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CYCLIC SCHEDULING TO MINIMIZE INVENTORY
IN A BATCH FLOW LINE

Abstract

This paper addresses the problem of cyclic production in a flow line. We assume a
constant supply of raw materials and a constant demand for all finished goods. Material which has
completed processing at one stage is transferred to the next stage in small transfer batches.
Inventory may be held before the line, at the end of the line, or between any pair of adjacent
stations. The objective is to find a sequence of production and a cycle length that minimize the
average cost per unit time of holding inventory. A linear programming formulation is given that
determines the optimal cycle length and finishing times for a given (set of) sequence(s). Two
heuristics are presented for computing near-optimal sequences; one is applicable to a 2-machine
flow line and the other is applicable to an m-machine line. The conclusions of the computational
study are threefold: 1) permutation schedules, i.c., same sequence on all machines, are nearly
always optimal, 2) the heuristics produce near optimal solutions, 3) the batching decision, i.e the
choice of cycle length, is substantially more significant than the sequencing decision for

minimizing inventory costs.



1. Introduction

Flow lines are a common means of producing discrete parts. In a flow line, each part visits
a series of machines in the same sequence. Flow lines that produce multiple parts typically are
designed so that, given the anticipated product mix, the total workload on each machine is roughly
the same. In other instances, however, technological considerations and changes in the product
mix may cause the various workloads to differ widely. In either case, the processing rate and,
where applicable, the setup time, for each product is likely to differ across machines. Asa
consequence of these differences, the sequence in which products are produced may have an
impact on both the total value of the inventory in the system and the amount of buffer space
required between adjacent machines to accommodate work-in-process (WIP) inventory.

We consider a flow line which produces several types of parts, each with a constant
demand rate. Each part has a known processing rate and a sequence-independent setup time
(which may be zero) on each machine. Our goal is to find a cyclic (pure rotation) schedule that
minimizes the average cost per unit time of the sum of finished goods, WIP, and raw materials
inventory. By appropriately choosing the inventory holding costs, we can also consider such
objectives as minimizing average inventory (in units), or minimizing average WIP inventory. Most
of this paper deals with the case of two machines, but one of the proposed heuristics is applicable
to larger numbers of machines.

Our work on this problem was motivated by several applications in discrete parts
manufacturing environments where the demand rates for the parts are fairly constant, such as
component fabrication systems supplying parts to fixed-pace automobile assembly lines, systems
in which capacity constraints dictate constant production targets, and highly automated systems
producing parts at a relatively constant rate for long-term contracts. Our concern about WIP
inventory is in the spirit of just-in-time principles of reducing overall inventory levels for the sake

of faster feedback with regard to quality, and to provide a competitive advantage by using



“continuous flow manufacturing” to reduce lead times (cf. Singh 1990). In addition, we are aware
of several instances in which inter-machine buffer space has been reduced, presumably to force
inventory reductions, and thus prompting the need for more careful scheduling.

The remainder of this paper is organized as follows. Section 2 provides a formal problem
statement and a brief review of related literature. In Section 3 we develop two formulations. The
first formulation is useful for understanding the various components of the cost function and the
nature of the constraints. The second formulation is more useful for developing heuristic solution
procedures. Properties of the optimal solution and related conjectures are discussed in Section 4.
This provides the foundation for development of heuristic procedures in Section 5. We also
develop worst case error bounds for these heuristics. In Section 6, we report results obtained in a
series of computational experiments. Section 7 concludes the paper with a summary and

discussion.

2. Problem Statement and Literature Review

We investigate the problem of finding cyclic schedules for a flow line which produces
multiple types of parts. The demand rates are known and constant. Production rates and setup
times are assumed to be deterministic, and the latter are assumed to be sequence-independent. We
assume that a pure rotation policy is used on each machine; that is, a particular permutation of the
products is repeated again and again, but the sequences on the machines may differ. Pure rotation
schedules are used frequently because of their ease of implementation. In addition, Jones and
Inman (1989) have found that pure rotation schedules perform nearly as well as more complicated
schedules in single-machine problems.

The objective is to minimize the average cost per unit time of finished goods, WIP, and raw
materials inventory. We assume that the transfer batch size is very small in comparison to the total
quantity produced in a production run, and we model it as if it were infinitesimal. Thus, the

inventory can be viewed as flowing continuously from an upstream buffer (or raw materials) into a



machine while it is producing, from a machine into its downstream buffer while the machine is
producing, and from the final machine into finished goods inventory while the final machine is
producing. For ease of exposition, we assume that one unit of output of a machine is required for
each unit of output of its downstream machines, but any constant multiplicative relationship can be
incorporated.

A restricted version of this problem has been addressed by El-Najdawi (1989), who
considers a two-machine problem in which the permutation sequences on the two machines are
required to be identical, and where the transfer batch for the upstream machine, but not the
downstream machine, is equal to the production batch. Thus, our analysis can be viewed as a
generalization of his with regard to sequencing, and somewhat more pragmatic with regard to
transfer batches in view of the emphasis on inventory reduction. In addition, we investigate{ some
subtle decisions that were ignored in El-Najdawi's analysis. This point is described in more detail
later.

There is a considerable amount of research on the single-machine economic lot scheduling
problem (ELSP), of which the pure rotation scheduling problem is a special case. The pure
rotation problem was first studied by Hanssmann (1962). Recent research on the ELSP includes
Dobson (1988) and Gallego (1990). It is useful to point out that since all of the research on the
single-machine ELSP deals with only finished goods inventory, the fundamental nature of our
problem is somewhat different because it raises the possibility of a tradeoff between work-in-
process and finished goods inventory. This tradeoff is explained by way of an example in
Appendix 1.

Finally, there is some work on cyclic scheduling, principally on two machines, where the
“jobs” and hence also the processing durations, are defined in advance, and where the entire job
constitutes the transfer batch. Examples include papers by Matsuo (1987) and Roundy (1988).
These problems can be viewed as special cases of our problem in which the processing times are
negligible, so only the defined-duration setups need to be scheduled with the restriction that the

setups for a given product cannot occur concurrently on the two machines. Alternatively, we can



obtain a very similar restricted problem by specifying the cycle duration, hence also the processing
time per batch, and assume that the setup times are zero. (The latter version is not completely

equivalent since the resulting cycle duration is not guaranteed to be equal to the assumed duration.)

3. Problem Formulations

In this section, we develop two formulations of the two-machine problem. The first is
more traditional and treats the processing of each part on each machine as a separate entity. The
second formulation, on the other hand, views the scheduling problem from the perspective of
parts, and treats the processing times associated with a particular part as a single entity.

We begin by formulating a simplified version of the problem for a rotation cycle where the
sequence is fixed and the same sequence is used on both machines. A related formulation is given
in El-Najdawi (1989), but ours differs because of the assumptions about transfer batches. The

notation is defined below.

Data:

i index for the positions in the sequence. For this formulation, in which the
sequence is fixed and the same sequence is used on both machines, i will also index
the part.

j index for the machines in the flow shop.

n number of positions in cycle.

m number of machines in flow shop.

the rate of demand for part i.

Pjj the rate of production of part i on machine j.
pij = di/pij, the utilization of j by part i.

Sij setup time of part i on machine j.

hij the weight or holding cost on part i for inventory after machine j. Inventory “after
machine (” is raw material.



Variables:

t; processing duration of part i on machine j.
uj; idle time on machine j before setup of part i.
£ finishing time of part i on machine j.

T cycle length.

51j = (t ii+1 74 ) i.e., the amount by which the finishing time of part i on machine j
must exceed the finishing time of part i on machine j-1

\ZT delay in processing of part i on machine j beyond the earliest feasible time, given
lJ 1> also, the additional time, beyond 81 , by which the finishing time of part i on
machine j+1 exceeds that of partion machlne j-

We now define the constraints that must be satisfied. We start with the constraints on the

finishing times:
fij=f. 1% Vi1 + 6ij Vij o))
fij =f; TR TR TR Vi, ?2)
foy = foj= T vj ©
Ujj» Vij 20 Vv ij. 4)

Constraints (1) force the finishing time of part i on machine j to be no earlier than the finishing time
of part i on machine j - 1. If aij > 0 then machine j processes part i more slowly than machine j -
1. Adding 5ij to the right hand side of (1) ensures that the starting time of i on machine j - 1

precedes the starting time on machine j. The variable Vii

is a slack variable which reflects the delay
of the start (finish) of processing of part i on machine j in comparison to its earliest feasible starting

(finishing) time. Thus, v;;, in conjunction with the processing rates for part i at machines j and j-1,

iy
defines the extent of the work-in-process buildup of part i between the two machines. Constraints
(2) ensure that for each machine j there is sufficient time to setup and produce part i after parti - 1
is completed. The length of the cycle is set to T for every machine by constraints (3). To define

the production times as a function of the cycle duration, we require that



If this were a one-machine flow shop then the minimum cycle length would be

zsil
i=1
T 1
1‘2 Pi1
i=1

Because this is an m-machine flow shop, the minimum cycle length is

r 3

25

T .. =Maxy ——— .

I
1 - P; J
Next we derive the objective. The finished goods inventory cost is

T
2 himdj (1 = Pign)-

If the raw materials inventory is delivered as needed then there would be no such inventory. If the

raw materials arrive at a constant rate, d;, for part i, then the cost for it will be
>)
2 & hiod; (1 - pip)-
1=

The two previous formulas are standard expressions. We now derive expressions for the
amount of WIP after machine j. To simplify the notation we consider the case of WIP between
machines 1 and 2 and suppress the subscript for the parti. There are three cases. The first case,

where the processing rate on machine 2 is slower than that on machine 1, and where the processing

on machine 2 is delayed by an amount v, is pictured in Figure 1.
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Figure 1: Example of WIP Inventory

The area of the trapezoid, I, in Figure 1 is:

1 1 1
I = 502p; +73¥2py +3 (@p; + PP
1

= 5 (apy (@ + B) +1p, (Y + B))
where
o= VI
B=1t4y-v
Y = t2 + Vl - tl .
This reduces to

[ = 50 (D1 +59) + (G~ )Dy).

To obtain the average WIP for this item over the cycle, we divide by T and substitute t; = p;T to
obtain

I T
T = vid+5d(py-py).



Similar derivations (see Appendix 2) for the other two cases give us the formula for any case as
I T
T = Vid+7dlpy—pyl.

The average cost per unit time of the WIP is thus:

T
E 2 hlj (Vu i fdi Ipj+1 - pjl)'

=l =1

We can now formulate the optimization problem for a fixed sequence. To emphasize the
dependence on T, we eliminate the t; variables by substituting pijT = t;;. We can simplify the

objective by defining p;; = Py, = 1 for all i. The optimization problem is a linear program:

® o (7)) 8 3% waopo oy [+ S Sohgry

0 =1 =1 i=1
subject to fij = fij.1 + TPy — P35 0* + Vi1 Vi, (6)
f =f it S +Tpu+u Vi, @)
foj =1fnj =T \2 ®)
£ i Vi 2 0. vij O

Problem (P1) is a very constrained version of the problem. Not only is the sequence
specified, but the constraints (5) require that the units processed on machine j-1 in [ij-l’ ij-1+ T]
be processed on machine j in [foj, f0j+ T]. There are, however, instances where allowing earlier
processing of parts (i.e., in the previous cycle) on machine j-1 might be advantageous.

Consider the following example. There are two machines j = 1, 2 and seven parts indexed
i=1,..,7. All parts have the same demand rate of 1 unit per 18 time units. Parts 1, 2, 3, 4, and 5
are equally expensive to hold in WIP and parts 6 and 7 have a positive but negligible WIP holding

cost, €. All of the parts have extremely large finished goods holding costs, i.e., large enough so



that it is optimal to produce only one unit at a time. The setup times and processing times (per unit)

of the parts are given in Table 1.

Table 1: Example Data

Si1

Si2

Pi1 Pi2
1 2 0 2 2
2 2 2 0 1
3 1 1 1 1
4 3 0 1 1
5 1 1 0 3
6 1 1 1 1
7 1 1 2 2

Assuming that only one unit of each part is processed in each cycle, the total processing

time required on each machine is 18 units on machine 1 and 17 units on machine 2. Thus, we can

satisfy demand exactly with no finished goods inventory. Suppose now that the sequence of parts

on machine 1is 1,2, 6, 3, 4, 5, 7} and the sequence on machine 2 is {6,1,2,3,7,4,5}. With the

current formulation, the resulting schedule is as shown in Figure 2. In the figure, s indicates a

setup, t indicates processing, and the numerical index denotes the part.
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This schedule has inventory holding costs of (31/18)h.; per unit time.

Figure 2: Gantt Chart with Constraints (6)



On the other hand, by allowing parts 6 and 7 processed on machine 1 in one cycle to be

processed on machine 2 in the next cycle, we could have obtained the schedule shown in Figure 3.

st Lo | s2 [sele|s3is| sa tuass|srl oo
| | | |

s6!t6 ] tl s2 t7 |td|s5

Figure 3: Gantt Chart with Parts 6 and 7 Wrapped
We say that parts so scheduled are “wrapped,” since their production schedules wrap around from
one cycle to the next. Note that this alternate schedule has negligible inventory holding costs. It
turns out, however, that the decision of whether to allow a part to “wrap” is a binary decision,
which adds another set of combinatorial decisions, above and beyond the sequencing issue. To
accommodate wrapping, constraint (6) would be replaced by

= fij.1 + TPy — Py.0* + Vi1 - Txjj Vij (6"

where x;; | = 1 if part i wraps between machines j-1 and j, 0 otherwise. Note that when wrapping
is allowed, the optimal schedules and objective values can differ considerably depending upon
which items are “wrapped,” even when the same sequence is used on both machines.

Although “wrapping” may provide a lower cost than a solution with no wrapping, it
appeared to us that such a solution might be difficult to administer in practice. For instance, in
flow lines with automated material handling between machines, it would be necessary to set aside
the WIP of the wrapped items for later use. This could require considerable storage space, as well
as extra equipment and/or labor to set aside, then later retrieve, the WIP. The same problem occurs
if different sequences are used on the two machines. For this reason, we decided to confine our
development of heuristic procedures to “unwrapped” permutation schedules. Later in the paper,
we provide worst case error bounds for schedules of this type, as well as empirical results on their
performance relative to the optimal solution.

Observe that for any given value of T, the two-machine Gantt chart for a given job with

minimum delay between machines can take on one of only six different “shapes,” which are shown

10
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Figure 4: Six Different “Shapes” when vjj =0
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in Figure 4. Note that in the “shapes” with simultaneous completion of processing on the two
machines, the setup on machine 2 may conclude strictly later than the setup on machine 1 if the
processing rate on the second machine is higher than on the first. Upon further observation, we
realized that, for fixed T, each shape could be defined by two parameters: a = difference between
start of setup on machine 1 and start of setup on machine 2, and b = difference between completion
of processing on machine 1 and completion of processing on machine 2.

Note also that delaying the processing on machine 2 (i.e., increasing the variable v)
effectively allows us to change the “shape” at a cost. Thus, if T were given, the problem becomes
one of deciding whether and to what extent to alter each of the shapes, and simultaneously
selecting a permutation sequence, with the constraint that the overall cycle duration is equal to T.

Further analysis allowed us to express both a and b as functions of T and the input data, as
follows:

8jj = (Sjj - Sij1) + T(Py; - Pyjy)* and

bij = T(pij - Pjj 1) foralliandj.
All of these relations arise from the basic precedence constraints among the various setups and
processing intervals. This leads to the second formulation for a given sequence o, which is the
same on all machines:
(P2) Min TeK+ 212 hijdivij €))
=1 )=

Sub_]CC[ to ao.(i+1)j + vG(H’l)j + uo.(i)j = O'(i)j + VG(I)_] + uc(i)j+1 for i=1,. R 1 j=1,. . .,m'l, (8)

a5 = (555 - Sija1) + T(Py; - Pije)* for i=1,...,n; j=1,...,m-1, (9)

bij = T(Pij - pij+l)- for i=1,...,n; j=1,...,m-1, (10)

(1- ZPij)T = 2 Sij + 2 ujj for j=1,...,m, (11)
i=1 i=1 i=1

Vi 20 for i=1,...,n; j=1,...,m-1, (12)

u.20 for i=1,...,n; j=1,....m, (13)

T20, (14)

12
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where K=+ 22 hl} i d. | pl_] - pl_]+1 l.

i=1 j=0

For a fixed T this is a minimum cost network flow problem. The network for the 4-part, 2-

machine problem with sequence {1,2,3,4} appears in Figure 5.

N
N7

VA

U, é\

Figure S: Network Flow Representation

The nodes can be viewed as demand nodes, where the demand, y;, is equal to a; - b, ;. Thus, in
some cases, y; may be negative. The flows around the cycle are the vjj's, and the cost of each unit
of flow on these arcs is hudv respectively. The u's are the excess supply or demand at each node
that are needed to make the problem feasible. Each additional machine adds another cycle around
the perimeter of the network, and exterior inward arcs at the corners.

The formulation for a fixed set of sequences {oj ]jtl, one for each machine, requires that

we modify constraint (8) to

Ao 1) * Vot 1)j * Ui = Poj(dj * Voij + Yoyt * 26 it fohoomd )
keBij
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whc.re Ck = Sgje1 Tij +1 .+ Uje - Tq clarify this, consider two items in sequence on machine j,
0. (1) and Gj(i+1). For a given pair of items, O'j(l) and Gj(i+1), on machine j, we find the locations
of the same items on machine j+1. Define Bij as the set of items that appear between these two in
the sequence on machine j+1. For Figure 6, we have Bij = {Xpse- Xy )

machine j 5,() o,(i+1)

machine j+1: o e | X o(i+1)

Figure 6: Illustration of Bj;

For each item that is “wrapped,” we must subtract T from the corresponding v;; terms. In
particular if item i wraps between machines j and j+1 then replace Vi by vij-T wherever it appears
in the right hand side of constraints (2"). Let Xi= 1 if item 1 wraps between machines j and j+1.
The constraint (2°) is now

Boj(i+1)j ¥ Vojtir1)j T Yoyl = boj(i)j * Vo) - Txcyj(i)jﬂ g1 ¥ kz Ck.

1

We now have a general formulation of the problem. We should note that in each formulation, it is

easy to add constraints on the vij's to reflect WIP storage limitations.

4. Solution Properties and Conjectures

In this section we discuss a property of the optimal solution, and conjectures on properties

of good sequences and the optimal cycle duration.

Proposition 1. In the optimal solution, min, { vii} = 0 for all j.

Proposition 1 states that there is at least one part on each machine which has zero delay. We sketch

the proof as follows. If the proposition were not true, it would be possible to modify the



schedules on machines j, j+1,...,m so that each event begins min ; {vjj} earlier. The schedule is

still feasible, and the WIP inventory is reduced between machines j and j-1. This property, while
intuitively appealing, is not very useful in developing heuristic solutions.

One of the difficulties in developing a heuristic sequencing procedure for our problem is
not knowing in advance what the value of T* will be, and therefore not knowing the processing
times. In the example problem, we knew that T* = Tpin because of economic considerations, but
itis not clear that such a relationship holds in general. To investigate this issue, we generated and
solved 54 two-machine problems. We chose to examine problems with the same, arbitrarily
selected, sequence on both machines and no wrapping, since allowing different sequences and
wrapping would have relaxed some precedence constraints, making it easier to obtain a more
compressed schedule. These problems were constructed by hand with the intent of ensuring
significant differences among the problems. In 52 out of 54 cases, we found that T* = Tm’h. In
the remaining 2 cases T* was within 2% of Tpin- On reflection, this result is not surprising. Note
from (1) that increasing T above Tpjy increases finished goods and cycle WIP inventory
proportionally for all parts. On the other hand, it is unlikely to substantially decrease the delay
WIP for more than a few parts. On the basis of these preliminary results, we conjecture that T* is
either equal to, or very close to, Tmin,

We also conjectured that using the same sequence on all machines would provide good
results in most instances with realistic costs. Although this conjecture is based largely on intuition,
we observed that the solutions for the two-machine problems mentioned earlier had relatively little
delay WIP inventory. Moreover, the processing delays for the individual parts can be selected (by
the LP) to minimize the total inventory cost. Thus, the main factors in obtaining a good solution
appeared to be selecting a sequence that would permit a schedule with T = Ty, then secondarily

avoiding long processing delays between machines.

15



5. Heuristics and Enumerations Procedures

This section describes the various procedures used in the computational work, including
the two proposed heuristics for generating sequences, a routine for evaluating permutation
schedules and a routine for computing optimal solutions for 2-machine problems. We describe the
two enumeration procedures first and then the two heuristics.

We define a permutation schedule as a cyclic schedule with the same sequence for every
machine and without any “wrapping.” Because sequences are cyclic, if there are n parts, we need
to examine only (n—1)! different sequences. Thus the procedure to enumerate permutation
schedules first fixes part n as the last part, then generates the (n—1)! different sequences for the
first n—1 parts and evaluates each sequence via the LP formulation (P2). We collected statistics on
the best and the worst permutation sequence.

Finding the optimal solution, even for a 2-machine problem, is substantially more difficult
than determining the best permutation schedule. For m machines, one must consider all possible
sequences on each the m machines. Furthermore one must account for all possible “wraps”. For
each machine, there are (n—1)! permutation sequences. For m machines there are ((n - 1)!)m
combinations of sequences. The set of all wraps appears to generate 2™ possibilities for each pair
of sequences on adjacent machines. Each possibility can be represented as a 0—1 n-vector in which
the ith element is 1 if part i wraps in the solution. However, not all of these possibilities are
distinct. For example, the solution with wrap vector (0,...,0), i.e., no parts wrap, and the solution
with wrap vector (1,...,1), i.e., all parts wrap, are identical solutions. Thus for a m-machine n-
part problem there are ((n—1)!)M(20 - 1)M-1 possibilities. Clearly some of these are dominated and
can be eliminated without solving the LP. As an example, consider the sequence 1,2,3,4 on
machine 1, the sequence 1,3,2,4 on machine 2 and the wrap vector (0,1,0,0). This is illustrated in

Figure 7.

16



Figure 7 : Example of a solution which is dominated

Notice that since part 3 is not wrapped, the first lot of part 2 on machine 2 must be
completed after the lot of part 2 on machine 1. In this situation it is not logical to wrap part 2 and
connect the lot of part 2 with the second lot of part 2 on machine 2 as is shown in the diagram. As
the alternatives are enumerated, those with clearly dominated wrap decisions are eliminated and the
corresponding LPs are not solved.

We now describe two heuristic procedures, both of which were motivated by the
conjectures in Section 4. Both deal with the “jigsaw puzzle” aspect of the sequencing problem
rather than accounting for the relative economic factors. That is, the heuristics concentrate on
finding a sequence which minimizes either the cycle length or the processing delays, and they do
not consider the relative values of h;d; in determining the sequence. This was based on our
intuition that for most problems, keeping T = T ;,;, would lead to good solutions, and the
remaining costs would be minimized by reducing the total processing delay.

The first heuristic applies only to a 2-machine problem. It starts by computing {ai];;1 and
{bi]?zl. It picks the largest b, say b, and then it picks the largest a, say a, that corresponds to a
different part, k #i. The partial sequence (i,k) is formed. Parts i and k are deleted, and they are
replaced by a new part with a = a; + max(0,a; — b;), b = by + max(0,b; - a,). In other words, the
schedules for parts i and k are merged to form a new part with no idle time between the parts. This
is accomplished by either shifting part i's schedule on machine 1 earlier if b; < a; or shifting part
k's schedule on machine 1 later if a, <b,. The process is repeated until there is only a single part.
The resulting sequence is then scheduled and evaluated using the LP. Since this heuristic

concentrates on reducing idle time, we anticipated that it would perform well when the utilization
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levels of the two machines are similar, and hence reducing idle time on both machines would be
advantageous.

The second heuristic takes a different approach. Rather than myopically matching the parts
that appear to “fit” together, this heuristic approximates the cost of placing k after i by measuring
the idle time that would be created on the bottleneck machine if no avoidable production delays
between machines were allowed (i.e., Vi = 0 for all i and j). This time is defined as Cjy- The
heuristic then finds the sequence which minimizes the total idle time added to the schedule of the

bottleneck machine. It does this by solving the (asymmetric) travelling salesman problem (TSP)
defined by {cy }.

The c;,'s are computed as follows. Suppose that machine J is the bottleneck, and observe
that for the sequence (i,k), machine J-1 may cause idle time on machine J if a,;_; > b;;_; and the
amount will be ay;_; — b;;—;. Similarly machine J-2 may cause idle time if a;;_5 +a;_; > by,

+b;;_y  The latter situation is shown in Figure 8.

2 /}% ‘—312"’:
; 7557

Figure 8: Computation of c;, for Heuristic 2.

In general, the amount of idle time between parts i and k on machine J caused by machines
j<Jis

befcre
=Max E (ag; = by )
j<J I=j

An analogous argument shows that the amount of idle time between i and k on machine J

caused by machines j > J is
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C. _Max ib a
ik =N | & (by; = ay; )

Cp=m ax{ before’ after}

One advantage of this heuristic over the previous one is that it is defined for problems with

Thus

more than 2 machines, whereas the first heuristic does not have a natural extension to a problem
with more than 2 machines. A second advantage is that it provides a more global assessment of
whether two pieces fit together. The first heuristic is rather myopic in this respect. The
disadvantage, of course, is that it requires solving a TSP, but for a small number of parts (<12)
this does not present a significant computational burden. In some special circumstances it is
guaranteed to find the optimal solution. An example of such a case is given in the next

proposition.

Proposition 2. Suppose machine j is the bottleneck machine and that aj; 2 0 for all i. Suppose

further that heuristic 2 finds a solution to the TSP with value 0. Then, that sequence is optimal.

Proof: By definition of the TSP, the sequence found by the heuristic can be executed without any
shifting (v = 0) with a cycle length of Tpyj, + objective value of the TSP. Since the value of the
TSP solution is 0 by hypothesis, and v = 0 this yields a solution with objective value equal to
KTmin. Since this is a known lower bound to the problem the solution must be optimal. W
Before closing this section, we develop worst-case error bounds for permutation schedules

in instances where they are not provably optimal.

Proposition 3. For an arbitrary sequence 0, let ;g be the value of solution obtained by using this
sequence on every machine, setting the cycle length T=T, ; and optimizing. Then
@) if h =h VJ, zy;g € mTK; and

(i) if hij is increasing in j, g < (2m-1) TK.
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Since TK is a lower bound on the optimal value, z*, then
zZ
N — B
(l) if hlj = hl VJ, = <m, and

Z
(ii) if hyjis increasing inj,  —3* < 2m-1.

Proof: First we show that the largest value any vjj can obtain is T(1 - Pij +1)- Consider a schedule

(a portion of a cycle) where the facility produces every part but i and then it produces parti. Let

the starting time for the production of part i on machine j be time 0. The claim is that the finishing

time of part i on machine j+1 is at most T, and thus the starting time is at most T(1 - Pij +1)-
Suppose that we schedule item i on machine j+1 from T(1 - Pij +1) to T. This leaves from time 0

to time T(1 - Pij +1) to produce the remaining parts and execute all the setups, including the setup

fori. This is clearly feasible since every part k # i has completed on machine j by time 0.

For case 1 we need to show that

EZ hl i'jj = < (m-1TK )]

=1 i

since then we have that

zyg S TK + (m-1)TK = mTK = mz p.
To see this replace Vij by T(1- le) <T(- rr;m [plJ D.

Thus E Z hd.v i v.. £ T(m-1) Z h,d;(1- mln le} ). (10)

On the other hand, if k = argmin ; Pij then

S Ipjj1 - P32 2(1-py)
i=0

S IPije1 - Pyl 2 g (Pijer - Pip) | =(1-Py)
j

j=0

2 IPiie1 - Py 2 2 (Pijs1 - Pip)| = (1- Py
ik ik

since

and




Thus K2 Z h.d.(1- mm plJ )

Inequalities (10) and (11) give us (9).

For case 2,

2K = 22 hu 1|pij+l’pij|
Zi hl_] 1| pij+1'pij |

l}“

2 2 hy, d; Sk‘ P - p;!  since hij is increasing in j
1 =

> Z hyd; (1-py).

Thus

Ezhu dv ij <TEZ hu i(1- pu

=1 i El i

STE 2K

il
< 2KT (m-1).

So we have
Zyg = TK +zzhnj 1 ij

<TK + TK 2(m-1)
< TK(2m-1)
<(2m-1) zygp

For m = 2 the bounds become

ZUB < ZZLB and ZUB < 3ZLB.

(11)
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6. Computational Experiments and Results

There were three purposes of the computational experiments. First, we wanted to

determine whether the heuristics could obtain optimal or near optimal solutions by using the same

sequence on all machines. Second, we were interested in determining how important the sequence

was in generating good solutions. Third we wanted to evaluate the two heuristics suggested in

Section 5 by comparing their objective values to either the optimal solution value or a lower bound.

Generation of Random Problems

Nine parameters were used to generate random problems for the experiments. They are:

n

m
hmax
Smax
Pmin
Pmax

hequal

Sequal

the number of parts,

the number of machines,

the maximum holding cost,

the maximum setup cost,

the minimum utilization,

the maximum utilization,

=true if the holding costs for a part were equal across the stages of
production,

=true if the setup times for a part were equal across the machines,

=true if the cycle times of the machines are equal.

Given the parameters, a problem was randomly generated by computing

SU

Pij

= U[1,hmax] fori=l1,...,n and j=0,...,m,

= U[1,Smax] for i=1,...,n and j=1,...,m,

= U[Pmin/N, Pmax/n] fori=1,...,n and j=1,...,m,

where U[a,b] is a random variable with a uniform distribution on [a,b]. We
set d;=1 for i=1,...,n without loss of generality. Given this, the pij's

determine the production rates, { Pij ).
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If hequal
If Sequal

then hl.l = hlo for j-_-l,. S 00

then SU = Sil for j=2,. <.,

then the pij's were scaled so that Tj = [Z sijJ/ {1 zl pijJ =

T, for j=2,...,m. The required scale factor , satisfies

Solving for ; we obtain

With ; known, set pij’ =

The Experiments

J

_ Zisij

Zisij

1-
;= 0

=
Zipij

pljmj’ for i=1,...,n j=2,.. .M.

We use the following notation to represent the solution values for the various procedures:

*ok
z

*
Z

7

the optimal objective value.

the objective value of the best permutation schedule.

the worst objective value from the sequence and wrap enumeration
given that the LP (P2) is solved for the best T and {vij}.

the worst permutation schedule objective value in the same sense as z##
but the enumeration is only over permutation schedules with no
wrapping.

the solution value from Heuristic 1.

the solution value from Heuristic 2.

=KT. . , alower bound on z**.

min’
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Determining if permutation schedules are near optimal.
The purpose of the first set of experiments was to determine whether allowing parts to wrap or
allowing different sequences on each machine would provide a better solution than the best
permutation schedule. The examples in Appendix 1 demonstrated that there are instances for
which the optimal solution has a part that wraps or has a different sequence on machine 2. Thus
the goal here is to demonstrate that for reasonable problems these considerations will not improve
the solution significantly. Because the number of permutations and wraps that need to be
enumerated grows exponentially, it was possible to consider only small problems. Ten problems
with four parts and ten problems with five parts were generated. For each of the 5-part problems,
(4!)2 25 = 18432 sequence/wrap combinations were examined, and an LP was solved for non-
dominated combinations. The parameters of the problems generated were (m = 2, hpax = 5, Smax
=5, Pmin = 0.5, Pmax = 0.9, hequal = false, Sequal = false, Tequal = false). For all 20 problems z**
=2z". Although, because of the small sample sizes and small problem sizes, we cannot guarantee
that this would hold for all realistic problems, it did confirm our intuition that limiting our search to
permutation schedules would be more than adequate in practice.

For these problems we also calculated z##/z**. Summary statistics are reported in Table 2.

The results suggest that the worst sequence is significantly worse than the best sequence.

Table 2: Ratio of solution values of worst sequence choice
to best sequence choice.

Number of Ay A
Parts
mean maximum
4 2.38 2.98

5 2.56 3.10

24
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Evaluating the two heuristics

The second set of experiments considered a much broader set of problems. Since the first
set confirmed that permutation schedules are likely to provide near-optimal solutions, the best
permutation schedule (z*) was used as a benchmark for these problems. The trials included
problems with 4, 5 or 6 parts. We limited the size of the problems because of the number of
alternatives that had to be evaluated via an LP, and because we wanted to consider many parameter
combinations. For each problem the maximum setup time was either 5 or 50 and the maximum

holding cost was either 5 or 50. Problems were generated for which the minimum cycle length for

machine j, Tj{z i Sij)/ (1 Z ipij) was equal to T, ... and problems were generated for which

Tj>T for every machine j that was not the bottleneck. For each category, 10 problems were

min
generated for a total 240 problems.

Table 3 presents the results for the cases with unequal minimum cycle times, i.e., one
machine was more of a bottleneck than the other. Table 4 presents the same results when the cycle
times for the two machines were forced to be equal. The results are quite striking. For the first
set, the heuristic objective value only occasionally exceeded 1% and rarely exceeded 2% of the

objective value of the best permutation schedule. The average performance was well within 1%.

The second set of problems was more difficult as we anticipated. We expected these problems to

be more difficult since if T = T, there can be no idle time on either machine. This implies more
production delays between machines, i.e., higher Vij values. Nonetheless, even here the worst
performance by either heuristic across all 120 problems was within 10% of the value of the best
permutation schedule. The average performance in each category never exceeded 2% above that of

the best permutation schedule.



Table 3: Experiments with 2 machines, 4, 5 or 6 parts
and unequal cycle lengths

z,/z* /2" 2<z,
Number  Maximum  Maximum
of Setup Holding Mean  Maximum  Mean  Maximum
Parts Time Cost

4 5 5 1 1.0004  1.0026 1.0255 10%
50 1.0006 1.0044  1.0003 1.0020 10%

50 5 1.0002 1.0010 1 1 0%

50 1.0001 1.0013 1.0061 1.0516 20%

5 5 5 1.0004 1.0027 1.0015 1.0119 10%
50 1.0006 1.0027 1.0012 1.0063 20%

50 5 1.0013 1.0081 1.0042 1.0159 30%

50 1.0006 1.0043 1.0035 1.0117 40%

6 5 5 1.0015 1.0095 1.0032 1.0119 50%
50 1.0004 1.0022  1.0024 1.0090 40%

50 5 1.0016 1.0079 1.0086 1.0440 50%

50 1.0040 1.0192  1.0026 1.0154 20%




Table 4: Experiments with 2 machines, 4, 5 or 6 parts

and equal cycle lengths

z,/z* zylz* 2,<z,
Number  Maximum  Maximum
of Setup Holding Mean  Maximum Mean  Maximum
Parts Time Cost

4 5 5 1.0020 1.0178  1.0040 1.0258 40%
50 1.0067 1.0196  1.0091 1.0408 40%
50 5 1.0093 1.0511 1.0149 1.0581 50%
50 1.0233 1.0995  1.0163 1.0861 40%
5 5 5 1.0040 1.0268 1.0032 1.0172 20%
50 1.0069 1.0191 1.0059 1.0207 50%
50 5 1.0067 1.0523 1.0175 1.0658 80%
50 1.0159 1.0732  1.0174 1.0562 50%
6 5 5 1.0032 1.0112  1.0111 1.0388 80%
50 1.0016 1.0064  1.0087 1.0357 70%
50 5 1.0101 1.0548 1.0114 1.0265 50%
50 1.0219 1.1080  1.0208 1.0637 40%




A summary of the results appears in Table 5. Each line in Table 5 averages the results over
the 8 categories for the given number of parts. These results are somewhat less surprising when
viewed in light of the z#/z" statistic, i.e., the ratio of the objective value of the worst permutation
schedule to the objective value of the best permutation schedule (details not shown here). This
value averaged about 1.04 and its maximum value over 240 problems was 1.15. Thus we can
conclude that in absolute terms, the heuristics finds near-optimal solutions, but for permutation
schedules, the sequence does not have a large impact on the solution value. One reason for this is
that the unavoidable inventory costs due to the rotation cycle account for a majority of the costs.

Table §: Results for problems with 2 machines
and 4, 5 or 6 parts, summarized over all parameter settings.

2,/z" 2/ 2,<zy
Number Mean Maximum Mean Maximum
of
Parts

4 1.0053  1.0995 1.0067 1.0861 26.25%

5 1.0046  1.0732 1.0068 1.0658 37.5%

6 1.0056 1.1080 1.0086 1.0637 50%

ozt
Because z* was generally very close to z* we tabulated the statistic ;‘#—, which gives the

percentage by which Heuristic i's objective value exceeded the best permutation schedule relative

only to the range between z* and z*. Table 6 summarizes these results.
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Table 6: Performance of two heuristics relative to range of possible values.

Number of zl-z: Q'Z*
*

Parts Z#-Z Z#‘Z
mean mean

4 20% 25%

5 12% 15%
6 8% 15%

The results reported above correspond to the parameter settings hequal = false, sequal =
false. We actually generated problems for all possible parameter settings which resulted in a total
of 960 problems. Generally, the results for these other problems (not reported here) were even
better. We also anticipated this since the other parameter settings would generate problems with

less diversity.

Experiments with more parts and more than two machines.
The purpose of the next two experiments was to determine how well the heuristics
performed on problems with more parts and problems with more machines. The same

combinations of parameter settings were used. For the first of these experiments, the number of

parts was either 8, 10 or 12. The only difference here is that the lower bound (z] g) is used as the
benchmark. For the problems with 4, 5 and 6 parts, the gap between z* and z| g was small. The
value of z*/zLB was 1.02 on average and its maximum over the 240 problems was 1.11. Thus, as
the results summarized in Tables 7 and 8 indicate, these problems become easier with more parts.
The average gap between z, for i=1,2 and z; g was under 1.2% for problems where the minimum
cycle lengths differed and under 5% for problems where the cycle lengths were equal.

For the last experiment the number of machines was increased to either 3 or 5. For these

problems only Heuristic 2 could be applied. For the trials with 4, 5 or 6 parts, the benchmark was



Table 7: Experiments with 2 machines, 8, 10 or 12 parts

and unequal cycle lengths

Z)/2B /1B 1<
Number  Maximum  Maximum
of Setup Holding Mean  Maximum Mean  Maximum
Parts Time Cost
8 5 5 1.0047 1.0156  1.0052 1.0194 50%
50 1.0037 1.0094  1.0037 1.0101 30%
50 5 1.0065 1.0142  1.0092 1.0204 40%
50 1.0056 1.0334  1.0053 1.0306 10%
10 5 5 1.0055 1.0131 1.0064 1.0177 60%
50 1.0047 1.0109  1.0057 1.0114 40%
50 5 1.0087 1.0201 1.0091 1.0175 60%
50 1.0083 1.0154  1.012 1.0293 70%
12 5 5 1.0070 1.0177  1.009 1.0392 40%
50 1.0040 1.0125  1.0051 1.0138 70%
50 5 1.0039 1.0071 1.0061 1.0152 60%
50 1.0063 1.0148  1.0084 1.0290 50%
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Table 8: Experiments with 2 machines, 8, 10 or 12 parts

and equal cycle lengths.

z)/z18 2,718 2/<z,
Number Maximum = Maximum
of Setup Holding Mean  Maximum Mean  Maximum
Parts Time Cost

8 5 5 1.0163 1.0351 1.0215 1.0459 90%
50 1.0278 1.0577  1.0283 1.0491 70%
50 5 1.0194 1.0536  1.0316 1.0613 90%
50 1.0305 1.0658  1.0312 1.0527 70%
10 5 5 1.0215 1.0307  1.0277 1.0359 80%
50 1.0193 1.0399  1.0228 1.0449 80%
50 5 1.0193 1.0291 1.0281 1.0554 90%
50 1.0326 1.1081 1.0467 1.1075 90%
12 5 5 1.0155 1.0311 1.0212 1.0503 70%
50 1.0162 1.0284  1.0202 1.0389 60%
50 5 1.0233 1.0478  1.0293 1.0603 70%
50 1.0285 1.1005  1.0362 1.1089 80%
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the lower bound, z.g = TpinK. The results appear in Tables 9 and 10. Again, the results are quite
good. The average gap between the heuristic solution and the best permutation schedule was about
1%. For the problems with a larger number of parts, the 3-machine problems had an average gap,
relative to the lower bound, of 2.5%. For the 5-machine problems the average gap was under
7%.

Table 9: Experiments with either 3 or S machines and 4, 5 or 6 parts.

Number of  Number of ZQ/Z*
Machines Parts
Mean Maximum
3 4 1.0104 1.102
5 1.0113 1.0388
6 1.0138 1.0937
5 4 1.0099 1.0468
5 1.0155 1.0653
6 1.0131 1.0572

Table 10: Experiments with either 3 or 5 machines and 8, 10 or 12 parts

Number of  Number of /3
Machines Parts
Mean Maximum
3 8 1.0263 1.086
10 1.0286 1.0895
12 1.0262 1.0612
5 8 1.0678 1.2364
10 1.0732 1.2339
12 1.0653 1.1579
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In summary the experiments have demonstrated that the controllable WIP rarely adds
significantly to the cost of a solution. Thus greater cost savings are achievable if via some
engineering choice one can make both the sij's and pij's more similar across machines for each i,
and by reducing the setup times in absolute terms. Yet, for a given situation the heuristics
presented here perform quite well in minimizing the controllable WIP cost across a broad range of

problems.

7. Summary and Discussion

In this paper we have investigated a very general version of the problem of finding a cyclic,
pure rotation schedule for a multi-machine flow shop to minimize total inventory holding costs.
One major distinction between our problem and those investigated before is that we allow parts
produced on a machine in one cycle to be processed by the subsequent machine in the next cycle.
We developed a formulation of the problem that led us to conclude that (a) minimizing the overall
cycle duration is important, and (b) using the same sequence on all machines is likely to produce
good solutions. On this basis, we developed two heuristic procedures. One applies to only two-
machine problems, and focuses on minimizing the cycle duration. The other can be applied to any
number of machines and is based upon an approximate representation of our problem as a
travelling salesman problem. We also developed worst-case error bounds for these heuristics.

We solved a large number of problems, both optimally and using the heuristic procedures.
The results indicate that the optimal cycle duration is equal to or very close to the minimum cycle
duration. In addition, permutation sequences (same sequence on all machines) perform quite well
in comparison to all possible sequences, and worst permutation sequence is not substantially worse
than the best. Consequently, the heuristics produce optimal or very near optimal solutions.

We are currently investigating extensions of this model to consider non-serial production

systems and more general (non-rotation) sequences.
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Appendix 1

In this section we present two examples. The first is one in which T>T, ;.

for the optimal
solution. The second example has one part wrapped in the optimal solution. The following data is
common to both examples. There are two parts on two machines. The setups and utilizations are

given in Figure Al.1.

F11=1 p11=0.8 812=2 p21=0.1

Figure Al.1: Gantt chart for two parts without shifting or wrapping.

The minimum cycle lengths for the two machines are

1+2 5+1
10801-0 ad T=153757

T1= =6O

so machine 2 is the bottleneck. Letd; = d,=1, hlo = h11 =h;y=1,and h20 =hy; =hyy
=¢. Since there are only two parts there is only one sequence to consider, (1,2). there are
three possible solutions corresponding to three wrap vectors, (0,0), (1,0), (0,1). Note that
wrap vector (1,1) yields the same solution as (0,0). The objective value for this problem is
0.5T [ (hy(d,(1-0.8) + hy,d;(0.8-0.8) + hy,d;(1-0.8)
+ hydy(1-0.1) + hy;d5(0.1-0.1) + hyypdy(1-0.1)]
+hyydyvy +hydyvy

=T(0.2 + ¢(0.9)) + v{ + ¢v,

Let's consider the objective value of the three possible solutions. The first solution

corresponds to the case for which production of neither part has been delayed, i.e. vi=v,=0. In
this case T = 61 and the objective value is 61(0.2) + $(61)(0.9) = 12.2 + 54.9¢. The second
solution is one in which the production of part 1 on machine 1 is done early in the cycle so v;=1

but T =T, = 60. The objective value is 60(0.2) + 60(0.9)0+1 = 13 + 54¢. The third solution
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is the one in which the production of part 2 on machine 1 is delayed so that part 2 is “wrapped”. In
this case T = 60, vy = 0 but v, = 56. The objective value is 60(0.2) + 60(0.9) + 56¢=12 + 100¢.

It is easy to verify that the third solution is the minimum for ¢ € [O,%]. This provides an

example where wrapping a part is optimal. The first solution is the minimum for ¢ € [Zg—f, %] and

this provides the example where T > Tpip in the optimal solution. The second solution is the

minimum for ¢ € [-g—,oo).

Appendix 2

This appendix contains derivations of average WIP for the four cases that were not

presented in Section 2.

Case 1: t}, ty overlap and t) > t;

<V

o> <—f[—> <— 7>
Figure A2.1: Inventory for Case 1

1 1 1

I = ‘2‘0‘2131 +§YZP2 +5 (ap; +1py)B
1
2

(opy (o + B) +py(y + B))

where



a= Vl
B=1t-v
‘Y=t2+vl-—t1

Thus

I = % (viP1(t) + (tp + vy = t))p, (1))
1 1
7 V1 Py +5Py) + 3oty (- 1)

I
T

T

Case 2: t,t, overlap and t, <t,

The inventory diagram is similar except in the middle section (B) the inventory decreases

rather than increases.

I = %(apl(a +B) + 1, (v + B))

where
a=tj+vi-t
=Hh-v
Y=V
Thus

I= %((zl +V1 = t)p; (t) + V1P, ()

1 1
7 V1 (4P + 5P +5 (41 -1 pity

T
Vld + 2‘ d (pl - p2).

=3 —
]

Case 3: t; and t, do not overlap and t; <t,

Note p;t; = poty.
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1 1 1
a2p; +5¥2py + 5 (1p; +1py)B

2
1
=3 (apy (o +B) +vp, (Y +B))
where
o= tl
B=-a
Y=1h
<t
- Vi -

-t —

<< o—>r<€<—pf—><— 1 —>

Figure A2.2: Inventory for Case 3

1
= 5 (t1p1v1 + 4Py (G + Vi - 1))
_1
3V (4P +4P)) +5 ‘2P2 (t—t)
and so forth.
Case 4: t; and t) donot overlap and t; > t,

Same as case 3 except B=v, - .

1
I'= 3Pt +vi-1) +5Hpvy)

and so forth.



