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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The research presented in this dissertation is concerned with two
closely related problems which are encountered in computational mathe-
matics. They are the determination of the unconstrained minimum of a
function £(x) : DCR" + Rl and the determination of a root of a
function F(x) : DcR™ + R"; that is, an x € D such that F(x) = O.
As is usual R" denotes the space of n-tuples of real numbers.

Although both of these problems have been extensively investigated
over the years they deserve further research for at least two reasons.
First, because many practical computations reduce to these problems,
even a modest improvement in solution techniques can result in a large
reduction in computational cost, Second, there exist similarities in
certain current algorithms which suggests that a unified theory can be
developed for these algorithms. Such a theory, besides clarifying
existing algorithms, can be expected to yield insight into the develop-
ment of new algorithms.

The functions treated will be assumed to have a Taylor series
expansion. For instance, in the root finding problem

F(x) = F(xo) + J(xo)(x - xo) + h.o.t. (1.1.1)

where J(xo) is the derivative of F at x., and h.o.t. represents the

0
higher order terms. A similar expansion for the gradient of f(x)
pertains in the minimization problem. In all the algorithms to be
considered it is implicitly assumed that, when the higher order terms

are neglected, the Taylor series expansion gives rise to an estimate of

the root of F(x) given by



X=X, - J'l(xO)F(xO). (1.1.2)

.

Rather than directly evaluating and inverting the matrix J(xo) as in
the Newton method these algorithms estimate J_l(xo) by determining a
linear transformation which, under appropriate conditions, transforms a
set of vectors u, = F(xi) - F(yi) into the set of vectors

v, = X, - Vi i=1,...,my with m <n. From equation 1.1.1 we see that

1 1

if the higher order terms are negligible, if m = n, and if J(XO) is
nonsingular then this linear transformation is J_l(xo). Notice that the
existence and uniqueness of such é transformation is not guaranteed. This
leads to convergence difficulties in many algorithms., In certain minimi-
zation algorithms it is necessary for the objective function to be
quadratic, that is for the higher order terms to be identically zero,

in order for the algorithm to determine such a linear transformation.

The set of vectors u, and Vi i=1,...,m, can be viewed as
forming a data set containing information about the local character of
the function F(x). The algorithms which have been developed to date
consider data sets which are formed either by refreshing the entire data
set at each stage or by generating one data pair (ui,vi) at each stage
and using data generated in the previous m-1 stages of the algorithm.
Those algorithms which refresh the data set at each stage, such as
certain secant methods for root finding, demonstrate nice theoretical
terminal rate of convergence properties (ORT 70, section 11.3) bul may
not converge globally since at some stage a matrix may not exist which
transforms the vectors uy into the vectors v;. Also these algorithms
require a large amount of computation at each stage since the function

must be evaluated m = n times.

The sequential methods which generate only a single pair uy and



vy at each stage require far less computation. However, in many cases
these methods cannot be shown to converge either globally or locally
(ORT 70, theorem 11.3.5). Davidon's minimization algorithm is one
sequential algorithm which can be shown to converge superlinearly if the
objective function is twice differentiable and if the eigenvalues of H(x),
the second derivative function or Hessian of f(x), are greater than some
positive constant (POW 71). However, Davidon's algorithm computes a matrix
which transforms the vectors us into the vectors Vs only when the
objective function is quadratic. Several other sequential minimization
algorithms have been proposed (MUR 70, FLE 70, PEA 69, BRO 70, 70a)
which, when the objective function is quadratic, compute a matrix which
transforms the uy into the v;. No extensive theoretical results have
been presented for these algorithms when the objective function is not
quadratic. Further, many of them exhibit a tendency to have convergence
difficulties in practical problems.

The fundamental objectives of this work are: 1) the theoretical
unification of certain algorithms which utilize sequences of data sets.
to estimate the linear transformation J"l(xo) or H-l(xo) and 2) the -
investigation of new algorithms for generating the sequence of data sets.
Some of the material concerning arbitrary data sets may be of value in

other problems which involve the estimation of a linear transformation.

1.2 Organization

In Chapter 2 data sets whose elements are pairs of vectors (uj,v;)
are considered. These data sets are assumed to approximately characterize
an unknown linear transformation. Although the data sets may arise in
the root finding or minimization problem this is not necessary to the

development. For a particular data set the family of approximations to



this unknown linear transformation is characterized in a useful way.
When two data sets have common elements, results are obtained which
characterize the family of approximations based on one data set in terms
of the family of approximations based on the other data set. This leads
to a result which allows the Davidon algorithm and other minimization
algorithms to be viewed in a general framework.

In Chapter 3 the general results of Chapter 2 are applied to existing
algorithms for root finding and minimization. In particular, the
relationship between the secant algorithms for root finding and the
material of Chapter 2 is considered. Also, using the results of
Chapter 2 the properties of a class of minimization algorithms on a
quadratic surface are investigated. This class contains new algorithms
in addition to many existing algorithms.

In Chapter 4 an entirely new class of minimization algorithms is
proposed. This class is constructed to have desirable convergence and
rate of convergence properties while allowing considerable latitude in
the choice of a specific algorithm within the general class. Theoretical
results are presented concerning the behavior of these algorithms on
nonquadratic functions.

In order to verify the theoretical results of Chapter 4 and to
further establish the properties of the new class of algorithms, two
particular algorithms were tested on a variety of objective functions.

A version of Davidon's algorithm is used as a standard of comparison.
The results of these computer runs are presented in Chapter 5.
Chapter 6 summarizes the significant results of the dissertation

and relates the work to results obtained by other researchers.



CHAPTER 2

EMULATION AND APPROXIMATION

2.1 Notation and Definitions

In this chapter a general structure is presented which unifies
many recent algorithms for function minimization and root finding.
Although the unification of these algorithms has been the primary
motivation for this work some of the material may be of value in the
solution of other problems.

We will be concerned with a sequence of sets {Si}, ie Ip, where
the index set Ip is some subset of |, the non-negative integers. The
elements of the sets Si are ordered, and consist of data obtained from
some process such as the evaluation of a function or the gradient of a
function. More specifically each set Si contains a finite number
k(i) > 0 of elements from the product space R™ x R®, n,m > 0, Each
set S; will be viewed as defining a relation on some elements of R™ and
R®. That is u € R™ is related to v € R® under the relation S; if
and only if (u,v) € S;. When not empty the set S; will also be viewed
as a pair of matrices (Ui’vi) whose j_ th columns u, 6 R" and
vy € R! respectively make up the j th element (uj,vj) of S;- Clearly,
if k(i) > o, U; is mx k(i) and Ve is n x k(i). In most cases the
" ordering of the set Si is not important. If the ordering of S; is
significant it will be specified. If S? is any subset of a set S,
then the elements of S? will retain the relative ordering assigned in
S;. This subset will also be viewed as a relation on R x R or as a
pair of matrices (U?,V?) formed as just described for S,.

If s¥ is the empty set then the relation on R" x R™ as well as

1

. X . .
the matrices (Ui,Vi) will be undefined.



The linear space of all linear transformations from R" into R"
will be denoted by |. Uk and Vk will denote the linear spaces of all
linear transformations from Rk into R" and from Rk into R" respectively.
0f course, if elements of Rm, R” and Rk are viewed as column vectors,
elements of |, Uk and Vk have as their concrete representation matrices
of the appropriate size and conversely any matrix of the appropriate
size represents a linear transformation in one of these spaces. In
some instances a matrix will be interpreted as an ordered set of
elements in some vector space where the i th column of the matrix is
the i th element of the set.

By the notation R(A) we mean the,rgnge of the linear transfor-
mation A. By the notation RL(A) we mean the orthogonal complement
of R(A); that is, the set of x € R" such that <X,y> = ? xiyi =0

. . izl
for any y € R(A) where x* and y© are the i th components of x and y
respectively. The notation N(A) will denote the null space of A and
the notation Nl(A) will denote the orthogonal complement of N(A).
By A' or x' we will mean the transpose of the matrix A or the vector x.

In the discussion of Chapter 1, section 1.1, it was seen that if the
data set Si = (Ui’vi) was derived from a root finding or minimization
problem then a linear transformation that takes the columns of Ui into
the columns of Vs is an estimate of the inverse Hessian or Jacobian
matrix. The following definitions formalize this notion in a slightly
more general context. It is assumed that {Si}’ ie Ip’ is a sequence
of data sets with k(i) elements in R™ x R", that Vk(i) is equipped
with some norm denoted ble nk(i) and that /| is some subset of T.

Definition 2.1.1 Ai e | approximates the data set or relation

S; = (U;,Vy) over A iff



‘iAiUi - Vi“ k(i) © KpénA“ Kbi.’ Vi“ (1)’ (2.1.1)

If S, is empty then any A, € A approximates S; over A.

Definition 2.1.2 A, € A emulates the data set or relation

Sy = (Ui’vi) over A iff
A'Uo - . . = . . .
Jau, Vol ey = 0 (2.1.2)
If S; is empty then any A; € A emulates Si over A.

Definition 2.1.3 The sequence {A;} € A approximates (emulates) the

sequence of data sets {Si} over A iff A, approximates (emulates) S,
over A for all i e Ip' |

Definitions 2.1.1 and 2.1.2 can be given a geometric interpretation.
The product space R™ x R® is itself a linear space of dimension

m + n and a linear transformation Ai e T defines a subspace of

m n

R"™ x R" with dimension m whose elements are all the pairs

(u,v) € R™ x R" where v € R® is the image under A of ue R" and
where u is arbitrary. If Upgeee sy is any basis for R™  then the pairs
(ul,Aiul),...,(um,Aium) are a basis for this subspace. A trans-
formation Ai approximates Si over A if the "vertical distance" between
the elements of Si and the subspace defined by Ai is minimized over all
elements of . If all elements of Siblie in the subspace defined by Ai
then Ai emulates Si' By vertical distance we mean the set distance
induced by the normll "k(i) which, of course, weights all elements of

S If the matrix norm " is invariant with respect to the

b
ordering of the columns of the matrix then the ordering of the elements
of S; is of no consequence. However, if the norm is dependent on

column ordering then this vertical distance, and the family of approxi-

mation to S; over it will vary with the ordering of S;. 1In all cases

treated herein the norm " "k(i) is invarient with respect to column



ordering.

It mayrﬁékfhat the data sets Si are better approximated by an
affine transformation than by a linear transformation. That is, there
may exist a pair (Ai’bi) e T x R™ such that

| "AiUi tbe - v | W < "AUi - Vi"k(i) (2.1.3)
for all A € | where e is the row vector (1,...,1). However, this
approximation is only superficially different from the approximation

being considered since

1

A,U. +be = [A,,b.][U.]_ (2.1.4)
11 1 i71 .

Here and in the rest of the text the square brackets denote a parti-
tioning of a matrix. Thus the problem of determining an affine trans-
formation such that R™ + R can be viewed as the problem of determining

+1

a linear transformation such that R"'+ + RP where the matrix Ui is

augmented by the row vector e and Ai is augmented by the column vector
b;.

In the particular case of the minimization and root finding
problems if the elements of S; are obtained by differencing then it is
known, a priori, that -s is an element of Si whenever s is an element
of S;. In this situation a linear transformation is the best approxi-
mation to S, over T.

The existence of an Ai which approximates Si over A is not
guaranteed by the definition. However, the sets J| considered herein
will always contain an épproximating Ai' Since the Ai which approxi-

mates Si over A may not be unique, reference will be made to the set

of A; which approximate S, over A. An A, which emulates S, over A may



not exist. If one does exist it mé&vnot be unié;é, in wﬁich case
reference will be made to the set of A; which emulate S; over A.
Clearly, since an Ai which approximates (emulates) Si over A may not
be unique then neither is a sequence {A;} which approximates
(emulates) the sequence {Si} over ] necessarily unique. Notice that

if the norm " is chosen to be independent of column

by
ordering then the set of A, which approximate S; over T is invarient
over all orderings of the set Si. The set of Ai which emulate Si over
T is invariant over all orderings of S; for any norm " Ilk(i)'
Extensive use will be made of generalized inverses of a matrix.
At this point algebraic definitions of a generalized inverse and the

pseudoinverse are given.

Definition 2.1.4 Let M be an arbitrary n x m matrix. A generalized

inverse (g-inverse) of M (denoted by M ) is any m x n matrix such

that MMM = M.

Definition 2.1.5 Let M be an arbitrary n x m matrix. Eﬁe>pseudo—

inverse (p-inverse) of M (denoted by MY) is the m x n matrix

such that M™M= o, Mt = Mt, (utw)' = M™M anda (uMt)' = mm'.
Some elementary properties of g-inverses are worthy of ﬁote.

1. If M~ is any g-inverse of M then for all x € R(M), y = M x
satisfies My = X

2. If M” is any g-inverse of M the operator MM~ projects vectors
onto R(M) and the operator (I-MM™) projects vectors onto
R'(M). Therefore MM~ is the identity operator when restricted to
R(M) and (I-MM') is the identity operator when restricted to

Rl(M).



-\

- ] -
3. If M” is a g-inverse of M such that (M M) = MM then MM is

1
the identity operator when restricted to N (M).

4, If M is a g-inverse of M such that (M) = MM™  then MM
projects vectors orthogonally onto R(M) and (I-MM ) projects
vectors orthogonally onto Rl(M).

5. If M is a g-inverse of M such that MMM~ = M then Mx = 0

1
for all x € R (M).
6. The p-inverse Mt of M is unique, y = M'x minimizes

t
(x - My) (x - My) and among all vectors which minimize

'
(x - My) (x - My), v = u'x  is the unique vector which minimizes

1
yy.
7. The following identities hold for the p-inverse:

|

M'mMt = M

M't = ut

Mt = M

w'vt b = ot

(u'mt =t
A more complete treatment of generalized inverses is given in (PEN 55),
(PEN 54), (RAO 71), (DES 63) and (ALB 72).

2.2 Approximations

All of the concrete results which follow involve a particular
norm on Vk(i) and on | which will be called a P-trace norm. If M is

an arbitrary element of Vk(i) or | then the P-trace norm of M is
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given by

“MIIP = (trace (M PM))1/2 (2.2.1)
where P is square, positive definite and symmetric. It is easily
verified that this norm is independent of column ordering and therefore
that the results are invariant over all orderings of the elements of
S;. The theorems are stated only for a particular element of the
sequence {S;}. The results can easily be restated for the entire
sequence since by definition a result holds for the sequence {Si} iff

it holds for each element of the sequence.

Theorem 2.2.1 If the norm on Vk(i) is a P-trace norm and the data

set S5; = (Ui’Vi) is not empty then the set of approximations to Sj
over | is the set of A; which satisfy the matrix equation
AU UL = V,U!, ' (2.2.2)
i'i7i i’i
Proof: Under this norm
- = - 1 - 1/2

lau, vi"P (trace (AU, - V,)' P(AU, - V,)) (2.2.3)
Since this function is non-negative, its minima are unchanged if we
deal with "AUi - Vi" %. Clearly uAUi - Viilg is quadratic in the

elements of Ai and differentiable with respect to the elements of Ai'

Therefore A € T is an approximation to S, over T iff

d
= — - ! -
) A trace (AUi Vi) P(AUi Vi)

1

gX "AUi -V “13




12

where g_.f(A) denotes the matrix whose ij th component is the partial

dA
derivative of f with respect to the ij th element of the matrix A.

From the rules for differentiation of the trace function in Appendix I

we have

d : _
5;-(IIA9i - V| %) = 2pav U - 2PV UL (2.2.5)

Since P is nonsingular A; € T approximates S, over T iff

0. (2.2.6)

AUU, - V.U,
iTiti i1
Q.E.D.

Although it seems most reasonable to seek an approximation to Si
over the whole space |, the structure of the problem may lead one to
restrict the class of admissible transformations. In the minimization
problem the Hessian matrix is symmetric everywhere and is positive
definite and symmetric at any isolated minimum. The following theorem
deals with the approximation problem on the subspace T; of symmetric
matrices and on the subspace Tss of skew-symmetric matrices.

Vk(i)

Theorem 2.2.2 If the norm on is a P-trace norm and the data

set Si = (Ui’vi) is not empty then the set of approximations to S,
over Ts is the set of symmetric Ai which satisfy the matrix equation

PA,U,U! + U,U!A.P = PV,U! + U,V'P, (2.2.7)
11 1 11 1 11 11

and the set of approximations to Si over TSS is the set of skew-
symmetric A, which satisfy the matrix equation

PA;U;U; - U;ULAP = PV.U; - ARS (2.2.8)
Proof: Again we may deal with the function "AUi - Vi" g without
affecting the location of any minima. Since ”AUi - Vi" % is

quadratic in the components of A and differentiable with respect to

the elements of A, and since TS and Tss are subspaces of | at any
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minimum Ai of “AUi - Villg restricted to T; (or Tgs) it must be

that
trace (S flau, - v | 2] ra=o0 (2.2.9)
dA i i

A,
i

for all A in TS (or Tss)' This follows since at a minimum the gradient
must be orthogonal to the subspace Ts (or Tss)' Again using the rules

for differentiation of trace functions equation 2.2.9 is equivalent to

requiring that

trace (A.UU -vUu)'PA=0 (2.2.10)
111 11

for all A € Ts (or TSS). Let {A .} be a basis for T; (or Tss)'

K3
Because the trace is a linear operation, equation 2.2.10 becomes
trace (A,UU, - V,U.)'P A =0 (2.2.11)
ii7i i'i I
for all Akj € {Akj}' Let {Akj} be the set of matrices whose kj th

element equals one and all other elements equal zero. Then a basis for
TS is {Akj + Ajk} and a basis for TSS is {Akj - Ajk}' Using the
. . . - 2
basis for Ts we have that at a minimum Ai of "AUi Vi" P
i | ot
eUsUe = U . = 2.2012
trace (A;U;U; - V;UD'P (A + 840 0 ( )

or

1] | I ] L I
t .U,U, - V.U, . U, U, - V.,U. .1, = 0.
race (AlUlUl V1U1) P Ak] + trace (AlUlUl VlUl) PA,p=0

]
(2.2.13)
N . . ' 1
This is equivalent to requiring that P(A,U.U, - V.U,)
i7i7i i'i
be skew-symmetric or that
] ] ] ]

- - V.U.)P = 0. 2.2.14
P(A;U.U; - V.U.) + (a,0.0, V.U)P =0 ( )

A similar argument for Tss completes the proof. Q.E.D.
It is not easy to solve equations 2.2.7 or 2.2.8 either explicitly

or computationally. In minimization algorithms perhaps an even more
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useful set over which to seek an approximation is the set of positive
definite or positive definite and symmetric matrices. If the matrices
are constrained to be positive definite then it is guaranteed that the
search direction will be downhill. A result parallel to theorems
2.2.1 and 2.2,2 has not been obtained for these classes of transformations.
The solution of the approximation problem on other subsets of | is a topic
which is worthy of further research. In this dissertation we pursue in
depth only the approximations to S, over T.

In order to explicitly characterize the family of approximations to
S; over T it is convenient to apply a result from the theory of
g-inverses.

Theorem 2.2.3 The matrix equation BXC = D has a solution for X iff

BB'DC'C = D (2.2.15)
for any g-inverses B~ and C~ of B and C respectively. If a solution
exists then the general solution is given by

X =B DC +Y - BBYCC (2.2.16)
where Y is arbitrary and B~ and C  are any g-inverses.
A proof of this result may be found in (RAO 72).

The following theorem is a consequence of theorem 2,2.3.

Theorem 2.2.4 If the norm on Vk(i) is a P-trace norm and if the data
set §; = (U;,V;) is not empty then the set of approximations to S;
over | is a non-empty linear manifold in | of dimension n x (m - r)
where r is the rank of Us - This manifold is given by the formula
A, = v,ul 4 v - uuh) (2.2.17)
i i°i i i1 : Ter
where Yi is n x m and arbitrary. Further

lv.ufl p, < lv.uf + v - uuhl P, (2.2.18)

with equality only when Y;(I - UiU;) = 0 for any P,-trace norm or T.
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Proof:  Since U; is uniquely defined for any matrix, equation 2.2.17
yields a set of Ai which is not empty. The matrix (I- UiU;)
operating on row vectors in RT projects elements of RM orthogonally
onto Rl(Ui) which is a subspace of R™ with dimension (m - r).
Viewing Yi as n arbitrary row elements of R" the dimension of the
subspace of | formed by Yi(I - UiU;), Y, arbitrary, is nx (m- 1)
which establishes that equation 2.2.17 defines a manifold of dimension
nx (m-r). From theorem 2.2.1, Aj approximates S; over T iff

A.uUl =v.Ul. (2.2.19)
1 1 1 11

Applying theorem 2.2.3, with the p-inverse as the specific g-inverse,

there exists a solution of equation 2.2.19 for A, iff

o ' ' L
v.U.(u,u)" (. u,) = v,u.. (2.2.20)
11 11 11 i7i

However, by property 7 of a p-inverse

v.ul w.untw U') v.us (ut'ut g (2.2.21)
;Y3 (U;040°(0,0.) = v;0; (U3 U;) U,04 $2-

]
v.utu,u,
1111

!

= VOU'.
i’i
Therefore there always exists an approximation to Si over [. Also by

theorem 2.2.3 the set of approximations to Si over | is given by

' "yt ' Tty
Aj = ViUp (UUT + Y (T - U0, (UU)T) " (2.2.22)

|+'+ - '+'+
ViUiUi Ui + Yi(I UiUiUi Ui)

+ +
V.U, (I - .
lUl + Yl(I UiUl)
where Y; is arbitrary. It remains to be shown that ViU; is the

approximation to Si over T of minimum norm under any P;-trace norm on T.



We consider the square of the norm, noting that the minima are unchanged

by the squaring operation. Substituting

2
v.uf + v (1 - uuh) =t v ut _ i 12172172
ﬂ i i ;Y " P, race ( iUi + Yi(j UiUi)) P, 7P,
v, ut + v (1 - u,uhy) (2.2.23)
i'i i i’

1/2, 4 ,
= trace P V.UT + Y.(I - + +

17 (V05 + Y1 - uuD)) (v, Ut

+,,1.1/2
+Y - U,U,
i(I UJ.UJ.)) P,

1/2 1/2
trace P, (V,UT)(V,UT)'P / +
ii7ivi7

1/2 + 1 1/2
trace Py" (Y (I - U,UD)(Y,(1 - UiU;)) Pl/

]

+] 2 2
llviuiﬂ e, + IIYi(I - UiU;)" b,

which proves the final assertion. Q.E.D.

Notice that direct application of theorem 2.2.3 yields the following
representation for the family of approximations to Si over |. |

Ay = VUL (U007 + YT - U;U5(U,U5)7) (2.2.24)

where Y, is arbitrary and (UiUi)' Vis any g-inverse of UiU£~ The
simpler form of theorem 2.2.4 only holds if the g-inverse chosen is the
p-inverse.

The following two theorems characterize the set of approximations

to S; over | in terms of a specific approximation A,
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Theorem 2.2.5 If Si = (Ui’vi) is not empty and if Z; approximates

roover T then the set of all approximations to Si over | is given by

- +
A; = Ai - wi(I - UiUi) (2.2.25)

where wi is n xm and arbitrary.
Proof: If the solutions to equation 2.2.17 are viewed as any particular
solution plus the set of solutions to the homogeneous equation the result
follows. We have from theorem 2.2.4

A =VU, +Y(I-0UU)) (2.2.26)

i ii i ii

for some matrix Yi. Substituting this into the proposed solution for an
arbitrary Ai gives

A,
i

+ — +
v.ot + v.(1 -yt - 2.2.27
R ACE R W (1 - uu)) ( )

+ +
V.U, + . . - U,U,
Ui (Yl + Wl)(I UlUl)
where W, is arbitrary. This is the set of all approximation to Si over

T. q.E.D.

Theorem 2.2.6 If Si = (Ui’vi) is not empty and if K; approximates
Si over | then the set of all Yi in equation 2,2,17 which yield K& is a
linear manifold in | of dimension n x r where r is the rank of U,.
This manifold is given by
Y, =K + XiUiU; (2.2.28)

- where X. is n xm and arbitrary.
Proof: We seek the set of Yi which are solutions to the equation

Y (1 - v = &, - vyul. (2.2.29)

By theorem 2.2.3 a solution for Yi exists iff
++
)

@ -vuha-voha -uvd!
1 1 1 1 1 1 1

= (R, - v,uh). (2.2.30)
1 11

Because (I - UUT) is a projection, (I - UU+)+ = (I - UU+), see

(PEN 54), and therefore this is equivalent to requiring that



AUU =VU. (2.2.31)
Since A, is an approximation to s; over T
i

=v.u'. | (2.2.32)

Auut =vut (2.2.33)

and therefore a solution for Yi must exist. This simply verifies the
result of theorem 2.2.4. Using theorem 2.2.3 the family of solutions
for Yi is given by

Y, = (&, - VU - 0, uD* + T (T - (1 - uuD - uuD) (2.2.3)
where X; is arbitrary. Because (I - UiU;) is a projection operator

- +
Yi = Ai + XiUiUi (2.2.35)

where Xi is arbitrary.
The dimension of this manifold is clearly n x r since UiU; projects
the n rows of X, onto R(Ui)' Q.z.D.
2.3 Emulations
If an Ai exists which emulates Si over T then any emulating matrix

is an approximating matrix and any approximating matrix is an emulating
matrix. Although any emulation is also an approximation, the family of
emulations can be analyzed further. The set of A, which emulate S;
over | is the set of solutions to the matrix equation

AU, = V., (2.3.1)
These solutions are characterized by the following theorem.

Theorem 2.3.1 If Si = (Ui’vi) is not empty the set of Ai which emulate

S; over T is not empty iff the following equivalent conditions are

satisfied.

V.U U, =V, (2.3.2)
111 1
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i
Rank v |z Rank Vi (2.3.3)
i

Further, if not empty the set of Ai wnich emulate Si over T is given by

Aj = ViU + Y.(T - U0)) (2.3.4)

where U; is any g-inverse of U, and Y. is nxm and arbitrary.

Proof: Direct application of theorem 2.2.3 yields the equation 2.3.2
as well as the formula which characterizes the set of Ai which emulate
S; over T. Equation 2.3.3 is simply a statement that a solution exists
for A, iff a solution exists for each row of A,. This rank condition
for vector equations is well known. Q.E.D.

Notice that since any emulation is also an approximation to Si
ovar | all of the results of section 2.2 remain valid for emulations.
A particular condition for the existence of an Ai which emulates Si
over | is that U, have independent columns.

The conditions of theorems 2.2.5 and 2.2.6 can be relaxed if one

is dealing with a set Si for which an emulation exists over |.

Theorem 2.3.2 If S; = (Ui’vi) is not empty and if K; emulates Si

over | then the set of all Ai which emulate Si over | is given by

Ay = A; - Wi(I - UiUi) (2.3.5)

where W; is n x m and arbitrary and where UE is any g-inverse of Ui'

Theorem 2.3.3 If S, = (Ui’vi) is not empty and if K& emulates S.
over | then the set of all Y. in equation 2.3.4 which yield K& is a
linear manifold in | of dimension n x r where r is the rank of U;.

This manifold is given by

Y. = &, + X.U.U, (2.3.6)
1l 1 111

where X, is n x m and arbitrary and UE is any g-inverse of U..
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The proofs of both these results are entirely parallel to the
proofs of theorems 2.2.5 and 2.2.6.

2.4 Sequential Characterization of Approximation and Emulation

We have thus far been concerned with the determination of an
approximation to a particular set Si’ a member of a sequence of data
sets. If two data sets Si and Sj have no common elements, then the
problems of determining an emulation or approximation to Si and Sj must
be treated independently. However, if S; and Sj are not disjoint
considerable simplification may be possible. It is assumed here that Sy
and Sj are any two data sets. In the applications of Chapter 3, Sy will
be the successor to S. in some sequence of data sets. We will denote

the elements of Si also contained in S. by SE and the elements of Si

3 3
not contained in Sj by ng. Elements of the set S; will be assumed to
be ordered so that all elements of Si contained in ng precede all

elements of Si contained in ng. The elements of the sets ng and

q
Sij

will retain the relative ordering assigned them in Si' The

ordering of Sj is of no consequence. Associated with the sets S?j

and S%. are the pairs of matrices (UP.,VP.) and (U?.,Vq.) which
1] 1] 13 137 1]

will be viewed as their concrete representation.

Before proceeding, two theorems from the theory of generalized

inverses are presented which are useful in the computation of an

emulation or approximation to S, over T.

) n
Theorem 2.4.1 Let the n x m matrix A and the vector a € R be given.

If a ¢ R(A) a g-inverse of [A,al] is given by

[A,a]” = [A“(I . ab')] (2.4.1)
b'

!
where A” is any g-inverse of A and where b' = a'(I - AA7) (I - AA7)

(a' (1 - AA—)'(I - AA-)a)_l. If a € R(A), a g-inverse of [A,a] is



given by

[A,a] = {A-(I - ab')] (2.4.2)
b' ‘
where A~ is any g-inverse of A and where b' is arbitrary.

Further, if a g R(A), the p-inverse of [A,al is given by

(a,alt =lata - ) | (2.4.3)

b
+ . . ! ! +y, 1! +y_ -1
where A’ is the p-inverse of A and where b = a (I - AA )(a (I - AA)a) ™.
If a € R(A) then the p-inverse of [A,a] is given by
+ + !
(A,a]l" ={A'(I - &b )| (2.4.4)
.b'
where AT is the p-inverse of A and where b' = 5'at'at(1 + a'at'ata)-1,

Theorem 2.4.2 Let the n x m matrix A and the vector a € Rn be

given. Let [A,al” =[g] be any g—in&erse of [A,al]. If a ¢ R(A)
then B and B(I - ab') are g-inverses of A. If a € R(A) and a'b 1
then B(I + a(l - a'b)-lb') is a g-inverse of A. Further, suppose
[A,alt = [gJ . If a g R(A) then B(I - b(b b)™b') is the p-inverse of
A. If a & R(A) and a'b # 1 then B(I + a(l - afb)-lb') is the
p-inverse of A.
| The results of both these theorems are presented in (RAO 71, section
3.6). Although no formal proof is given, the author states. that the
results follow by straightforward computation. The parts of theorem
2.4.1 and 2.&.2'dealing with p-inverses have also been published by
(GRE 60) aﬁd (CLI 64) ?espectively. The results of theorem 2.4.2 can
be formulated for the cases where the vector a is a matrix. This is done
by Cline (CLI 64). Such generalizations are involved and of questionable
computational value.

The usefulness of theorems 2.4.1 and 2.4.2 is easily demonstrated.

Theorem 2.4,1 yields a direct method for obtaining a g-inverse, or the
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p-inverse of any matrix. For instance, consider the n x m matrix
A= [al,...,am] where m and n are arbitrary. It can be directly

verified that the p-inverse of the single column matrix a, is given by

1

t -
a. (a.a,) L Denoting the matrix [al,...,a. l] by Ai , 1f some

1711 i- -1

g-inverse of A, is known, in order to apply theorem 2.4.1

-1
to the matrix [Ai l,ai] it is only necessary to determine if
-1 "i-1

a; € R(Ai- ). The matrix A. _ A, can be used to check if

1

a; € R(Ai-l) since this operator projects vectors onto R(Ai_l),

] iff (I - A. AT a. = o.

Specifically, a, € R(Ai- RLIRRLN

1
To determine the family of approximations to a data set S, =‘(Ui,Vi)
over | it is necessary to compute the p-inverse of Ui' If no information
about the set Si is available, repeated application of the proceduré just
outlined will yield the p-inverse of Ui' However, if the p-inverse of a
matrix Uj is known, where Uj arises from a data set Sj = (Uj,Vj) and
S?j is not empty then the p-inverse of Uj can be utilized to simplify
the computation of the p-inverse of Ui. To accomplish this, noticg that
if P is any permutation matrix and U; is the p-inverse of Uj then the
p-inverse of UjP is given by P'U;.> Therefore, given the p-inverse of
Uj under some ordering of Sj the p-inverse of U; can easily be found
where U; arises from a data set S; = (U;,V;) with the same elements
as Sj but with a different ordering. If the ordering for S; is chosen
such that the elements of S; also contained in ng precede all other
elements of S; then, having computed the p-inverse of U;, the compu-
tation specified by theorem 2.4.2 can be performed repeatedly until the

p-inverse of U?j is formed. Having determined the p-inverse of Ugj
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the p-inverse of Ui can be computed by repeated application of theorem
2.4.1. The same process is valid for g-inverses of Ui other than the
p-inverse. This procedure is discussed in greater detail in section 3.3

and is employed in the computations of Chapter 5.

The procedures discussed up to this point for calculating the
p-inverse of Ui from the p-inverse of Uj are useful in determining the
family of approximations to Si over | whether or not these approximations
also emulate Si' If it is known a priori that an Aivexists which emulates
Si over | and an Aj exists which emulates Sj over T then further results

can be obtained.

Theorem 2.4.3  Suppose Sj = (Uj’vj) and S, = (Ui,Vi) are not empty

and that A, emulates S, over J. If SE. and SY, are not empty then A,
J 3 ij ij i

emulate S; over | iff

D
(Ai - Aj)bij =0 (2.4.5)
and
q .
AiUij = vij. (2.4.6)

Further, if ng is empty then Ai emulates Si over | iff

. - P _
(44 Aj)Uij =0. (2.4.7)
e e . P q
Proof: By definition if S;; and S;s are not empty A. emulates S,
] ] i 1
over | iff
AUY, = vE, (2.4.8)
11] 1]
and
a0l = v, (2.4.9)
i) ij

and if S?j is empty A; emulates S; over T provided
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_ D
AiUi5 = Vi5 - (2.4.10)

Since Aj emulates Sj over | and ng is contained in Sj

p

4% 7 Vi »

3 (2.4.11)
from which the result of the theorem follows immediately. Q.E.D.

The case where ng and S%j are both empty is excluded since
this implies S; is empty. The case S?j empty produces no simplification
since if ng is empty then S; and Sj are disjoint.

Because of the desirability of determining an emulation or approxi-
mation to S, given an emulation or approximatidn to Sj a particular
choice for the matrix Y; in equation 2.2.17 seems logical. If Aj

approximates Sj over | then the choice Yi = Aj yields the following

particular approximation to S, over T:

: + +
A; = Aj + ViUi - AjUiUi' (2.4.12)

If it is known that emulations to both Si and Sj over | exist, a
different but similar formula can be obtained.

Theorem 2.4.4  Suppose §; = (U;,V;) and Sj = (Uj’vj) are not

empty and that A, emulates Sj over [. Suppose an Ai exists which emulates

p q
i3 and Sij are not empty. If the elements of Si

S, over T and that S
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are ordered such that all elements of S; contained in ng precede all

elements of S contained in ng and if

= - i - 1
us [Uij,U..] Ui (2.4.13)

is any g-inverse of U, where Ul has as many rows as Uﬁj has columns and
i

U% has as many rows as Ugj has columns then

q q
A, = A, +V,. U. 2.4.14
Y lJU AsUs5 Y ( )
emulates Si over |. Further, if ng is empty then Ai = Aj emulates
S; over T.
Proof: We will verify directly that the equation AiUi =V, is
satisfied. We have
A.U =AU+VqUU PRERTA (2.4.15)
i“i j ijvivim ByYigtivi *Te
= A, U + AUq U, U - A, Uq U.U.
3 ij jhijivl

where A is some matrix which emulates Si over |. It follows from theorem

2.4.3 that
AiUi = AjUi + AUiUiU A3U1U1U1 (2.4.16)
P b
- AU13U1U1 A]U1]U1U1

—_ — p .1
AU. + AU, - AU, - (A -A,)U..U.U,
J1 i ji 771711

Vi

. Qa
The second result of the theorem is evident since if Sij is empty then

Si CS. and if Aj emulates Sj over T, Ai must also emulate Si overaT. Q.E.D

]
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Notice that theorem 2.3.2 can be applied to obtain the entire family of
A; which emulate Si over | from the particular A, given by either
equation 2.4.12 or equation 2.4.14. Similarly theorem 2.3.3 can be
applied to obtain the family of Y. in equation 2.3.4 which yield the
particular A, of equation 2.4.12 or 2.4.14,

Theorem 2.4.4 is interesting because equation 2.4.14 is quite similar
in form to some of the recursive formulas used in minimization algorithms
and because equation 2.4.14 promises to reduce the number of calculations
required to determine an Ai which emulates S; over T. However, the
problem of determining U% without first determining a g-inverse of Us
has not been solved. Another formula for a specific emulatién which
circumvents this difficulty will now be obtained. Although different
from the formula of theorem 2.4.4 the result is very similar. As will
be shown in Chapter 3, specific choices for the matrices Zi and Zi in
the following theorem yield generalizations of the recursive formulas

used in several minimization algorithms.

Theorem 2.4.5 Suppose S; = (Uj,Vj) and 84 = (Uj’vj) are not empty

J J
and that the elements of Si are ordered such that all elements of Si

contained in ng precede all elements of Si contained in ng. If

and that A. emulates Sj over |. Suppose ng and S%- are not empty

there exist matrices Z% (r x n) and Z% (k x n) for some ©r,k >0
i i

which satisfy

7P =0 (2.4.17)
i1ij
z20P = 0 (2.4.18)
1 1]

1 - 1
vEoziudy @ity = v (2.4.19)
i9°71745 i715 1]
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At R (Zol.) = a8, (2.4.20)

g - . 14 2 q\- .
where (Z.U%.)” 1is any g-inverse of Z.U:, and (Z.U:.) is any
i°ij i1 i'ij

g-inverse of Z.U?., then
i°1j

Ay = A vgj (Z;Ugj)- z; . Ajugj (zivgi)' zi (2.4.21)
emulates Si over [. Further, if ng is empty and there exist
matrices Z; and Z% such that equations 2.4.19 and 2.4.20 are satisfied
then Ai given by equation 2.4.21 emulates Si over .

Préof: The proof verifies directly that the equation AiUi = Vi is

satisfied., If ng is not empty

A.U,
i1

1 1 .
q q y- p q T
Ajui + vij (ziuij) Z. [Uij’Uij] (2.4.22)

-A, 0%, (z, Uq )~ z [P, ,u.]
i3 132715

qq _ q
AU; + [o,vij] [O,AjUij]

(AP, a0, + ve, - aul]
SRS A e S TR & B R &

vP.,ve.1

V..
i

VIfFVSEj is empty thé proof follows the same arguﬁent. Q.E.D.

Tt is interesting to consider when certain of the four conditions
of theorem 2.4,5 are necessary. Suppose Si’ Sj’ ng, and ng are not
empty and that Aj emulates Sj over |. If either equation 2.4,17 or
equation 2.4,18 is satisfied then it is necessary that the other condi-
tion be satisfied if A, given by equation 2.4.21 is to emulate S, over

T. Similarly,‘if either one of equations 2.4.19 and 2.%.20 are satisfied



28

then it is necessary that the other condifion be satisfied if Ai given
by equation 2.4.21 is to emulate Si over J. Also of iﬁterest is the case
where zi = zi. If zi = z% then equations 2.4.17 and 2.4.18 are
equivalent and équations 2.4.19 and 2.4,20 may be restated as follows:
(ng - AjV%j) (ziuﬁj)' (z%ugj) = (v‘ilj - AjUEj). (2.4.23)
Als$ in this case it is necessary that equation 2.4.17 (or 2.4,18) and
equation 2.4,23 be satisfied if A; is to emulate S, over T.
It is possible to state equations 2.4.19 and 2.4,20 in a slightly
different manner as the following lemma shows.
Lemma 2.4.6 Let C  be any g-inverse of the n x m matrix C. The
equation DC7C = D is satisfied iff there exists a solution for X of
the matrix equation XC = D or equivalently iff Rank C = Rank [g] .
The proof of lemma 2.4.6 follows immediately from theorem 2.2.3

when B is chosen to be the identity. Equations 2.4.19 and 2.4.20 there-

fore are equivalent to the existence of a solution for X of the equations

X .
xz. 0%, = v§, (2.4.24)
171 ij
and
2 q
xz.0%, = a.04, (2.4.25)
VAR S S RS & I '

respectively. Using the rank condition, equations 2.4.19 and 2.4.20 are

equivalent to requiring that

.

].qq
Rank |2z.U%. (2.4.26)
i7ij
ve,
ij

1 q
Rank (Z.U..)
i71j

and

Rank [7z202 ] (2.4.27)
1713

A us,
j ij

]

2 q
Rank (Z.U%.)
i7ij

- p

1
Clearly, these rank conditions will always be satisfied provided ZiUEj
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Y3
and ZiU%j have independent columns.
’ 1 2
The question of when matrices Z. and'Zi exist which satisfy the
conditions of theorem 2.4.5 is partially answered by the following

theorem.

Theorem 2.4.7  Suppose S, = (u,,v,) and Sj = (Uj’vj) are not empty,

that Aj emulates Sj over T and that there exists an A, which emulates

Si over |. Suppose ng and ng are not empty ;nd that the elements
of Si are ordered such that all elements of Si contained in S?j precede
all elements of Si contained in S%j. If R(Ugj) “and R(Ugj) are

. s s . . 2
disjoint then there exist matrices Zi and Zi’ given by

7

q
-

- 1 -
[o,u‘ilj]Ui + Y (T - UgU)) (2.4.28)

2

23

Q1 o2 -
[0,05570; + ¥5(I - U3U;) (2.4.29)
where UE is any g-inverse of Ui and Yi and Yi are arbitrary,
which satisfy equations 2.4,17, 2.4.18, 2.4,19, and 2.4.20. Further, if

1 2
ng is empty then there always exist matrices Z; and 2, given by

. _ 1 _

7; = UU; + Y3(T - 0307) (2.4.31)
where. Ug. is any g-inverse of Ui and Yi and Yi are arbitrary,
which satisfy equations 2.4.19 and 2.4.20.

Proof: If S?j is not empty and R(Ugj) and R(Ugj) are disjoint
then any dependent column of Ui = [Ugj,Ugj] which is a column of

Ugj can be written as a linear combination of columns of Ugj and any

dependent column.of [U?j’ugj] which is a column of Uzj can be written

as a linear combination of columns of Ug. Therefore

P oudy- Pl (2.4. 32)

Rank [Uij’Uij] Rank Uij’Uij
o,ud,
ij

since dependent columns of the augmented matrix
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1°713
q

0,U;,

2]
have the same representation as dependent columns of the matrix
[U?,,Ugj]. This rank condition is satisfied iff there exists a solution
J

for Z of the matrix equation

P .44 _ q
Z[Uij,Uij] = [o,uijj (2.4.33)

From theorem 2.3.3 the family of all such solutions is given by

2 = (0035105 + YIT - U;U;] (2.4.34)

where U; is any g-inverse of Ui and Y is arbitrary. Choosing Z% and
i

2
Zi as any such solution it can be directly verified that conditions

2.4.17, 2.4.18, and 2.4.20 are satisfied. Because it was assumed that

an A, exists which emulate S; over T there exists a matrix A such that

Kbgj = ng. Substitution of this equation into condition 2.4,19

verifies that this condition must also be satisfied for such a choice of
1 2

Zi and Zi' Q.E.D.

Notice that it is not necessary that the matrices Zi and Zi satisfy the
matrix equation 2.4.33 in order to satisfy equations 2.4,17 through 2.4.20.
Because of the similarity between equation 2.4.1n of theorem 2.4 .4

and equation 2.4.21 of theorem 2.4.5 it is natural to ask how the two
theorems are related. Observe that equation 2.4.14 admits only a single

1
g-inverse U; = [U'] of U;. That is to say the proof of theorem 2.4.4
2

i
u?
1 q .
does not go through if the U; postmultiplying Vij and the us postmultiply-

ing AjUg- are the bottom halves of different g-inverses of Ui' One

J
1 -1
would expect that under certain conditions the matrices (ZiU§j) Zs
2 -2
and <ZiUgj) Z, of equation 2.4.21 are the bottom halves of some

_inverse of U, and that (z}U%)7z} = (z20%.)722. 1f this is the case
& i i7ij” 71 i“iy’ ~ic
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then the equation 2.4.21 is of the same form as equation 2.4.1k. Clearly,
if Z% = Z% then (Z%U?.)_Z% = (Z?U?,)fz%. Thus far no more general

1 1 1 1] i 1 1] 1
condition has been obtained under which this equality holds. The
question of when the matrix (ZU?j)_Z is the bottom half of some

g-inverse of u; is answered by the following theorem.

- rP 4 p q . e s
Theorem 2.4.8 If u; = [Uij,Uij], R(Uij) and R(Uij) are disjoint

and the matrix Z satisfies

P

ZU{j =0 (2.4.35)
9 zut)” (o) = v, 2.4.36)
Uij(zuij) (zU33) = U4 (
then there exists a family of g-inverses of U; of the form
U. = |X q (2.4.37)
i -
(zU35) 2

with X given by

_ Py AP - P - P -
X = (Uij) [Uij,O]Ui +Y - (Uij) UiYUiUi(z.u.ss)

P

where (UP.)_ and U; are any g-inverses of Uij and U, respectively
1]

and where Y is arbitrary.

Proof: From the definition of a g-inverse we seek matrices X which
satisfy
p 4 p 4 P 4 :
[Us.,U0::]1 | X (U..,U,.1 = [U,.0;. ] (2.4.39)
137 1] d v 131713 1] 13
(z2u74) 2
Expanding this expression gives
D yiP 9 (759.) 7R, = uP. (2.4.40)
UinUij + Uij(ZUlj) ZUij Ul]
and
P_q q qQ - g q
‘s oo (20 = U (2.4.41)
Us3XU;5 + Ug3(2054) ZUgs = Ugy

Because of equations 2.4.35 and 2.4.36 this reduces to

P4 _ P 19
U;5%Ui5 = Uiy , (2.4.42)
U?-XUq. -0 (2.4.43)
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or

P - P
UinUi = [Uij,O]. (2.4.44)

From theorem 2.2.3 there exists a solution for X iff

D Py P - P
Ut (U5.) [Uh.,0]uLU. = [UE. 2.4.45
Uig(U35) [U355000;0; = CU34,0] ( )
or
P = P
[Uij’O]UiUi - [Uij’o] (2.4.486)

By lemma 2.4.6 this is equivalent to requiring that

Rank [UP.U%.7 = Rank [UP .U, (2.4.47)
i3 13713
q
0 Uy

Because R(Ugj) and R(U§j) are disjoint this rank condifion must

be satisfied by the same argument that was employed in the proof of thedvem
2.4.7. Again, employing theorem 2.2.3 the family of solutions for X is
given by equation 2.4.38. Q.E.D.

2.5 Summary

In this chapter we have considered in detail the problem of
approximating a set of data pairs by a linear transformation. In
theorem 2.2.4 the family of approximations to a data set S, = (Ui’vi)
over | was characterized using the p-inverse. If an approximation A;
to a data set Si transforms Ui into Vi then we say that Ai emulates Si‘
In this case a less restrictive characterization of the family of
emulations of a data set Si is possible. This characterization,
involving an arbitrary g-inverse, is presented in theorem 2.3.1.

If two data sets S, and Sj have common elements it is possible to
obtain further results about emulations or approximations to §; over T
when an emulation or approximation to Sj over | is given. In the first
part of section 2.4 we consider how this can be accomplished using the

results of theorems 2.4.1 and 2.4.2 which are standard results from the
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theory of g-inverses. If an Aj is given which emulates Sj over | and

if it is known that an Ai exists which emulates Si over | then it is
possible to state several formulas which determine a matrix Ai that
emulates Si over T. These are presented in theorems 2.4.3, 2.4.4, and
2.4.5. The conditions of theorem 2.4.5 are particularly important since
they can be utilized to derive new recursion formulas for minimization
algorithms as well as most of the currently known formulas. The
remainder of Chapter 2 is concerned with the existence of matrices which
satisfy the conditions of theorem 2.4.5 and with the relationship befween
theorem 2.4.5 and theorem 2.4.3.

The material‘of Chapter 2 suggests two other directions for research
which have not been pursued in depth. In the minimization problem it
would be advantageous to consider approximations over the set of
positive definite symmetric linear transformations. A preliminary
result toward that end was presented in theorem 2.2.2. An analysis of

(1)

different norms on Vk
k(i)

Ael

results.

, such as the operator norm defined for

m
by “A ll = max I Iaij]’ may lead to computationally useful
1<j<N i=1 '



CHAPTER 3

ROOT FINDING AND MINIMIZATION ALGORITHMS

3.1 Introduction and Notation

We are concerned in this chapter with the relationship between the
emulation and approximation problems considered in Chapter 2 and some of
the algorithms which have been proposed for function minimization and
root finding. In the minimization problem an objective function
£(x) :DcR” » R} is to be minimized over the interior of its domain
denoted by D. It will be assumed that f£(x) has a derivative
g(x) :EF:Rn > R" and a second derivative (Hessian) H(x) :Q;:Rn > RnQ.
In the root finding problem an x € D 1is sought such that F(x) =0
where F(x) :DcR" » R". It will be assumed that F(x) has a derivative
on D denoted by J(x) :DcR™ » R,

Although these two problems are distinct they are closely related.
If f(x) 1is strictly convex on D then the problem of determining the
unique minimum of f(x) on D is equivalent to the problem of determining
the unique root of g(x) on D. Even if f£(x) is not strictly convex
on D the minimization of f(x) is often approached by seeking roots of
g(x) on D since it must be that, at a minimum of f£(x) on D, g(x) = 0.
If a minimum of f(x) is being sought by solving for roots of g(x),
then additional structure is present in the root finding problem since
H(x), the derivative of g(x), is square and symmetric on D. Further,
at a minimum of f(x) on D H(x) 1is positive semi-definite.

On the other hand the problem of finding a root of F(x) on D can
be transformed into a minimization problem by considering a function
h(y) : R™ > [0,») such that h(0) = 0 and h(y) > 0 for all y # O.

The problem of determining a root of F(x) on D is equivalent to the

34
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problem of determining a minimum of f£(x) = h(F(x)) on D. The choice
h(y) = y'y is particularly appealing since the derivative of F(x)'F(x)
is 2J(x)F(x). The roots of F(x) may not be unique, and if m > n, a
root of F(x) will usually not exist. In any case the minimization of
F'(x)F(x) yields a point in R® at which F(x) has minimum Euclidean
norm.

3.2 Newton's Method

It is of interest to state what constitutes an algorithm for the
solution of the problems under consideration. An algorithm is simply
a rule which utilizes computable expressions to generate a sequence of

points '{xk}cg_vﬂﬁch converge to a solution of the problem.

In most algorithms of practical interest, given an initial point

x0 € D, the rule can be expressed as a recursion of the form

xk'l'l = Gk(xk’xk—l’.'.’xo) (3.2.1)

where {Gk} is some sequence of operators whose k th element G, is
derived from the points L ERRRE and maps the points Rgae ooy into
the point Xy ;-
Newton's method is the foundation for all the algorithms considered
in this chapter. It is based on the truncated power series expansion
F(x) = F(x) + J(x)(x - %), (3.2.2)
An approximation to a root of F(x) is arrived at by assuming that the
approximate equation 3.2.2 is valid in a neighborhood containing a root
of F(x). If J(x) is nonsingular this leads to the iteration
X = X - I (xIE(R). (3.2.3)
If a minimum of a function f(x) is sought, Newton's algorithm can be
applied tb g(x), the derivative of £(x), in which case the iteration

becomes
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X % - B Gg)elx). (3.2.4)
There are several drawbacks to the Newton procedure. For even
simple functions F(x) (or f(x)) there is no guarantee that the
Jacobian (or Hessian function) is nonéingular on D. Hence, the sequence
'{xk} may not be defined. If the sequence b{xk} is defined and remains
in D there is no guarantee that, starting at an arbitary xo € D, the
sequence {x } will converge to a solution. Fortunately, certain
convergence results can be obtained. Let x € D be a solution point
and assume that J(x) (or H(x)) is nonsingular. Then for x, € D and
% - xy sufficiently small, the sequence {xk} generated by

Newton's method converges to x and furthermore the rate of convergence

is quadratic (ORT 70, theorem 10.2.2). That is

bt —"—M =C < w, ~ (8.2.5)
k + o llxk - x"

In terms of the general recursion 3.2.1, the operator Gy of

Newton's method is derived only from the point x) and operates only on

the point xj to generate the point K41 While this makes the

.recursion simple in form, the calculation of J (or H) and its inverse

may pose great difficulties in practical problems. Thus a large

number of algorithms have been developed which utilize a set of function

(or gradient) evaluations to estimate the inverse of J (or H) at x.

It is these algorithms with which we are concerned in this chapter.

Newton's method itself cannot be put into the context of Chapter 2.

3.3 Secant Methods

A large class of algorithms, known as secant methods, has been
developed for determining the root of a function F(x) :DcR™ » R, In

order to describe the secant methods it is useful to introduce the notion
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of points in general position.

Definition 3.3.1 The n + 1 points Xgse+sXy € R® are in general

position if the vectors Xg - ¥4, 1 = 1,...,0, are linearly independent.
The notion of points in general position leads to the following result.

Theorem 3.3.2 Let Xyse.e Xy € R®  and Yos-++s¥y € R Dbe given.

Then there exists a unique affine transformation L(x) = Ax + a such

that L(xi) =Yg i=0,...,n, iff xy,...,x  are in general position.

n

Further A is nonsingular iff Ygs+++s¥, are in general position.
The proof of this theorem is found in (ORT 70, p. 192).

If the points Ygs+++s¥y are taken to be evaluations of the

function F(x) at the points X(se+++s%, then the basis for all secant
algorithms is contained in the following definition.

Definition 3.3.3 If X,s...,x € DCRR and F(xy),...,F(x) € R? are

O,oo

in general position and if A and a satisfy

a+ Ax, = F(x;), i=0,...,1, (3.3.1)
then the point

x_ = A "a : (3.3.2)
is the "basic secant approximation" with respect to =xp,...,x .
Theorem 3.3.2 insures that the basic secant approximation is

defined and unique provided xp,...,x, and F(xo),...,F(xn) are in
general position. In all secant algorithms a secant step (a basic
secant approximation) is computed by determining an affine function that
has the same value as F(x) at the points XyseeesXy and choosing the
root of the affine function as the estimate of the root of F(x). If
the problem of determining a secant step is attacked directly it is

necessary to first obtain the affine transformation Ax + a and then

to solve the equation Ax + a = 0. The following result, known as the -
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Newton formulation of the secant step, simplifies the calculation of a
secant step and at the same time makes apparent the relationship between
the basic secant approximation and the material of Chapter 2.

Theorem 3.3.4 If x P and F(xo),...,F(xn) are in general

0°*

position then the basic secant approximation with respect to XyseeesX

is given by

T |
X, = Xy = VU F(XO) (3.3.3)
where
V= [xl XgoeersXy = gO]
and
U= [FCXl) - F(xo),...,F(xn) - F(xo)].
Proof: For any column 4 of V

Av, = Ax, - Ax, = F(Xi) -a- F(XO) +a-= P(xi) - F(xo)
it follows that AV = U. The basic secant approximation must satisfy
the equation

Ax_ + a = 0, (3.3.4)
Substituting yields

ACx, - vu“lF(xO)) +a = Fx)) - Avv‘lF(xO) (3.3.5)

F(XO) - F(xo)

= 0. Q.E.D.

Many, although not all, of the secant methods make use of the Newton
formulation. In order to completely specify a secant algorithm it is
necessary to define a procedure for the generation of the points

X CaXy at each stage k of the algorithm. A formulation of one secant

O,oc

method with a particular procedure for generating the points X_,...,x

0°° n
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is as follows.

Algorithm 3.3.5 Assume the two initial points x 1°%g € D are given

and set k = 0,

1. If F(xk) = 0 stop.

2. Set xkj =% t (x?(_l - xi)ej, j =1,...,0n, and set

3

— J
xko = X, Wwhere x

K o 18 the j th component of X and where

ej is the vector whose components are zero except for the
j th component which equals one.

-1
3. = -
Set X1 = Fp VkUk F(Xk)

where V

K = D - Fygor Xy T X!
and Uk z [Fkal) - F(xko),...,F(xkn) - F(xko)].

4, Set k = k+1 and return to step 1.
Many other specification procedurés have been pfoposed for generafing

the auxiliary points (ORT 70, pp. 195-200). Almost all of

X102 ¥y
these procedures either completely refresh the data set at each stage k
or, as in the sequential secant algorithm, utilize the points

xk'_n,...,xk generated during the last n stages of the algorithm. In
Chapter 4 procedures will be explored for allowing a more complex choice
of auxiliary points in the context of the minimization problem.

Notice that if a secant algorithm is applied to determine the root
of a function F(x) :DeR" + R® there is no guarantee that the sequence -
{xk} generated by the algorithm will be defined or will remain in D.
Unless some auxiliary procedufe is employed fhe secant algorithms become
stuck if it ever happens that the points F(xko),...,F(xkn) are not in

general position. Even if the sequence {xk} is defined there is no

~guarantee that convergence to a root of F(x) can be obtained from an
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arbitrary set of initial points in D. What can be shown (ORT 70,
sections 11.2 and 11.3, theorem 11.3.4) Is that if the auxiliary points
are chosen in an appropriate fashion, if the initial points are close

enough to a root % € D of F(x) and if J(x) is nonsingular then

A

the sequence '{xk} is defined and converges to x. Moreover, the rate

of convergence is superlinear. That is

Limit ||x,_, - §"

(3.3.6)

ko fx - x|
In Chapter 2 results were preseﬁted concerning a sequence of data sets

'{Sk}. Each data set Sk was represented by a pair of matrices (Uk’vk)'

In the secant methods which utilize the Newton formulation of theorem

3.3.4 the data sets Sk contain n elements and these elements are of the

form

S5 = (Uj,VSI = (F(ij) - F(Xko), s = xko), j=1,...,n.(3.3.7)

The matrices (Uk,Vk) which arise in the Newton secant algorithms

represent a data set S, of the form discussed in Chapter 2. In most

k

Newton secant algorithms the elements of Sk are constrained so that the

- matrix Vk is nonsingular by choosing the auxiliary points X000 s ¥
in general position. If a Newton secant algorithm is to be defined for
all k > 0 then the matrices Uk must also be nonsingular or, what is

equivalent, the points F(xko),...,F(xkn) must be in general position.

If the matrix U, is nonsingular then by theorems 2.2.4 and 2.3.1 the

k'k

matrix V U_l is the unique matrix which emulates and approximates Sk

over |. Under most of the selection rules proposed for the auxiliary
L . . N .
X0° Xy, in Newton secant algorithms the data set Sk+l is

disjoint from the data set S, so that no simplification of the calculation

points

k

of V is possible using information obtained in the calculation

-1
k+lUk+l
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~1
of %yk'
It is worthwhile to consider another secant method, the sequential
secant method, which utilizes the points X _pover X The following
theorem forms the basis for the sequential secant method.

Theorem 3.3.6 If x ,x  and F(xO),...,F(xn) are in general

O,ouo

position then the basic secant approximation is given by

_ s=-1
X, = %y - VO F(x)) (3.8.8)
where
V= [xl - KpseeesX - xn-l]
and
U= [F(xll - F(xO),...,F(xn) - F(xn_l)].
Proof: Let U and V denote the matrices given in theorem 3.3.4., We have

U=UP and V = VP where

P = -1 (3.3.9)

Since P is nonsingular U and V are nonsingular iff U and V are nonsingular,
From theorem 3.3.4

x = x - VU R(x.)

s 0 0
is the basic secant approximation with respect to RyseessX o However,

x = x - VPP IUTIR(x ) (3.3.10)
S 0 0

——1
Xy - VU F(XO). Q.E.D.
In the sequential secant algorithm n + 1 initial points

X_o¥ 410 ee%g are given and at the k th stage the points

Xy _poeeeo¥y are taken as the auxiliary points for the calculation of

the secant step. The sequential secant algorithm can be stated as
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follows.

Algorithm 3.3.7 - Assume initial points x gt eea¥g are given and
set k = 0.

1. If Fka) = Q stop.

2. Set xkj = Xk-j’ j = 0,...,0.
3. Set R VkUk F(xk)
where Vk z [Xk(n+l) SR ETRTRE Xklj

and U = [F(x - F(xkn),...,F(xk) - F(xkl)].

k(n+l))

4, Set k =k + 1 and return to step 1.

In addition to the obvious computational advantage that only one func-

tion evaluation need be made at each stage k there is also a savings in the

-1 . - - .
calculatlon of Uk 1 since Uk+l and Uk have n - 1 columns in common.

In particular, if Uk = [uk—n+l”"’uk] then the inverse of the matrix

[u

ns2? oY ’uk—n+l] is given by P'Gil where P is the permutation

matrix such that UkP = [uk SPYRRTFL SR n+l Appllcatlon of theorem

2.4,2 followed by appllcatlon of theorem 2.4,1 yields U = [uk n+2°

- . l
"”uk’uk+l] l. A more direct procedure for calculating Uk+l is obtained

by noting that
N -1 - {
Uer = P+ (g = e pyqleg (3.3.11)

where P is the permutation matrix just described and eé = (0,...,0,1).

—

Since it is assumed that ﬁk and U, are nonsingular the Sherman-
Morrison formula (ORT 70, pp. 50) can beapplied to equation 3.3.11 to
=-1

obtain a closed formula for Uk+l°
Although the sequential secant algorithm affords some computational

advantages, it is more prone to undesirable behavior than the Newton

secant algorithms. Since at stage k there is no guarantee that the
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points x X are in general position it may happen that the

Ken®" "

matrix Vk is singular. If this occurs and if the vector UilP(xk) is

k

in N(Vk) then the algorithm:becomeé stuck since X = ¥ For this
reason superlinear convergence cannot be proven even if the initial points
are close to a solution x where J(;) is nonsingular (ORT 70, theorem
11.3.5). lIn addition the theoretical difficulties mentioned earlier with
the Newton secant methods are still present in the sequential secant
algorithm.

As with the Newton secant algorithms, if ﬁ% is nonsingular then the

matrix Vkﬁél is the unique matrix which emulates and approximates the

data set 5 _over T. Because the data set S, is generated by deleting

one element of S, , the oldest element, and adding a new element, the

. 37 "'l
calculation of Vk+lUk+l

matrix P is chosen, any element of the set §k can be deleted without

is simplified. If a different permutation

computational burden. Such a procedure could be used to counteract the

tendency of the matrices U, and V. to become singular or ill-conditioned.

k k

In Chapters 4 and 5 minimization algorithms will be proposed which make
use of this procedure as well as more general replacement procedures.
In any of the secant algorithms difficulty arises if at some stage

k the matrix Uk is singular since, if this occurs, the matrix VkU]Zl

will be undefined. When VkU};l does not exist it seems logical to

choose some approximation to S, over [. Recall from Chapter 2 that the

k

family of approximations to 8, = (V,,U) over T is given by

k

_ u +
A = VU + 1 (T -00) (3.3.12)

where Yk is arbitrary. It is not obvious what choice to make for the
matrix Y, when R(Uk) is not all of R". 1In fact, as the following lemma

shows, under certain conditions the set of points X1 which can be
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cbtained by using an approximation to S, over | in a secant algorithm

k

from the point Xy is all of R".

Lemma 3.3,8 Suppose the data set S, = (Uk,Vk) and F(xk) e R are

k

given., If F(xk) ¢ R(Uk), then for any vector w € R?  there exists a

solution for Yk of the equation

w=VUFx) +Y (1 -00) F(x). (3.3.13)
Proof: If F(x ) g R(U) then (I - UU') F(x ) # 0. The result
k k Kk’ % |
follows immediately as there exists a Yk which transforms any nonzero
vector in R" into any vector in R", Q.E.D.
+y o .
If F(xk) € R(Uk) then (I - UkUk) F(xk) = 0 and the choice of

Yk has no effect on w. In this case the secant step should be replaced

by
Xpp = K - VkU}t F(xk). (3.3.14)

A clever choice for Y, when F(xk) £ R(Uk) may yield interesting

k

algorithms. In the minimization problem additional structure is present

which indicates a particular choice for Y, when F(xk) ¢'R(Uk). This

k
will be explored in Chapter .4.

Since an approximation to a data set Sk over | exists regardless of

the number of elements in S. , secant-like algorithms could be constructed

k

which utilize more or fewer than n auxiliary points at each stage.

Also, since elements of the data sets S, can be pairs (u,v) € RY x Rm,

k
m # n, secant-like algorithms could be constructed for finding the roots
of a function F(x) :D R" + R". Neither of these possibilities will be

explored in this dissertation.

3.4 Minimization Methods

In 1963 a paper by Fletcher and Powell (FLE 63) stimulated research

on a class of minimization algorithms which have proven to be very effec-
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tive. The algorithm considered by Fletcher and Powell was originally
proposed by Davidon (DAV 59). Since 1963 Broyden (BRO 70, 70a),

Pearson (PEA 69), aﬂd Murtagh and Sargent (MUR 70] among otﬁers have
proposed algorithms which bear a similarity to the Davidon algorithm

but which are distinct from it. In this section we will demonstrate

the underlying commonality of these algorithms and suggest modifications
and generalizations of them.

Using the notation introduced at the beginning of this chapter
for fhe objective function £(x):DecR™ Rl a general minimization
algorithm can be stated which includes the above mentioned class of
algorithms.

Algorithm 3.4.1

Assume x, € D and an initial n x n matrix A, are given and

set k = 0.

1. If g = g(x,) = 0 stop.
2, Set Xepl = X T AkAigk where_kk is chosen so that
£ -‘AkAigk) = min £f(x_ - AAégk).
A€ Rl

3. Cémpute Ayl by a recursion relation.

4, Set k = k + 1 and return to step l.

Notice that step 2 of the algorithm involves a subalgorithm
which minimizes the objective function on a line. This "linear
search" algorithm is of no interest in itself here. However, as will

be seen later, the properties of specific algorithms will be changed
'
K8k
to be

£0

when the linear minimization is not carried out exactly. If A

exact solution of the linear minimization causes A

]
E+17k 8k

ZEYO.

In order to complete the specification of the algorithm it is
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necessary to define the recursion of step 3. The following recursions
have been propdsed by various researchers.

A

' -1 _
bl A + vk(vkuk) vk Ay k(uk K k) Ak Davidon (3.4.1)

- 1
Ak+l = Ak + ek(eiuk) lek Murtagh and Sargent (3.4.2)
Berr T B0t 8 (v, i) Y l : Pearson 1 (3.4.3)
- ! -1
Ak+l - Ak + ek(ukAkuk) Uy Ay Pearson 2 (3.4.4)

_ ! ' -1
Appy = A + (14 BkukAkuk) 4 (Vkuk) Vi Broyden (3.4.5)

1
- B (A vy - VA

- (1 w) Au (u u )" tu B > 0

1) e
In these formulas vy = sl ~ ke Y T Bl T 8 and e = Vi - Akuk°
The names associated with the recursions are not neceséarily their
originators but rather individuals who have analyzed them extensively.
Because it is difficult to obtain convergence results for an
arbitrary twice differentiable objective function, algorithms have
historically been constructed to have good performance when applied to
a quadratic function, that is a function whose Hessian matrix is a
constant function of x on D. Since in some small neighborhood of the
minimum of f£(x), the Hessian is "almost constant", it is reasoned that
an algorithm so constructed will perform well on any f(x) in the
terminal stage. Following this logic we temporarily restrict attention
to a quadratic objective function. In algorithm 3.4.1 it is desirable

for the sequence {Ak} to be an emulating sequence. The following

theorem demonstrates why.
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Theorem 3.4.2 Suppose an initial point X, € RY is given. Suppose

the matrices Ao’Al"”’Ak of algorithm 3.4.1 are chosen such that

g;ALgk # 0 when =00 # 0 and such that A, emulates Sk over T where

k
S

0 g, Sk = (Uk,Vk) = [(uo,...,uk_l),(vo,...,vk_l)], k =1,i..50

Vi TRy - %X oand uy T g3y - g i=0,0..,k. If algorithm.
1

3.4.1 is applied to an objective function f(x) : R" > R* with a constant

positive definite Hessian matrix H, then either g =0 for some k < n

or
U;(Vk = VI'(uk = O, k = la"',ns (3.'4.6)
An = gt (3.4.7)
and
g, = 0 (3.4.8)

1

. r . .
Proof: Since gkAkgk # 0 when =0 # 0, the search direction Akgk
is nonzero unless gy = 0. Because H is positive definite f£(x) is
strictly convex and therefore a solution must exist to the linear

search problem. It follows that the algorithm is determined for n

steps unless g = 0 for some k < n. It must be that Xk # 0 for

k = 0,...,n-1, since if Ak = 0 the minimum has been achieved along
2 . . . [ |

the line %t AALgk which implies that gkAkgk = 0. Because of the

linear search
gé+lvk =0, k=0,...,0-1. (3.4.9)
With k = 1 equation 3.4.9 gives |
gVy = 0. (3.4.10)
We will now show that g]'(Vk = 0 implies that gi+lvk+l = 0 and hence
establish by induction that
gV = 0, k= 1,...,m, (3.4.11)

Since g = Hx, + ¢, we have

k
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- -1
V. = H L
AW V= A Y EY (3.4.12)
-1
NN
1
& AUy
1
gV = 0
1
Since Ak is nonzero and finite it must be that uka = VkUk = 0. From
this it follows that
ot _ ' '
Be1Visr = Ly g ) Vs g Vi d (3.4.13)
= [0 + 0,0]
which completes the induction. Next, since V}LUk = 0 and Uk = HVk,
k=1,...,n, it must be that
1 - v..]_ _ _
VkHVk = ukH U= 0, k=1,...,0. (3.4.12)

Therefore, because H is positive definite and j, # 0, the vectors
(vo,...,vn_l) span R" and there exists a unique matrix gL which

emulates Sn over |, that is H! is the unique matrix such that

-1y - : - -l
H Un = V,. Since A, was chosen to emulate Sn over |, An = H -

n
O""’vn—l) span R,

Finally, since gr'IVn = 0 and since the vectors (v

g, = 0. Q.E.D.

1

1 &k # 0 can be checked at

1
Notice that the requirement that g1 A

each stage since g is known when the matrix Ak is determined. If Ak
]

'
is chosen positive definite, gkAkgk is automatically nonzero. It is-

also true that if A, is chosen negative definite g]LAkgk is nonzero.

However, if A, emulates (Uk,Vk) and Uy = HVk where H is positive

k

definite then A, cannot be negative definite since this would imply

k

that x'Akx = x'H'lx <0 for all x € R(Uk) which is a contradiction.
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!
If the search direction is chosen to be Akwk where w, 1is any

k

! L |

nonzero vector such that kak = 0 and gkAkwk # 0 rather than
1

Akgk the proof of theorem 3.4.2 is unchanged. This suggests the

following more general minimization procedure for quadratic functions.

Algorithm 3.4.3

Assume X, €D and an initial n x m matrix AO are given and set

1. If g = 0 stop.

1 . .
2., If k=0 set Xppl = X T AkAkwk where W, is an arbitrary

nonzero vector and where Ak is chosen such that 1

1
f(Xk - RkAkwk) = min f(x - A

1
£ . kwk)'
A €R

1
3. If k>0 set Xep1 = ¥ T AkAkwk where Wy is any nonzero

vector such that wLVk = 0, A, is chosen as in step 2 and

k
= i 1 i M2,
Sy (Uk,Vk) is defined in theorem 3 2

4 . Compute A by a recursion relation.

k+1
5. Set k =k + 1 and return to step 1.
For this algorithm a theorem similar to theorem 3.4.2 can be

stated.

Theorem 3.4.4  Suppose an initial point X, e R" is given. Suppose

the matrices AO’Al"'°’Ak of algorithm 3.4,3 are chosen such that

géAka # 0 when gk # 0 and such that Ak emulates Sk over T where

Sk is as defined in theorem 3.4.2. If algorithm 3.4.3 is applied to an

objective function f(x) : R" > RY with a constant positive definite

Hessian matrix H, then either g =0 for some k <n or

Uv, =V.u =0, k=1,...,0, (3.4.14)



A =ul | (3.4.15)
and
g, = 0. (3.4.16)
The proof of theorem 3.4.4 is identical to the proof of theorem
3.4.2 except that in equation 3.4.12 w, replaces g Since in theorem

k
0 for k =1,...,n, theorem 3.4.2 is

'
3.4.2 it was shown that ngk
a special case of theorem 3.4.4.
Algorithm 3.4.3 is not entirely sensible on a non-quadratic

surface for more than n steps since after n steps V., will span R, To

k
apply algorithm 3.4.3 past n steps some method must be used to delete

old columns from Uk and Vk‘ One such procedure would be to reset every

n steps. In Chapter 4 other deletion procedures are considered in
conjunction with a different algorithm,

If the linear search in algorithm 3.4.3 is not performed exactly,
then the proof of theorem 3.4.4 breaks down.v However, if the matrix
A= H'' inalgorithm 3.4.3, then the step

X1 X" A;gn (3.4.17)
makes 841 = 0. In the case of one particular recursion, the Murtagh and
Sargent formula 3.4.2, under certain conditions An =gt even in the
absence of an exact linear search. This recursion will be considered
further later in the section.

We now turn our attention to the relationship between the specific
recursion formulas 3.4.1 through 3.4.5 and theorem 2.4.5. Our main
objective will be to show that the matrices Ak generated by these formulas
emulate the data éets Sk of theorem 3.4,2, Recall from Chapter 2 that
if Si = (Ui,Vi) and Sj = (Uj,Vj) are two data sets, ng is the

subset of Si whose elements are also contained in Sj and Sij is the
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subset of S. whose elements are not contained in Sj. The ordering of
i

Si is assumed to be such that the elements of ng precede the elements

of ng in 8;. If in theorem 2.4.5 m =n and the particular choice
1 1qQ 2. Q!
23 = ajVig + 31U55h (3.4.18)
2 _ 34" 4 qr
Z; = a;Viy t.a;U;585 (3.4.19)

is made where a;,...,ag are constants then a formula arises which
contains the recursions 3.4.1 through 3.4.5.

The choice of Z§ and Zi in equations 3.4.18 and 3.4.19 was made
after consideration of the existing recursion formulas in an attempt to
relate these formulas to the material of Chapter 2. Other choices of
Z; and Zi in theorem 2.4.5 may lead to still other recursion formulas
for emulating sequences. Direct substitution of equations 3.4.18 and

3.4.19 in theorem 2.4.5 yields:

Corollary 3.4.5 Suppose §; = (Ui’Vi) and Sj = (Uj,Vj) are non-
empty data sets and that Aj emulates Sj over T. If ng and ng
are not empty and if
alvdieP, + a2udivE, = o, (3.4.20)
i'ij 1] 1 ij 173
advdoP, + atulivE. = o, C (3.4.21)
Ry Ry i7i§713

q qr q 2. 4qr 4 1.4' 4 29 4
Vlj( 1V13U13 + 1U13A3U13) (aivijUij + aiUijAjUij) (3.4.22)
q
= Vij’
A0l (a3v20d, ¢ atua ) (il + aivla ol (3.4.28)
J ij 1 ij7ij 1717 J 1] i1j71] ii373713
= A, U3,
j7i3?

where the g-inverses are arbitrary, then

— - o~ — o . o e
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1
Ay = A V 333 Vq Uq + acuhaud) v

2 q
i 13713 11379717 iv'ig + aiUijAj) (3.4.24)

- A]Uq (alvijug] ¥ alUngjUij)- (alvgj " alUE]Aj)
emulates S; over T. Further, if ng is empty and if conditions
3.4.22 and 3.4.23 are satisfied then A, given by equation 3.4.24
emulates S; over T.
Corollary 3.4.5 allows the sets Si and Sj to diffgr in an arbitrary
manner. In order to arrive at the recursion formulas 3.4.1 through
3.4.5 it is necessary to consider a particular sequence of data sets.

Corollary 3.4.6 Consider the sequence of data sets S, = g,

S = (UysVy) = ([ugse e e sty 1y [Vpseresv 1), Xk = l,...,0. If Ay

emulates Sk over | and if

1 2
a Uy + awVy =0, k>0, (3.4.25)

3 4
+
akkak akukVk

0, k>0, (3.4.26)

2
akukAkuk) = v

+

k >0, (3.4.27)

1 2 1 '
vk(akvkuk + akukAkuk) (ak 1 K

31 Lo _
Aku (akvkuk + akukAkuP) (akvkuk + akukAkuk) = Akuk’ k»z_O, (3.4.28)

then

Ak+l Ak + vk(akvkuk + akukAkuk) (akvk + akukA ) (3.4.29)

3
+ A + A k
Akuk(akvkuk akuk o (akvk akuk RN

emulates S over |.

k+1
Proof: The proof follows immediately from corollary 3.4.5 by taking

S. =86

, S. =S sP. =g and Sq {(u WV )} Notice that by
3 k? "1

Pk+1® Ui k
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b=

definition any matrix A, emulates Sy and that Slo =

0

Conditions 3.4.27 and 3.4.28 of corollary 3.4.6 are satisfied iff

1 2
L4.30
aviu + au A u 0 (3 )
and
3 [P
(3.4.31
aviu +auAu 0 (3 )

respectively, since the g-invefse of a nonzero scalar is its reciprocal
and a g-inverse of the zero scalar is zero. . Conditions 3.4.25 and
3.4.26 of corollary 3.4.6 are satisfied if, but not only if, the

orthogonality conditions

v.U. =0 (3.4.32)

and

'v. =0 (3.4.33)

are satisfied.

Before proceeding it should be pointed out that two of the
coefficients in equation 3.4.29 are redundant. If inequalities
3.4.30 and 3.4.31 hold, then equation 3.4.29 can be written as

= ' 1 -1 ' 1
Ay = At vk(vkuk + bkukAkuk) (Vk + bkukAk) (3.4.34)

2 'A )
Uk

2 - 1
- Au (v'u +b u'A u, ) 1 (vk + bk

k'k kk k'k k k

1
where bk

1 3 . - - . . .
If g Or ay 1ls zero, similar formulas can be wrltten 1nvolv1ng_

2,1 2 b, 3 . 1 3
ak/ak and b, = ak/ak, provided a, and @&, are nonzero.

ai/ai and ai/ai. Therefore equation 3.4.29 depends only on the ratios
2,1 b, 3
ak/ak and a/a.
We are now in a position to state a result about the family of
recursions 3.4.29 when applied in minimization algorithm 3.4.3.

. n o, ..
Theorem 3.4.7  Suppose an initial point x, € R* 1s given. Suppose

the matrix Ay and the vector w, of algorithm 3.4.3 are chosen so that
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ot
goho¥y # 0 and the matrices Aps k > 0, are chosen by the recursion

- 1.1 2.1 - 1. 2.1
Ak+l = Ak + Vk(akvkuk +.akukAkuk) (akvk +'akukAk) (3.4.35)
3 Ly - 3 L o
- Akuk(akvkuk + akukAkuk) (akvk +au Ak)
where Vie T ¥ T ¥ and w = 8+l ~ B Suppose the coefficients
1 L
Bseeesdy  are chosen so that géAiwk # 0, k > 0, and so that
alvlu +aZu'Au #0 (3.4.36)
Kk T %Kk b
3 L o
ay Vi + akukAkuk #0 (3.4.37)

for k > 0, Suppose algorithm 3.4.3 is applied to an objective

n 1 e .. .
function f(x) : R -+ R with constant positive definite Hessian H.

Then either g = 0 for some k <n or Ak emulates Sk over |,

where S = # and S = (Uk,Vk) = ([uo,...,uk_l], [vo,...,vk_l])

k = l,...,n; Further,

Uka = Vkuk =0, k=1,...,n, (3.4.38)
A, = HE (3.4.39)

and
g, = 0. (3.4.40)

Proof:  Assume 8 #0 for k <n. A, emulates S, over T by definition.
Therefore, by corollary 3.4.6 and equations 3.4.36 and 3.4.37, Al

emulates Sy over T and by theorem 3.4.4
1 !
Upvy = 0 and Vyu; = 0, _ (3.4.41)

Assume then that Ak emulates S, over T and that

1 L]
Ukvk = 0 and vkuk = Q. (3.4.42)

By corollary 3.4.6, equations 3.4.36, 3.4.37, and 3.4.42, A emulates

k+1
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8,41 Over T and by theorem 3.u.u4

'

= 0 and (3.4.43)

|
U v = \) u =0
k+1 k+1 k+1 k+1

By induction then Ak emulates Sk over | for k = 0,...,n. Equations
3.4.39 and 3.4.40 follow from theorem 3.4.4. Q.E.D.
The algorithms of theorem 3.4.7 contain all of the algorithms

specified by general algorithm 3.4.1 and the recursion formulas 3.4.1

through 3.4.5. To obtain these formulas the following choices are made

for the coefficients ai,...,ai.

1 .

a # 0, al =0, al=0,a #0 Davidon (3.4.44)
1 2 3 L

a = -a #0,a =-a #0 - Murtagh and Sargent (3.4.45)
1 2 3 L

ay £ 0, a 0, a =0,a =0 Pearson 1 (3.4.u46)
1 2 3 L

ak =0, a £ 0, a = 0, a £0 Pearson 2 (3.4.47)
1 ' 2 1 3 '

ak =1+ BkukAkuk, ak = —Bkvkuk, a = BkukAkuk

b '
a = 1-Bviu, B8 >0 Broyden  (3.4.48)

The algori%hﬁéwaf theorem 3.4.7 are more general in four reépecté tﬁ;ﬁ"
these known algorithms. First, general algorithm 3.4.3 allows a far
more general choice of a search direction for a given matrix Ay - Second,
in algorithm 3.4.3 we recognize that it is only necessary to chooée the
matrix Ak and the vector W such that géAkwk 0 iﬁ order to insure that
the algorithm does not become stuck at any stage. Third, the family of
recursion formulas given by equation 3.4.29 includes all of the recursion

formulas 3.4.1 through 3.4.5 as well as a large class of new recursions.

Finally, theorem 3.4.7 does not restrict recursion formulas to be the
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same at each stage of the algorithm. With the wide latitude afforded

by the algorithms of theorem 3.4.7 it should be possible to improve
upon the performance of existing algorithms.

It may be that the more general recursion formula of corollary
3.4.5 can be utilized in minimization algorithms constructed to
generate more than one new element for the data set Sk at each stage.
Also the formula of corollary 3.4.5 could be useful in problems other
than the minimization problem. These aspects are not pursued here in-

depth.

In order to fulfill the hypothesis of theorem 3.4.7 it is

!

so that gkAkmk £ 0

and so that equations 3.4.36 and 3.4.37 are satisfied. In the known

. s 1 L
necessary to choose the coefficients ak,...,ak

algorithms w, is chosen to be g Two choices for ai,...,ai have
been shown, in this case, to guarantee that giALgk # 0 and that
equations 3.4.36 and 3.4.37 are satisfied. The first of these is the
choice which yields’the Davidon formula, equation 3.4.1. In (FLB 63)
it is shown that if Ao‘is chosen to be positive definite and the
Davidon formula is applied to any nonzero sequence of vectors (uk,vk),

k = 1,2,... then A is positive definite for all.k. In (POW 71) it is

k
further shown that if the Davidon algorithm is applied to an arbitrary
twice differentiable function and if an exact linear search is employed
then V]Luk # 0 and uéAkuk # 0 unless gp4) = 0. The same results
have been shown to hold.(BRO 70, 70a) for the choice which yields the
Broyden formula gi&en by equation 3.4.5. No such results can be
obtained for equations 3.4.2, 3.4.3, and 3.4.4.

The Murtagh and Sargent formula given by equation 3.4.2 has a further

interesting property. If the Murtagh and Sargent recursion is applied to
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a sequenée of data sets So = g, Sk = (uk,Vk) = ([uo,...,uk_l],

= Hv., i = 0,...,n-1, for some

D, k=1,...,n, where us s

[vo,...,vk_l

symmetric matrix H, then equations 3.4,25 and 3.4.26 of corollary

3.4.6 are automatically satisfied since -

a;v;(Uk + aiu}'(Vk = a;:(v]'(ﬁlz - v}'(ﬁ'vk.) =0 (3.4.49)
and
3 Y o 3, 1=~ r—t
avil +auv, = ak(kavk - v i vk) = 0, (3.4.50)

This property leads to the consideration of the following algorithm

1

for minimizing f£(x) :DCR" > R~ on D which does not involve an exact

linear search at each stage.

Algorithm 3.4.8 Assume Xy € D and an initial matrix AO are given

and set k = 0.
1. If g = g(x) =0 stop.
2. If k <n set X4l © X t Vi where vy is any vector
not in R(V}) and where Vj = [VO,...,vk_l].
3. If k>n set Xy, = x - Agr and set vy = Xy - Xk
B, Set Apyy = A+ ek(eiuk)'lei where e = v - Aw. and

Uk T 8yl T Bkt

5., Set k = k+l and go to step 1.

As with algorithm 3.4.3 some modification of tﬁis procedure may
be desirable when the objective function is not quadratic. If the
objective function f(x) is quadratic and if its Hessian matrix is
nonsingular then the following theorem holds.

Theorem 3.4.9  Suppose an initial point x, € R" and an initial

matrix Ay are given. Suppose algorithm 3.4.8 is applied to an objective

function with constant nonsingular Hessian H. If eiuk # 0 for

et e e ma e e o —————
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k = 0,...,n-1 then either g = 0 for some k < ntl or

A = H (3.4.51)
and

gk+1 = 0. (3.4.52)
Proof: First notice that algorithm 3.4.8 is determined for

k = 0,...,n provided g # 0 and eﬁuk #0 for k =0,...,n.

Because of equations 3.4.49 and 3.4.50, conditions 3.4.25 and 3.4.26 of
corollary 3.4.6 are satisfied. Conditions 3.4.27 and 3.4.28 of corollary
3.4.6 are satisfied iff e}'(uk # 0. Therefore A emulates Sy over T for

k'=0,...on where S = (U,Vy) = ([ug,...uy_ g7, [vgseresvi1 D

it

Because v, ¢ R(Vk), k =1,...,n-1, the vectors (VO,...,V ) are a

k-1
¢
basis for R" and therefore there exists a unique matrix A, = g1
which emulates S, over T. Finally, since on a quadratic surface
g(x) = g(y) - H(x - y) (3.4.53)
we have
g = g+ H(x Hlg - x )
n+l n n €n n
-1
=g, - HH gn
= 0. Q.E.D.

It is necessary to require that H be nonsingular since if H is

singular and the data set S, is such that CVO,...,V ) spans R°,

n-1
no matrix An exists which emulates Sn over [. It does not seem to be
possible without a priori knowledge of H to choose the vectors v, S0 that
!
& U £ 0.
One would hope that the results of theorems 3.4.7 and 3.4.9 could

be extended at least in part when algorithms 3.4.3 and 3.4.8 are

applied to an arbitrary twice differentiable function f£(x) :DCR" - Rl.
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Unfortunately this is not the case. The proofs of theorems 3.4.6 and
3.4.9 are predicated on the existence of a nonsingular symmetric matrix
H such that U, = HVy, k = 1,...,n. If f(x) is not quadratic it may
happen that no matrix exists which transforms Vi into Up. More
importantly there may exist no matrix which emulates Sy = (V,Uy)

over |. Even if an Ay exists which emulates Sk over T it may not be
symmetric. In the absence of a matrix which emulates S, over T it
would seem desirable to obtain a matrix which approximates Sk over T.
As will be shown in section 3.5 it is unlikely that any of the formulas
of this section generate a sequence which approximates S, over T when
f(x) 1is not quadratic.

3.5 Recursive Formulas for Approximating Sequences

Recall from theorem 2.2.u4 that the family of approximations to a
data set §; = (Uk,Vk) over | is given by
+

+
Ak =V, U+ Yk(I - U 0y) (3.5.1)

where Y, is érbitrary. If a sequence of data sets S = (Uk,Vk) =
([uO""’uk—l]’ [vgseeesvy 1), k = 1,2,..., is being considered,
theorem 2.5.1 can be used to compute U; from U;_l and arrive at the
family of approximation to S, over T. Although this procedure is quite
efficient it is worthwhile to derive from theorem 2.4.1 an explicit
recursive formula for the family of approximations to S, over T.

We begin by developing an expression for the matrix [X,x][A,a]+.

Direct application of theorem 2.4.1 yields

[x,x10A,al" = xa* + (x - xata)(a'(1 - anha)™ (3.5.2)
a' (1 - aah), a ¢ R(A),
[X,x1[A,a]" = xa" + (x - xaTa)(1 + a'at'ata)™t (3.5.3)

-—



aA A, a € R(A).
Setting [X,x] = [A,a], an expression for the operator I - [A,a][A,a]+
is obtained.

I-[A,allh,a]" = (1 - aa%) + (1 - maMa 2 (1 - mha)t (354

n

a (I - AAY), a ¢ R(A)

I -[A,alla,al” = (1 - aa) + (1 - anHaw + a'A+'A+a)'l' (3.5.5)

! 1
a AT AY, a e r(A).

Next, applying theorem 2.4.1 to the matrix [A,a]“[A,a]+ yields

[a,a]"'[a,a1t = (1 -ab")'at"'A*(I - ab') + BB (3.5.6)

where
b= (I - aD)aa(1 - aaHa)™L, a # r(a) (3.5.7)
b=a""a%a(1 + a'at'ata)™L, a e r(a). (3.5.8)

Substituting equations 3.5.7 and 3.5.8 into equation 3.5.6 gives

[a,a] '[a,21" = At At - Aa@ (1 - et - Y (as.g)
- (1 - AA+)a(a'(I - aaha) At at
+ (1 - anHata' (1 - ahHayLa'atata
@' - ahHa a1 - ah
+ (a'(I.- aaHa) (1 - mha
21

(@'(x - aa")a' - ma*),  a ¢ R,

t L | -1 '+ +
[a,a3t 14,21t = at'at - 22t atacn v a At Aty la At At (305,10
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v [ 1 R 1 ' ' - v'+v+
s at'ata v a A AT T At atal + 2 At AT ta At A
: (| - ' [ 1 0t 4t

F+aat At ata s aat At taat A, a e rea).

Notice that equafions 3.5.4, 3.5.5, 3.5.9, and 3.5.10 are coupled in the
+1 4
sense that the..expressions for I - [Aal[Aa]’ involve A A and the
+1

expressions for A A" involve I - AA+.

Assume that a sequence of data sets SO =0, Sk = (Uk,Vk) =
([uo,...,uk_l], [vo,...,vk_l]) are given for k = 1,2,... . From
equations 3.5.%, 3.5.5, 3.5.9, and 3.5.10 we may write a recursive
formula for the matrices M, = (I - U U+) and N, = U+'U+ for
B = 0 Yk k°k Yk k "k *
k=1,2,... |
M, = I (3.5.11)

- 1 'u —l ! -
Mk+l - Mk - I‘ukuk(ukukuk) ukM k’ Uk g R( Uk) 9 ( 3 . 5 012)
_ ' . -1, ‘
Mg = M- Mo (L uNou) u e, u € R(G) - (3.5.13)
Ny =0 (3.5.14)

- ax =1 AT B
=Ny - Nkuk(ukMkuk) ukMk - Mkuk(ukMkuk) uPNk (3.5.15)

~

K=1

v t,, -2 1,
+ (1 + ukauk)Mkuk(ukmkuk) w M W g R(U ),

Nies1

1 -l 1
= N - N (L + wNow) Tu o, w o€ ROUD (3.5.16)
Since the operator My is an orthogonal projection operator, u, € R(Gy)

iff Mkuk = 0 or equivalently iff uLMLMkuk = u)LMkuk = 0. Therefore,

P U N N Y

P—— ot

- A asssmma o ms Wa m
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it is a straightforward matter to determine whether u; € R(Uk) and
consequently which formulas to use.

The matrix Ny is of interest here because it allows the calculation
of M, in the event wu € R(G). If w €R(U) for all k <n then
My is given by equations 3.5.11 and 3.5.12.

Before: continuing it is worthwhile to observe that equations
3.5.11 and 3.5.12 define a wgll known conjugate gradient recursion
formula (FLE 69). If the vectors wus k = 0,...,n-1, are independent
then this conjugate gradient formula can be interpreted as the recursive
calculation of the operator (I - UkUi). In the conjugate gradient
algorithm the search direction is taken to be

v = (I - GUDg,. (3.5.17)

Because (I - UkUi) projects vectors onto Rl(Uk), v, € Rl(Uk). If the
objective function has a constant Hessian H then v, is H orthogonal to
the previous directions V, = [vo,...,vk_l] since

= viuk = 0, (3.5.18)

This, of course, is the fundamental property of the conjugate gradient
algorithms.
. o . _ +
Using the matrices Mk and Ny, the matrix Pk = VkUk can be

calculated recursively. From equations 3.5.2 and 3.5.3 we have

Py =0 (3.5.19)
1 -1 1
Pryp = Bt (v - Pu)(w e ) TuM, wo € R(U), (3.5.20)
1 _l 1
Prap = P ¥ (v = Py ) (1 + wNpu ) “wl, u e R(Uk)-_(3-5.2l)

The matrix P is the approximation to §; over T obtained by choosing

Y, =0 in equation 3.5.1. The entire family of approximations to S
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over | is therefore given by

- 3.5.22
A = By o+ Yl ( 22)

where Yy is arbitrary.
If the matrix Y, =Y for k =1,2,... thena particular

sequence of approximations to Sk over | results.

Ao =Y (3.5.23)
_ (3.5.24)
Aep1 7 P Y M
- ' -1
Ak+l = Pk + (vk - Pkuk)(ukMkuk) u My + Y (3.5.25)

1 _l !

' -1
Ak + (Vk - Akuk)(ukMkuk) ukMk, uk ¢ R(Uk)

! -1
1 = Pt (Ve - Py ) (1 4wy ) T Ny o+ Y (3.5.26)

1

- YM u, (1 + u, N, u jlu'M
k7k k'k'k? "kk
= A + (v, - Au ) + ulNu )-lu N, , u_ € R(U)
k k k'k k'k 'k k'k» "k k
F;rmulas 3.5.20, 3.5.21, 3.5.22, 3.5.25, and 3.5.26 are di#tinc% from>‘
the formulas of corollary 3.4.6. Even in the case where the vectors
s k =0,...,n-1, are independent these recursion formulas cannot
be arrived at by a particular choice of the coefficients RN ERERPL Wh
in corollary 3.4.6.
Application of the recursions 3.5.23, 3.5.24, and 3.5.25 in

minimization algorithm 3.4.3 might yield a minimization algorithm with

nice properties. However, the matrix Ay of the recursion approximates

A i e e e A A A n e heh W

-

. dems e me .. -

— -
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§, over T for all k. In minimization and root finding problems old
data becomes invalid as the local character of the function changes.
Therefore, it probably is desirable to have a procedure for removing
elements from the data sets as the elements become old. In principle
it should be possible to obtain recursive formulas for approximations
to a data set generated by deleting an element from its predecessor.
This would be an interesting area for further investigation.

In a process where an approximation to a data set with a large
number of elements, relative to n, is to be recursively calculated the
formulas 3.5.23, 3.5.25, and 3.5.26 are very useful since they only
require the storage of three n x n matrices, two of which are symmetric.
Further, if it is known that for all k > k the vectors Ugseessly g

of the data set S span R", then u,_ € R(Uk) for all k > k, and only

k
equations 3.5.16 and 3.5.26 are needed for the calculation of an
approximation to Sk over |. In this case then it is unnecessary to
compute the matrix M. If the data sets contain n or fewer elements it
seems more efficient to apply theorems 2.5.1 and 2.5.2 directly.
3.6 Summary

In this chapter the material of Chapter 2 has been utilized to
unify a large class of root finding and minimization aigorithms.
Many other algorithms not discussed specifically herein, such as the
Pshenichnii algorithm for minimization (PSH 69) and the Fletcher algo-
rithm for root finding (FLE 68) can also be interpreted in the context
of Chapters 2 and 3.

In section 3.3 the secant methods for root finding were shown

under appropriate conditions to generate a sequence of matrices which

emulate a sequence of data sets. It was pointed out that by considering
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generalized secant methods involving approximations to the sequence of
data sets it should be possible to get stronger convergence and rate of
convergence results for the secant methods. Also, since the theory of
Chapter 2 allows data sets in R" x Rm, m # n, it is possible to
formulate secant-like algorithms for determining the root of F(x)

R® > R™ or for minimizing the norm of F(x).

In section 3.4 the relationship between théorem 2.5.5 and a number
of proven minimization algorithms was considered. This led to a large
new class of algorithms which, when applied to a quadratic function with
positive definite Hessian, generate H conjugate directions, yield the
matrix H and minimize the function in n steps. Theorem 3.4.5
establishes the properties of these algorithms on a quadratic surface.
Also in section 3.4 the special properties of the Murtagh and Sargent
algorithm were discussed. It was shown that, because equations
3.4.22 and 3.4.23 of corollary 3.4.4 are automatically satisfied when
the Murtagh and Sargent algorithm is applied to a quadratic surface, an
exact linear minimization is not required at each stage.

The general choice of Z% and Zi given in corollary 3.4.3
allows the calculation of an emulating sequence, if one exists, when the
sequence of data sets is arbitrary. This result may be of value in
algorithms where the data sets differ by more than a single element.

In section 3.5 a recursive expression was developed for the calculation
of an approximating sequence when the data sets are generated by
adjoining a single element at each stage. Such a formula could be

useful when the number of elements in the data sets becomes large.

PR U U



CHAPTER 4

FUNCTION MINIMIZATION USING THE PSEUDOINVERSE

4.1 Introduction, Definitions and Preliminary Lemmas

In this chapter a general algorithm will be developed for deter-
mining the minimum of a function f£(x) :DcR® + R}, As in Chapter 3
g(x) and H(x) will denote the first and second derivatives of f£(x)
where they are defined. Under fairly weak hypotheses it will be shown
that the general algorithm generates a sequence {xk} which converges
to the minimum of f£(x). Under somewhat stronger conditions the
terminal rate of convergence will be shown to be superlinear.

In developing these results three norms on R” will be utilized:

Il "1 - 3 |t (4.1.1)
i=1

l|x|12 = ( : (xh)?)L/2 (4.1.2)
i=1

"Xll“ = max [xil (4.1.3)
i=l,...,n

where xi is the i th component of x. When an arbitrary norm will suffice
the subscript will be omitted. Associated with each of these norms will
be the matrix norm on the space | of all n x n matrices defined for
AeTby.

“A" sup lle" . (4.1.4)
X € Rﬁ—]F:"—

Matrix norms will be subscripted to correspond to the vector norm which
generates them. We will make use of two results concerning norms. First,

the matrix norm associated with the vector norm "Xllm is given by

66
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n
all = T lags]. (4.1.5)
I# = o
Second, for any two vector or matrix norms ""Ia and ll."b there

exist constants Cl > 0 and C2 > 0 such that

ey =, < x|l <c, ||X||a (4.1.6)
for all x € R" or

Cl“A"a <lall, <c,llall, (4.1.7)

2
for all A € R® . A proof of these results may be found in (ORT 70,

section 2.2).
The following standard definitions will be needed in the development.

e . TP
Definition 4.1.1 The open sphere of radius r > 0 centered at x € R,

denoted by S(g,r), is the set of all x € R such that "x - £I12 <r,

Definition 4.1.2 The interior points of a set A c:Rp, denoted by A,

are all points of A contained in some open sphere contained in A.

Definition 4.1.3 A set ACR® is closed if Limit Xy = x and
k »

{x)} < A implies that X € A.

Definition 4.1.5 A set ACR is compac£>if it is closed and bounded.

Definition 4.1.6 A function F(x) :DCR® > R" ‘is continuous at x € D

“if given € >0 Ja §>0 3 F(x) e S(F(;),e) whenever x € S(x,6).

n m ., . .
Definition 4.1.7 A function F(x) :DQR »+ R is differentiable at

» . - m
x € D if given € > 0 4 a 1linear transformation F'(x) : R? > R" and

a 6>0093
leco - r) - P - 0 < e x- k] 18y
whenever X € S(ﬁ,ﬁ). The linear transformation F'(x) is the deriva-

tive of F(x) at X.

. mmm mm o oate mmmn — —
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Definition 4.1.8 The derivative of F(x) :&CRn > g™ at ;c €D is

strong if given € > 0 1a 6>008
e - B - P -y < e Ix -yl e
for all x,y € S(;{,G)CQ.

Definition 4.1.9 A function F(x) :DcR™ + R® is continuously differ-

entiable at x & D if daé>0 9F(x) is differentiable at all points
~ . ~ nxm ., . ~
of S(x,8)cD and if F'(x) : S(x,8) + R is continuous at x.

To require a strong derivative at a point is less restrictive than
to require a continuous derivative at a point since functions exist which
have a strong derivative at a point X but which are not differentiable at
all points of any open sphere containing X. However, in many practical

situations the concepts are equivalent as the following lemma shows.

Lemma 4.1.10 Suppose F(x) :DcR® + R® is differentiable at each point

of S(§,6)c;9_ for some & > 0. Then F'(x) is strong iff F'(x) is
continuous at x.

A proof of this result may be found in (ORT 70, lemma 3.2,10).

In proving the rate of convergence results it is essential that the
derivative of f(x) have certain properties in a neighborhood of a
minimum. The following lemma establishes conditions for these properties.

1 . . .
Lemma 4.1.11 Suppose f(x) :DeR” + R is twice differentiable at

x € D and that H(x) is positive definite and strong. Then there
exist constants Cq"> 0 and C, > 0 and an open sphere S(Q,G) such
that

C, Ix - v) < Je - gl < ¢, = - vl (4.1.10)
Y x,y € S(k,8)c D.

Proof: By the definition of a strong derivative, given any
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£E>03aé6>009

lgtx) - gyl - BGIG - ) < € llx -y (4.1.11)

Y sy € S(x,6)cD. This implies that

fa G -yl - ez - v < st - g < (4.1.12)

leocx - v + el x - y]

Y X,y € S(%,8). Further, because H(x) is positive definite

) -« Ix - vf < letx) - g < (€, + € I« - yllci.1.19)

where Ei >0 and Eé > 0. If € is chosen less than Ei then the

1° 6 , = C, + € yield the result of the lemma.

i
(@]

i
m
fo1]
=]
o
(@}

choices C

4,2 Fundamental Definitions and Lemmas

Q.E.D.

The results of this section form the foundation for the construction

of the general‘minimization algorithm. In what follows the matrices U

and V can be viewed as representing a data set S as discussed in chapter

2. We begin with a lemma.

Lemma 4.2.1 Suppose f(x) :DCR - R is'twice differentiable at

X € D and that H(x) is positive definite and strong. Let U be any
n xm matrix, m > 0. For a € (0,») sufficiently small a6 > 09
if x,y € S(x,8) and if v=x-y 6 RL(U) then

“(I - UU+)u" >0 “u" : (4.2.1)

where u = g(x) - g(y).

Proof: If v=0 the lemma is clearly satisfied, .Agsumgnthen'thif v # 0.

First we have

iz - vut)ul)

P Jc - o] gt e

|v

Clv'(I - UU+)u "v “-l
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where the constant C, > 0. depends on the norm ﬂ.||. Since v & R (U)
it follows that

Iz - ool > epviu vl L (4.2.3)

Letting e = u - H(x)v

"(I - UU+)u" z,ClV'H(ﬁ)v Hv||-l + Clv'e "Vll‘l. (4.2.4)

Because H(x) is positive definite

ez - w2 ey o)) +opve v ] (4.2.5)

for some 02 > 0. By lemma 4.1.11 J a C3 > Q dependent on H(x) and
9
a 61 >0

I > c, |l (4.2.6)

H X,y € S(ﬁ,dl). Because g(x) has a strong derivative at x, for any
e>03a6,>09
"e" = Ju- H(;‘)V“ <elvl (4.2.7)
Hx,y € S(§,62). Further, by lemma 4.1.11 3 a §5>0 and a C, >0
uV“f_.Cq ||u|| (4.2.8)
H X,y 6 S(;,%g). It follows that for all x,y € S(;,éu),

8, = min {4;,8,,85},

m
ez - wt ) > e L5 lull - ¢ v e I+] = (4.2.9)
> e full - ey vl el Jvl =
2 ¢ |lof -y [

> (eyey-cc e ful.

If € is chosen less than C2C3(Clcu) the choice § = 6u and

0 <a<(CCy - clcu €) yields the result of the lemma. Q.L.D.

Remark 4.2.2 A review of the proof of lemma 4.2,11 will verify Lhat the
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maximum value of o depends only on the norm chosen and on the matrix
H(x).

Remark 4.2.3 When the norm of lemma 4.2.1 is“." 25 “(I -‘UU+)u"2 f;uul'z

for any u and therefore only o € (0,1] need be considered.
This follows because the operator I - uut is the projection operator
whose range is RL(U).

Next a family of data sets will be defined which has properties
useful in proving the rate of convergence results. Thefgeneral mini-
mization algorithm will be constructed to choose only data sets Sk.

from this family of data sets.

Definition 4.2,4 Suppose f :DcR" + R:L is differentiable on D. Let
S(x,6,0), x € D, § > 0, a € (0,1], be the family of data sets S = (U,V)
with the following properties.
1. Each pair (U,V) consists of a matrix U with n rows and m
columns and a matrix V with n rows and m columns where m may
have any value in {1,...,n}.

2. The éolumns v.,, 1= l,...,m, of V are nonzero and of the form
i

X, = Vs where X:,y, € S(x,8) ﬂg

3. The columns u.,, i = 1,...,m, of U are nonzero and of the form
i

g(xi) - g(yi) where x, -y, is the colum v, of V.

4, The columns us, i=2,...,my of Uare such that
+ .
[CIERARUIREN Y Y (4.2.10)
where Ui—l is the n x(i-1) matrix whose columns are the first

i-1 columns of U with the same ordering as the columns of U.
As remark &,2.3 indicates, it is enough to consider o€ (0,1]
since if a > 1 condition 4.2.1Q0 is never satisfied. We next verify

that, under appropriate conditions on f(x), the family $(x,6,0) is
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not empty.

'Lemma'u 2 5 Suppose f(x1 :DeR" > Rl is differentiable on D, twice
differéntiable at % 6 D and that H(x) is positive definite and strong.
Then for & 6 (0,11 sufficiently small and for any & > Q, the family
S(x §,0] is not empty and in fact contains data sets with m elements
for m = 1l,¢..,0.

Proof: By lemma 4.1.11 3 a8 > 08 u=glx) - g) #0

whenever v .= X - x #0 and x € S(§,6 ). Therefore the set

S(Q,G,a) is non-empty for any & > 0 since any pair of one column
matrices (u,v) chosen so that x € s(x,8) [l S(Q,Gl) is an element of
S(x,6,a). If (U.,V.) is a pair in S(Q,G,a) with 1 <n columns.and
if o is sufflclently small,a pair (U, $41° l+l) e §(x,6,0) with i+l

columns can be constructed as follows. Let V.. . = [Vi;vi] and
n L N n
Ujpp © [Ui,ui] where v, = X, - X € R (Ui), X, 7 x, X, € S(x,8),
= g(x,) - g(ﬁ) # 0, and “(I - U.UNu " > a “u u That such a
i ’ itittin 2 — id2r
choice can be made follows from lemmas 4.1.11 and 4,2.1. Since this
construction can be accomplished for 1 = 1,...,n-1, the family
S(ﬁ,é,u) contains data sets with m elements, m = l,...,n. Q.E.D.

The following lemma establishes a bound on a matrix generated from

elements of S(ﬁ,é,q) which will be needed in the rate of convergence
proof.
Lemma 4.2.6 Assume £(x) :Dc:Rn - Rl is twice‘differentiable at
x € D and that H(x) is positive definite and strong. Given any
o € (0,11 fof every € > 0 Jas =26(e) >09 4y data sets
(u,v) € S(x,6,a)
| - sGonu® | < e ¢ (4.2.11)

where the constant C depends only on a.
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Proof: Because of the definition of S(g,ﬁ,a) if (u,v) & S(ﬁ,ﬁ,a)

the columns of U are linearly independent. Therefore, by theorem 2.5.1

+ _ [+
U, = [Ui-l’ui] = U, _

: o (- ui(zizi)-lz;) o (8.2.12)

1

1
(zizi) z;

where us is the i th column of U, Ui (Ui l) is the matrix whose columns
are the first i (i-1) columns of U with the same ordering as the columns
of U and

_ +
7 = (I - UiUi)ui‘ (4,2.13)

Using the explicit representation given in equation 4.1.5 for the matrix
norm “ “o° we have that if (U,V) & S(x,6,a) and u; is the i th
column of U

k-1 ., .
Iz - wizz) | = r [ ez (4.2.14)
1 11 1" ® j=l 11 11

Lokt \-l
+ |1 - u,z,(z,2;) |
n Sy
+ L lu?zi[(zizi) 1
kel T

.
for some component u, of u;. Thus

o - s

«©

n s
< I [u}.<z:.]|(z.z.)_l + 1 (4.2,15)
— 4oy biUTEM

no .
< max Iu%l ) ]z?[(z:zi)-l +1
T k=l,...,n T §=1 Y07t

NN EN N EA PSR!

<< nuﬂl l Zi“ R

where the constant Cl depends on the particular vector norm chosen for

us and Zs Because of condition 4.2.10, uzi“ 0 2 a“ ui“ 2 and
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therefore
vttt ‘ -1
- Z Z
(BN N A | (4.2.16)
for some constant C2. Further, from eguation 4.1.7
' -1 -1
- Z Z V4
It - w2207 2] <egtc, o™t v 1) (4.2.17)

where C3 depends on the matrix norm chosen., Next, let u; denote the

i th row of the matrix U' and notice that repeated applications of theorem

2.5.1 yield

m ' A ' _1 ' _
"ufﬂ = llﬂ z.(I - u.(z.z.) lz.)(z.z.) l“ , 1 <m, (4.2.18)
i jeie1 T B e A R

+q ! -1
"um! = u(zmzm) Zm" (4.2.19)
where m is the number of columns of U. From equation 4,2.17 it can be

concluded that

5] <, (eyte, a7t + 1™ 2 | (4.2.20)

< ¢, (e, ot 4 1)) C ot I | -1

where the constants Cu and C5 depend on the choice of norm and where C3

is chosen greater than 1. It follows by lemma 4.1.11 that for some

61 > 0 all columns u, and \f of any pair (U,V) & S(X>515@) are

such that "v.“ <C ||u.| and therefore
id— "6 i
+ -1 m-1 -1 -1
us < C4(03(02 a o+ 1)) CSC6 o vi T (4.2.21)

Because H(xX) is strong, given e <0 § a 8§, = 85(e) > 03 all columns

u; and v, of any pair (u,v) € S(x,62,a) are such that
"ui - H(x)vi <e “Viu' (4.2.22)

Finally, since
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v~ sGonu] = | r (v, - HR)v)uy | (4.2.23)
: i=1

| A

m
vy - mGavyl el
1=1

we have that for any € > 0 ] a 6(¢) = min‘{61,62(€)} ?

(U - Hx)VIUT < ? e lv.] c (c.(e. o™t +7 1)) (4.2,24)
=1 i L'"3 "2
-1 -1
CSCG a “vi“
< emcu(cs(cz o L4 _-|_))'"‘"lc5c6 oL, Q.E.D.

The next lemma shows that if § is sﬁfficiently small and if the vector w
is nearly in R(U), then the vector p* = VU+m nearly equals H N (%)w when
(U,V) & S(x,6,a).

Lemma 4.2.7 Assume f :DcR" + RY is twice differentiable at X € D
and that H(x) is‘positive definite and strong. Let a € (0,1] and

B >0 be given and consider the vectors

D= (1 - uwhu (4,2.25)
p* = vu'to (4.2.26)
h=p* - Koo (4.2.27)

where (U,V) € S(x,6,0) and o € R®. For every € > 0 ] aéde)>a09
g (U,V) € S(x,8,0) and any w € R® if
“gl <8l (4,2.28)
then |
In] < &+ ce) uH‘ch)H lol (4.2.29)
where the constant C depends only on o.
Proof: If w= 0 the lemma is clearly satisfied, so assume w # O.

We have
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ﬂh" = [l(VU+ - H'l(;t)).w:f; (4.2.30)

|t weowt < T |

< JEteo) lacovet - ol
< "H‘l(;c)“ IOV - vyvte - (1 - ol
<l o) Jacov - owt ol

+ J - whe .
By lemma 4.2,6, for every € > 0-4a § > 0 8.4 pairs
(U,V) e S(x,6,0)

- Il <leteo) cefu + 8ol @
Q.E.D. | . , ,

Remark 4.2.8 If (U,V) e S(Q,G,a) and U and V have n columns then U

is nonsingular and p = 0 for every w € R". 1In this case B=0
éatisfies equation 4.2.94 for any w € R and equation 4.2.31 reduces
to

I <ce Jaiol o] (42,52
Also, if the norm of equation 4.2.28 is “ uz _then by remark 4.2.3
B may be chosen in [0,1] without loss of generality.

Finally we show that for § sufficiently small if the vector w is
"mearly in" R(U) then the angle between p* of the previous lemma and
w is bounded less than 90° when (U,V) is any pair in S(Q,G,a).
Lemma 4,2.9 Assume f :DcR" » Rl is twiceidifferentiable at x € D
and that H(&) is positive definite and strong. Let o € (0,1] be
given and consider the veétors

p=(I-uhw (4.2.33)

and
p* = VU+(u (’4.2-34)
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' ~ n . e
where (V,U) € S(x,6,0) and w &R, w# 0. For B > 0 sufficiently

small 4 aé>03 if

o] < 8l (4.2.35)
then

o'k

TR

Proof: Notice first that with h = p¥* - HL(%)w

(4.2.36)

0'H (2w _ w' p* : W' H 3 (x)w - w'p*gﬂﬁ—l(ﬁ)w"A“up*u L
1 O R T Y loll Bt Goul
_-w'h + w'p¥ - w'p*;“H_l(ﬁ)wu el 2 (4.2.87)

ol [5t00]

lu'n] + Jo'p] 1 - RG] ot
ol JEteou)
Iall Ll - MelGoofl
Il JEtGou]

Utilizing the result of lemma 4.2.7 and the fact that “x - y‘_ﬁ c

I

A

implies that | nxn - nyu I < c, we have that given ate (O,l] for

every € > 0 Jase)>009 g (U,v) e S(x,8,a)

Iz ] <gful Lw#0,uweR

implies

w'H-i§§zw _ w'P* <2(p 4+ c, €) “H-i(%)" l@ﬂ_
ol & | Joll lo*l ol

< C(8+C e (4.2.38)

where 8 > 0, C. > 0 depends only on o and 02 > 0 depends only on

H(x). Because H(x) is positive definite 1 a constant C;>08guw#0
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' ?l MR
w i f‘}‘” RN (4.2.39)
lo] Je~Gau] =%
Therefore, given d e (0,1] for every & > @ +268>009 Q
(u,v) € S(ﬁ,&,d)‘ and any non-zere w € R°,
Izl < e
implies
1
_WP* L -c.(8+cC e (4.2.40)
-3 2 1 '
foll flo*]

Choosing B less than C3(l + C2)”l any § corresponding to an € less than
-1 '
(cy - (1 + 02)8)(0201) yields

1

w p* -1
____B_."_ > Cy - c2(8 + cl(c3 -1+ 02)6)(02cl) )
ol lo*l
> CS - C2B - C3 + (l + C2)B (’4.2.’41)
> B,

Notice that B must be less than 03(1 + C2)-l in order for there to

exist a positive € less than (C3 -1+ C2)8)(C2Cl)_l. Q.E.D.

Remark 4.2,10 If the norm is " I'Q then the inequality

"5”213 "“’“2 (4.2.42)

is equivalent to the inequality

P w
151 lel

This may be seen as follews. If "5}[2 <8 "wl‘Q then

< B. (4,2.43)

i|5||3i3||w|lzllﬁllz- S (sa2.u)
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It follows that

L IPORE UL U o
w (T -UU 2‘(1 UU dw . <8 (4.2.45)
lell 2 12 2
However
0 (T - w1 - e = 0@ - whe (4.2.16)
—_
= w p

which leads to the conclusion that

| -

“wp <B.
"w"2“§“2 -

(4.2.47)

The argument is reversible.

4.3 General Minimization Algorithm

We now propose a general algorithm for the minimization of a
function ‘f(x) :DCR" » RY. The algorithm is divided into three stages.
In Stage I a direction is chosen for a linear search based on a data set

S, and the gradient g(xk) and an approximate linear minimization is

performed starting at x,. In Stage II a tentative new data set S

k* k0

is chosen which lies in an appropriate family S(x,8,a). In Stage III,

if it is necessary, the data set S is augmented in stages

kO

Skj’ j =1,2,04., to form the data set S by choosing a sequence of

k+l

auxiliary steps which insure that for k sufficiently large the data set
Sk+l contains n elements.
The general algorithm is constructed to allow as much latitude as

possible in the choice of a sequence of data sets S . There is also,

k‘
under certain circumstances, latitude in the choice of a direction for -
the linear searchk. Convergence and rate of convergence results will be

presented for the general algorithm. In Chapter 5 these results are

supplemented by numerical experiments with algorithms constructed within



80

the framework of the general minimigation algorithm.
Before proceeding a definition is needed.

Definition 4.3.1 A function o(t) : [0,%) + [0,=) Is a forcing

function if Limit o(t,) = 0 implies that Limit t = 0.
k-r?d k > w

We now state the general minimization algorithm.

Algorithm 4.3.2 Suppose the function f(x) :DcR” » R is to be

minimized on D. Let x, € D be given and set k = 0. Let Kl be any
finite subset of IP’ the positive integers, and let K2 by any subset
of IP' Let o € (0,1], 8 6 (0,1] and 2 & Ip be given, Also, let the
forcing functions cl('), 02(-) and 03(') be given.
Stage I

1. If & ® g(xk) = 0 stop.

2, If Uk and Vk are not defined, go to step 5 of Stage I.

- - + . — . .
3. If Py = (I - UkUk) g # 0 and if p, satisfies

5; gk('lﬁk" 2 "gk" 2)—1 > B set P = Py and go to step 7,

"Stage I.
+ .
o= %o s s
4, If pi z VkUk B # 0 and if pi satisfies
] _l .
g ok, le )7 28, set p, = p* and go to step s,
Stage I.

1
5., Set Py equal to any nonzero vector such that P&
-1 )
( "Pk'IQ "gk||2) > B and go to step 7, Stage I.
6. If~ f(xﬁ) - f(xk - pk) i_cl( ugku2), set X .4 = X - D,
Axk = X 7 X Agk = 841 " &y and go to Stage II.
7. Set x = x, - Akpk’ where A, is chosen by a steplength

k+l k k 1
. ' N
algorithm such that f£(x ) - f(x) 3-02(pkgk qu "2 )

Axk =X T X Agk = 841 " & and go to Stage II.
Stagerif
1. Set j =0 and let ij’Ukj be any two n Xxm, me {1,...,n},

.
b
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N

matrices with the following properties.

a. The columns of V.. are a non-empty subset of the vectors

kj
Aﬁ-deMnaﬁmﬂ Mﬁ3kﬂlif<k,?i&;%e
columnsg of Ukj are nonzero and are the corresponding

vectors Agi- and (or) Agif' with the same ordering as the

- columns of ij. (The specific ordering of the columns of

ij and Ukj is of no consequence. However, it is

important that the correspondence between the columns of

Ukj and ij be preserved. )

b. The i th column ui of Ukj is such that

fa - o3 wghmul, alluf, s = 2,0c0m, w30

i—l . . . . L " . .
where U is the matrix consisting of'the first i-1

k
columns of Ukj with the same ordering as the columns of
Ukjl
2, If ke kﬁ, either set Up ) = Uy, Viepp = ij’ k = k+1 and
return to Stage I or leave Uk+l and Vk+l undefined, Sét
k = kt1 and return to Stage I, step 1. If k g K, go to
Stage III.
Stage III
1. If Uk and Vk are undefined, or if Ukj has n columns, or if
Ukﬁ has more columns than Uk’ or if Ukj has as many columns
as U_and ke k;, set Uy = Upss Vigq = Vg K = K1 and
return to Stage I, step 1.
1
2. Set [, . equal to any nonzero vector in R (Ukj) and set

Xy = K _vxkjpkj where ~Akj > 0 is chosen so that

03(“ X5 " xk" ) < llgk“ . Set Axkj = Res - X and
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3. If Ag, #Q and - UV Mg i, IlAgk I, set
= . . = . = J+1 d t
Uecien) 7 D88 Vicseny = DViyod "ky’ 3 = 3#1 and go to
step 1, Stage III.
4, Set U = U v =V ., k= k+tl -and return to Stage I, step 1.

ktl = "kj® 'k+l kj ,
‘Remark 4.3.3 Stage III of algorithm 4.3.2 can be formulated in a

slightly different manner to make bétter use of the auxiliary points
ij' Step 1 of Stage III remains unchanged. Steps 2, 3 and 4 of
Stage III are replaced by the following procedure.
2, If Bkj = (I- kj k )gk # 0 and Pk g, ( "pkjn ) Hgkll )
> B set Hes = % - Akjﬁkj where Akj is chosen by a step-
length algorithm such that f(x ) - f(xkj) > @2(5]'@ g I g I -1
Set 'Axkj = xkj - Xk’ Agkﬁ = gkj -}gk, X, = xkj and go to
step 4. ' '
3. Set xkj =x - &kjpkj
and Akj >0 is such that ca(llxkj - Xk" ) < ugk" .

L
where . 1is any vector in R (U, .)
pk] Y kj

Axkj = xkj - xk and Agkj = gkj - gk.

4, If Agkj # 0 and "(I - Uij}t.)Agk.u2 >a "Agkj" os Set

= [U 1, v

Uk(j+l) . Agk:l K(41) © [V kj]’ j = j+1 and go to
step 1, Stage III.
= = = 1.
5., Set Uk Ukj’ Vk+l ij, k = k+1 and return to Stage I, step
Notice that because I - Uk]Vk] is a projection operator, if

E}ngk(llpkjh (A 2)-l <B then w gk( o, ﬂgkll 2)—1 <8 for any

nonzero vector w in Rl(Ukj). Therefore, if the test of step 2 fails, it is
futile to search for other vectors in RL(Ukj) bounded away from being
orthogonal to g by 8. Vectors in Rl(Ukj) are chosen because, as

will be seen, such a choice results eventually in the “satisfaction of

the condition of step 4 of remark 4.3.3. The convergeﬁce and rate of
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convergence results of the next section are given only for algorithm
4.3.2. The modifications to the proofs of these results when the
procedure of remark 4.3.3 is employed are straightforward.

4.4 Convergence and Rate of Convergence

Before presenting the convergence and rate of convergence results

several preliminary definitions and lemmas are needed.

1

Definition 4.4.1 Let f(x) :DCR" + R~ be any function. A level set

of f, denoted by L(c) is the set of all x € D such that f£(x) < c,

Definition 4.4.2 Let f£(x) :DCR" + R~ be any function. The path

connected comﬁonent of the level set L(c) containing x €D and
denoted by ¥ (c) is the set of all x & L(c) such that there exists
a continuous function p(t) : [0,1] + L(c) with p(0) = x and p(1) = x.

Definition 4.4.3 Let £(x) :DcR" + Rl be any function differentiable

on D and let {xk} be any sequence contained in D. A sequence of
non-zero vectors {p }CR" is gradient related to “{x }. if

. . i
there exists a forcing function o(*) such that ]g(xk), pkl n Pk" 1 >

o( 8 ”) for all k.

Definition 4.4.4 Let f£(x) :DCR" » Rl be any function differentiable

on D. A critical point of f(x) is any point X € D such that g(x) = 0.

Definition 4.4.5 TLet f(x) :DCR" + RY be continuously differentiable

on D and assume that for Dyc D

o = sup {" g(x) - gly) " ! X,y € DO} > 0. (4.4.1)
The mapping &(t) : [0,») »+ [0,=), defined by

inf "x - yn P X,y € Doy "g(x) - g(y)" >t, t e [0,8),
&(t) =

W e, t e [a,),

(4.4.2)
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is the reverse modulus of continuity of g(x) n Dye

The following two lemmas are necessary to prove that, under
appropriate conditions, the éequence '{xk} genéra£ed by algorithm
4.3.2 is determined.
Lemma 4.4.6 Assume that f£(x) :DCR" » Rl has a continuous derivative
on D, that D cD is compact and that o of equation U4.4.1 is positive.
Then &(t), the reverse modulus of continuity of g(x) on Dy» is posi-
tive for all t > 0 and 6&(t) is a forcing function.

A'proof of this result may be found in (ORT 70, lemma 14.2.6).

1
Lemma 4.4,7  Assume that f(x) :DcR” + R~ has a continuous derivative

, n !
on D, that for x € D, L(f(x)) is compact and that for p € R, g(x)p > 0.

There exists a solution for X of the equation

— '
X =min {A >0 :p glx - Ap) = up g(x)} (4.4.3)

w;ith (x - 2p) é ﬁXZ%(kS)V and u € [0,1). Further

£x) - £(x - %) > a(g (xp o | JH (4.4.4)
where a(t) = uts([1 - plt), t> 0, and where 6&(t) is the reverse
modulus of continuity of g(x) on L*(£(x)).

Proof: A proof of this result is contained in the proof of lemma
14.2,7 of (ORT 70). In order to apply lemma 14.2.7 and its proof, it is
necessary to note that any connected component of a compact set is
compact.

It will now be shown that if 02(-) is properly chosen, algorithm
4.3.2vgeﬁerates a well-defined sequence {xk}.

1
Theovem 4,4,.8 Suppose f(x) :Dc;Rn + R is continuously differentiable

on D and that for x_ € D, L(f(xo)) is compact. Suppose the forcing

Q
function a,(t) of algorithm 4.3.2 is such that
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azct) < Wt 81 - plt) 4.4,5)

for all t 3'0 where 6(t) 1is the reverse modulus of continuity of
g(x] on L(f(xo)) and u is a fixed constant in (0,1). If algorithm

4.3.2 is applied to f(x) starting at x, then the sequence '{xk} is

Q

" contained in L(f(xo)) and is determined for all k > 0 unless for
.some k >0, gk = 0.
Proof: Notice first that Stagé II of algorithm 4.3.2 can always be

completed since a pair Ax— , Ag— always exists for k - & <k <k

and since a one column matrix always satisfies condition b of Stage II},
step 1. Also, Stage III of algorithm 4.3.2 can always be completed since

a return to Stage I is generated if U has n columns or if step 2,

kj

Stage III fails to generate a column with which to form U - and

K(§+1)"
Vk(j+l)' It remains to be shown that Stage I can always be completed.

Since for k = 0, x € L(f(xo)) is given and g # 0, unless the theorem

is trivially satisfied, assume that at stage k, x

o € L(£(xy)) and g # 0.

. . . . b
In order to sp¢c1fy X4l it is necessary that Py # 0 and Ak e
determined, Either p_will be set to 5& # 0 or p will be set to
pﬁ # 0 or step 5 of Stage I will be executed. If stép 5 of Stage I is
executed then the choice P = & # 0 1is always satisfactory so that

p, can always be determined. Now A, will either be chosen equal to

k
one in step 6 of Stage I or step 7 of Stage I will be executed. By

lemma 4.4.7, since f(x) is continuously differentiable on 2} there

always exists a Ak such that

f(xy) - f(xk - kak) Z_OQ(Q;Pk||Pk||;l) (4.4.6)

so that if step 7 of Stage I is executed Ak is determined and there-

fore Xrl is determined, Further, if either step 6 or step 7 of
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Stage I is executed, x & LCE(x 21, At stage k+l then either

) ktl
g =0, in which case the sequence {xk]'c: L(f(zoé) is determined up
“to stage k or 8y * 0, in which case an inductiva cycle is complete.
Q.E.D.
Before proceeding with the convergence results one further lemma
is required.
Lemma 4.4.9 Suppose f(x) :DCR" » Rl is continuously differentiable

on D, that D cD is compact and that {xk}CDO is any sequence such

that Limit g(x ) = 0. Then the set @ of all critical points of £(x)

k » @ .
in D0 is not empty and
Limit { inf “Xk - x"} =0, (4.4.7)
k > o

X € §
Proof:  Because D, is compact, {Xk} has a convergent subsequence
b{§i} and if Limit {§i} = X then because g(x) is continuous on D

1>
g(x) =0 so that X € © and Q is not empty. Next assume that

0

;I:ifi: {inf ||xk - x|| }#£ 0, (4.4.8)
‘ X 60

Again, because D0 is compact there must exist a subsequence {Xj} of

{x .} such that

Limit {inf “;, - xn }=6> 0. (4.4.9)
j-)-oo J
X € Q

But because for any convergent subsequence {xj} Limit Qj = x and

~ j > 0
X € Q,
imit {inf |x, - x| } < Limit ||&, - x| = o (4.4.10)
k + o J - j -+ o0 J
X € Q
which is a contradiction. Q.E.D.

We next demonstrate that under appropriate hypotheses the sequence

{xk} generated by algorithm 4.3.2 converges in the sense of equation
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4.4.7 to the set of critical points of f(x).

1

Theorem 4.4.10 Suppose f£(x) :DCR” + R~ is continuously differ-

entiable on D and that for X, e D, L(f(xy)) D is compact. Then the
set Q(xob of critical points of  f(x) in L(f(xo)) is not empty:

and if algorithm 4.3.2 is determined for all k > 0O then

Limit {inf [|x, - ] 1 = o. (4.4,11)
k+e se Q(xo) '
Proof: First, because f(x) is continuous on D and because L(£f(xq))

is compact, f(x) is minimized on L(£(x)) at some X € L(£(xg)).

Since g(x) is continuous on D it must be that g(é) = 0 and therefore
Q(xp) 1is not empty. Because of steps 6 and 7 of Stage I,'{xk} C L(£(x4)).
In order to establish the result of the theorem it is necessary to show
that tizit G 0 and to apply lemma 4.4.9. Notice that the sequeﬁce

{pi} generated by the algorithm is gradient related to the sequence
{x,} since, because of steps 3, 4 and 5 of Stage I,

e P T2 e Tt 28 el = o el (4.4.12)
for all k, where o(+) = Bt. Consider the subsequence '{Eg} of {x}
consisting of all elemenfs‘of {x)} generated by step 7 of Stage I of
the algorithm. Because f(xk+lj < f(xk) for all k and because of
step 7 it must be that

£%)) - £(y,0) 2 0 (3 ﬂigll'l)- (4.4.13)

The function f(x) is continuous and bounded below on L(f(xo)) and
therefore

Linit £8;) - £(X,y) = 0. (4.4 14)

j-)oo

It follows from the definition of a forcing function that

Limit_§§§5 “55%2_1 = 0. Since ‘{5}} is gradient related to ‘{Eﬁ}, |
j->oo ! '



88

%imit o “g&ll) = 0. This in turn implies that
> :

Linit || g5 = o. | (4.4.15)
j >
Consider next the subsequence '{;j} of {xx} consisting of all
elements of '{xk} generated by step 6 @f Stage I. The subsequence
'{;i} contains all elements of '{xk} not contained in '{Qj} since for
all k either step 6 or step 7 of Stage I is executed. Because

f(xk+l) < f(xk) for all k and-because of step 6

£xp) - £y, ) > 6 (g |, (4.4.16)

Again, because f(x) is continuous and bounded below on L(f(xo))

Limit £(x;) - £(x;,1) = 0 (4.4.17)
i+
and therefore
Limit "éi" = 0. (4.4.18)
i+

Since {;i} and {25} contains all elements of ’{xk}
Limit “gk“ = Q.
k » o

Application of lemma 4.4.9 completes the proof. Q.E.D.

Theorem 4.4.10 demonstrates that the sequence {xk} generated by
algorithm 4.3.2 gets arbitrarily close to the set Q(xo) of critical
points of f(x) in L(f(xo)). What has not been shown is that

Limit llxk+l - Xk" = 0. (4.4.19)
K+ o N
It may in fact be possible for the sequence ‘{xk} to "hop around" in
the neighborhood of different elements of Q(xo). It is evident that

A

if Q(xo) contains only one element x then
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Limit X T X (4.4,20)
k »+ o ’
and
Limit | %, - x || = o, (4.4.21)
k > o

If Q(xo) contains only a finite number of elements, then the following
result holds.

1
Theorem 4.4.11  Suppose f(x) :Dc:Rn + R is continuously differen-

tiable on D and that for x, €D, L(f(xy))cD is compact. Suppose the
set Q(xo) of critical points of f(x) in L(f(xo)) has a finite
number of elements. If algorithm 4.3.2 is applied to f(x) starting
at Xg> if the sequence b{xk} is determined for all k > 0 and if
{;i} and {;5} are any two convergent subsequences of the sequence.:
{x.} with limit points x and X respectively, then

£(x) = £(x),
Proof: By theorem L.4.10

Limit {inf [|%, - x| } = 0. (4.4.22)

ko> e X € Q(xo)

Assume f£(x) < £(X). Because the subsequence {§5} is convergent, .giveh
6§ > 0 there exists a j; such that for all j > j,, "Eﬁ - E'“ < 6.
Because f is continuous on D, given fe°> 0 there exists'a § > 0 such
that “f(§5) - f(i)ll < € whenever "IE&— §'u < §. Therefore, given

€ > 0 there exists a j; such that for all j >tjl, “f(§5) -.f(§5l|< €.
Because the sequence '{f(;i)} is nonzincreasing f(;)i > f(;)

for all i. If € is chosen less than f£(x) - £(x), then for all. j > ji’*w;
and for all i, f(§i) > f(i&). Because both sequences {;i} an@A

{ES} are not finite it must be that the sequence

.
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'{f(xk)} is not non-increasing which is a contradiction. Q.E.D.
Finally, it will be demonstrated that uncer appropriate conditions
the sequence {x} of algorithm 4.3.2 fon large enough k is generated

by -the recuysion

-1
Ml T X T iU g (4.4.23)

where the matrices Vk and Uk have n columns and are elements of
S(Q,G,a) for arbitrarily small § and that the rate of convergence of
the sequence .{xk} is superlinear.

Theorem 4.4.12 Suppose f£(x) :DcR™ » RY is continuously differen-

tiable on D and that for X, € D, L(f(xo))CQ is compact. Suppose
algorithm 4.3.2 is applied to f(x) starting at X, and that
Limit xp = X (4.4.24)
k + o
where x € Q(xo), the set of critical points of f in L(f(xp)).
Suppose f(x) is twice differentiable at_§ and that H(x) is positive
definite and strong. If the constants o and B of algorithm 4,3.2 are

chosen sufficiently small, if the forcing funétion cl(') is such that

0;(t) < C min w'H(x)w

werR" [uf2 laco] -2 2 (4.4.,25)

for all t sufficiently small and for some C € (0,1) and if the set
Ky = Ip - KlL}KQ_ contains n elements each sufficiently large, then
there exists a k* such that for all k > k%
= BN
X1 = ¥ - Pk - (4.4.26)

Further

bnit e - x|

— = 0. (4.4.27)
I - %
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Proof:  Since Limit X = x for any 6 >013a kl 9 B k * kq

N k > =
%) € S(x,Gl). Since ilzlt gk = O for any ¢, > 0 ]a ko 9 U k ¥ ky
=]
and 4 j > 0 such that x5 s defined, %5 € S(xk,gb).

Choosing §, and 6, such that 1/2 min {61,62} =6, and k, = max {kl’kQ}

2 3

for any 63 >01da k3 9 Yk z_ks and Hj >0, xﬂj,xk-e S(x,és).
Because of the age bound ¢ in step 1 of Stage II, foR #fiy 63 >0 Ja ky @
Bk>k, +2 and 43> o0, (U,,V,) and (Ukj,ij) are in S(§,53,‘a)ra
where o is the constant of the algorithm.

By lemma 4.2.1 and lemma 4.1.11 choosing 6 above sufficiently
small we have that for all k > k + 2 and a suff1c1ently small AgkJ £0,

HCI

Us! k]) Agk “2 > °‘||A5 " 2 SR

in Stage III, step 3. It must be then that with o chosen sufficiently

small Y k > k, + & step 4 of Stage III is never executed. Therefore,

3
for k > k3 + &4 the only returns to Stage I are generated in Stage II,
step 2 or in Stage III, step 1. Since Kl is finite it has a maximal
element k, and for k > kg = max‘{k3 + z,ku} the only returns to

Stage I are generated in Stage III, step 1. Because Uk and Vk can only
be left undefined by a return to Stage I from Stage II, step 2, for all
k > k5, Uk and Vk are defined.

Next, by lemma 4,2.9, remark 4,2,10 and lemma 4.1.11 choosing 63
above sufficiently small we have that in Stage I for B > 0 sufficiently
small

iy - =1
8Py "gk" 2‘"Pk |27 > (4.4,29)

and

L B -1
gl e o o] 22 2 8 (4.4.30)

cannot occur together for k > k

- ¥
P = P OF Py T Dy

in Stage I. Therefore, for k > k

5 5
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For k > k5 Stage III, step 1 generates & return to Stage I with

UR+l having n columns or with Uk+l K

with Uk+l having as many columns as Uk but witt ‘k € K2. For k > ks

the number of columns of Uk and VR cannot decrease and further since K3

having more columns than U _ or

was assumed to have at least n elements, each sufficiently large, there
exists a ke > k5 such that for all k »> k Uk and Vk have exactly n
columns., By the definition of §(x,6,a), U has full rank for all k and

therefore for k > k. U  is nomsingular, (I - UkUk) =0, 5% = 0 and

6 'k
_ E
Pk - Pk‘
Because f is twice differentiable at x and because Limit xk = x
k >
for every € >0 4 a ko 8 #k> k,
f(xk) = f(x) + -2-(xk - X) H(x)(xk - %) + Ty (4.4,31)

Ilf‘ ||<€||x —xll :

A verification of this result appears in (ORT 70, lemma 3.3.12).
Further, because H(X) is strong and because Limit X = X for every

k > o

E>03ak895k>k8

‘g(x ) = HG(xy - %) + e " k" <elx - x" (4.4.32)

By remark 4,2.8 and because pk ; 0 for k > k it follows that fop
every € >0 3 a k9 s k> k9
* =1, A -1,
hy , = "Pk - H (x)gk||2 :_Cl € "H (x)" 5 "gkIIQ- (4.4.33)

By lemma 4.1.11 4 a kigs B k> kg

e, I < Co "xk - x| | (4.4.30)

Next, we have that
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-1 ,a .
X - H (?;)gk - by (4.4,35)

= % - HOGIHRICY - R) + o) - b

X - H‘lc;?)ek - by .

Therefore, because f is twice differentiable at x 4 a kll > k6 s
>k

%

£l = py) = FR) + TG e + b)) HGR) (4.4.36)

- l A ! *
(H ~(x) et hk) + r(xk - pk)
% -1~ 2
where "r(xk - pk)" <e "H (%) ek ',hk" . It follows that for

every € > 04 ak . = mx {k..k .k .k ki b ey k> ki,

12 7°%g2%g2X 0>
£q ) - £0x - p;:) = (% - %)'H(ﬁ)(xk - §<)_ (4.4.37)

- MR e + BB L) e * )

+ o =0y - py)
where

Il <€ % - ’2"2 (4.14,38)
el < e "xk\‘— xl (4.4.39)
Indl 2 ecpe, ool o 7 - =l (4.4.40)
"“("k ) P;:)" < e Cq "Xk - x |2, . (4.4,41)

Because H(x) is strong,for any e¢>0Q Jaéd>08 Q‘x 8 S(x,4)
leta - sy - mGOG - B < ellx - 2] (4.4,42)

or
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_"nglll Al lecocx Y ISP PR (4.4.43)

<clluca) +erllx -2l

It follows that for every € > 0 }a kl3 ) H k > kls

(x, - §)'H(§)(xk - ﬁ)-z»(xkf‘ﬁlfﬁ(ﬁl(xk* x) ﬂxk -zl 2 (4.4,44)

I -«
L S el o]

Finally, if € is taken sufficiently small then there exists a

* - %
k = max {k12,k13} such that for all k > k
. o '
£g) - £ - p) 2 Comin W HG fuaf-2y, p2 (o u5)
0 6 ﬂaiuw“2 ," . l “gk"
2o (g

. *
for Ce€ (0,1). Therefore, for all k > k.

Py = Py (4.,4,46)
and

X = X (4.4.47)

ktl ~ %k T Py
The final result of the theorem follows immediately since for every

&% : %
e>0dak s Hk>k

Ieer - 2] = % - p;: - x| (4.4.48)
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Remark 4.4.13 The coefficients a and B in theorem 4.4.13 are

restricted to be less than some positive constants o and E} respectively.
Specifically o hust be chosen so that inequality 4.4.28 is eventually
satisfied and B must be chosen so that the inequalities 4.4.29 and
4.4.30 eventually are not satisfied together. These conditions arise
from lemmas 4.2.1, 4.2.7, and 4.1.11 and remark 4.2.8. Referring to
these lemmas we see that o must be chosen less than CQC3 of lemma
4.2.1 and that B must be chosen less than 03(1 + CQ)_l of lemma 4.2.7.

Upon checking the origin of these constants it can be established that

an adequate choice for o is

— v H()v
= . min - (4.4.49)
: v e R? ”v"z “H(x)v'IQ
and that an adequate choice for B is
%= min u'B N (®)u ( ‘IlH—l(i)ll2 "ull2 \-
wer Jull, fotcoull T gy,
4.5 Conclusion ~o (4, 4,50)

In theorems 4.4.8 and 4.4.12 it was necessary to restriét the
admissible forcing functions ci(t) and Uz(t) and the admissible
constants a and 8 in a way which depends upon the objective function
£(x). Specifically in theorem 4.4,8, to insure that the sequenée
{xk} is determined, cz(t) is bounded by a forcing function which
depends on the reverse modulus of continuity of g(x) on L(f(xo)).

In theorem 4.4,12, to insure that the terminal rate of convergence to
x is superlinear, the constants a and B are chosen less than constants

related to H(ﬁ} and for small t, cl(t) is chosen less than a forcing

function related to H(x).
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In practice it is unlikely that specific information will be
available about the reverse modulus of continuity of g(x) on L(f(xo))
or about H(x). However, the choice of the forcing function 02(t) does
not.cause difficulties since, as is seen .in (ORT 70, section 14,2), step-
length algorithms havevbeen developed which insure that condition 4.4,5
is satisfied provided only that f£(x) is continuouslv differentiable on
L(£(x,)).

The constants o and B depend upon the conditioning of the matrix
H(X) and can be.initially chosen small enough to cause superlinear
convergence on functions with reasonably well conditioned minima. If,
during the execution of the algorithm, it is determined that the o and
8 conditions are not being satisfied because the Hessian is not well
conditioned at the minimum these constants can be reduced. A similap
procedure can be used with the forcing function ol(t). Initially
ol(t) can be chosen as Yt, for some positive constant y which is

small enough to insure superlinear convergence provided the Hessian at
the solution is reasonably well conditioned. The constant y can then
be revised if necessary.

Suppose in algorithm 4.3.2, Stage III is eliminated and a return to
Stage I is always generated from Stage II. If it happens that for all
k greater than some R* matrices - U and V can be chosen in

k+l k+l
Stage II having n columns and satisfying the age bound of Stage II,
step la and the angle condition 4.3.1 then the results of theorems
4.4.8 through 4.4.12 will still hold. Further, if there exists a sub-
sequence of the iteration sequence where matrices Uk+l and Vk+l can

be chosen with n columns that satisfy the age bound and the angle

condition then convergence on this subsequence will be superlinear. A
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review of the proofs of theorems 4.4.8 through 4.4,12 should convince
the reader that this is the case. The specific algorithms discussed in
Chapter 5 do not implement Stage III of algorithm 4.3.2 as it was felt
that for k sufficiently largé it will nearly always be possible fo choose
matrices Uk+l and Vk+l with n columns while satisfying the conditions
of Stage II.

In developing algorithm 4.3.2 the:principal reasons for choosing the
data sets 5, = (Uk,Vk) from the family: S(x,6,a) were:

1. To insure the existence of a matrix which emulates Sk over |

for all k.

+
k

-1 + +
so that for small GJ'H x)u U, - kak" becomes small and so

2. To insure that the norm of U, remains appropriately bounded

* +
that Py = Vkngk

nearly in R(Uk).

nearly equals H—l(ﬁ)gk when g, is

These properties of S(Q,G,a) are fundamental and should be of value
in developing other minimization procedures. It may be possible to.
obtain strong rate of convergence results even if the data sets are
not restricted to some family S(i,é,a). For instance if it happens
that Ag, is nearly in R(Uk), one might ignore the component of

Ag, not in R(Uk) and consider the data set (Uk+1’vk+l) =
([Uk,&gk],ka,Axk]) where ng is‘the.component of Ag  contained
in R(Uk). If this is done it may happen that no emulation exists for
(Uk+l’vk+l)' However, the norm of U;+l should remain appropriately
bounded and for small &, pi z VkU;gk should approximate H_l(ﬁ)gk‘

It is conjectured that if H(x) is required to be Lipshitz

continuous in a neighborhood of x then it can be proved for algorithm
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4,3.2 that

5t P
“xk - x"

where % is the age bound of the algorithm. The key to proving this

< C<w

result lies in obtaining a stronger bound on “ hku in equation

2

4.4,33. To do this requires that lemma 4.2.5 be modified so as to

obtain the appropriate bound in lemma 4.2.6.



CHAPTER 5

NUMERICAL EXPERIMENTS

5.1 Introduction

Minimization algorithm 4.3.2 is constructed so that convergence is

- insured and so that the terminal rate of convergence is superlinear for
a large class of objective functions. At the same time there is consi-
derable latitude in the choice of a specific algorithm within the
general framework of algorithm 4.3.2, This latitude is intended so as
to allow an algorithm to be developed which performs well away from the
minimum and which retains the desirable convergence and terminal rate of
convergence properties.v Because it is very difficult to obtain theoreti-
cal results about performance of an algorithm away from the minimum some
experimental work is usually necessary to evaluate the overall:perfors
mance of a specific algorithm. To verify that it is feasible to
construct an effective algorithm within the framework of algorithm
4.3.2, two algorithms were programmed in FORTRAN. These :algorithms.wepe
applied to a variety of test functions and the results were compared to
the results obtained using the version of Davidon's algorithm available
in the I.B.M. 360 Scientific Subroutine Package. The results of these
numerical experiments are presented in this chapter. We begin by
describing the version of Davidon's algorithm which waé used as the

standard of comparison.

5.2 Davidop's Algorithm

The Scientific Subroutine Package version of Davidon's algorithm
was chosen because it is widely circulated and accepted as an efficient
program for minimizing functions. Certain drawbacks in the algorithm,

as a standard of comparison, have been accepted in order to obtain a

99
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program which is readily available to.other investigators. The

algorithm uses the Davidon recursion formula to generate a sequence of

matrices ‘{Hk} beginning with the matrix Hy ivic It differs from the
algorithm proposed by Fletcher and Powell (FLE 64) in two important
respects. TFirst, when certain rather pathological conditions occur the
matrix Hy is reset to the identity matrix. Second, the linear

search subalgorithm does not perform an exact linear minimization.

Except for these variations the Scientific Subroutine Package Davidon

is the Fletcher-Powell-Davidon algorithm which is specified by algorithm

3.4.1 and by the Davidon recursion formula 3.4.1 with Hy = I. So that

there is no confusion as to how the program operates we will specify

the conditions under which a reset can occur and the linear search

subalgorithm.

The following conditions at stage k cause Hk+l to be taken as the
identity. |

1. The inner product of the linear search direction -_Hkgk with the
gradient g is positive or zero.

2. The ratio "Hkgk" ngk||_l is not greater than € where € is a
user supplied constant.

3. The function value does not decrease by more than € in one iteration
where ¢ is the same user supplied constant as in step 2.

4. The argument of a square root operation involved in the cubic
interpolation of the linear search is negative. This occurs if the
cubic interpolation polynomial (see 5.2.1 below) has no minimum on
the interpolation interval. Because of the procedure for choosing
the interpolation interval this should not happen.

5. The product (u;Vk)(u;Hkuk) = 0. If this occurs-then the Davidon

recursion formula involves division by zero.
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In practice the reset was encountered very infrequently. 'If a reset
occurred during a Davidon run the iteration at which it occurred will
be noted in the data.

The linear‘search subalgorithm of the Davidon algorithm performs
an approximate linear minimization. Assuming that at stage k an initial
. point X aﬁd a search direction pj are given, the linear search
algorithm is as follows.

Algorithm 5,2,1

1. If 0 <2 (f(x) - f*)(gﬂHkgk)_l < 1 where f* is aruser supplied ..

estimate of the minimum function value, choose.as-an initial.step
X + Apy = X+ 2(f - f*)(gLHkgk)—lpk.
Otherwise choose X = 1.

2. Compute f(x + Apk) and g(x + ka). If p]'(g(xk + kpk) >0
or if f(x + Apk) > f(xk), set x = Xes ¥ = % + Apk_ and continu&®
at step 3.

If pLg(xk + ka) =0 set xpq = % + Ap and exit from the
linear search.
If pﬁg(xk + Apk) < 0 set A = 2)A and repeat step 2.

3. Interpolate cubically on the line segment (x,y) using the direct-‘
ional derivatives in the direction p d(x) = pLg(x) “pkli—l and
d(y) = pLg(y) "pkll-l and compute the x which minimizgs the inter-
polation polynomial on (x,y). If £(x) < f(x) and £(%) < f(y),
set X, . = x and exit from the linear search.

4, If d(x) > 0 or if both d(x) < 0'rand £(x) > f(x), set y = X
and repeat step 3 unless d(y) = d(;) and f(y) = £(x). In this
last case set Kyl = x and exit from the linear search.

5. If d(X) <0 and £(X) < f(x), set x = X and repeat step 3



102

unless d(x) = d(x) and f(x) = £f(x) In this last case set
Kyl © % and exit from the linear search.

This parficular linear search algorithm has certain disadvantages.
First, in step 1 of fhe-algogithm the initial step size is determined
from a user supplied estimate of the minimum function value. A good
estimate of the minimum function value may not be available. Second,
step 3 of the algorithm determines the minimum 6f a cubic polynomial
which agrees with f and its directional derivative at the points x
and y. A quadratic interpolation using three function evaluations or
the directional derivative at X and two function evaluations would
greatly reduce the total number of gradient evaluations and still
provide a good estimate of the minimum. Third, in step=8 @ return
from the linear search is generated whenever the function value at the
interpolation point is no greater than the function value at either end
point. This linear search procedure, therefore, cannot guarantee that
the decrease in function value at each stage is bounded greater than an
appropriate forcing function. In fact, the deletion procedure in
steps 4 and 5 is such that it is possible for the function value to

increase as Figure 5.1 demonstrates.

“ y

FIGURE 5.1
ABNORMAL CONDITIONS IN LINEAR SEARCH SUBALGORITHM
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The curves of Figure 5.1 represent the function along the direction of
the linear seérch. In all three cases shown thg point Kbl will be
chosen to be x since £(y) = £(x) and d(y) = d(X). Although these
conditions are exceptional, they can occur. Of these disadvantageSiﬁhe
one of most concern is that the linear search subalgorithm does not
guarantee a "sufficient decrease" in the function value at each stage.
A complete listing of the Scientific Subroutine Package Davidon
program is given in Appendix ITI. Some statements have been added to
display pertinent data at each stage of the algorithm. These, however,
do not alter the operation of the algorithm in any way. Several tests
for abnormal conditions in the algorithm cause program execution to
terminate. None of these conditions were encountered in practice.

5.3 The New Algorithms

The new minimization algorithms which were programmed differ in
three respects from the structure proposed in general algorithm 4.3.2.
Firsf, the linear search procedure 5.2.1 was used in both new algorithms
without modification. The primary objective of the numerical study was
to compare the major iteration algorithms rather than the linear search
subalgorithm. For such a comparison to be valid the linear search
procedure should be the same in-all:aligerithms: ”SinBéVtﬁeﬁDavidon*amgorithm
was chosen as the standard its linear search procedure was used. As was
noted earlier the bounds imposed by forcing functions Gl(f) and g,(%)
in algorithm 4.3.2 will not necessarily be satisfied when linear search
algorithm 5.2.1 is employed. Second, algorithm 5.2.1 does not choose a
unit step size ‘(Ak = 1) when this step size in the direction pﬁ of
algorithm 4.3.2 yields a sufficient function decreaée.' In practice

these deviations from the structune.offalgcrithmﬁ4%332‘di&dnattcaa§ea
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difficulty. Algorithm 5.2.1 performed adequatelv in all cases tested
except when the Hessian matrix was very badly ccaditioned. Further, it
was noted that for large k the step size approachec unity when the search
direction was pﬁ.

The third respect in which the new algorithms differ from algorithm
4.3.2 involves stage III of algorithm 4.3.2. As was noted in section
4.5 it may happen that for all k greater than some k¥* a pair of matrices
(Uk’vk) having n columns can be formed in stage II of algorithm 4.3.2
which satisfy both the age bound and the angle condition of stage II.

If this occurs then stage III of the algorithm is unnecessary. It was
conjectured that this would be the usual rather than the exceptional
situation. Consequently, stage III of algorithm 4.3.2 was not
implemented in either of the new algorithms. The experimental results
verified that this was indeed the case. It was further conjectured

that the age bound on the columns of Uk and Vk could be implicitly
satisfied by a proper choice of the constants a and 8. Therefore,
initially no explict age bound was placed on the columns of U, and Vk‘
This procedure will be seen to work well except in the case where the
Hessian matrix is very badly conditioned.

Except for the deviations just discussed the two new.algorithms are
contained within the framework of general algorithm 4.3.2. Assuming an
initial point x, € RT is given and that k is initialized to zero, the
algorithms can be stated as follows.

Algorithm 5.3.1

1. If g = g(xk) = 0 stop.

2. If Uy and V) are not defined, set P, = & and go to step 6.

k
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3. 1f p_=(I- U U g, # 0 and Eigk(liﬁkllzllgkllz)'l > 8, set
P, = P, and go to step 6. | |

4, If pi z VkU; g # 0 and pi'gk( upin 2 &l 2)-1’3_8 set p, = pi
and go to step 6.

5. If U, and V, have one column, make U  and V undefined and

k k k
return to step 2. Otherwise delete the first (oldest) column of Uk
and V, and return to step 2.
. = - i teplength
6. Set X4l xk Akpk where Ak is chosen by the steplengt
algorithm 5.2.1.

7. Set v and i = 1.

R R i S R 9
If “(I B UkU;)uk“ 2> ¢ ”uk" 2> 5% Uy © [Uk’uk]’ vk1-1 ) [vk’vk]’

k = k+1 and return to step 1.

- th
8. If “(I Uk(Uk) )uku , <0 uuk‘lQ’ where U, and Vi are the
matrices Uk and Vk with the .i th column deleted, set

= [ud = [vi - ' 1.
Upgy = [0owds Vg = [Visvyds k = k¢l and return to step

9. If i < m, where m is the number of columns in Uk, set i = i+l
and return to step 8.

10. If i=m,set U _=U,V =V ,k=ktl and return to step 1.

k#l k' k1l K’
Algorithm 5.3.2 Algorithm 5.3.2. is identical to algorithm 5.3.1

~except that in step 5 py is always chosen equal to g and'fhe
algorithm continues at step 6. .

In steps 7 through 10 the vectors wu, and v, are adjoined to
the matrices Uy and Vk to form Up,; and vk+l provided w is
bounded away from_ R(Uk). Failing this u and v, are added to ‘Ui
and Vi to form $k+l and vk+l if deleting the i th column of Uy
and V, causes 4, to be bounded away from R(Ui). An attempt is made
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to delete the oldest data first. If this alsc fails, Upy, and V4
are taken as Uy and V.

Algorithm 5.3.1 and 5.3.2 contain two unspecified constants o and
B. Remark 4.4.13 indicates that the choice of these constants depends
on the conditioning of the Hessian matrix at the minimum. In particular,
to insure that ultimately Pk either equals 5& or pi, B should be

chosen less than

min w1 R max  JE M) "2 "u" 2 >—l

1+
ue R ”utlQ “H'l(ﬁ)u" 9 u € R "H"l(;’.)w"2

(5.8.1)

and to insure that ultimately when p, = p, the condition of step 7
y k k p

will be satisfied, o should be chosen less than

min v'H(Q)v
ver |lv|, Jacor],

(5.3.2)

Since these conditions cannot be checked beforehand, the reasonable
thing to do is to choose o and B small enough so that conditions 5.3.1
and 5.3.2 are satisfied unless the objective function is very poorly
conditioned at the minimum. If the constants a and B are chosen too
small, numerical difficulties may arise either because the search
direction Py is nearly othogonal to the gradient or because the norm
of Ui becomes large. On some functions it may be necessary to adjust
the constants o and B during the runs. In the numerical experiments
particular attention was paid to the effect of o and B on convergence.
An intuitive justification can be given for the choice of search
directions in steps 3, 4, and 5. In step 3, if 5&, the projection of

, is bounded away from being orthogonal to the gradient

L
g, onto R (Uk)

then 5% is chosen as a search direction. On a quadratic surface with
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Hessian H the direction 5% is H conjugate to the directions com-
prising the matrix Vi since

-t -t .
= - 50‘303
pY = PV, = 0. ( )

Step 4 is entered if g is essentially in R(Uy); i.e., UkU;gk z -0
In this case pi = VkU;gk should be a good "Newton-like'" step, for if

the function is quadratic

+ .
S N
= x - H QU e
= Xy - H'lgk.

If both steps 3 and 4 fail, step 5 chooses some other downhill direction
as in this case the function is not "locally quadratic". In algorithm
5.3.1 the oldest data, the first columns of Uk andv'Vk, are déleted'
and steps 3 and 4 are repeated in the expectation that without the
oldest data either a 5& or a pi step will satisfy the direction
requirement. At most, step 5 of algorithm 5.3.1 reduces the matrices
U and Vi unfil a gradient step is taken. In algorithm 5.3.2, step §
simply forces a gradient step.

Compﬁtation of the matrix U;+l from U; and Y is‘performed
by straightforward application of theorems 2.4.1 and 2.4;2. Notice
that the columns of Uk are linearly independent for all k. Therefore,
the pertinent formulaé in theorems 2,4.1 and 2.4,2 are always the formulas
for linearly independent vectors. Appendix III contains a listing of
the program for algorithm 5.3,1. A simple modification to this program

gives algorithm £.3,2. The modification is not shown.
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5.4 'Rosenbrock's Banana Valley

The algorithms were tested first on the two dimensional Rosenbrock
function which is given by

f(x) = lOO(x2 - %]

+ (1 - x2)2 (5.4.1)

where X, and X, are the components of x. The starting points used
were (-1,-1) and (1,-1). Figure 5.2 is a plot of Loglolf(x)[
versus iteration number for Davidon's algorithm, The single reset

which occurred on the third iteration of the run starting at (1,-1)

did not significantly affect the performance of the algorithm.

Starting at (-1,-1) Davidon reduced the function value to about lO_20

in 16 iterations and 65 function (gradient) evaluations. Note that
because of the linear search procedure a gradient evaluation is performed
with each function evaluation. From (1,-1) the Davidon algorithm
reduced the function value to about 10720 in 17 iterations and 50
function evaluations.

Algorithm 5.3.2 was run on Rosenbrock's function from the same

-y

starting points with a = 10 and B8 = 107", Figure 5.3 is a plot of

Loglo|f(x)| versus iteration number for these runs. From both starting

points the age of the oldest column of Uk and Vk reached two on the

second iteration and remained at two for the entire run. By the age of
the oldest column we mean the current iteration number minus the iteration

number at which the first column was added to Uk or Vk' This indicates

that at each iteration after the second, algorithm 5.3.2 was able to form

Uty DY deleting the oldest column of U and appending the vector u

k
while still satisfying the conditions of step 8 of algorithm 5.3.2. The

procedure for generating the matrices Uk and Vi in algorithm 5.3.2
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Loglo|f(x)l

FIGURE 5.2

Davidon's algorithm applied
to Rosenbrock's function
starting from

a) (-1,-1)
b) (ls"l)

\

* denotes a reset

- -15¢

5 10 15 20

Iteration Number
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Log, o | £(x) | FIGURE 5.3
Algorithm 5.3.2 applied
to Rosenbrock's function
with o = B = 10™% and
starting from
a) . ("l a"l)

04 b) (l,"l)

"5--
"lOc.
b
-154
5 10 15 20 25 30

Iteration Number
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is such.that the rank of Uk cannot‘decrease. For these two runs Uk
became nonsingular on the second iteration and remained nonsingular.
Starting at (-1,-1) algorithm 5.3.2 reduced the function value to
about 10720 in 22 iterations and 75 function evaluations. From (1,-1)
algorithm.5a3qﬂnreducedfthe fﬁnction~value té‘about 10-20 in 24 itermations
and 80 functioh evaluations. In terms of both function evaluations and
total number of iterations, algorithm 5.3.2&wasfslightly‘inferior?to
Davidon on the Rosenbrock function from these two starting points.
However, the superlinear terminal rate of convergence of algorithm 5.3.2
is verified.

In applying algorithm 5.3.1 to Rosenbrock's function, runs were
made with several values of a and B. Again the starting points (-1,-1)
and (1,-1) were used. TFigures 5.4:and 5.5 represent the Loglo|f(x)|
versus iteration number. Figures 5.6 and 5.7 depict the age of the
oldest column of Uk and V, as a function of iteration number for the

k

same runs.

From either starting point with a = 8 = 10_4, the age of the oldest
column was two after the second iteration. Also.with anz B.= 10’4;
* v
after the second iteration Uk was nonsingular and the Py step was

satisfactory at each stage. On Rosenbrock'é functién then the sequence
- of matrices VkU; generated by algorithms 5.3.1 and 5.3.2 with
a=B= 10™* is the same as the sequence which would be generated by
the sequential secant recursion formula if it were applied to the
function minimization problem. In the particular case of Rosenbrock's
function no difficulty was encountered with this formula and the

algorithm converged supérlihearly for reasonably small a and B. On more

difficult functions,“difftculties.will-arise~because :0f the probiems
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Lpglolf(x)*

FTIGURE 5.4
Algorithm 5.3.1 applied
to Rosenbrock's function
starting from (-1,-1) with
a) a=8-= 1074
b) o =8=10°
0% '
c) a=8=10 2
== .
N d) a=8=10
-5 r S
a
_lo L
Y b
c
-15 &
d
5 10 15 20 25 30

Iteration Number
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Log, o £(x)] FIGURE 5.5
Algorithm 5.3.1 applied
to Rosenbrock's function
starting from (1,-1) with
a) o= 8= 10_&

b) o =8 = 10.3

o+ .
c) a=8=10 2
d) a=8=107"

—5 &>
210 ¢
(]
d
-15 ' \

10 15 20 25 30
Iteration Number

A %
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Age of the oldest
cdlumn‘af»ﬁkgandrwk*

I

T * ROTE: Each increment on
vertical axis denotes one
iteration of age. On each
T run the age of the oldest
b} column at iteration zero
* is zero.

FIGURE 5.6

Algorithm 5.3.1 applied
to Rosenbrock's function
starting from (-1,-1) with

a) a=8= 107
-3

b) o =8 =10
-2

c) a=8=10

d) o

v i hd d

5 1Q 15

20

25 30

Iteration Number
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Age of the oldest FIGURE 5.7

column of U, and ¥, * Algorithm 5.3.1 applied
to Rosenbrock's function

starting from (1,-1) with
4 * See note on

+ Figure 5.6 a) a=f= lO—u
L 3 '_3
l E b) a =8 =10

-

3 c) a=8= lO“2
1 -1

d) o=87=10

.
v

L J
L

E
-

5 10 15 20 25 30

Iteration Number



116

discussed in Chapter 3 with the sequential secaat algorithm.

One might expect to find a correlation betwsen the coefficients
o and B and the performance of algorithms 5.3.1 and 5.3.2. Figures 5.4
and 5.5 do not demonstrate such a correlation. Starting at (-1,-1)
the choices a = B8 = lO_l and o = B = 107" yield convergence in a
comparable number of iterations. Figures 5.6 and 5.7 indicate better
correlation between performance and the age of the oldest column of Uk
Vk' |

In all cases the performance of algorithm 5.3.1 was inferior to
that of Davidon on the Résenbrock function using the starting points
(-1,-1) and (1,-1). However when o-and B are chosen small, the
difference in performance is not significant. In all cases the super-

linear rate of convergence of algorithms 5.3.1 and 5.3.2 is verified.

5.5 Wood's Function

The second test function investigated was Wood's function of four
variables, which is given by
2.2

f(x) = lOO(x2 - xQ)2 + (1 - xl)2 + 90(}{1\L - x3)

1 (5.5.1)

2 . 2
+ (1 - =x )2 +10.1(x_ - 1) + 10.1(x, - 1)
3 2 m
2 2
+ 19.9(x2 - 1) (xu - 1)

The first runs made were with algorithm 5.3.2 starting at (-3,-1,-3,-1)
aﬁd (-3,0,-3,-1). It was observed that, from both starting points with
various values of a and B, algorithm 5.3.2 had a strong tendency to take

repeated gradient steps. In all runs the matrix Uk became nonsingular

ofs

on the U4th or 5th iteration. Following that, the direction p; was

uphill which caused the gradient direction to be chosen as the search

direction. As there is no procedure for reducing the rank of Uk in
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algorithm 5.3.2, all steps past step 5 were €ither “é: steps or
gradient steps. Unfortunately; choosing a gradient step and updating
the matrices'-'Uk and Vk aid not tend to make the.gE: ‘direction
downhill. As a result the algorithm degenerated to a gradient search
procedure. Although the theory of Chapter 4 predicts that (once‘in a
small neighborhood of the minimum) the direction p: will be downhill,
convergence to such a neighborhood is extremely slow in algorithm 5.3.2
if the algorithm initially performs a large number of gradient direction
searches. Because of this deficiency, which was quite clearly brought
out on Wood's function, algorithm 5.3.2.was not investigated furthef.
Instead, attention was restricted to algorithm 5.3.1.

In applying algorithm 5.3.1 to Wood's function a further effort
was made to determine the relationship between the performance of the
algorithm and the coefficients o and B. Starting from the point
(-3,0,-3,-1) two runs were made using algorithm 5.3.1.. Coefficients o,
and B were chosen small in one run and relatively large in the other.
In Figure 5.8, Loglolf(x)| is plotted versus iteration number for these
two runs and for the Davidon run. Notice that in this case the larger
choice of o and B caused algorithm 5,3.1to converge podrly.

From the starting point (-3,-1,-3,-1) a large number of runs were
- made with values of a and B varying between 1074 and 1071, Figures 5.9,
5.10, and 5.11 display L0g10|f(x)] versus iteration number for o = 10‘1,
10-2, and 107% respectively with several values of B in each case. The
corresponding Davidon run is shown in Figure 5.11. In Figures 5.12, 5.13,
and 5.14 the rank of Uk and the age of the oldest column of Uy and

Vk are plotted as a function of iteration number for the same family of

runs. The number of iterations required for convergence generally seemed
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Log ,[£(x)] |y, FIGURE 5.8

a) Davidon's algorithm applied to Wood's
function starting from (-3,0,-3,-1).

b) Algorithm 5.3.1 appiied to Wood's

function starting frem (-3,0,-3,-1) with
o = 10~% and B = 1973,
Same as b) except o = 10™% and 8 = 4x1071
0P
c
~54
b
=10¢
_150
4 - + 4 +
‘10 20 30 4o 50
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FIGURE 5.9
Loglolf(x)i '
Algorithm 5.3.1 applied to Wood's
function starting at (-3,-1,-3,-1)
with a = 10-1 and
a) 8=10"
b) B = .4 x 1073
¢) B = .4x107°
a) =107t
0T
-5 -
__lo -
S -15 4
b
C
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LOglOlf(x)l

10} FIGURE 5.10

Algorithm 5.3.1 applied to Wood's
function starting, from (-3,-1,-3,-1)
with.a = 10-2 and

a) g=10"
d
b) B = 1072
c) B = .4x10°2
154
d) 8 =10t
10 20 30 40 50

Iteration Number
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FIGURE 5.11

Log, |£(x) |
BT Algorithm 5.3.1 applied to Wood's

function starting feem (-1;-3,-1,-3)
witth o = 10"H4and? -/
a) B = .4x10"%, g =102
b) B = .4x 1071
c) B =101
d) Davidon's algorithm applied to
Wood's function starting from
O -~ (-l,-a,"l,-S).
c
-5 4
ib
| S
-10 |
a
_ d
15 1
10 20 30 40 50
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Age of .the oldest column

of Uk and,vlvk;gand%:rank& of Ukﬂ""

* NOTE. Continuous funetions
are age and discontinuous
functions:.are rank. Each
vertical increment indicates
one iteration of age or one.
rank change. Age and rank
are zero at iteration zero.

FIGURE 5.12

Algorithm 5.5.1 applied to Wood's
function starting at (-1,-3,-1,-3)
with o = 10-1 and

a)
b)
c)
d)

B
B
B
B

1074
4 x 1073
A ox 1072
1071

- . +
10 20 30

Iteration Number
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FIGURE 5.13

Age of the oldeét column of .

o “ ~ o e L i . . i W d'
U, and V, and vank of"Uk* Algorithm 5.3.1 applied to Wood's

function starting at (-1,-3,-1,-3)
with @ = 102 and

.

* See note on

1 .
{ TFigure 5.12 a) B =10 .

:n b) B - lo_
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b s ar o e m FIGURE 5.14
Age of thgﬁoLdest column of

Uk and'V£‘§ndfraﬁk of Uk Algorithm 5.3.1 applied to Wood's
function starting at (-1,-3,-1,-3)
& See note on with @ = 10-% and
Figure 5.12 "
a) B = .4 x107
b) B=1077
¢) B=.4x10t
) g=10"
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to decrease with decreasing o and B. There are, however, some notable
exceptions. The run in Figure 5.9 with o« =107t and B = .4 x 1072,
for instance, converged in the fewest number of iterations yet a = 10"l
was the largest value of d tested. Similarly, the relationship between
the age of the oldest column of Uk and Vi and pérformance of the
algorithm is not entirely consistent. Although the average age of the
oldest column does decrease with decreasing a in some cases where good
performance was noted very old data was retained. Also, in some runs
where the algorithm performed poorly there was no accumulation of old
data. Because the constant B determines when the rank of U is to be
decreased, one would expect that therrank of U would tend to’increase
on the average as B was chosen smaller. This does seem to be the case,
although the relationship is not very pronounced.

In many applications the amount of computation required to
evaluate the function and its gradient is large when compared with the
computations which occur in the algorithm. If this is the case then a
more valid measure of performance of the algorithm is the number of

-to rezehsthdEmindimum. TIn

function (gradient)-evaluatiens regui:
Figures 5.15 and 5.16 Loglo|f(x)l is plotted versus the number of
function (gradient) evaluations starting from (-3,0,-3,-1) and
(-3,-1,-3,-1), respectively for algorithm-5,3.1-and for Davidon.. All:the
curves correspond to runs presented earlier in Figures 5.9, 5.10, and
5.11. 1In all cases except one, algorithm:5.3.l1 perfommshbetter:than
Davidon using this measure of performance. In particular, notice that
from both starting points for small d and B (a = 10'4, B = 10‘3, 10_4)

algorithm 5.3.1 requires fewer function.(gradient):evhlattioms. Int'these

cases it appears as though algorithm 5.3.1 provides a slightly better
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FIGURE 5.15

Davidon applied to Wood's function
starting at (-3,0,-3,-1).

Algorithm 5.3.1 applied to Wood's
function starting at (-3,0,-3,-1)

with o = 104, g = 1p-3,

Algorithm 5,3.1 applied to Wood's
function starting at (-3,0,-3,-1)
with @ = 1072 g = 19-2,

100

.150

200

Function (Gradient) Evaluations
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Logy o] £(x) | FIGURE 5.16

Davidon's algorithm applied
to Wood's function starting
at (-3,-1,-3,-1).

Algorithm 5.3.1 applied to Wood's
function starting at (-3,-1,-3,-1)
with o = 107%, B = .4 x 1074,

Algorithm 5.3.1 applied to Wood's
function starting at (-3,-1,-3,-1)
with o = 1072, g = 104,

Algorithm 5.3.1 applied to Wood's
function starting at (-3,-1,-3,-1)
with a = 1071, g = 104,

2 2
v

50 100 150 200

-

Function (Gradient) Evaluations
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estimate of the distance to the minimum along the search direction so
that the linear search subalgorithm makes fewer Tfunction (gradient)
evaluations. This may be due to the fact that algorithm 4.3.2 does
not depend upon an exact linear minimization for its theoretical

properties.

5.6 Powell's Funetion

The four dimensional function given by

f(x) = (xl + 10x2)2 +»5(x3 - xu)2 + (x2 - 2x3)u + lO(xl - xu)u (5.6.1)

vi%g Pgrticularly interesting because the Hessian matrix at the unique

- minimum of f(x) is singuié;?miéﬁéi;é;ﬁlté of~Chapter 4 do not apply to

a function with a singular Hessian at the minimum. Further, no theoretical
results have been obtained for the Davidon algorithm in this case.
Functions with singular or ill-conditioned Hessians do arise in appli-
cations.

Runs were made from four different starting points with Davidon's
algorithm and algorithm 5.3.1. In Figures 5.17 and 5.18, Loglolf(x)l is
plotted as a function of iteration number for Davidon's algorithm and
algorithm 5.3.1, respectively. Figure 5.19 is a plot of the rank of U,
and the age of the oldest column of Uk and Vk as a function of
iteration number for the four runs of Figure 5.18. In these four runs of
algorithm 5.3,1, a = 8 = 101, 1In all four cases Davidon's algorithm
reduced the function value to 10—20 within 50 iterations. It is inter-
esting that the rate of convergence seems to be linear in the Davidon run
rather than superlinear. This suggests that it may be possible to obtain

some convergence and rate of convergence results for Davidon's algorithm

when

the Hessian is singular at the minimum.

With o = 8 = 10'”, algorithm 5.3.1 behaved much like Davidon's
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Loglolf(x)] FIGURE 5.17

Davidon's algorithm applied to
Powell's function starting from

a) (-3,-1,0,1)
b) (1,1,1,1)

04 ¢) (-3,0,-3,-1)

d) (-3,-1,-3,-1)
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=15 ¢
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Iteration Number
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FIGURE 5.18

Algorithm 5.3.1 applied to Powell's
function with a = 3 = 1074 starting
from

a) (-3,-1,0,1)

b) (1,1,1,1)

c) (-3,0,-3,-1)

d) (-3,-1,-3,-1)
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FIGURE 5.19
- Algorithm 5.3.1 applied to Powell's

Aga of the nldest column of function with o = 8 = 10~% starting
I, and Vi and rank of Ut from '

1 a) (-3,-1,0,1)

1 * See note on b) (1,1,1,1)

¥ Figure 5.12 ¢) (-3,0,-3,-1)
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algorithm for the first 20 iterations. After 20 iterations algorithm
5.3.1 ran into difficulty. In thwee of the four runs it became
impossible to delete any single column of the matrices Uk and Vk
and to add the new columns (uk,vk) while satisfying the angle
condition of step 8 of the algorithm. As a result the age of the
columns of Uk and Vk grew quite large. In the one case where good
convergence was obtained the age of the columns did not become large.
However, in the final iterations the rank of Uk remained at two.

In an attempt to improve this performance the coefficients o and

8 were veduced to 10”8

and the runs were repeated. Figure 5.20 depicts
LoglOIf(x)l versus iteration number for these runs. In Figure 5.21
the age of the oldest column and the rank of Uk are plotted versus
iteration number for the same runs. Although the tendency of the
algorithm to become stuck is somewhat less for these runs, in each case
the age of all columns of Uk and Vk grew without bound. Again

this occurred because it was impossible to satisfy the angle condition
by deleting a single column of Uk and Vi

Because of these runs it was decided to impose an explicit age

bound on the columns of Uy and V, . Figures 5.22 and 5.23 depict the

®
runs made from the same starting points with o = B = 1078 and with
the age of the oldest column of Uy and Vk constrained to be less
than 2n. This modification improved the performance of algorithm

5.3.1 on Powell's function considerably. From two of the starting
points convergence is obtained in considerably fewer iterations than
with Davidon's algorithm. From the other two, algorithm 5.3.1 requires

a.few more iterations to converge....

The linear search algorithm 5.2.1 did not perform well on Powell's
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Log, | £(x)| FIGURE 5.20
~Algorithm 5.3.1 applied to Powell's

function with a = g = 1078 starting
from

a) (-3,-1,0,1)

b) (1,1,1,1)
Od-
c) (-3,0,-3,-1)
d) (-3,-1,-3,-1)
_5 qL
-10 4
215+
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\ FIGURE 5.21
Age of the oldest column of Algorithm 5.3.1 applied to Powell's
Uy and V. and rank of U, function with a = 8 = 10-8

d

* See note on

Figure 5.12 a) (-3,-1,0,1)

b) (1,1,1,1)
c) (-3,0,-3,-1)

d) (-3,-1,-3,-1)
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'Loglolf(x)! FIGURE 5.22

Algorithm 5.3.1 applied to Powell's
function with o = 8 = 107° and with
the age of the oldest column of Uy

and V, bounded less than 2n = 8,

starting from
a) (—9-3“‘,*-1',0,1)
ot
b) (1,1,1,1)
c) (-3,0,-3,-1)
d) (-3,-1,-3,-1)
_5 L o
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\ FIGURE 5.23
Age of the oldest column of ) . .
Uy and Vk‘éﬁd pank of Uk* Algorithm 5.3.1 &pplied to Powell's
o function with % = 8 = 10~8 and with
the age of the oldest column of Uy and
* See note on V. bounded less than 2n = 8 starting
Figure 5,12 f%om

a) (-3,-1,0,1)
b) (1,1,1,1)

c) (-3,0,-3,-1)
d) (-3,-1,-3,-1)
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function elither in Davidon's algorithm or in algorithm 5.3.1. Although
this subalgorithm did not become stuck it did require a large number of
function (gradient) evaluations to obtain a function decrease. A
different linear search procedure‘would improve the performance of

both algorithms when the Hessian is very poorly conditioned. The
performances of algorithm 5.3.1 and Davidon's algorithm were comparable
in terms of function (gradient) evaluations on Powell's function using
search algorithm 5.2.1.

5.7 A Six Dimensional Function

The final test function was a six dimensional function constructed
from Wood's four dimensional function and the two dimensional Rosenbrock
function. This function .is given by

£(x) = (g2(x) + chZ(x))>/? (5.7.1)

where

g(x) lOO(xé - X )2 ¥ (1 - Xl)2 (5.7.2)

1

and

2 2 2.2
h(x) = lOO(x3 - xu) + (1 - x3) + 9O(x6 - x5)

2 2
F(1-x)2+10.0(x - 1)° +10.1 (x. - 1)
5 U4 : 6
2 2
+ 19.9(}{,+ - 1) (X6 - 1. (5.7.3)

The value C = 793 was chosen so that at the point (1,-1,-3,-1,-3,-1)
g2(x) = chQ(x). Algorithm 5.3.1 and the Davidon algorithm were run from
the three starting points (0,0,0,0,0,0), (.9,.9,.9,.9,.9,.9) and
(1,-1,-3,-1,-3,-1). In all three runs of algorithm 5.3.1,7a and B.wexe
chosen to be 10 1. Figures 5.26, 5.2B, and 5.26 depict Loglo|f(x)|
versus iteration number for Davidon's algorithm and for algorithm

5.3.1 starting from these three starting points. In one case Davidon's
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FIGURE 5.25

a) Algorithm 5.3.1 applied to
the six dimensional function
with o = B = 10~% starting at
(0,0,0,0,0,0).

b) Davidon's algorithm applied to
the six dimensional function
starting at (0,0,0,0,0,0).
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FISURE 5.26
a) Algoritam 5.3.1 applied to the
six dimensional function with
@ =8 =10"" starting at
(.9,.9,.9,.9,.9,.9).
b) Davidon's algorithm applied to
01 the six dimensional function
starting at (.9,.9,.9,.9,.9,.9).
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algorithm becomes stuck while algorithm 5.3.1 converges in less than
100 iterations. In two of the three cases algorithm 5.3.1 performs
better than Davidon's in:terms of iterations required to reduce f(x)

20 1f the measure of performance used is the total number of

to 10~
function (gradient) evaluations,:algorithm-5.3.1 performs significantly
better than Davidon's on: the six dimensional function: from all these
starting points.

5.8 SummarX

The numerical experiments verified the convergence and rate of
convergence results obtained in Chapter 4. On the two dimensional
Rosenbrock function both new algorithms performed adequately although
not quite as well as Davidon.

In testing the new algorithm on Wood's function it was discovered
that algorithm 5.3.2 had a strong tendency to take repeated gradient
steps and therefore converged slowly. As a result of this problem,
algorithm 5.3.2 was not considered further. On Wood's function,
algorithm 5.3.1 demonstrated that if the coefficients a and B are
chosen sufficiently small, convergence: is reliable:and papdd. "In terms
of total number of function (gradient). evaluations alporithm.5.3.1
performed slightly better than Davidon's algorithm onWood*s function.

The'fouf dimensional Powell function with a singular Hessian caused
both Davidon's algorithm and algorithm 5.3.1 to converge linearly
rather than superlinearly. It was found to be necessary to impose an
explicit age bound on the columns of Uk to obtain good performance from
algorithm 5.3.1. On Powell's function, Davidon's algogithmrand algorithm
5.3.1 performed equally well.

On the six dimensional function, :akgorithm-5.3.1 demonstrated:that
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it was less prone to becoming stuck than Davidon's and further it
performed better in nearly all cases. Overalli, the numerical experi-
ments do not show a sharp distinction between the performance of the
new algorithm and Davidon's. However, for highner dimensional functions
there seems to be a tendency for algorithm 5.3.1 to perform better.
This tendency may be accentuated on functions with dimension greater
than six. . .To date such functions have not been tested.

It is perhaps unfortunate that algorithms 5.3.1 and 5.3.2 were
constructed using the linear search algorithm 5.2.1. Since the
theoretical results of Chapter 4 do not require an exact linear search
and since a unit step size is indicated when the search direction is
pi it seems reasonable to expect that a linear search algorithm
tailored to the theoretical results of Chapter 4 would be more success-
ful. The performance of the new algorithms may also be considerably
improved by applying other procedures for updating the data sets and
for choosing the search direction when both the pi and 5% directions
are unsatisfactory. The numerical experiments performed so far
indicate that the new algorithms are comparable in performance to
Davidon's algorithm. With futher refinement they can be expected to

yield significantly superior performance.



CHAPTER &

CONCLUDING REMARKS

The material presented in this dissertation can be divided into two
major parts. In the first part, Chapters 2 and 3, a large number of
established algorithms for root finding and minimization are cqnsidered
in a general framework. This general framework unifies these algorithms
and leads to the statement of a broad class of miﬁimization élgorithms
which contains the established algorithms. Several modifications to the
secant algorithms for root finding are also suggested. The research
involving existing algorithms led the author to consider an entirely new
class of algorithms for function minimization. The second part of the
dissertation, Chapters 4 and 5, deals with this new class of algorithms.
Theoretical convergence and rate of convergence properties are proved
for the new algorithms and numerical experiments were conducted to verify
these vesults and obtain further information concerning the performance
of the algorithms.

The material presented in Chapter 2 deals with the problem of deter-
mining a linear transformation which apbroximates the relationship defined
by a data set. Of particular significance is the material of section 2.4
concerning the characterization of the approximations to a data set when
an approximation to a second data set, having elements in common with
the first, is known. These results are important since they simplify the
calculation of a sequence of approximations to a sequence of data sets
when the data sets are not disjoint. One result in particular, theorem
2.4.5, yields a general formula for an emulation of a data set, when one
exists, in terms cf an emulation of a second data set when the data sets

have common elements. This result is entirely new. It is shown in

143
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Chapter 3 that the recursion formulas used in most of the best known
minimization algorithms, along with some new recursion formulas, are
a special case of the general formula of theorem 2 4.5. Although the
concept of an emulation or approximation of a data set is not funda-
mentally new, the organization of tﬁese'ideas in terms of a sequence of
data sets, the notion of approximations using different norms and the
restriction of the approximations to a certain set of linear transfor-
mations as presented in sections 2.1 through 2.3 is original.

Chapter 3 relates the material of Chapter 2 to the secant root
finding algorithms and to a class of minimization élgorithms which
includes Davidon's algorithm. In section 3.3 it is suggested that
generalized secant algorithms could be investigated using the pseudo
inverse of the matrix U, when the inverse does not exist or when a

k

m, n # m, is sought. In considering the mini-

root of F(x) : R® + R
mization algorithms in section 3.4 attention is restricted to quadratic
functions. A class of minimization algorithms is présented in theorem
3.4,7 the members of which generate conjugate directions, form the
inverse Hessian matrix and determine the minimum of a quadratic function
in n or fewer steps. This class contains established algorithms such as
Davidon's algorithm but is more general in four respects than these
algorithms. First, new recursion formulas are admitted. Second, search

directions, other than -A are allowed. Third, the conditions on

k8k
Ak required to obtain convergence in n steps on a quadratic surface are
relaxed. Fourth, it is recognized that different recursion formulas may
be used at each stage. In section 3.5, new recursion formulas

are developed for a sequence of approximations to a sequence of data

sets generated by appending a single element to the data set at each

stage. Such recursions may be of value in developing new algorithms
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for root finding and minimization or in other problems where data sets
occur which contain a large number of elements relative to n.

[n Chapter !t a new general minimization algorithm is presented.
This algorithm, algorithm 4.3.2, is constructed so as to allow latitude
- in the choice of a linear search direction, a linear search procedure
and the elements in the data set at each stage. In the algorithm
provision is made for taking auxiliary steps to insure that a data set
with the necessary properties can be chosen at each stage. It is shown
in theorem 4,4,10 that if f£(x) : DcR" =+ Rl is continuously
differentiable on D and if L(f(xo)) is compact then algorithm 4.3.2
converges to the set of critical points of f(x). It is further shown
in theorem 4.4,12 that if algorithm 4.3.4 converges to a critical
point Q, if f£(x) is twice differentiable at x and if the second
derivative H(x) is positive definite and strong at x the rate of
convergence is superlinear. These results are considerably stronger
than results obtained by other researchers for established minimization
algorithms. For instance, Powell (POW 71) has shown that Davidon's

1 . .
1s twice

algorithm converges superiinearly if f£(x) : DcR" -+ R
differentiable on D and if the eigenvalues of H(x) are all greater
than some positive constant for all x € D.

The numerical experiments in Chapter 5 verify that specific
algorithms can be formulated from algorithm 4.3.2 which do not involve
significantly more computation than established algorithms and which
perform as well as the established algorithms. The author believes that

with further refinement these new algorithms will offer distinct

advantages over existing algorithms.



APPENDIX I

DERIVATIVES OF TRACE FUNCTIONS

In this section formulas are derived for the derivatives of the trace
of a products of matricies. If £(A) : R > Rl is a differentiable
function of the m x n matrix A by the notation §Z'f(A) we will mean

the m X n matrix which has as its ij th component f(A) where

oa. .
aij is the element in the i th row and‘j th column ofl%he matrix A,
The element in the i th row and j th column of A', the transpose of A,
will be denoted by a'ij and the element in the i th row and j th
column of a product of matricies such as AB'C will be denoted by
(AB’C)ij. By the notation 84 Cgy We mean the summation i a;, bkj

where a4y and bki are components of the matricies A and B. The

notation a., b,. Cy. will denote the summation I L a, b . c..
11\ drib ij l k lk k.]. l_]
where asys bkl and clj are components of matricies A, B and C. Other

summations are similarly defined. Since the trace is only sensible for
square matricies it will be assumed that all matrix products are

defined and that the matrix product yields a square matrix.

d - Nt
1. I trace (BAC) = B'C

Proof:

(BAC)ij = bi* a** C7'fj

trace (BAC) = ? Doy gy Cyt

9 3
3-——-— trace (BAC) = a—a—-— b} bi* a** C*i
a1 Kkl i i
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ik %11

=ZIDb' ,c',
i1

Therefore %K- trace (BRAC) = B'C',

d 1 -
T trace (BA'C) = CB

Proof:

trace (BA'C) = £ b., a,. C..
’ o if %

we w 1
[ S}
52——- trace (BA'C) = 33 T bi' 344 Cust
a1 A1
=IDbi Oy
1
- 1 ]
=IDb': i
1

Therefore %K' trace (BA'C) = (B'C')' = BC.

9 irace (BADAC) = (CBAD + DACB)'

dA
Proof:
33——- trace (BADAC) = 38 L b g i_if* cy
3k 3, 3 183
= i.:- bi?‘ﬂ anh dhk ll

t by dl* % G4
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‘ s
.t bik (DA”)li

? (BAD)ik Cs

u

((BAD)'C')kl + (B'(DAQ)‘)kl

Therefore 4, trace (BADAC) = (CBAD + DACR)'.

e o dA
4, gﬁ' trace (BA'DA'C) = CBA'D + DA'CB
Proof:
) tnat _ 9
: trace (BA'DA'C) = o I b.y 8u dag 3y Cuy
a1 Kkl i e
=L bj_:’: a:'::i d:':l Cki
+ b.. 4, a,. Cu.
ll kn ** w1
= ' t
i (BA D)il Ci * bil (DA c)ki
= ' ot 1 1 [}
((BA'D)'C )lk + (B'(DA'C) )lk
- ] 1
= (CBA D)kl + (DA CB)kl
Therefore gﬁ' trace (BA'DA'C) = CBA'D + DA'CB,
5. §K~ trace (BA'DAC) = (CBA'D)' + DACB
Proof:

9 , )
‘ga‘k‘z 't!"ace (BA DAC) - aakl }; bi* a*’gf df(* a** C,v:i



H
- ™M
o
ja1]
jal

+ bil dk* By Cirt

% (BA'D)
i

i C1 f bil (DAc)ki

e o

((BA'D)'C')kl + (DACB)kl

Therefore %K' trace (BA'DAC) = (CBA'D)' + DACB.

6. d trace (BADA'C) = CBAD + (DA'CB)'

dA
Proof:
o ¢ (BADA'C) = —— I b d
Ta, rece T Ta L Pak O O O Oy
kl k1 1 —
= I by agy dyp Oy
1
t Doy dyy Anw Cug
]
= g (BAD)il cpy t bik (DA c)l.
= t '
(CBAD)kl + (DA'CB) K1
Therefore é—‘itrace (BADA'C) = CBAD + (DA'CB)'.

d
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APPENDIX II

FORTRAN PROGRAM DAVIDON'S ALGORITHM
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....'....I.I..‘.I.."".Ol..l.l""........l‘..."l....l....'l.'.l.

SURRQUTINE DFMFP

PURPOSH

TO FIND A LOCAL MINIMUM CF A FUNCTION OF SEVERAL VARIABLES
BY THE METHOO OF FLETCHER AND POWELL .

USAGE

CALL DFMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H)

DESCRIPTION

FUNCT

EST
EPS

LIMIT
IER

REMARKS

OF PARAMETERS .
USER=WRITTEN SUBROUTINE. CONCERNING. THE FUNCTION TO
BE MINIMIZED, IT MUST BE OF THE FORM

SUBRQUTINE FUNCT(N,ARG,VAL,GRAD)

AND MUST SERVE THE FOLLOWING PURPOSE

FOR EACH N=DIMENSIONAL ARGUMENT VECTAR ARG,
FUNCTION VALUE AND GRADIENT VECTOR MUST HE COMPUTED
AND, ON RETURN, STORED IN VAL AND GRAD RESPECTIVELY
ARG, VAL AND GRAD MUST BE OF DOUBLE PRECISION,
NUMBER OF VARIABLES -

VECTOR OF GIMENSION N CONTAINING THE INTYIAL
ARGUMENT WFERE THE JTERATION STAKTS, ON RETURN,

X HOLDS THF ARGUMENT CORRESPONDING TO THE

COMPUTED MINIMUM FUNCTION VALUE

DOUBLE PRECTISION VECYOR, :

SINGLE VARYABLE CONTAINING THE MINIMUM FUNCTYION
VALUE CON RETURN, I.F, FsF(X),

DOUBLE PRECISION VARIABLE,

VECTOR OF DIMENSION N CONTAINING YHE GRANDIENT
VECTOR CCRRESPONDING TO THE MINIMUM ON RETURN,

I.E. G36(X),

DOUBLE PRECISION VECTOR,

IS AN ESTIMAYE COF THE MINIMUM FUNCTION VALUE,
SINGLE PRECISION VARIABLE,

TESTVALUE REPRESENTING THE EXPECTED ABSOLUTE FRROR,
A REASONABLE CHOICZE 1S {Cxx(=16), I1.E, :
SOMEWHAT GREATER THAN {Zxx(m»D), WHERFE D IS THF
NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT
REPRESENTATION,

SINGLE PRECISION VARIABLE,

MAXIMUM NUVMBER OF ITERATIONS,

ERROR PARAMETER

JER = 2 MEANS CONVERGENCE WAS OBTAINED

IER @ § MEANS NO CONVERGENCE IN LIMIT ITERATIONS
IER w=y MEANS ERRORS IN GRADIENT CALCULATION

IER = 2 MEANS LINFAR SEARCH TECHNIQUF INDICATES

1T IS LIKELY THAT THERE EXISTS NO MINIMUM,

WORKING STURAGE OF DIMENSION N« (N+7)/2,

DOUBLE PRECISION ARRAY,

I) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCTY
MUST BE DECLARED AS EXTERNAL IN THE CALLING PROGRAM,
11) IER IS SEY TO 2 IF , STEPPING IN ONE OF THE COMPUTED
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DIRECTIUNS, THE FUNCTION WILL NEVER INCREASE WITHWIN
A TOLERABLE RANGE OF ARGUMFNT, '

IFR = 2 MAY QCCLR ALSO 1F THE INTERVAL WHERE F
INCREASES 1S SMALL AND THE INITIAL ARGUMENT WaS
RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE
MINIMUM WAS QVERLEAPED, THIS IS DUE TO THE SEARCH
TECHNIGQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT
IS FOUND WHERE THE FUNCTION INCKEASES,

SURROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
FUNCT

METHOD
THE METHOD 1S DESCRIBED IN THE FOLLOWING ARYICLE
Re FLETCHER AND M,J,D, POWELL, A RAFID DESCENY METHOD FOR
MINIMIZATION,
COMPUTER JOURNAL VOL,.6, IS8, 2, 1963, PP,163~168,

OOI..0.0..0'.l‘.IQ.Q.'.'.l..l'.'l..Q.‘G...l.'.'.l.'.‘ll...‘...0.0!..
SUBROUTINE CFMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,1ER,H)

DIMENSTONED ODUMMY VARIABLES
COMMON/ANS/XSTAR,FSTAK, ICNY
DIMENSION H(1),x(1),6(1)
A HXSTAR(1Q)Y .
DOUBLE PRECISIQN X,F,FX,FY,QLDF,HNRM,GNKM,H,G,DX,0Y,ALFA,DALFA,
§AMBDA,T,Z,W
A P XMAG, XLOG,XSTAR,GMAG,GLOG,FMAG,FLOG,FSTAR

COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
CALL FUNCT(N,X,F,G)

RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
ICNT=z0
1ER=Y
KOUNT=Q
NesN+N
N3z=Ne+N
N31zN3+t
KEN3y
WRITE(6,522)
FORPMAT("RESET")
ICNYSICNT+
DO 4 Jesy,N
H{K)®s1 D
NJaNe]
IF(NIYS,S,2
DO 3 Luy{,NJ
KLekel
H(kL)=a,0¢C
KEXL*{

START ITERATION LOOP
KOUNTEKOUNT +1
GMAGaQ, 000
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XMAG2¢,02

Doted 1=1,N

XMAGSXMAG (X (I)mXSTAR(I) ) wa2

GMAGSGMAG+G () an2

XMAG2DSQRT (XMAG)

GMAGIDSORT (GMAG)

FMAGaF=-FSTAR
XF(xMAG.GY.@.Dw.AND.GHAG.GT.@.DB.ANO.FMAG.GY,B.DO)GU T0 121
WRITE (6,124) KOUNT,XMAG,GMAG,FMAG

FURMAT (///*.3%,15,* "x=s*,012,5,* “6*e’,012,5," “F*a*,D12,5/)
60 Y0 te22

XLOG=DLOG1Q(XMAG)

GLOG=DLOG12(GMAG)

FLOGSNLOGIA(FMAG)

WRITE (6,181) KOUNT,XMAG,XLOG,GMAG,GLOG,FMAS,FLOG ‘
FORMAT(/l/'L"IIBO‘ “x“s*,Die,S,"* LOG.X;5'1012.51' sG“"o012.5:
1 * LOGSG=s’, o
A D12,5,” ‘F“B',DIZ.S,‘ LOG"F=3*,D12,5/)

WRITE (6,10p) (XCI),1=4,N)

FORMAT ('X=',12012.0)

WRITE (6,103) fG(IJnI’lIN)

FORMAT (4G37,18D12,4)

CCsKOUNTY

SAVE FUNCTION VALUE, ARGUMENT VECTYOR AND GRADIENY VECTOR
OLDF=fF
00 9 J=g,N
KaNeJ
H(K)=G(J)
KeKeN
H(K)=x(J)

DETERMINE DIRECTION VECTOR H
K2J+N3
Ted, D0
DO & L’le
TeT=G (L) #H(K)
IF(L=J)6,7,7
KRK¢Nm|,
GO T0 8
KsKe |
CONTINUE
H({J)=aTY

CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H,
DY=0,00
HNRM2Q (19
GNRMz@,DQ

CALCULATE DIRECTIONAL CERIVATIVE AND TESTVALUES FOR DIRECTION
VECTOR 4 ANQ GRADIENT VECTOR G,

DO §@ J=1,N

HNRH:HNRM*UABS(H(J))

GNRMSGNRM+DARS (G (J))

10 DYBDY+H(J) G (J)
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REPEAT SEARCH IN OIRECTION OF STEEPEST DESCENT IF DIRECTIONAL
DERIVATIVE APPEARS TO RE POSITIVE QR ZERN,
1F(DY)11,51,51

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENY IF DIRECTION
VECTOR K IS SMALUYCOMPAREOD YO GRADIENT VECTOR_ G,
IF (HNRM/GNRM=ERPS)S],S1,12

SEARCH MINIMUM ALONG DIRECTION M

SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE
FYsF )
ALFAZ2 DO« (EST=F) /DY
AMBDASBY , DO

USE ESTIMATE FOR STEPSIZE ONLY IF IT 1S POSITIVE AND LESS THAN
1. OTHERWISE TAKE 1, AS STEPSIZE

IF(ALFA)15,15,13

IF(ALFA=AMBDA)14,15,15

AMBDAzALFA

ALFAs® L0

SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT
FXsFy
DXsDY

STEP AFGUMENT ALONG M
DO 17 1ay,N
X(Y)sX(I)+AMBDARK(])

COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
CALL FUNCT(N,X,F,G)
Fysf

COMPUTE DIRECTIONAL DEWIVATIVE DY FOR NEW ARGUMENT, TERMINATE
SEARCH, IF DY IS PUSITIVE, IF DY IS ZERO THE MINIMUM 1S FOUND
pYs?,D0
DO 18 I={,N
DYsDY+G(I)#H (1)
IF(DY)19,36,22

TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAY
A MINIMUM HAS BEEN PaSSED
IF(FY=FX)R@,22,R2

REPEAY SEARCH AND DOUBLE STEPSIZE FDR FURTHER SEARCHES
AMBDAAMRDAwALFA
ALFASAMBDA

END OF SEARCH LOOP

TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE
IF (WNRM®AMBDA={,01@)16,16,21

LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS
1ERs?
RETURN
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INTERPOLATE CUBICALLY TN THE INTERVAL CEFINED RY THE SEARCH
ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPNLATION
POLYNOMIAL IS MINIMIZEC

T=0,00

IF (AMBDA)24,36,24

253, N (FX=FY)/AMBDA+DYXeDY

ALFAaowAXI(DAHS(Z).DAaS(DX).DABS(Dv))

DALFAZZ2/ALFA

DALFAZDALFADALFA=DX/ALFADY/ALFA

IF‘DALF‘)SIOESJES "

WeALFARDSQRT (DALFA)

ALFASDYwDX+Wew

IF (ALFA) 25@,251,250

ALFAB(DY=29W)/ALFA

GO TO 252

ALFAR(Z+DY=W)/(Z4DX+2¢DY)

ALFAZALFA®AMRDA

DO 26 Is=i,N

XCI)eX(I) e (T=ALFA) *N(])

TERMINATE, IF THE VALUE OF TWE ACTUAL FUNCTION AT X IS LESS

THAN ThE FUNCTION VALUES AT THE INTEPVAL ENDS, OTHERWISE REDUCE

THE INTEWVAL HY CHUNSING ONE END=POINT EGUAL TO X AND REPFAT
THE INTERPOLATION, wHICH ENDO=POINT IS CHOOSEN DEPENDS ON THE
VALUE OF THE FUNCTION AND ITS GRADIENT AT ¥

CALL FUNCTCIN,X,F,G)
IF(F=FXx)27,27,28
IF(FeFY)36,36,28
DALFA=29,00

DO 29 1=4,N
DALFABDALFA¢G(I)*H(I)
IF (DALFA)3Q,33,33
IF(F=Fx)32,31,133
IF(DX*DALFA)SE,Sb.S?
FXsF

DXsDALFA

T=ALFA

AMBDA=ALFA

GO TO 23
IF(FY=F)35,34,35
IF(DY=DALFA) 35, 36,35
FY=F

DY=DALFA
AMBDASAMBDAALFA

GO 10 22

TERMINATE, IF FUNCTION WAS NQY DECREASED DURING LAST ITERATION
IF (OLDF=F+EPS) S1,38,38

COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT FROM
TWO CONSECUTIVE ITERATIONS

00 37 J=g,N

KaNe)

H(K) 8G (J) =H (K)
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KaN+K
H(K)ax (J)=H(K)

TEST LENGTH OF ARGUMENT DIFFERENMCE VFCTOR AND DIRECTION VECTOR
IF av L&AST N ITERATIONS HAVE BEEN EXECUTEO TERMINATE, IF
BOTH ARE LESS THAN EPS

IER=Q

IF(KQUNTeN)42,39,39

TRd,00

220,00

no 4n Jzi,N

KaNeJ

Weh(K)

KsKeN

TeT¢DABS(H (X))

28Z+WeH (K)

IF (HNRM=EPS) 4L ,41,42

IF (T=EPS)56,56,42

TERMINATE, IF NUMBER OF IYFRATIONS WOULD EXCEED LIMIT
IF (KOUNT=LIMIT)43,50,50

PREPARE UPNDATING OF MATRIX W
ALFAs( D0
Nno0 47 J={,N
KnJeN3
Ws,00
N0 46 L=y,N
KLsNeL -
WaWeH (KL) *xH (K)
IF(L=J)d4,d45,48
KeK+Nm=|
GO TO 46
KzKel -
CONYINUE
KeN+J
ALFASALFA+WeH(K)
H(J)aw

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
ARE NOT SATISFACTORY
IF(ZeALFA)48,1,48

UPDATE MATRIX W
KsN3{
D0 49 Le=i,N
KLaN2e|
DO 49 J=,N
NJaN2+ |
HCK)aR(K)+H (KLY WH(NJ) /Z=H(LY*H () 7ALFA
KaKe{
GO T0 S
END OF ITERATION LOOP

NO CONVERGENCE AFTER LIMIT JITERATIONS
IERs|
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RETURN

RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS
DO 52 J=i,N
KeNgsJ
X(J)sH(K)
CALL FUNCT(N,X,F,G)

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
FAILS TD BE SUFFICIENTLY SMALL
IF(GNRM=EPS)55,55,53

TEST FOR REPEATED FAILURE OF ITERATION
IF(IER)YS6,54,54
JERs =1
GOTO0
IER=Q
RETURN
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FORTRAN PROGRAM FOR ALGORITHM 5.3.1
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SURROUTINE DIXON(FUNCT,N,X,F,G,EST,EPS,LIMIT)

c

c1, DECLARATIOMNS

c _ _
IMPLICIT REAL#E (A=H,0e7)
COMMON/ZANS/XSTAR(12),FSTAR
cnmmn~191~1/ut1ﬁ.t@).Uo(av.tﬂ).uomtia.an).ut(1a),u7(1¢).UV(1a),UM(
NIMENSTION VE12,12),vV (1), P(1e),x(1@),xoLd (1) ,6(12),
A GOLRC12),EPS(4) ) 1AGE(10)

o

cII, CHECK DIMENSION OF PRORLEM

o

IF (N ,LE, 12) GO T0 &
WRITE (h,100) N .
102 FORMAT (*~Nz*,13,3%,°IS TOO LARGE FOR SUBROUTINEF CHANGE DIMENSION

ANT®/ /)

sTOP
o
clII. INITIALIZE VARIAKLES
o

5 IkK=0
[.sQ
ISwWe=p
ISWZ=zp
LO 1y I=1,N
TAGEC1) =0
10 un(1,1)=9,000
CALL FUNCT (N, X, F,G)

CIv, STARTING ITERATION NUMKER npw

15 IF(TAGF (1) ,EQ,A)50 10 ie
TF(LaTAGE(1)e2xN)16,17,17

17 CALL PINVR(N,IRK,1)
IKKZ T K ’
D0 18 J=1,IRK
pe 19 1=y,N
UCI,J)=U(l,Jd+1)
V(IaJ)‘V(IaJ‘I)

19 ub¢I, Ir=UNM(CJ, 1)

18 IAGE(JY=TAGE(J+1)
IAGE(IRKey) =0

16 Lzl+}
IF (L. .07, LIMIT) RETURN
IRKY{zIRKm
GMAG=s®,i D0
YMAG=(, DR
PO 20 1={,N
XMAGZXMAGH (X (I)=XSTAR(I)) a2

20 GMAGSRMAGSG (1) w2
XMAGSSURT (XMAG)
GMAG=NSHRY (GMAG)
FMAGSF«FSTAR
XFtXMAG.GT,E.OG.AND.GMAG.GT.o.on.AND.FMAG.sT.a.Da)GO T0 121
WRITE (6,185) L,XMAG,GMAG,FMAG )
185 FORMAT (///°L=*,13,° “X°2%,012.5,¢ *6*=*,D12,5,' *F*2¢,012,5/)
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G0 T0 122

XLOG=NLCG1@ (XMAG)

CLOLENLOGIAIGMAL)

FLOGSDLOGIR(FMAG)

WRITE (&,121) L,XMAG,XL.CG,GMAG,GLOG,FMAG,FLOG

FORNAT(///°L5°,13,° “X"8%,012,5," LOG~X"=3’,012,5," *G*=’,D12.5,° L
012.5,* “F"=2*,012,9," LOG"F"=z’,D12,5/)

WRITFE (h,102) (Xx(I1),I%1,N)

FORMAT (°X37,10012,4)

WRITE (5,123) (G(I),181,N)

FORMAT (‘G:',ieul?.u)

WRITE (6,104) (IAGE(I),Im1,N)

FORMAT (’IAGE=*,10l6)

CCsi

A, ITERATION TERMINATED IF *“G* < EPS4

IF ( GMAG .67, EPS(4)) GO TO 2%
RETIRMN

B COMPUTE PSEUDO INVERSE OF NEW U FROM UD & UV

IF (1s5w?2 EQ, @) GO YO 26
No 2%4 1s§,N

ub(1,13=2,00

IF (IFK LEQ, @) GO TO 26
D0 255 I=1,1IRK

DO 256 Jz1,N

uveIy=ued, 1)

CALL PINV(N,I)

C. COMPUTE PBAR

ISWe=y

PMAG=Q 0

COS=p,uDy

PO 27 1=t,IRK

ut(I)=a,00

DO 27 J=1,N

UT(ID) =T (1) +UD(L,J)*G ()
IF (IPK FQ, N) GU TO 32
D0 29 I=},N

P(I)aG(I)

DO 28 J=1,IRK
PLIY=P(IY=U(T,J)eliT ()
PMAGEBPMAGHP (1) ww?
COSsSCOS+G (L) *P (])
PMAGEDSART (PMAG)
COSsCOS/ (GMAG*PMAL)

0. IF PBAR 1S PERPENDICULAR TO G COMPUTE PSTAR

IF (COS ,G6T, EPS(1)) GO TC 4@
C0820,002

PMAG=E,CDR

DO 32 I={,N
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P(I)=C,¢D@
no 31 Jsi,IRK

3 P(I)=P(I)&V(I,2)»0T(])
PMAGSFMAGP () %w2

32 COS=COS+G(IN*P(I)
PMAGSDPSCRT (PMAG)
COS=C0S/ (GMAG*PMAG)
1SW3sy

Clv, E. IF PSTAR IS PERPENCICULAR TO G; DELETE THE OLDEST COL, OF U

IF (COS 6T, EPS(2)) GO TO 4@
CALL PINVR(N,IRK,1)
LsL=}
1Sween
I1Sw3aD
IRKEIFKe]
00 36 J=1,IRK
nn 3"! I:!IN
UCI,JYzu(l,J+1)
V(I,J)=v(I,J+1)

35 ub(J,1y=unMed, 1)

36 TAGE (J)alAGE (J*1)
1AGE (TRKk+1)=@
Gu 10 1%

49 DO 41 I=41,N
GOLD(I)=G(I)

a1 xoLn(ry=x(I)

c
clv, F., DETERMINE STEPLENGTH
c

42 CALL STPLEN(FUNCT, N,X,F,G,P,EST)
o
clv, G, CALCULATE DX & DG VECTORS
c

44 UMAGEZR, D0
45 DO 54 I=1,N

CVV(ID)esX(I)=XOLDCI)
UV =G (1) =60LD (1)
50 UMAGEUMAG+UV () wnp
UMAG=DSGRT (UMAG)
o
cIv, He TEST NEW DG VECTOR
c

IF (IRK ,FQ, N) GO TO 61
PO SuS Is1,IRK
uT(l)=p,00
DO S@S Jai,N
505 UT(I)eUT(I)«UDCI,J)xUV(I)
CMAGE6,NO
DO S2 Ist,N
coMPa(,DQ
DO 5t Jsi,IRK
51 COMPaCOMPeUCI,J)«UT(J])
5e CMAGSCMAGSCOMPan2
CMAGSDSOHRT (CMAG) /UMAG
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IF (CMAG ,G6T, (1,0@=EPS(3))) GC TO &%
Hi, PASSED$ UPDATE U & V MATRICES

IRKaIRK+1

IAGE (IRK) =l
DO 6¥ 1s1,N
UCT,IRK)sUV(T)
VI, IRK)3VV ()
60 YO 15

H2, FAILED: YRY ELIMINATING ONE OF THE COLUMNS

DO 75 Mmi, IRK
CALL PINVZ2(N,IRK,M)
CMAG=0,N7

DO &7 Ilsi,N

COMP=g, 1A

JJav

DO &6 J=t, IRK

IF (J kW, M) GO TQ &6
JJsJJ+d
COMP=COMP+U(CTIL,J)xUTCJT)
CCNTINUE
CMAGSCMAGSCOMP &2
CMAG=DSGRT (CMAG) /UMAG
IF (CMAG 6T, (1.,u¢=EPS(3))) GC TO 7%
IKK{sIRKmy

DO 72 T=1,IRK}

00 72 J=1,N
Uuol,Jy=unMcl,J)

DO 73 J=M,IkK]
TAGE(J)3T1AGE (J+1)

DO 73 I=1,N
UCT, )=l (I,J+1)
VIIJd)av(l,J+1)

TAGE (IRK) =L

DO 74 1=t,N
UCT,IRK)=uV(])
VII,IrK)=sVV (D)

GO T0 15

CONTINUE

H3, TESY FAILED AGAIN U, V & UD REMAIN UNCHANGED
ISwWeep

GO T0 {5
END

0004
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SUBROUTINE PINV (N, IRK)
MATRICES USEQ: U,UN,UNM == VECTORS USED: UY,UT,UV
U THE DELTA=G MATRIX SUPPLITED
UD: THE PSUENO INVERSE OF THE MUM MATRIX  SUPPLIED,UPDATED & RETURNED

U1s WORKING VECTOR? Ul = (I » U % YD) = uv
UT: WORKING VECTOKRJ UT & UD o UV
UVE NEW COLUMN JUST ADDED TO THE "U" MATRIX
IMPLICIT REAL®R(A=H,0=2)
COMMOM/FINT/ZUCIU,1@),UDC12,10),UNMCL1@,12),ULC1@),UTCIO),UV(10),UM(1C)
IF (IFX (LE, 7)) RETURN
IRKI2IRK=1
ULMAG=Q,0008
IF (IRKY! ,EG, @) GO YO P1}y
D0 2y I=y,IRKY
uT(1)=0.002
DO 2y J=§,N
21 UT (I =uT(I)+UD (I,Jd)»UV(J)
211 DO 23 1I=y,N
Ui (Iy=uv(l)
IF (IRK] L,EG, @) GO TO 23
DO 22 Jsi,IRrKY
22 U1 C1)=2ut(1)«U(I,J)auT(d)
23 UIMAGZUIMAG+UL (I) wwp
DO 25 Jat,N
25 UDCIRK,J)=UL(J)/UIMAG
1F (I¥K1 LEG, 2) 6O TO 2e
DG 24 l=t,IRK}
bo 24 J=1,N
o4 UEMLT,J)=0(T,)
00 edy 1s1,1IKK]Y
No 24y Jzg N
ub (I, JdysunmM(r, N
DO 24y K=1,N
241 UD(T,J)=UD(1,J)=UDM(T K)*LivV(K)*ULl(J) /UIMAG
26 RETURN
END

c
c
c
[+ UOMS WOKKING MATRIX
9
C
c
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SURRQUTINE PINV2 (N, JRR,M)
MATRICES USFDS UD,UOM w= VECTORS USED! UT,UV,UM
UD: PSUEDG INVERSE OF THE "U" MATRIX SUPPLIFD

62

63

64
65

UDM? PSUEDQ INVERSE OF THE U MATRIX MINUS THE MTH COL, RETURNED

UTS ThE PRODUCT CF MyoMh™ TIMES “yvn

UV NEW CCLUMN TO BE ADDEC TO THE U MATRIX

UM? THE MTH ROW OF THE UD MATRIX
IMPLICIT REAL*8(A=H,0=2)

RETURNED

COMMON/PINL/ZU(14,12),UD(10,10),UDMCIQ,10),UL(10),UTCL1@),UV(L@),UM(1Q)

UDMAGSR, D7

00 62 Isi,N

ur(l)=zae,02
UDM(1,1)s0,n0
UM(I)suD{M, 1)
UDMAG=ZUDMAGHUM (L) #%2
1=0 .

DO 65 1131, IRK

IF (1! EQ, M) GO TO 65
Telel

ut(l)se,0e

no 64 Jzy,N
DUM=UDCIT, 1)

NO 63 Ksy,N
DUMSOUM=UD(TT,K) «aUM(J) «UMK) /UDMAG
UTC(I)syT (1) +DUMRUV ()
UDM(T,J)=0UM

COUNTINUE

RETURN

END
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SUBROUTINE STPLEN(FUNCT,N,X,F,G,P,FEST)
IMPLICIT FEAL*B(4=H,0~2)
DIMENSION X(10),6(18),P(1¢L)
0Ysa,00
DO 1@ Isti,N
P(I)s=pP(I])

1e DY=2DYeS(I)wP (1)
IF (DY) 12,118,188

11 WRITE (&,107)

100 FORMAT (*«THE DIRECTIONAL DERIVATIVE APPREARS T0 BE > OR = 0,°)
STOP

12 Fy=F
ALFA=2,00x(EST=F)/0Y
AMBDAst , 00
IF (ALFA) 15,15,13

13 IF (ALFA=AMRDA) 14,15,15

14 AMBDA=ALFA

15 ALFA=Q2,DQ

{6 FxaFy
DXsDY
D0 17 1=i,N

17 XCI)sXx(U)+aMBDA®P(])
CALL FUNCT(N,X,F,0)
FYsF
Dy=2,n0
DO 18 I={,N

18 DYSDY+G (I *P(I)
IF (0Y ) 19,36,22

19 1F (FYeFX) 208,22,22

2n AMBDASAMBDAGALFA
ALFA=SAMBDA
GO TO 16

22 Y=08,00

el IF (AMBDA) 24,36,24

4 223, D% (FX=FY)/AMBDASDXSDY
ALFAZDMAXI (DABS(Z) ,OABS(DX),DABS(DY))
DALFA=Z/ALFA
DALFASDALFA+DALFA=DX/ALFA%DY/ALFA
IF (DALFA) 51,25,29

St STOP 4
25 WeALFA*DSGRY (DALFA)
ALFASDY«DX*WsW

IF (ALFA) R25%1,2%1,250
250 ALFAR(DY=Z+w)/ALFA
GO0 YO 252
251 ALFAR(240Y=W)/(Z+0X42*DY)
252 ALFASALFA«AMBDA
DO 26 I®i,N
26 X(I)sX(I)+(T=ALFA)YWP(I])
CALL FUNCT(N,X,F,06)
IF (F«FX) 27,27,28
er 1F (Fe=FY) 36,36,28
28 DALFA=zQ,00
no 29 1={,N
29 DALFAEDALFA+G(I)*P(])
IF (DALFA) 32,33,33



30
3
32

33
35

36

IF (FeFXx)32,31,33

IF (NX=DALFA) 32,56,32
FxafF

DX=DALFA

TRALFA

AMBDABALFA

GO 7O 23

IF (FY=F) 35,34,35

1F (DY=DALFA) 35,36,35
FYaF

DYsDALFA
AMBDA=AMBDA=ALFA

0 YO R2

RETURN
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