
Diabetologia (1993) 36:608-614 

Diabetologia 
�9 Springer-Verlag 1993 

Osmotically-induced nerve taurine depletion and the compatible 
osmolyte hypothesis in experimental diabetic neuropathy in the rat 
M. j .  Stevens  1, 3, S. A .  Lattimer 1, 3, M. Kamijo  t , 3 C. VIIJI H u y s e n  1, 3, A .  A . E  Sima 1, 2, 3, D . A .  Greene  1, 3 

1 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA 
2 Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA 
3 Diabetes Research and Training Center, University of Michigan, Ann Arbor, Michigan, USA 

Summary. Diabetic neuropathy results from progressive 
nerve fibre damage with blunted nerve regeneration and re- 
pair and may be complicated by nerve hyperexcitability re- 
sulting in pain. The naturally occurring amino acid taurine 
functions as an osmolyte, inhibitory neurotransmitter, and 
modulator of pain perception. It is also known to have neuro- 
trophic actions. The compatible osmolyte hypothesis pro- 
poses that levels of intracellular organic osmolytes including 
taurine and myo-inositol, respond co-ordinately in response 
to changes in intracellular sorbitol or external osmolality to 
maintain the intracellular milieu. We hypothesize that glu- 
cose-induced sorbitol accumulation in diabetes mellitus will 
result in taurine depletion in peripheral nerve which may 
potentially impair nerve regeneration and precipitate neuro- 
nal hyperexcitability and pain. This study explored the rela- 
tionships of taurine, myo-inositol and sorbitol in the rat nerve 
and their effects on nerve conduction velocity. Osmolyte le- 
vels and nerve conduction velocity were determined in sciatic 
nerve from non-diabetic and streptozotocin-induced dia- 

betic rats, with or without dietary taurine or myo-inositol 
supplementation. Taurine levels decreased by 31% (p < 
0.01) and myo-inositol decreased by 37% (p <0.05) in 
diabetic nerve as sorbitol accumulated. Taurine supplemen- 
tation of diabetic animals did not affect nerve conduction vel- 
ocity but further reduced nerve myo-inositol levels. Preven- 
tion of sorbitol accumulation with the aldose reductase 
inhibitor sorbinil increased nerve taurine levels by 22% 
(p < 0.05) when compared with untreated diabetic animals. 
Thus, we have demonstrated an interdependence of organic 
osmolytes within the nerve. Abnormal accumulation of one 
osmolyte results in reciprocal depletion of others. Diabetic 
neuropathy may be an example of maladaptive osmoregula- 
tion, nerve damage and instability being aggravated by 
taurine depletion. 

Key words: Diabetes mellitus, experimental neuropathy, 
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Although the cause of diabetic neuropathy remains un- 
known, evidence implicates involvement of the polyol 
pathway, by which glucose is metabolized to sorbitol and 
fructose by aldose reductase (AR2) and sorbitol dehy- 
drogenase, respectively [1, 2]. The compatible osmolyte 
hypothesis predicts that organic osmolytes including 
taurine, myo-inositol (MI) and sorbitol respond co-ordi- 
nately in response to changes in external osmolality to 
maintain the intracellular milieu [3]. Excess accumulation 
of intracellular sorbitol by activation of the polyol path- 
way in diabetes mellitus may therefore precipitate reci- 
procal depletion of other intracellular osmolytes. Deple- 
tion of nerve MI may result in disturbances of the calcium- 
dependent phosphoinositide metabolism and secondary 
defects of nerve Na/K-ATPase activity, resulting in the 
acutely reversible slowing of nerve conduction [2, 4]. 

Taurine (2-aminoethanesulphonic acid) is an ubiqui- 
tous beta amino acid which has been shown to function as 

an osmolyte in the eye, brain and kidney [5-9]. Within the 
kidney, taurine has been identified as the major amino 
acid in the renal inner medulla of rats where it functions as 
an osmolyte with concentrations increasing in response to 
dehydration [8, 9]. Taurine is widely distributed in man, 
being found in the highest concentrations in tissues which 
are prone to diabetic complications [10]. It functions as an 
anti-oxidant [5, 11] and inhibitory neurotransmitter [12, 
13], and it promotes neuronal repair and regeneration 
[13]. It has analgesic properties as it acts as a modulator of 
central pain perception [14, 15]. It regulates free cytosolic 
calcium and taurine deficiency results in increased free 
calcium and cell hyperexcitability [16, 17]. The sponta- 
neously diabetic BB-rat and the streptozotocin diabetic 
(STZ-D) rat demonstrate structural and functional neural 
lesions similar to those seen in diabetic patients [18]. Spe- 
cifically, neuronal hyperexcitability [19], reduced nerve 
conduction velocity (NCV) and impaired nerve regene- 
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r a t i o n  occur  ea r ly  in  t h e  d i abe t i c  s ta te  [18, 20]. W e  p r o p o s e  
tha t  t a u r i n e  is e s sen t i a l  for  t h e  m a i n t e n a n c e  of  n e u r o n a l  
integr i ty ,  a n d  h y p o t h e s i z e  tha t  t a u r i n e  de f i c i ency  m a y  re-  
sul t  in  n e r v e  h y p e r e x c i t a b i l i t y  r e s p o n s i b l e  for  ear ly  p a i n -  
ful  d i abe t i c  n e u r o p a t h y .  

T h e  i n t e r r e l a t i o n s h i p s  of  the  o s m o l y t e s  t a u r i n e ,  M I  
a n d  so rb i to l  w e r e  s t u d i e d  in  p e r i p h e r a l  n e r v e  of  the  S T Z -  
D ra t  a f te r  d i a b e t e s - i n d u c e d  n e r v e  so rb i to l  a c c u m u l a t i o n  
or  d i e t a ry  s u p p l e m e n t a t i o n  of  t a u r i n e  or  MI ,  o r  bo th .  T h e  
f u n c t i o n a l  effects  o f  o s m o l y t e  d i s t u r b a n c e s  were  assessed 
b y  m e a s u r i n g  sciat ic n e r v e  NCV. 

Materials and methods 

Research design 

Cesarean-delivered, barrier-sustained, and overnight-fasted male 
albino Wistar rats weighing 200-300 g, were used. They were ren- 
dered diabetic by an i. p. injection of streptozotocin (60 mg/kg) (Up- 
john, Kalamazoo, Mich., USA) in 0.2 ml of 10 mmol/1 citrate buffer 
pH 5.5 [21]. Plasma glucose was determined from tail vein blood with 
a Beckman glucose analyzer II (Beckman Instruments, Fullerton, 
Calif., USA). For inclusion in the study, diabetic rats had to have a 
non-fasting plasma glucose concentration of greater than 
16.7 mmol/1 in heparinized tail vein blood, 48 h after STZ injection 
and at the end of the study. All animals were maintained in individual 
air-filtered metabolic cages and given access to water and suitably 
modified rat chow ad libitum. All synthetic diets were obtained from 
ICN Biomedicals (Cleveland, Ohio, USA). 

Rats were acclimatized to their new environment for one week 
prior to the start of the study. All end-point measurements were 
made by investigators who were unaware of the identity of the ex- 
perimental assignment. Two days after the induction of diabetes, 
animals were randomly assigned to the following experimental 
groups. 

1. Non-diabetic control animals given standard synthetic rat chow 
(taurine undetectable, MI content 0.011% weight/weight (w/w)); 
2. Non-diabetic animals given synthetic rat chow supplemented with 
5 % w/w taurine; 
3. Diabetic animals given standard synthetic rat chow; 
4. Diabetic animals given synthetic rat chow supplemented with 5 % 
w/w taurine; 
5. Diabetic animals given standard synthetic rat chow together with 
the ARI  sorbinil suspended in distilled water (final concentration 4-  
5 mg/ml) as previously described [2,21] and administered daily by 
gavage at a dose of 20 mg/kg; and 
6. Diabetic animals given synthetic rat chow supplemented with 1% 
w/w MI. 

The duration of the experiment was 21 days after which the NCV 
was measured, and the left and right sciatic nerves were rapidly sur- 
gically exposed from the vertebral exit to the common peroneal bi- 
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furcation, excised, and cleaned of adherent muscle and loose epineu- 
ral connective tissue [22]. Nerve was immediately frozen in liquid nL 
trogen for subsequent determination of nerve osmolyte levels [23, 
24]. Percutaneously 3 ml of cardiac blood was withdrawn and cen- 
trifuged at 4 ~ for 15 min and 3300 rev/min to obtain plasma for 
determination of plasma osmolality. 

Measurement of NCV 

Animals were lightly anaesthetized with an injection of 30-40 mg 
pentobarbitol sodium/kg body weight i. p. and NCV was determined 
non-invasively in the left sciatic tibial conducting system [22]. The 
body temperature was monitored using a rectal probe and main- 
tained at 37 ~ throughout the measurement using a warming pad. 
The left sciatic nerve was stimulated proximally at the sciatic notch 
and distally at the ankle via bipolar electrodes with supramaximal 
stimuli (8 V) from a stimulator at 20 Hz. The latencies of the com- 
pound muscle action potentials were recorded via bipolar electrodes 
from the first interosseous muscle of the hindpaw. The latencies 
were measured from the stimulus artifact to the onset of the negative 
M-wave deflection. The NCV was calculated by subtracting the dis- 
tal latency from the proximal latency measured in milliseconds and 
the result was divided into the distance between the stimulating and 
recording electrodes measured in millimeters, giving a value for 
NCV in meters per second (m/s). 

Measurement of sciatic nerve MI, sorbitol and fructose 

Sciatic nerve MI, sorbitol and fructose were determined by gas chro- 
matography of protein-free sciatic nerve homogenates (5% 
weight/volume trichloroacetic acid), and expressed as nmol/mg wet 
weight of tissue using a modification of a method that we have pre- 
viously described [23, 24]. The determinations were performed on 
aldonitrile acetate derivatives of lyophilized aliquots of filtrates con- 
taining alpha-D-methyl mannopyranoside as an internal standard in 
a Varian 3700 gas-liquid chromatograph (Varian Sunnyvale, Calif., 
USA) with a sinNe flame ionization detector. Samples were injected 
using a Varian 8100 autosampler and the data analysed on a Varian 
Star Workstation integrator. The instrument was equipped with one 
30 m, 0.25 mm inner diameter SP-2100 fused silica capillary column 
with a 0.25 btm film thickness. The column flow rate was 0.6 ml/min 
with a nitrogen carrier gas flow of 36.6 ml/min with a flame ioniza- 
tion detector maintained at 250 ~ Standard curves were generated 
daily. 

Measurement of taurine 

Sciatic nerve taurine concentrations were determined by high per- 
formance liquid chromatography (HPLC) using a modification of a 
method previously described [25] and expressed as nmol/mg wet 
weight. Approximately 20 mg of nerve was homogenized in 1 ml of 
6 % trichloroacetic acid (TCA) and then centrifuged for 15 min at 
4000 rev/min. To 0.5 ml of supernatant, 0.5 ml of TNO:freon [1:3] 

Table 1. Comparison of body weight and plasma glucose in non-diabetic control, taurine supplemented non-diabetic control, diabetic, taurine 
supplemented diabetic, aldose reductase inhibitor (ARI) treated diabetic and myo-inositol (MI) supplemented diabetic rats at baseline and at 
the conclusion on day 21 

Control Control + taurine Diabetic Diabetic + taurine Diabetic + ARI  Diabetic + MI 
(n = 10) (n = 8) (n = 12) (n = 8) (n = 9) (n = 10) 

Baseline weight (g) 268 • 14 243 + 7 

Day 21 weight (g) 377 _+ 19 364 + 11 

Day 2 glucose (mmol/1) 6.6 _+ 0.4 7.6 + 0.2 

Day 21 glucose (mmol/1) 7.8 + 0.5 7.8 + 0.5 

254+__7 236+__6 2 5 4 ! 6  251+9 

271 + 143 277 + 13" 278 + 11 a 287 + 11 a 

25.6 • 1.6 a 26.7 __+ 1.6 a 24.8 + 2.1 a 24.4 + 1.7 a 

28.8 + 1.3 a 30.7 + 1.8 a 30.4 + 0.9 a 28.5 + 1.2 a 

"p < 0.01 vs control and control + taufine. Data given as mean_+ SEM 
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Table 2. Effect of diabetes and 5 % dietary taurine supplementation 
( + taurine) on nerve conduction velocity (NCV) in the left sciatic ti- 
bial conduction system after 21 days in non-diabetic control (con- 
trol) animals and streptozotocin-induced diabetic (diabetic) ani- 
mals. The effects of sorbinil (20 mg/kg) (D + ARI) administration 
and 1% dietary myo-inositol (D + MI) supplementation in diabetic 
animals are also shown 

The effect of diabetes and taurine feeding 
Control C + taurine Diabetic D + taurine 
(n = 10) (n = 8) (n = 12) ( n :  8) 

NCV (m/s) 55.11 + 0.9 48.6 + 2.1 42.2 _+ 1.6 a 45.0 _+ 3.3 b 

The effect of sorbinil and myo-inositol feeding 
Diabetic D + ARI D + MI 
(n = 12) (n : 9) (n = 10) 

NCV (m/s) 42.2 + 1.6 49.5 + 0.8 ~ 48.3 _+ 1.8 c 

a p < 0.01, b p < 0.05 VS control; ~ p < 0.05 vs diabetic. Data given as 
mean + SEM 
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over a range of concentrations: each solute demonstrated linearity of 
response, with a recovery of greater than 95 %. 

Plasm~ osmolality was measured at killing for all animals by 
measuring freezing point depression with an Osmette model 2007 
osmometer (Precision Systems Inc, Natick, Mass., USA). The units 
were expressed as mosmol/kg. 

All reagents were obtained from Sigma (St. Louis. Mo., USA) 
and were of the highest purity available. 

Statistical analysis 

Data are expressed as mean + SEM. Differences among experimen- 
tal groups were detected by ANOVA, and the significance of dif- 
ferences between these groups assessed by the Student-Newman- 
Keuls multiple range test. As the variances for most of the variables 
were found to differ significantly, a logarithmic transformation was 
performed which corrected the unequal variances. All analyses were 
then performed on the transformed data. Significance was defined at 
the 0.05 level. 

(trioctylamine: 1,1,2-trichlorotrifluoroethane) was added and vor- 
texed for 1 min. After confirming that betaine was not present in the 
nerve samples and did not appear after exposure to the experimental 
conditions, betaine (500 nmol in 10 gl) was used as internal standard. 
The sample was again centrifuged for 15 min at 4000 rev/min. The 
aqueous supernatant was then passed through a 0.45 gm filter to 
remove any significant particulate matter. All HPLC data were col- 
lected on a Waters system (Waters Chromatography Division, Milli- 
pore Corp., Milford, Mass., USA) equipped with a model 600 pump 
and a manual injector, a model 410 differential refractometer and a 
column heater module. Data was recorded and processed on a Wa- 
ters 746 data module. A Sugar Pak 1 (Waters) calcium cation ex- 
change column (300 x 6.5 mm) was used as the stationary phase. The 
column was pre-heated and maintained at 87 ~ The mobile phase 
consisting of HPLC grade water with 50 mg/1 calcium disodium 
EDTA was degassed under vacuum while stirring. A flow rate of 
0.6 ml/min was used. Volumes of 20 gl were injected for assay. Cali- 
bration curves were constructed for taurine, betaine and sorbitol, 
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fig.1. The effect of diabetes, dietary osmolyte supplementation 
and the aldose reductase inhibitor (ARI) sorbinil on plasma osmo- 
lality measured by freezing point depression in non-diabetic control 
animals (control), non-diabetic control animals fed a supplemental 
5 % taurine diet (C-Tan), diabetic animals (diabetic), diabetic ani- 
mals given the ARI sorbinil (D-ARI), diabetic animals fed a 1% 
myo-inositol diet (D-MI), diabetic animals fed a 5 % taurine diet 
(D-Tan). Plasma osmolality was measured after 21 days and the 
data is shown as mean values with SEM bars. * p < 0.01 vs control 
and C-Tau 

Resul t s  

Effects of STZ-D and dietary taurine 
and MI supplementation 

Table  i shows the  base l i ne  and d a y  21 b o d y  weights  and  
p l a s m a  glucose in the  d i f fe ren t  e x p e r i m e n t a l  groups.  
Base l ine  b o d y  weights  we re  s imi lar  in all  the  e x p e r i m e n t a l  
groups .  A l l  an imals  r e n d e r e d  d i abe t i c  ach ieved  p l a s m a  
g lucose  va lues  in excess of  16.7 mmol / l  on  b o t h  day  2 and  
at  the  e n d  of  the  s tudy  on  day  21. A t t a i n e d  b o d y  weight  
and  non-fas t ing  p l a s m a  glucose  levels  a t  day  21 in S T Z - D  
rats  we re  21-28 % lower  and  3- to  4-fold  higher,  r e spec-  
t ive ly  t han  of  a g e - m a t c h e d  n o n - d i a b e t i c  controls .  D i e t a r y  
t au r ine  or  M I  s u p p l e m e n t a t i o n  d id  no t  a l te r  the  b o d y  
weight  Or the  p l a s m a  glucose  va lues  of  e i the r  the  d iabe t i c  
or  con t ro l  animals .  

The effects of  diabetes and taurine feeding on N CV 

T h e  S T Z - D  animals  showed  a 23 % (p < 0.01) dec rea se  in 
N C V  af ter  21 days  of  d i abe t e s  c o m p a r e d  to t he  non-  
d iabe t ic  con t ro l  an imals  (Table  2). D i e t a r y  t au r ine  sup- 
p l e m e n t a t i o n  for  21 days  to  the  n o n - d i a b e t i c  an imals  re-  
d u c e d  N C V  by  12 % c o m p a r e d  to the  n o n - d i a b e t i c  con t ro l  
animals ,  bu t  a f te r  l oga r i thmic  t r a n s f o r m a t i o n  this fa i led  to  
ach ieve  s ta t is t ical  s ignif icance,  bu t  was no t  h o w e v e r  sig- 
n i f icant ly  d i f fe ren t  f rom d iabe t i c  con t ro l  animals .  R e s t o r -  
ing ne rve  t au r ine  levels in  the  S T Z - D  an imals  by  d ie t a ry  
t au r ine  s u p p l e m e n t a t i o n  d id  no t  effect  N C V  which  d id  
no t  d i f fer  s ignif icant ly  f rom the  u n t r e a t e d  d iabe t i c  con t ro l  
animals .  

The effect of  A R I  and MI  supplementation on NCV 

N e r v e  c onduc t i on  ve loc i ty  was i nc reased  by  17.1% (p 
< 0.05) in the  S T Z - D  animals  g iven an  A R I  bu t  still  re-  

m a i n e d  b e l o w  the  n o n - d i a b e t i c  con t ro l  an imals  (Table  2). 
T h e  S T Z - D  animals  t r e a t e d  with  d ie t a ry  M I  s u p p l e m e n t a -  
t ion also inc reased  N C V  by  14.2 % (2 < 0.05) as has  b e e n  
p rev ious ly  r e p o r t e d  [21, 23]. 
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Fig.2. The effect of 5 % dietary taurine supplementation on nerve 
osmolyte levels in non-diabetic control animals (control), non- 
diabetic animals given taurine diet (control-Tan), diabetic animals 
(diabetic) and diabetic animals given taurine diet (diabetic-Tan). 
After 21 days of experimental conditions the animals were killed 
and the sciatic nerves were removed for measurement of nerve 
taurine �9 (by HPLC) and myo-inositot n ,  glucose � 9  sorbitol � 9  
and fructose [] by gas chromatography (see Materials and meth- 
ods). Data are shown as mean values with SEM bars. * p < 0.01, ** p 
< 0.05 vs control; ? p < 0.01 vs diabetic 
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Fig.3. The effect of 21 days of 1% dietary myo-inositol (MI) sup- 
plementation and the aldose reductase inhibitor (ARI) sorbinil on 
nerve osmolyte levels in non-diabetic control animals (control), 
diabetic animals (diabetic), diabetic animals given a 1% myo-inosi- 
tol diet (diabetic-MI) and diabetic animals given sorbinil (diabetic- 
ARI). Data are shown as mean values with SEM bars. Taurine � 9  
myo-inositol rn, glucose � 9  sorbitol [], fructose N. *p <0.01, 
** p < 0.05 vs control; ? p < 0.05, t? P < 0.01 vs diabetic 

Change in plasma osmolality 

The plasma osmolality of the different experimental  
groups is shown in Figure 1. The  plasma osmolality of 
the non-diabetic control animals was 282 + 4 mosmol/kg 
which was not significantly different f rom the non- 
diabetic animals given the taurine supplemented diet 
(283 + 2 mosmol/kg).  All STZ-D animals showed an in- 
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crease in plasma osmolality after 21 days of diabetes, the 
increase ranging f rom 7 % (302 _+ 4 mosmol/kg, p < 0.01) 
in the STZ-D group given dietary MI  supplementat ion to 
10% (309 + 4 mosmol/kg, p < 0.01) in the STZ-D animals 
given an ARI .  No significant differences were detected 
however  between the STZ-D groups. 

Effect of diabetes on nerve glucose 

Neither taurine nor MI feeding nor the administration of 
sorbinil was found to influence nerve glucose levels as all 
groups of STZ-D animals achieved similar nerve glucose 
levels which were 2.6-2.9-fold (p < 0.01) above basal non- 
diabetic animals. No significant differences in mean  nerve 
glucose levels were found between the STZ-D groups 
(Figs. 2 and 3). 

Effect of  diabetes and taurine supplementation 
on nerve osmolytes 

Taurine was clearly identified by H P L C  as being present  in 
larger quantities than MI  in all nerve samples assayed. 
STZ-D animals showed a 31% decrease in taurine (p 
< 0.01) and 37 % decrease in MI levels (p < 0.05) after 
21 days of diabetes, which coincided with accumulation of 
sorbitol (Fig. 2). Taurine supplementat ion of the diet in- 
creased nerve taurine levels by 27 % in non-diabetic ani- 
mals and by 78 % in STZ-D animals, the diabetic animals 
now having taurine levels 22 % (p < 0.05) greater than non- 
diabetic control animals. Taurine feeding of non-diabetic 
animals resulted in a 25 % decrease in nerve MI levels, al- 
though after logarithmic transformation,  this decrease 
failed to achieve statistical significance. Basal nerve sorbi- 
tol levels were similar in both  the non-diabetic control and 
taurine-fed control animals and were increased 7.1-fold in 
STZ-D animals and 5.7-fold in taurine fed STZ-D animals. 
Fructose levels were found to increase by 5.1-fold in the un- 
t reated STZ-D animals and by 3.5-fold in the taurine-fed 
STZ-D animals compared  to the non-diabetic control 
group. Sorbitol decreased by 8 % and20 % and fructose de- 
creased by 8 % and 32 % in the taurine-fed non-diabetic 
and STZ-D animals, respectively. These decreases how- 
ever did not reach statistical significance. 

Effect of  sorbinil and Ml feeding on nerve osmolytes 

The administration of sorbinil to STZ-D animals resulted 
in a 54% (p < 0.01) and 58 % (p < 0.05) decrease in nerve 
sorbitol and fructose, respectively, although neither level 
was restored to normal  non-diabetic values (Fig. 3). Sor- 
binil increased nerve taurine levels 22 % (p < 0.05) over 
untreated STZ-D animals, levels being restored to 84 % of 
the non-diabetic levels. MI  levels were found to be re- 
stored to 87 % of non-diabetic levels, an increase of 38 % 
(p < 0.05) in the sorbinil t reated vs the STZ-D animals. MI  
feeding of the STZ-D animals restored nerve MI  levels to 
non-diabetic levels and resulted in a 1.7-fold (p < 0.01) in- 
crease in nerve MI over the standard STZ-D animals. MI  
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feeding of STZ-D animals was associated with a 9 % de- 
crease in nerve taurine levels, a 14 % decrease in nerve 
sorbitol levels, and 25 % decrease in nerve fructose levels, 
compared to untreated STZ-D animals, which did not 
reach significance. 

Discussion 

These results show that taurine depletion occurs in the pe- 
ripheral nerve in experimental diabetes as sorbitol accu- 
mulates. Furthermore, prevention of sorbitol accumula- 
tion by the ARI sorbinil restores nerve taurine levels to- 
wards normal. MI has also previously been shown to be 
depleted in a similar fashion in experimental and human 
diabetes [23, 26] and this was confirmed in the present 
study. Taurine and MI appear to have reciprocal relation- 
ships to each other in the nerve: taurine feeding in 
diabetes further compounds the MI depletion. Taurine 
depletion in the nerve does not appear to be responsible 
for the decrease in NCV seen in acute experimental 
diabetes since restoration of taurine levels to non-diabetic 
levels by dietary supplementation had no effect on NCV. 
This contrasted with MI feeding which significantly im- 
proved NCV. Furthermore, taurine dietary supplementa- 
tion in the non-diabetic state tended to deplete nerve MI 
levels which was accompanied by a deterioration in NCV. 
MI supplementation led to a slight though not significant 
reduction in nerve taurine levels. These data are consis- 
tent with the hypothesis that sorbitol, taurine and MI act 
as interdependent osmolytes within the peripheral nerve. 
The functional consequences of taurine depletion remain 
to be established. 

It is now thought that the main function of aldose reduc- 
tase (AR2) is osmoregulation, a process by which a cell 
maintains its volume and internal milieu in the face of 
changes in external osmolarity [27]. The peripheral nerve 
has been shown to contain abundant AR2, both in the 
Schwann cell and in the endoneurial vasculature [28], al- 
though its localization in the latter has been disputed [29]. 
Sorbitol, which is generated by AR2 in the presence of ex- 
cessive glucose, is poorly diffusible across the cell mem- 
brane and has been shown to accumulate in diabetic nerve 
[23, 30]. In nerve, sorbitol is further metabolized to fruc- 
tose, which although like glucose is present in higher quan- 
tities than sorbitol, may not contribute as significantly to 
the osmolyte fluxes due to its higher membrane per- 
meability. Elucidation of its contribution to nerve osmo- 
regulation awaits the development of selective sorbitol de- 
hydrogenase inhibitors. Accumulation of sorbitol may 
therefore result in an osmotically-induced reciprocal de- 
pletion of taurine and MI. AR2 activity is induced by hyper- 
osmotic stimuli via an induction of the AR2 gene [31]. This 
is important in the kidney, where cells adapted to hyperos- 
molality demonstrate high basallevels of AR2 protein and 
respond to changes in external osmolality by altering their 
intracellular concentration of sorbitol [32]. Whether the 
presence of physiological concentrations of glucose may 
alter the expression of the AR2 gene is less clear. High le- 
vels of AR2 activity have been associated with the develop- 
ment of chronic diabetes complications [33-3@ Studies in 
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human retinal pigment epithelial (RPE) cells have shown 
differing basal expression and activities of AR2 and thus 
variable sorbitol accumulation in response to 20 mmol/1 
glucose [37]. In RPE cells, increases in osmolality of the 
magnitude observed in this study in the diabetic animals 
are not sufficient to induce the AR2 gene [37]. This may 
imply that individual variation in basal activity or expres- 
sion of AR2 will determine sorbitol accumulation and sec- 
ondary compensatory depletion of taurine and MI. 

Sorbitol and MI are polyols which are members of one 
class of non-perturbing organic osmolytes, levels of which 
are adjusted in response to external osmolality, thereby 
keeping perturbing salts, such as NaC1 and KC1, levels 
constant which in excess would inhibit many metabolic 
processes [3]. Other classes of organic osmolytes include 
free amino acids, for example taurine and the methyl- 
amines, betaine and glycerophosphorylcholine (GPC) [3, 
31, 32, 38]. Levels of these osmolytes are interdependent 
and reciprocally deplete or accumulate in response to os- 
motic challenge [3]. We were unable to detect either be- 
taine or GPC in the peripheral nerve, thus implying their 
greater importance in the kidney. High intracellular con- 
centrations of taurine have been found in tissues which 
have a limited capacity for taurine biosynthesis [39], which 
implies that taurine is taken up against its concentration 
gradient. Like MI, taurine is accumulated by a sodium- 
dependent co-transporter [40]. This co-transporter has a 
higher affinity for beta amino acids than alpha amino acids 
[40] and requires chloride [40-42]. 

Taurine is found in very high concentrations in the 
brain where it is localized in both glial and neuronal frac- 
tions [43]. A previous report has documented its presence 
within peripheral nerve [44]. In the nervous system it has 
been suggested that taurine acts as a neuromodulator or 
inhibitory neurotransmitter [12, 13] and can hyperpo- 
larize hippocampal pyramidal cells [45, 46]. It is thought 
that taurine induces membrane hyperpolarization by in- 
creasing inward chloride ionic conductance [45, 47] and it 
has been implicated as a modulator of neuronal hyperex- 
citability, via both its hyperpolarizing effect, and by inhibi- 
tion of calcium/calmodulin-dependent protein kinases 
[48]. This calcium-dependent protein kinase is widely dis- 
tributed in neuronal tissue and is believed to contribute to 
the regulation of neurotransmitter release and ion con- 
ductance [49, 50]. Increased oxidative damage has been 
proposed in the pathogenesis of diabetic complications 
[51], a process which may be exacerbated by taurine de- 
pletion as it is thought to act as an anti-oxidant [5, 11]. 
High levels of taurine are found in fetal nerve tissue and 
progressively decline with increasing age [52] implicating 
its importance in neuronal growth and development. 
Taurine has neurotrophic actions [13] and may potentially 
promote neuronal regeneration, which is depressed in 
diabetes [4, 18, 53]. Accelerated diabetes-induced nerve 
taurine depletion may thus contribute to the impaired re- 
generative capacity of diabetic peripheral nerve. 

Many of the effects of taurine may result from the regu- 
lation of intracellular calcium levels [16]. Deficiency of 
taurine may result in increased free calcium which may 
further aggravate neuronal hyperexcitability [16, 17]. 
Potentially this calcium-induced hyperexcitability may 
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occur acutely at either the neuronal cell body, precipitated 
by membrane instability [19] or impaired neurotransmit- 
ter release at sensory nerve terminals. The pain-modulat- 
ing role of taurine in both acute and chronic painful neu- 
ropathy could also involve interaction with the endogen- 
ous opiate system as rats made tolerant to morphine ex- 
hibit altered distribution of taurine in the spinal cord [14]. 
Administration of substance P to the dorsal spinal cord of 
rats increases the extracellular fluid taurine concentra- 
tion, which serves to block some of the nociceptive stimuli 
induced by its administration [12]. 

Compensatory nerve osmolyte depletion in response to 
overproduction of sorbitol may be an example of osmore- 
gulation which has gone awry. Depletion of taurine and MI 
may maintain intracellular osmotic balance at the expense 
of deteriorations of both nerve function and structure. Al- 
though dietary MI supplementation corrected nerve MI 
depletion and improved NCV, an effect which was inde- 
pendent of nerve glucose, sorbitol and fructose, this oc- 
curred at the expense of further taurine depletion. Conver- 
sely, taurine feeding of the non-diabetic animal tended to 
deplete MI and slow NCV, although a direct effect of 
taurine accumulation in the nerve cannot be excluded. In 
human and animal studies, A R I  treatment, which prevents 
sorbitol synthesis and accumulation and secondary MI de- 
pletion, results in improvement of NCV and axonal trans- 
port [4]. The postulated mechanisms by which MI deple- 
tion results in impaired nerve function involves decreased 
sodium/potassium-ATPase activity which is important in 
maintaining the sodium gradient that drives both MI, and 
perhaps, taurine uptake in nerve. Defects in sodium/potas- 
sium-ATPase activity in the nerve result in axonal sodium 
accumulation, reduced resting membrane potential and 
subsequent impaired nerve function [2, 4,19]. The relation- 
ships of taurine, MI and sorbitol may be critical in deter- 
mining sodium/potassium-ATPase activity, intracellular 
Ca + § and neuronal Na § accumulation of the latter two 
precipitating neuronal hyperexcitability and reduced 
NCV, respectively. Future studies will need to directly ad- 
dress the function of taurine within the nerve, specifically 
by assessing whether repletion of taurine can stimulate 
nerve rep,~ir and regeneration and/or reduce the early 
diabetes-induced nerve hyperexcitability. 
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