The Subgroup Theorem

Bу

ROBERT KUBOTA

We give a simplified proof of a theorem of FEDERER and JÓNSSON [1], which contains NIELSEN's theorem, that every subgroup of a free group is free.

Theorem. Let F be a free group with basis X, and, for $a \in F$, let |a| be the length of a relative to X. Let G be a subgroup of F, well ordered by a relation \prec such that |a| < |b| implies $a \prec b$. For $a \in G$, let $G_a = gp \{b \in G | b \prec a\}$. Let $A = \{a \in G | a \notin G_a\}$. Then G is free on the basis A.

We prove that A generates G. Suppose not. Let c be the least member of $G - \operatorname{gp} A$. Then $c \notin A$, whence $c \in G_c$. But G_c is generated by elements $b \prec c$ which, by the minimality of c, lie in gp A, whence $G_c \subseteq \operatorname{gp} A$. This implies that $c \in \operatorname{gp} A$, a contradiction.

We prove that A is a free basis for G. Suppose not. Then there is a relation $u_1 \cdots u_n = 1$ where $n \ge 1$, $u_i^{\pm 1} \in A$, and $u_i \neq u_{i+1}^{-1}$. Let a be maximal among the $u_i^{\pm 1} \in A$. We may suppose our relation chosen such that a is minimal, and hence such that $A_a = \{b \in A \mid b \prec a\}$ is a basis for a free group. Note that, for $1 \le i \le n$, either $u_i = a^{\pm 1}$ or $u_i \in G_a$, and in either case $|u_i| \le |a|$.

The sequence u_1, \ldots, u_n satisfies the following conditions:

- (1) For $1 \leq i \leq n-1$, $u_i \neq u_{i+1}^{-1}$.
- (2) For $1 \leq i \leq n$, $0 < |u_i| \leq |a|$.

(3) For
$$1 \leq i \leq n$$
, either $u_i \in G_a$ or $u_i = a^{\pm 1}$.

- (4) For some $i, 1 \leq i \leq n$, $u_i = a^{\pm 1}$.
- $(5) u_1 \cdots u_n = 1.$

If, for some $i, 1 \leq i \leq n-1$, we have $u_i, u_{i+1} \in G_a$ and $|u_i u_{i+1}| \leq |a|$, then we replace the two factors u_i and u_{i+1} by a single factor $u_i u_{i+1}$ to obtain a sequence v_1, \ldots, v_{n-1} of n-1 factors. Since A_a is a basis for a free group not containing a, the sequence v_1, \ldots, v_{n-1} satisfies (1)-(6), and iteration of this process will yield a new sequence satisfying the further condition:

(7) For
$$1 \leq i \leq n-1$$
, if $u_i, u_{i+1} \in G_a$ then $|u_i u_{i+1}| > |a|$.

Lemma 1. If $1 \leq i \leq n-1$, then $|u_i u_{i+1}| \geq |u_i|, |u_{i+1}|$, and both inequalities are strict unless exactly one of u_i, u_{i+1} is $a^{\pm 1}$.

1*

R. KUBOTA

Proof. Either $u_i \in G_a$ or $u_i = a^{\pm 1}$, and either $u_{i+1} \in G_a$ or $u_{i+1} = a^{\pm 1}$. The case that $u_i, u_{i+1} \in G_a$ is given by (7). The case that $u_i = u_{i+1}^{-1} = a^{\pm 1}$ is excluded by (1). In the case that $u_i = u_{i+1} = a^{\pm 1}$, since $a \neq 1$ we have $|a^{\pm 2}| > |a|$. The case remains that one of u_i, u_{i+1} is in G_a and the other is $a^{\pm 1}$. Suppose $u_i \in G_a$ and $u_{i+1} = a^{\pm 1}$. Then $|u_i u_{i+1}| < |a|$ would imply $u_i u_{i+1} \in G_a$. This, with $u_i \in G_a$ would give $a = u_{i+1}^{\pm 1} \in G_a$, contrary to $a \in A$.

Lemma 2. If $2 \leq i \leq n-1$ and u_i cancels exactly half in each of its neighbors, that is,

$$|u_{i-1}u_i| = |u_{i-1}|$$
 and $|u_iu_{i+1}| = |u_{i+1}|$,

then either:

(A)
$$u_i = a^{\pm 1}; \quad u_{i-1}, u_{i+1} \neq a^{\pm 1}; \quad |u_{i-1}| = |u_{i+1}| = |a|;$$

and exactly half of each of u_i , u_{i+1} remains in $u_{i-1}u_iu_{i+1}$; or:

(B)
$$u_{i-1} = u_{i+1} = a^{\pm 1}; |u_i| < |a|;$$

and more than half of each of u_{i-1} , u_{i+1} remains in $u_{i-1}u_iu_{i+1}$.

Proof. By Lemma 1, we must have either (A): $u_i = a^{\pm 1}$ and $u_{i-1}, u_{i+1} \in G_a$; or (B): $u_i \in G_a$ and $u_{i-1}, u_{i+1} = a^{\pm 1}$.

In Case A, Lemma 1 gives $|a| = |u_i| \leq |u_{i-1}u_i| = |u_{i-1}|$, whence, by (2), $|u_{i-1}| = |a|$; similarly, $|u_{i+1}| = |a|$. If there were cancellation between u_{i-1} and u_{i+1} we should have $|u_{i-1}u_iu_{i+1}| < |a|$ and so $u_{i-1}u_iu_{i+1} \in G_a$. This with u_{i-1} , $u_{i+1} \in G_a$ would give $a = u_i^{\pm 1} \in G_a$, contrary to $a \in A$.

In Case B, we can write $u_i = pq$ where $|p| = |q| = \frac{1}{2} \cdot |u_i|$. Now $u_{i-1} = u_{i+1}^{-1} = a^{\pm 1}$ would imply that $p = q^{-1}$ and $u_i = 1$, contrary to (2). Therefore $u_{i-1} = u_{i+1} = a^{\pm 1}$ and we can write $a^{\pm 1} = q^{-1}rp^{-1}$ for some r. Now $|u_i| = |a|$ would imply that r = 1 and $u_i = a^{\pm 1}$, contrary to (1). Therefore $|u_i| < |a|$ and $r \neq 1$. If as much as half of one of u_{i-1} or u_{i+1} , and so of both, cancelled in the product $u_{i-1}u_iu_{i+1} = q^{-1}r^2p^{-1}$, then each factor r in r^2 would have to cancel at least half, giving $|r^2| \leq |r|$, which is not possible for $r \neq 1$.

Since, by (5), $u_1 \cdots u_n = 1$, the proof of the theorem will be complete when we have established the following lemma.

Lemma 3. $0 < |u_1| \leq |u_1u_2| \leq \cdots \leq |u_1 \cdots u_n|.$

Proof. We write $p_i = u_1 \cdots u_i$. We shall show, by induction on i, that $0 < |p_1| \le \le \cdots \le |p_i|$ and that $|p_{i-2}| = |p_{i-1}| = |p_i|$ only in case that $|p_{i-3}| < |p_{i-2}|$ and that u_{i-2}, u_{i-1}, u_i fall under Case A of Lemma 2. For i = 1, 2, 3, this follows directly from (2) and Lemmas 1 and 2. We assume this condition for some $i, 3 \le i \le n-1$, and shall prove it for i + 1.

Suppose $|p_{i-1}| < |p_i|$; then we must show that $|p_i| \le |p_{i+1}|$. Now $|p_{i-1}| < |p_i|$ implies that more than half of u_i remains in p_i ; since at most half of u_i cancels in $u_i u_{i+1}$, some part of u_i remains in p_{i+1} . Therefore as much of u_{i+1} remains in p_{i+1} as in $u_i u_{i+1}$, that is, at least half, and $|p_i| \le |p_{i+1}|$. Suppose $|p_{i-2}| < |p_{i-1}| = |p_i|$; we must show that $|p_i| \leq |p_{i+1}|$, with equality only under Case A. Now part of u_{i-1} remains in p_i , whence as much of u_{i+1} remains in p_{i+1} as in $u_{i-1}u_iu_{i+1}$, and the conclusion follows by Lemma 2.

Finally, suppose that $|p_{i-2}| = |p_{i-1}| = |p_i|$; we must show that $|p_i| < |p_{i+1}|$. By the induction hypothesis, u_{i-2} , u_{i-1} , u_i fall under Case A, and half of u_i remains in p_i . Then $|u_i| = |a|$, and u_{i-1} , u_i , u_{i+1} cannot fall under Lemma 2, whence less than half of u_i cancels in $u_i u_{i+1}$, and part of u_i remains in p_{i+1} . But then u_{i+1} cancels no more in p_{i+1} than in $u_i u_{i+1}$. If $u_{i+1} = a^{\pm 1}$ this is less than u_i cancels in $u_i u_{i+1}$, hence less than half, while if $u_{i+1} \in G_a$, this is less than half by (7). In both cases, $|p_i| < < |p_{i+1}|$.

Reference

[1] H. FEDERER and B. JÓNSSON, Some properties of free groups. Trans. Amer. Math. Soc. 68, 1-27 (1950).

Eingegangen am 12. 5. 1964

Anschrift des Autors: Robert Kubota c. o. R. C. Lyndon Mathematics Angell Hall University of Michigan Ann Arbor (Mich.), USA