and without selection were calculated. These were used to esti- 
mate the selection coefficient and to derive two tests of the hypothesis of no selection versus the hypothesis of selection. 
The first test is a locally best test in the vicinity of no selection, and the second an "odds" for the hypotheses using a 
prior distribution on the selection coefficient. 

Parthenogenesis has often been termed an evo- 
lut ionary dead end mainly because many  authors 
felt parthenogenetic populations could not maintain 
genetic variabili ty.  Carson (1967a) challenged this 
idea when he s ta ted that  central fusion of the meiotic 
pronuclei and absolute linkage to the kinetochore 
would result in a state of permanent  heterozygosity. 
Asher (1970a) studied this problem in more detail 
and worked out a deterministic one locus model 
which showed tha t  a population restoring diploidy 
with both central and terminal  fusion could maintain 
heterozygosity under a wide range of heterotic values. 
Asher (t970b) also simulated such populations on the 
computer  to take into account the effect of small 
population size and found once again tha t  hereto- 
zygotes could be maintained. 

The theoretical predictions are interesting for they 
suggest tha t  parthenogenetic species may  be useful 
in solving the more general problem of the iole of 
selection in maintaining genetic variation. Many 
parthenogenetic species offer an excellent s t ra tegy for 
studying this problem since they share with sexual 
species segregation of alleles, recombination, and the 
ability to respond to selection but  lack the complex 
population structure which in sexual populations is 
superimposed upon this basic genetic foundation. 
The potential  therefore exists to make strong inter- 
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ference about  the role of selection in this system since 
many  confounding parameters  are eliminated. For 
this potential  to be realized it is very impor tant  to 
couple the theory with reality. A model is useful not 
only in generating concepts and principles, but  also 
in predicting reali ty and providing a means of testing 
hypothesis. All too often in population genetics 
these lat ter  two uses are neglected. The purpose of 
this paper  is therefore a) to describe a one locus 
model for the type  of parthenogenesis characteristic 
of the fruit fly Drosophila mercatorum, b) to in- 
vestigate estimation procedures for the various 
parameters  of the model and c) to obtain tests of the 
hypothesis of selection for heterozygotes versus no 
selection. 

One Locus Model  

The experiments of Carson et al. (1969) on parthe- 
nogenetic strains of Drosophila mercatorum indicate 
tha t  meiosis proceeds normally in the eggs of virgin 
females producing four haploid egg nuclei. Diploidy 
appears to be restored in more than 90% of the eggs 
by  the post-meiotic doubling of a single haploid egg 
nucleus. Caison (personal communication) has term- 
ed this phenomenon "gamete  duplication".  In the 
remaining eggs diploidy is probably  restored by  cen- 
tral  and/or terminal fusion of two of the four meiotic 
products. 

The genetic consequences of the three fusion me- 
chanisms upon a single locus with two alleles (A and 
a) will now be considered. First, if the adult is homo- 
zygous A A  or aa it will produce in the absence of 



A. R. Templeton and E. D. Rothman: Population Genetics of Paithenegenetic Strains of i?rosophila mercalorum 205 

muta t ion  only homozygotes no mat te r  which mecha- 
nism is used to restore d ip lo idy .  However,  if the 
adult is heterozygous Aa the si tuation is more com- 
plex. If  gamete duplication occurs, diploidy is restored 
by  the fusion of two genetically identical nuclei so 
tha t  all loci of the zygoid are homozygous. In the 
absence of selection gamete  duplication in eggs from a 
heterozygous mother  will produce half AA zygoids 
and half aa zygoids. The consequences of central and 
terminal  fusiolt have been worked out by  Asher 
(1970a). He has shown tha t  if Y is the probabil i ty  of 
recombination between locus A and the kinetochore, 
then central fusion in eggs from a heterozygous 
mother  produces heterozygotes with f lequency 
t - -Y~2  and each homozygote type  with frequency 
Y/4, while te lminal  fusion produces heterozygotes 
with frequency Y and each homozygote type with 
frequency (t --  Y)/2. 

Lett ing 

E 1 = the proportion of eggs developing by  terminal  
fusion 

E~ = the p ropor t ion  of eggs developing by  central 
fusion 

E a = the proportion of eggs developing by  gamete 
duplication 

E 1 + E 2 + E 3 = 1 

a heterozygous female in the absence of selection and 
muta t ion  will produce Aa zygoids with probabil i ty 
E 1 Y + E 2 (1 - -  Y/2) = K,  and AA and aa zygoids 
each with probabil i ty  E 1 ( I  - Y)/2  + E 2 Y/4 + 

I 
+ E./2 = -ff (t -- K).  

The effect of selection will be determined by  
assuming the fitness values of AA,  Aa and aa are 
WA~, WA~ and W~.  Let t ing 

P ,  = the frequency of AA at generation n 
Qn = the frequency of aa at  generation n 
R,  = the frequency of Aa at  generation n 
R , ~ + P , + Q ~ = I  

then 

P,,+~ oc (P,, + -~ (I -- K) R,)  WAA 

{ I (t - K) R.)  O.+, oc \Q. + W ~  

R~+, oc K R,, WA~ �9 

At equilibrium the condition P.+,/P,~ = Q,,+~/Q,, = 
~- R.+,/R,~ holds. This yields 

Req WAA ( t  - -  ]~ )  
Peq - -  2 ( K  W A a - - W A A )  

Req Wsa (1 - -  K )  

1 
Req = (t - -  K )  WAA ( |  - -  K)  Waa 

+ + 1  
2 ( K  WAa - -  WAA) 2 ( K  WAa - -  Was) 

The frequency of heterozygotes at equilibrium is a 
function of (1) the fitnesses of the genotypes, (2) the 
proportions of eggs developing by  the various fusion 
mechanisms, and (3) the probabil i ty  of recombination 
between the locus and its kinetochore. Req is greater  
than zero when WAA ~ WA~ K and Ws~ ~ WAs K. 
When the fitness of either or both homozygotes ap- 
proaches the value of W A l K  from zero, R~q ap- 
proaches zero. 

Equilibrium phase diagrams can be used to de- 
scribe the genetic s tructure of equilibrium populations 
for varying values of WAA and W~ with WA~ ---- t and 
for a constant value of K. For a given value of WAa 
and Ws~ the diagram indicates whether an equilib- 
r ium population will be completely homozygous 
(A and B Fig. 1) or will sustain heterozygosity (C of 
Fig. 1). The boundaries separating the three areas 
are dependent upon the value of K which in turn is a 
function of E 1, E 2, E 3 and Y. 

o E+:o,o K:o.657 

@0.9,K~0.050 1 

C E 3=0.9,K=0,075 1 

1 

@0.s K=0.067 1 

I 

E3=0.5 ,K:0.333 l 

E~0.9, K=0.090 1 

Fig. t. Equilibrium phase diagrams. In the diagrams in the 
left-hand column t( = 2/3 (t -- Ea) which corresponds to 
a locus so loosely linked to the centromere that Y = 2/3, or for 
any locus when E 1 = 1/3 (1 -- Ea). The top diagram ot the 
right-hand column has E 1 = 0 and Y -- .50, the middle dia- 
gram E 1 = 0.1 and Y = .50, and the bottom E = 0 and 
Y = .20. Area A indicates populations that are totally homo- 

zygous AA ; B--homozygous aa; C--with heterozygotes 

The boundaries between populations which are 
completely homozygous (A and B) and those main-  
taining heterozygotes (C) are given by  

WAA = K  
W,s = K .  

Within those populations tha t  are completely homo- 
zygous the boundary  between those all homozygous 
AA(A)  and those all aa(B) is given by  

WAA = W ~  where WAA ~ K and Wa~ ~ K 

Since K determines the boundary  between equi- 
librium populations maintaining heterozygotes and 
those consisting entirely of homozygotes, the evo- 
lut ionary impact  of the fusion mechanisms and 
linkage to the centromete can be evaluated in te rms 
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of their effect on K. Factors which increase K en- 
hance the maintenance of heterozygotes in the sense 
tha t  the conditions for R,q ~ 0 are broader for a large 
K than for a small K. Similarly factors tha t  diminish 
the value of K hinder maintenance of heterozygotes 
since in general stronger selection is required to yield 
R ~ 0 .  

Noting tha t  K = E 1 Y + E 2 (t --  Y/2) and 
E~ + E,  + E 3 = 1, we see that  for fixed Y and E 1, 
K decreases as E 3 increases. Thus, the presence of 
gamete duplication puts an added stress on the 
system in maintaining heterozygotes. When E 3 and Y 
are fixed and 0 ~ Y ~ 2/3, K increases as the pro- 
portion of central fusion increases. Since 0 ~ Y 

2/3, central fusion in general enhances mainten-  
ance of heterozygotes while terminal fusion hinders 
it. When Y = 2/3, K = 2 (1 --  E~)/3 for all values of 
E 1 and E 2. Thus for loci tha t  are randomly recom- 
bining with their kinetochore (Y = 2/3 ) the propor- 
tion of central and terminal  fusion has no effect on 
maintenance of heterozygotes. Similarly, when 
E 1 = (1 - - E 3 ) / 3  (random fusion of the pronuclei in 
those eggs undergoing central of terminal fusion) 
K = 2 (1 --  E3)/3 so Y has no effect on maintenance 
of heterozygotes. Finally, for fixed E 3 and E~ with 
E 1 ~ (1 - -  E3)/3, K increases as Y increases, but  for 
E 1 ~ (1 - -  E3)/3 K decreases as Y increases. Thus, 
when the proportion of terminal to central fusion is 
greater than 1/2 loci loosely linked to the kinetochore 
have larger K' s  than closely linked loci, but  when 
central  fusion is more than twice as frequent as ter- 
minal fusion the closely linked loci have the larger 
K's .  The extreme case of this is when a locus is abso- 
lutely linked to its kinetochore and diploidy is alCvays 
restored by  central fusion. As Carson (1967a) has 
noted, these conditions can yield a state of permanent  
heterozygosity;  i.e. K = t. 

K can also be thought  of as an inherent decay rate 
of heterozygotes in the absence of selection when 
selective forces are large enough to yield R,q ~ 0, 
the decay of heterozygotes is gradually dampened 
until it is zero. I t  is important  to note that  even if 
selection is not strong enough to result in R,~ ~ 0 
the decay of heterozygotes will be slower than the 
decay predicted by  K alone. 

Est imat ion  
To use the model to predict reali ty and to test  

hypotheses it is first necessary to estimate the critical 
parameters  of the model. A frequent difficulty in 
estimation is tha t  there are more parameters  than 
observations. In some cases it is possible to use prior 
knowledge about the system to eliminate some para- 
meters;  in other cases a composite parameter  tha t  is 
estimable directly is all that  is actually needed. The 
following examples will illustrate these points. 

One parameter  in the model tha t  is of major  inter- 
est is E3, the probabil i ty of gamete duplication. Since 
gamete duplication results in total  homozygosity,  

isogenic lines in which all individuals are genetically 
identical can be formed. For example, the probabil i ty 
that  a stock of parthenogenetic Drosophila mercato- 
rum formed after n single female generations is not 
isogenic is (1 - -  E~) n. Thus a knowledge of E 3 is useful 
in forming isogenic stocks. 

As demonstrated by  Carson et al. (t969) insight 
into the amount  of gamete duplication can be gained 
by observing the proportions of heterozygous and 
homozygous offspring from virgin heterozygous fe- 
males. They used bridge stocks (see Carson, t967b) 
to obtain parthenogenetic females heterozygous for 
one or more visible, recessive markers. These females 
reproduced parthenogenetically and those offspring 
which were potential ly heterozygous at one or more 
loci (i.e., offspring showing the recessive phenotype 
for all markers  were excluded) were tested. Hetero- 
zygotes at one or more of the marker  loci would have 
to come from central or terminal fusions, but  homo- 
zygotes for all markers  could be produced by  all three 
mechanisms. Hence E 3 was est imated by  taking the 
proportion of homozygotes for all markers  minus a 
reasonable guess as to how many  the homozygotes 
were actually produced by  central or terminal fusion. 
Depending upon the number  of possible heterozygous 
markers, 1% to 6.2% of the tested offspring were 
heterozygous for at least one marker.  On this basis 
they concluded tha t  over 90% of the eggs developed 
by gamete duplication. 

i t  is possible to use the model presented here and 
other facts that  are known about genetic systems to 
refine the estimate of E 3 using a design similar to the 
above. 

To estimate E a in the parthenogenetic stock S-l-Ira 
(see Carson, t967b), a bridge stock Br7-S-v pm vl was 
formed that  is genetically very similar to S-l-Ira 
except for three unlinked autosomal markers (ver- 
million, plum and veinless) and loci closely linked to 
them. S- l - Im females were mated  to bridge males to 
produce heterozygous females which are then allowed 
to reploduce parthenogenetically. All these partheno- 
genetic offspring are then scored for homozygosity at 
all three loci. 

The probabil i ty tha t  a fly produced by a hetero- 
zygous female will be homozygous for all three un- 
linked markers  is 

E3 -/- E1 (1 --  Vl) (1 --  W2) (1 --  Y3) -[- 

+ E2 Y1 Y2 Y3/8 = G' 

whine Y~, Y2 and Ya aIe the probabilities of recom- 
bination with the kinetochore for the three loci. 
Lett ing N be the total  number  of offspring and X the 
observed number  of triple homozygotes, then the 
likelihood of X is 

/(X: Y1, Y2, r3, El, E3) = (N) (G,) X (1 G,)X-x  . 

Unfortunate ly  it is impossible to estimate E a from this 
by procedures such as max imum likelihood because 
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the values of Y1, Y~, Ya and E 1 are unknown and 
affect X. However some information about these 
parameters and their effect on X does exist and this 
can be used to help get an estimate of E 3. 

First, the model developed tells us that  for any 
given value of E a, the combination of E a and E 2 that 
results in producing the most homozygotes is E 2 = 0. 
In this case a much larger percentage of the observed 
homozygotes would have to be attr ibuted to terminal 
fusion and less to gamete duplication than under any 
other combination of E 1 and E 2. Therefore Et = 
= (1 - -E3)  with probability one corresponds to a 
least favorable distribution and amounts to estimating 
E3 under the worst possible conditions. Such an 
estimate would tend to under estimate E s, but a con- 
servative estimate is more desirable than an over 
estimate in folming isogenic stocks. Using this prior, 
one obtains 

[(X: Y1, Y2, Ya, E3) = ( N )  (G) x (t -- G) N-x  

where G = E 3 + (1 -- Ya) (1 --  Y2) (1 -- Y3) (l--E3). 
For a prior on the Y's,  we first note that  since the 

markers are untinked the Y's are independent. Y can 
range from 0 (absolute linkage to the kinetochore) to 
2/3 (random recombination with the kinetochore). 
The markers used are all on major autosomes of D. 
mercatorum. Since it is known in many Drosophila 
species that  the chromosome arms of the major auto- 
somes are about 50 to 55 map units long, reasonable 
priors for the Y's would be independent and identic- 
ally distributed uniforms on 0 to 2/3. 

Finally E 3 itself can vary from 0 to t. Maximum 
ignorance of the value of E 3 will be assumed, so the 
prior on E 3 is a uniform on 0 to 1. An estimate of E a 
can now be obtained by taking a nmmatized expected 
value of E 3 given the data;  hence 

1 2/3 2/3 2/3 
f f f EGX(I - -G)N-XdYldY2dY~dE3 

E3(X ) o o o o 
= i 2/3 2/32/3  

I I .[ I GX(l --G)N-XdY~dY 2dY adE 3 
0 0 0 0 

The form of the above estimate is actually an exten- 
sion of a type of estimate known as the Pitman esti- 
mate. The Pitman estimate was first derived to 
estimate location parameters (e.g. the mean of a nor- 
mal distribution) but can be extended to estimate 
other types of parameters such as Ea. 

The evaluation of this estimator by normal numer- 
ical intergration techniques is very costly; therefore 
an alternative procedure of Monte Carlo integration 
given in Hammersley and Handscomb (1964) is 
used. Consider first the one dimensional integral 

1 

o = f / ( x )  d ( x ) .  
0 

If -~1, ~, . . . . .  ~, are independent random numbers 
uniformally distributed between zero and one, then 

b 1 n-t 

1=1 
is an unbiased estimator of 0. 

The situation here is four dimensional, but  essen- 
tially no different. Sets of four independent random 
numbers are generated -- three being uniform 0 to 
2/3 and one uniform 0 to 1. The estimator of E 3 be- 
comes 

E~(X)  = 

t000 
B3jLG(YI j ,  Y2j ,  Y3j)I  x !1 - - G ( Y I j ,  Y2j ,  Y3j ,  E3j)] N - X  

t = 1  
t 000 
,~ [G(Y~i, Y2j, Y3i, B3i)] x [~ --G(Y~ i, Yzf, Y3i, E3i)] u-X 

t = 1  

where (YIj, Y2i, Y3j, E3j) is a set of random numbeIs. 
The estimators of the numerator and denominator 
are unbiased, but the ratio of these estimators is a 
biased estimator of the ratio. This bias will also 
underestimate Ea. 

In an actual experiment heterozygous F 1 females 
from the cross BrT-S-v pen vl males X S-l-Ira females 
produced at total of t I0 offspring, t07 of which were 
homozygous at all three marker loci. The estimate 
of E 3 is 

E3(X) = .94 �9 

This estimate is in agreement with the conclusion 
given in Carson et al. (1969) that over 90% of the eggs 
develop by gamete duplication. 

The fundamental parameters of the model are 
El, E2, E 3 and Y, but if we are interested in the rate of 
decay of heterozygosity it is not necessary to estimate 
all of these but only 

K = E  1(1 -- Y)/2 + E ~ Y / 4 .  

I t  is very important  to measure K accurately if one 
desires to detect selection since, as will be shown in 
the next section, it is necessary to treat K as a con- 
stant in testing for selection. 

Since K is the decay rate of heterozygosity in the 
absence of selection, it is best measured under con- 
ditions that  minimize selection such as raising the 
flies under low densities in a uniform environment, 
sampling as early as possible and performing a one 
generation experiment. A one generation experiment 
is desirable because small selective differences are 
magnified over several generations. Also, in D. 
mercatorum it is possible to obtain isogenic partheno- 
genetic and bridge stocks so that  the stocks used in an 
experiment can be very nearly genetically identical. 
Thus there are no hereditary differences in fecundity 
in a one generation experiment and the only place 
where selection can enter is the viability of the zy- 
gotes to the time of sampling. This would also make 
replicates in different bottles true replicates since 
there would be no genetic background effects. There- 
fore an optimal design would be to create a F 1 hetero- 
zygous female stock by crossing isogenic bridge males 
to isogenic impaternate females, raise the F 2 impater- 
nate offspring under optimal conditions and sample 
as early as possible. Under these conditions, the 
model would predict that  if N flies were sampled from 
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each bott le the number  of heterozygotes in the i th 
bottle, Yi,  would be 

Y i = K N + ~ i  i = 1 , 2  . . . . .  r 

where ~i is a random error term and r the number  of 
bottles. 

The distribution of ~ will now be determined. Since 
the initial population is entirely heterozygous it will 
produce zygotes in the proportion of K heterozygotes 
to t - - K  homozygotes. From this zygoid pool in 
each bott le  N flies are drawn at random and hence 
the distribution of Yi is binomial with mean K N and 
variance N K (t - -  K). Now ~ = Y~ --  K N  and by  
the central limit theorem for large N 

& 

V~-K (1 -- K) 
Therefore 

where 
~i ~ ~ (0, a ~) 

~ ' = N K ( I  K ) .  

The Gauss Markoff est imator  of K is 

k i = 1  
r N  

and 

t ~" Var Yi  Var fi2 = a~ - -  r2 N2 ~=t 

K (~ - K )  
r N  

1 
Since K < I ,  K (t - -  K) ~ - s o  

1 

~k < 2 V ~ "  

From the normali ty  a 95 % confidence interval  would 
be 

K 4 - 2 a k  

so with at least probabil i ty  .95, the true K will be in 
the interval  ( K - -  t / / r  N ,  K + l / ( r  N) .  Since K 
will be t reated as a constant in the next section, it is 
impor tan t  to get an accurate estimate. If  it is desired 
to get K 4- x, the total  number  of flies needed to be 
sampled is at the max imum f i x  2. For example, if 
x = .02, r N = 2500. 

However  there is strong reason to believe E 3 ----- .90 
or larger. Since K ~ ( 1 -  E3), one can be fairly 
confident tha t  K ~ .10 and therefore K (t - -  K) 

.09. Under these conditions ak ~ . 3 / / r  N and it is 
only necessary to sample 900 flies to obtain 2 ak ~ .02 
and a sample of 2500 flies would yield 2 ak ~ .012. 

The knowledge about  the value of E 3 can also be 
used to modify the estimate of K itself. K can theo- 
retically take on any value from 0 to 1, but  the experi- 
mental  evidence indicates tha t  it will be between 0 
and .1. We can therefore put  a prior distribution on 
K tha t  gives most of its mass to the interval  (0, .1). 

A prior tha t  accomplishes this is the beta  distribu- 
tion H ( K )  = fi(3/320, 57/320) (K) which has a mean 
of .05 and a variance of .04. Using this prior H ( K )  
one can obtain the Bayes estimate of K with squared 
erroI loss as 

Y~ + 3/320 
2~ = i=t 

r N + 60/320 

I t  is obvious tha t  for large r N the two estimates will 
give nearly identical results. Furthermore,  a 95% 
confidence interval  (~ ~ K ~ /3 )  is given by  

f T ( K i Y  1 . . . . .  Y , )  d K  = .95 (1) 
c~ 

where 
f (Y1  . . . . .  YrlK) H(K) 

T ( K I Y ~  . . . . .  Y , )  - -  , 
f f ( Y ,  . . . . .  Y ,]K)H(K) dK 

0 
= K ' S Y r 1 7 6  _ K ) r N - - X Y i - 2 6 0 ] 3 2 0  

This is a beta  distribution on K and tables exist for 
it. The values of ~ andf l  are chosen to make (1) true. 
I t  is convenient to choose them in a symmetrical  

fashion so ~ = / ~  - -  # and/3 = / s  + #. 

Comparing Hypotheses 

One of the major  problems in population genetics is 
the role of selection in the maintenance of genetic 
variabili ty.  One reason there is so much controversy 
in this area  is tha t  it is often difficult to sort out the 
effects of inbreeding, effective population size, mi- 
gration, non-random mat ing and other parameters  
from selection. As already stated, parthenogenetic 
populations of Drosophila mercatorum could prove 
useful in studying this problem. Consequently it is 
impor tant  to develop statistical procedures to 
selection in parthenogenetic strains. 

To test  for the presence of heterosis consider the 
model in which a parthenogenetic population of D. 
mercatorum of size N with discrete generations is 
followed at a marker  locus for several generations 
with the following fitnesses 

Genotype A A  A a  aa 

Fitness 1 I + s t 

1 
xe~ = (t - K) 

(1 + s) K --  1 

When (t + s )  K > I ,  X e q > 0 ,  but  when (t + s )  
K ~ 1, there will be no heterozygotes at equilibrium. 
However, selection will re tard  the decay of hetero- 
zygosity if s ~ 0. 

If  such a population is followed for n gnerations a 
random sequence is generated X = X 1, X 2 . . . . .  X,~} 
where X~ is the number  of heterozygotes at generation 
i. The first step in deriving tests to detect selection 
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is to  obtain  the joint  likelihood of such a sequence 
when s = 0 and when s ~a 0. Let  the initial popula-  
t ion be complete ly  he terozygous  so X 0 = N. Then in the 
absence of selection the  next  generat ion is chosen 
from the zygoid pool with probabi l i ty  K of being he- 
te rozygous  ; therefore 

N x 
/ ( X l )  = ( x 1 ) K  ~ ( t - - 1 { )  N-X* 

and in general  

l ( x i l x i _ ,  . . . . .  G )  = l ( x i  l x i _ , )  = 

(1) (, ,c>,)=, .  
Using 

I ( X i ,  x i _ , / x i _ =  . . . . .  X1) = 

/ ( X i l X i _ l  . . . . .  X~) / (X i_ ,  IXi-2 . . . . .  X , )  

the  likelihood funct ion when s = 0 is obta ined  as 

L o ( G  . . . . .  x n )  = 

u [ N \ I K X i _ I \ X I I  1 K " - " 

Similarly when s ~ 0 

L,(x,, +sl)x, 
. . . .  i=, \ x i ]  ~ N ~  ~ ~ _ - - ,  x 

( K X i _ , ( 1  l i - s ) ) N - - X ' = h  (I-~-S)  X` 
x I - N - 4 - , T K - x ~ ,  (x ~ ~ R x i - , )  x i--1 

X N ( N ) ( K X i _ I ) X i  ( N - -  K X i _ , )  

Notice t h a t  in bo th  likelihood funct ions K is 
t r ea ted  as a known constant .  This is necessary be- 
cause K and s are not  est imable f rom the  same da ta  
set since they  can confound each other.  For  example,  
a popula t ion  with a small K and s ~ 0 could behave 
similarly to a popula t ion  with a larger K and no 
selection. Because K is t rea ted  as a cons tant  it is 
ve ry  impor t an t  to obtain  an accurate,  independent  
es t imate  of K using the procedures of the preceding 
section. 

I t  is easy to obtain  a m a x i m u m  likelihood est imate 
of s f rom the likelihood funct ion by  different iat ing it 

l(l)l 

L0 

] 1 i 12 

Fig. 2. Hypothetical likelihoods of an Index function I(X) 
under two different hypotheses; H 0 and H I. Explanation in 

text 

with respect  to s and set t ing this equal to zero. One 
obtains  

n ~ X i - I  
/(s) = Z x ,  - (i + ~) t c  ~Z' s K x i - ,  = o . 

An initial approx imat ion  when s is small and hence 
s K X i - t  

t + N - - 1  is 

50 = i - - ,  i - - I  

K ~ X i - I  
i=l 

A more exact  solution of ~ can be obta ined  by  the 
Newton-Raphson  me thod  using the same initial 
approximat ion  and the  i terat ion formula  

A ~ J G )  
Sr+ ' = "r f,(~r) 

_ _  i 3 f f  ~ -  I 

N I + ' ~ r K  i - t  2 

X i - I  
- -  t~ s'r K X i - I  " 

i=1  I @ 
N 

This i terat ion is cont inued unti l  the  sr's converge to 
the desired level of accuracy.  

Despite  the  desirabil i ty of obta in ing an est imate  
of s, it is more  impor t an t  to decide whether  or not  
selection is operat ing on the  sys tem;  i.e. one mus t  
test  the hypothesis  of selection versus the  hypothes is  
of no selection. A common  me thod  of deciding which 
hypothesis  is correct  is to  form an index funct ion of 
the da ta  and calculate its p robabi l i ty  dis t r ibut ion 
under  the null hypothes is  s = 0. One would reject  
the null hypothes is  when the  probabi l i ty  of the ob- 
served value or larger values of the index funct ion is 
sufficiently small;  say reject  H 0 when I ( X ) ~ i  
where P ( I ( X )  > i) = cc A serious l imita t ion of this 
approach  is t ha t  it ignores the  likelihood of I ( X )  
under  the  a l ternat ive  hypothesis .  This can some- 
t imes lead to paradoxical  conclusions. For  example,  
consider the hypothe t ica l  s i tuat ion given in Fig. 2 
where L 0 is the likelihood of the  index funct ion I 
under  a null hypothesis  and L 1 the likelihood under  
an a l ternat ive  hypothesis .  

One rejects H 0 when I ~ i where P ( I  < i) = ~. 
If  an exper iment  was per formed and the observed 
value of I was 11, the test  would lead us to accept  
H 0 even though  it is much  more  likely to obta in  I~ 
under  H 1. On the o ther  hand,  if the  observed value 
was 1~ the test  would lead us to reject  H o even though  
it is more likely to  get 12 under  H o than  H v Unfor-  
t una te ly  s i tuat ions such as this could easily arise 
when test ing for the presence of selection since m a n y  
experiments  have shown tha t  values of s t end  to 
cluster a round  0 and selection often reduces genetic 
drift  yielding a likelihood funct ion with most  of its 
mass concent ra ted  near  s = 0. 
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In  order to avoid such difficulties the likelihood 
ratio or odds for the two hypotheses  can be calcu- 
lated. Such an approach  would give which hypo-  
thesis is mine  likely and by  how much and hence 
gives the exper imenter  more informat ion on which 
to base a decision. However,  in our case we are com- 
paring a simple hypothesis  s = 0 against  the complex 
hypothesis  s # 0 which has an infinite number  of 
possible values for s and hence an infinite number  of 
likelihood functions.  Therefore,  to compare  the 
likelihoods it is first necessary to elinfinate somehow 
the dependence upon s of the likelihood funct ion 
when s :/: 0. One method  of accomplishing this is to 
find a sufficient stat ist ic for s since the likelihood 
given the sufficient s tat is t ic  would be independent  
of s. Unfor tuna te ly  a sufficient s tat is t ic  fm s has not  
been found. Another  wa y  to eliminate s is to  investi- 
gate  the likelihood ratio in the vicini ty  of s = 0 and 
ignore the rat io under  other  values of s. The ratio- 
nale for this is tha t  most  confusion will arise when s is 
close to zero and it is therefore desirable to device a 
test  which has opt imal  propert ies in t ha t  vicinity.  A 
th i rd  approach  is to use prior knowledge about  the 
dis t r ibut ion of s and weight  the likelihoods with this 
distr ibution.  Bo th  of these la t ter  two approaches are 
used. 

The first test  to be derived is the locally best  test  
in the vicini ty  of s = 0. The basic principle of a 
locally best  test  is to  find a test  with m a x i m u m  
power at some point  in the parameter  space out  
of all tests of the same size at  tha t  point.  Consider 
tes t ing the hypothes is  Ho: s ~  0 against  //1: s ~ 0. 
If  a test  is wri t ten as 

9(X) = {t0 otherwiseif the test  funct ion is in the critical region 

meaning  reject the null hypothesis  with probabi l i ty  
one if the test funct ion is in the critical region and 
accept  it with probabi l i ty  one if it is not,  then the 
power funct ion can be wri t ten as 

G(s) = E, ~(x)  = f~(x)  / (x :  s) a x  
where / (X:s)  is the probabi l i ty  densi ty  function of 
the da ta  X assuming s is the true value of the para-  
meter.  We also assume the dis t r ibut ion of s is such 
tha t  one cont inuous  derivat ive m a y  be passed beneath  
the integral  sign 

0 
G(s) = fq~(x) ~ / ( x :  s) , i x .  

A test  % for Ho:s ~ 0 against  H~:s ~ 0 is said to 
be the locally best  test  if for any  other  test  ~v for which 
fl~(0) : fl~,(0) we have fi~(0) ( fl'~0(0); i.e. the locally 
best test has m a x i m u m  slope of the  power funct ion 
at s = 0 out  of all tests of the same size at  s = 0. 

I t  has peen shown (see Ferguson, t967) tha t  the 
form of the locally best  test is 

%(X) = if L(X:s = O) > C(~, n) 

otherwise 

where C is a funct ion of n and ~, the size of the sample 
and the size of the test  respectively.  Now 

L~(Xls) _/~ 0 + s)X, - H(s) 
I.o(X) ( s K2~-, ) i=1 I + - N 

n n [ s K X i _ I \  
~' X~ - -N Z In 

H(s) = (1 + s) i : t  e i=, ~ 1 + - ~ ] .  
So 

n n 

H'(s)l,=o -- • Xi  -- K ~ X i - t  �9 
i = t  i ~ t  

Hence the locally best  test  is 

if X i -- K ~, X i - i  > C(o~, n) 
%(X) ;= "= 

otherwise 

In  order to  evaluate  C for a given n and ~, it is 
necessary to find the probabi l i ty  dis t r ibut ion of 

( X i -  K Xi - I )  or some funct ion of it. As is 
i = l  

shown in the appendix  

(X~ - K X i -O  
i = 1  ~ V 

N X K~(I - K ~) 
i=1  

is approx imate ly  d is t r ibuted as a normal  with mean 
zero and var iance one. Therefore the  locally best  test  
is to reject H o when 

v > ~(~) 
where q)(~) is a funct ion of :r only and is obta ined  
from a s tandard  normal  dis t r ibut ion table. 

Another  way  of dist inguishing between s = 0 and 
s ~: 0 is to calculate "odds"  of a given da ta  set and 
use a prior  dis t r ibut ion on s to weight  the likelihoods. 
Before deriving the  odds some similarities between this 
approach  and the  more usual l ikelihood ratio test  
mus t  be pointed out.  For  s implici ty assume for the 
present t ha t  we are interested in dist inguishing be- 
tween two simple al ternatives,  H 0 and H a. The usual 
likelihood ratio test  is of the form 

�9 LI(X) 
reject  H o wnen Lo(X ) ~ k 

where Lo(X ) is the  likelihood under  H o and La(X ) the 
likelihood under  H a. Now let p be the prior probabi-  
l i ty t ha t  H o is t rue  and I --  p the prior probabi l i ty  
t ha t  H~ is true. Then  the odds using these priors are 

(1  - -  p )  L ~ ( X )  

P Lo(X) 
One would tend to accept  t ha t  hypothesis  which is 
more likely, i.e. reject H 0 when ( 1 -  p ) L I ( X ) /  
p Lo(X ) /~ t. Notice tha t  bo th  " tes t s"  are identical  
when p = k/(t + k). This i l lustrates an ext remely  
impor tan t  point  --  t ha t  even the usual likelihood 
ratio test has an implicit  prior dis t r ibut ion on the 
hypotheses.  Thus the fact  tha t  a prior dis t r ibut ion 
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has to be chosen to calculate the odds is not a weak- 
ness of this approach, but  ra ther  a s t rength since 
outside information can be used to chose a prior tha t  
is more realistic than  the arbi t rary  prior implicit in 
the likelihood ratio test. 

In the case of distinguishing between s = 0 and 
s :fi 0 it is first noted tha t  s can vary  from --  1 (hetero- 
zygote lethal) to cx~ (homozygote lethal). Many stu- 
dies have been done on measuring selection coeffi- 
cients (Dobzhansky and Spassky, t954; James,  t959; 
Jain and Allard, 1960; Muller, t950; and Timofeeff- 
Ressovsky, t940), and the outcome of these studies 
suggests tha t  most  selection coefficients for a given 
locus are close to zero while lethals and semi-lethals 
are relatively rare. Therefore a realistic prior on s 
would be one which gives most  of its mass in the 
vicinity of s ---- 0 and gives much less mass to the 
semi-lethal and lethal regions. A prior distribution 
tha t  accomplishes this is a gamma distribution on 
t + s. Therefore the prior on 1 + s = t is taken to be 

tr--I e - - t  
H ( t ) -  r(r) 

The mode is at s = 0 when r = 2. 

In general the odds have the form 

o(x)  = Lo(X) 
oo 
I L~(XtS) n(S) dS 

--1 

I 

~H(S) II(S) dS 
--1 

If  N is large 

o(x )  - 
1 

n 
oo . e-SK_Zt(xi_l)u(s)as 
f ( l  + s) Z x ~  

--1 i = t  

Using the chosen prior with r = 2 

0(X) e-a (8 + 1) ~+2 F(2) _ e-~ (8 + 1)~+2 

n 

w h e r e e = Z X i a n d f l = K  ~ Xi - l .  When H 0 is 
i --1 i = t  

t rue 0~ --  ft. In this case the odds are 

e-~ (8 + 1)~+~ o (x )  - 
( 8 +  ~)! 

If  we fur ther  assume tha t  the experiment  has used a 
population size and continued long enough to insure 
tha t  fl is large, Stirling's approximation can be used : 

(fl + t ) !  = [ /2H(f l  + 1)t~+3/2 e -~-1 

6: 
o(x )  - V21 / (~  + 1)1~2 

Since it is assumed/5 is large and e/(2 H > 1, the 
odds will be very much greater  than one. Thus when 

--  fl the odds are great ly in favor of H o as expected. 
Notice that  the odds, the locally best test  and the 
es t imator  of s all depend on the data in a similar 

fashion since the locally best test  is to reject H 0 when 

I/N 2~ Ki (l -h i ) -  > ~b(0r and 30 --  8 
Basically both tests measure the "goodness of fi t" 
of the data  generation by  generation with its predicted 
value under the null hypothesis. 

These tests and the estimation procedures of the 
previous section provide a statistical f ramework to 
deal with one locus data  and suggest optimal  ex- 
perimental  designs for detecting selection in partheno- 
genetic populations. The appropriate  stocks of 
Drosophila mercatorum are presently being formed to 
carry out such experiments. However, one limi- 
tat ion of the work presented here is tha t  it deals with 
an individual locus as the unit  of selection, but  this 
may  be an erroneous concept (see Franklin and 
Lewontin, 1970). I t  is therefore desirable to extend 
this analysis to two loci. Asher (personal communi-  
cation) has recently developed a two locus deter- 
ministic model for parthenogenetic populations. The 
statistical implications of this model with respect to 
estimation, detection of heterotic selection, and 
measurement  of correlations between non-alleles are 
currently being investigated. The development of 
these will yield a very thorough statistical frame- 
work which could deal with m a n y  questions and 
further  emphasizes the usefullness of parthenogenetic 
populations in approaching basic evolutionary plob- 
lems. 
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Appendix;  
Derivation of  the Distribution of  U 

The joint density of X 1, X 2 . . . . .  X ,  under H 0 is 
given by  

/(Xl,  X~ . . . . .  X . )  = 

[[ ( N ) ( K  Xi - , /N)X '  (t -- K X i _ , / N ) N - x ' .  
i = 1  X i  

For large N the binomials can be approximated  by  
normals 

/ ( X  1 . . . . .  X n )  = ( 2 / [ K  X i _  1 (1 - -  K X i _ l l X ) )  -1[2 x 

(xi  - K X i -  1 ) 2 
X e -  2KXi - I (1 - -KXi - l iN )  

Let 
Xi -- K Xi - t  

Y , -  
g ~  

This is a one to one transformation,  and the inverse 
of the t ransformation is 

X ; = V N Y , + K ~ / N Y , _ I + - - .  + K  '-IV~NY1 + 

+ K i N .  
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The  J a c o b i a n  of the  t r a n s f o r m a t i o n  is N ' .  Thus  

[K Yi - I  K Yt-_ 
/(Y1 . . . . .  Y,,) = I I  2:z + - + . . .  4- 

• exp  / K  Y i - ;  . . . . .  
2~ ~ - - -  + . . .  + K~ 

and  as N gets  large  

/(Y1 . . . . .  Y . )  ffI [2 rr K i (t - -  K ' ) ] - ' / 2  • 
i - - I  

- y ~ , .  

exp [2 K / ( I -  K,')] ' 

F r o m  the  cen t ra l  l imi t  t heo rem 

/(Yi) ~ (2 H K '  (1 - -  Ki))  - ' /2  exp  ( - -  Y~/2 K i (1 - -  K i ) ) .  

Therefore  

/ ( Y 1  . . . .  , Y . )  = I }  / ( Y ~ )  . 
i - - I  

Since the  jo in t  dens i ty  is a s y m p t o t i c a l l y  t he  p r o d u c t  
of t he  margina ls ,  the  Y ' s  are  a s y m p t o t i c a l l y  inde-  
p e n d e n t  *?(0, K i (t - -  Ki)) .  

Le t  7 " =  ~ Yi. We  can use the  cha rac te r i s t i c  
i - - t  

funct ions  of the  Y 's  and  the i r  a s y m p t o t i c  i ndepend-  
ence to ca lcu la te  the  d e n s i t y  of T. 

n 

Wr(m)  = H VJvi(m) 
i - -1  

where 

SO 

Wg~(m) = e -II2Ki(l-l~'')m' 

n 
- - l /2m 2 ,~ K i { i - - K  i} 

~Or(m ) = e i=t 

which impl ies  t h a t  

,) / (T)  = r] K ~ (1 - - K  ~ 

Hence, if U =  T / ~  ~ Ki  (l - 

/ ( u )  = ~ ( o ,  ~) . 
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