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CONSERVATIVE EXTENSIONS OF MODELS OF A R I T H M E T I C *  

Andreas Blass 1 

A b s t r a c t  

We give two characterizations of conservative extensions of models of arith- 
metic, in terms of the existence and uniqueness of certain amalg~mations with 
other models. We also establish a connection between conservativity and some 
combinatorial properties of ultrafilter mappings. 

Arithmetic is, in this paper, the complete theory of the structure N whose universe 
is the set of natural numbers and whose relations and functions are all the relations 
and functions on this set. All models of arithmetic are elementary extensions of N, 
and, because of the presence of Skolem functions, all submodels of models of 
arithmetic are elementary submodels. If A _c B are models of arithmetic and if, for 
every subset X = B that is defnable in B with parameters from B, the intersection 
Xc~A is definable in A with parameters from A, then B is called a conservative 
extension of A [9]. For example, because of the definition of N, all its extensions 
are conservative. In general, all conservative extensions are end extensions [9], 
but the converse fails, at least if the continuum hypothesis is true [3]. 
We shall prove two theorems characterizing conservativity in terms of the 
existence or. uniqueness of certain special amalgamations. We shall also relate 
conservativity to some combinatorial properties of projections of ultrafilters. 
Before turning to these results, however, we need to know that models of 
arithmetic have proper conservative extensions. This can be shown by an iterated 
ultrapower (or limit ultrapower) argument [7, 33, but the following proof, though 
perhaps less efficient, seems more conceptual. 
Let A be any model of arithmetic. A theorem of Keisler [83 says that A is a direct 
limit of ultrapowers of N with respect to ultrafilters on countable sets. Let *V be 
the corresponding limit of ultrapowers of the whole set-theoretic universe V. 
(Readers squeamish about proper classes may truncate V at some reasonably high 
rank; co 1 is high enough.) For  any xE V, we write *x for the corresponding element 
of * V. Thus, *N is a structure with the same universe as A and with all internal (in 
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*V) relations and functions; A is the reduct of *N to the standard part of the 
language. For  any x~*V, there is a countable set Ce V such that x~*C. This is 
obvious if *V is an ultrapower of V with respect to an ultrafilter on a countable set 
I, for then x is the equivalence class of some function on I, and the range of this 
function serves as C; the general case, a limit of ultrapowers, follows immediately. 
Thus, any xe  * V has the form (*f)(n) for some standard function f on N and some 
n~*N. In particular, if x is an internal subset of *N, then there is a binary rela- 
tion R(p, q) on N, namely p~f(q) with f as above, and there is an n~*N such 
that (Vp~*N)(p~x~--~(*R)(p,n)). This means that every internal subset of *N is 
parametrically definable in A. Now let / ]~ * V be any proper elementary extension 
of *N in * V, and let B be its reduct to the standard part of the language. Then B is 
a proper elementary extension of A. Furthermore, i fX is parametrically definable 
in B (hence afor t ior i  in/~), then X n A  is internal in *V and therefore parametri- 
cally definable in A. Thus, B is a proper conservative extension of A, as required. 
To formulate our main results, we need the notion of an amalgamation of two 
models. Let A be a model of arithmetic, and let B and C be elementary extensions 
of A. Replacing B or C with an isomorphic copy such that the isomorphism is the 
identity on A, we arrange that Bc~C=A. An amalgamation orB and C over A is a 
model D that contains B and C as submodels and is generated by BuC. Such a D 
is a model of the theory Complete diagram of B+Comple te  diagram of 
C + { b ~ c l b ~ B - A ,  c ~ C - A }  in the language L(BuC) obtained from the lan- 
guage L of arithmetic by adding all the elements of B u C as names for themselves. 
Conversely, in any model of this theory, the denotations of the closed terms form 
an amalgamation o rB  and C over A. It is easy to see that this theory is consistent, 
so amalgamations always exist [4]. Two amalgamations, D and D', are considered 
equivalent if there is an isomorphism between them that leaves B u C pointwise 
fixed. Since D and D' are generated by B u C, such an isomorphism can only be the 
map defined by sending fD(b,c)~O to fD,(b,c)~O', where b~B, c~C, and f is a 
binary function on natural numbers with canonical extensions f ,  and fo, in the 
models D and D'. It is routine to verify that this map is well-defined and is an 
isomorphism (i.e., that D and D' are equivalent) if and only if, for all L-formulas 
d?(x,y), all bsB, and all csC, the truth value of 4)(b,c) is the same in D as in D'. 

Characterizations of Conservativity 

Suppose B is an end extension of A, while C is an arbitrary extension of A. Will 
there always be an amalgamation that is an end extension of C? The answer is 
"no" in general, even if C is also an end extension of A, but it becomes "yes" if B is 
a conservative extension of A. 

Theorem 1. Let A C=B be models of arithmetic. The following are equivalent. 
(1) B is a conservative extension of A. 
(2) For every extension C of A, there is an amalgamation of B and C over A that is 
an end extension of C. 



Conservative Extensions of Models of Arithmetic 87 

(3) For some proper conservative extension C of A, there is an amalgamation of B 
and C over A that is an end extension of C. 

Proof. (2)~(3) is obvious because A has a proper conservative extension. 
(3)~(1). Let C be a proper conservative extension of A, and let D be an 
amalgamation as in (3). As A_c B ~ D, the conservativity of B will follow if we prove 
that D is a conservative extension of A. Consider any parametrically definable 
X____ D, say 

X =  {xeDlD~q~(x,d)} 

for some formula q~ and some parameter de D. Fix some ce C - A ,  and use the fact 
that D is a model of arithmetic to find an element qeD such that 

D ~ V x  (2 x occurs in the binary representation of q 
• --~x < c and q~ (x, d)). 

Then q<2ceC, so, as D is an end extension of C, qeC. Since C is a conservative 
extension, and therefore an end extension, of A, the set 

X n A = { x e A l D ~ x < c  and ¢(x,d)} 

= {xEAID~2 ~̀ occurs in the binary representation of q} 

= {xe C[ C ~ 2  x occurs in the binary representation of q} ~ A 

is parametrically definable in A. 
(1)=~(2). We write sentences of L(BuC) as O(b,c), where 4)(x,y) is an L-formula, 
beB, and ce C. (Boldface letters denote finite sequences.) Given such a sentence, 
we can find a parametric definition in A of {aeA[B~/)(b,a)},  because B is a 
conservative extension of A. Thus, we have a formula W(z, y) of L and a parameter  
p e a  such that 

(Vae A)B~  (a(b, a)~--*W(p, a). 

The sentence ~p(p,c), which involves constants from C only, will be called a 
C-transform of ~b (b, c). If  W' and p' are another such formula and parameter, for the 
same (o(b,c), then the sentence Vy(tp(p,y)*-~tp'(p',y)) is true in A, hence also in B 
and C. Therefore, we can unambiguously define a theory T as the set of those 
sentences c~(b,c) whose C-transforms are true in C. Since C-transforms can be 
chosen to commute with propositional connectives and to preserve logical 
validity, it is easy to see that T is a complete consistent theory. 
If ~b(b) is in the complete diagram of B (so it contains no c), then, in the 
construction of its C-transform, {ae A[B ~ 0 (b)} = A, so we can take a tautology as 
~, so the C-transform of ~b(b) is true in C, so q~(b)eT. Thus, T includes the 
complete diagram of B. 
If ~b (e) is in the complete diagram of C, then, in the construction of its C-transform, 
we can take ~p(y) to be ~b(y) (no parameter  p is needed), so the C-transform of ~b(c) 
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is ~0(c) itself, which is true in C, so ~b(e)e T. Thus, T also includes the complete 
diagram of C. 
If b a B - A  and c ~ C - A ,  then, in the construction of the C-transform of 
b~c ,  { a e A I B ~ b + a } = A ,  so we can take ~p to be a tautology, and therefore 
(b 4= c)~ T. 
Therefore, we obtain an amalgamation D of B and C over A by taking any model 
of T and passing to the elementary submodel consisting of denotations of closed 
terms. It remains to show that D is an end extension of C. Suppose dsD,  cs  C, and 
d<c.  As B u C  generates D, we have d=fD(b,c) for some bEB, csC.  We may 
assume, thanks to a pairing function, that the two c's in the last two sentences are 
the same. Note that, as D is a model of the complete theory T, the sentence 
f (b ,  c) < c is in T. 
Let O(z, yt,y2) be an L-formula and let p e A  be a parameter such that 

(Va t, a2~ A ) B ~  f (b ,  at) = a2~--*O(p, a I, a 2 )  ; 

they exist because B is a conservative extension of A. It follows, since B is an end 
extension of A, that 

(Va~ A)B ~ f (b ,  a) < a*-*(3 v < a) O(p, a, v), 

so (3 v < c)O(p, c, v) is a C-transform of the sentence f(b,  c)< c which we know to he 
in T. So the C-transform holds in C, and we have an e~ C satisfying O(p, c, e). But 
this is the C-transform of f (b,  c)= e, so this equation is in T, hence is true in D. 
Therefore, d= fo(b,c)=e~C.  [] 
If we weaken clause (2) of the theorem by demanding only that C < B -  A, i.e., that 
all elements of C precede all elements of B -  A in D, then the condition is satisfied 
by any end extension; see [4], Theorem 3. However, with this weakening, 
uniqueness of the amalgamation becomes a characterization of conservativity. 

Theorem 2. Let B be an end extension of  A. It is a conservative extension if and only 
if, for every extension C of A, there is only one (up to equivalence) amalgamation of 
B and C with C < B - A .  

Proof. "Only if'. The result is trivial if A = B, so we assume that B is a proper 
conservative extension of A and that D is an amalgamation of B and C over A with 
C < B - A .  According to the remarks following the definition of equivalence, it 
suffices to show that, for any L-formula, ~b(x,y), any b s B  and any ceC, the truth 
value of ~b(b, c) in D can be determined from data in B and C without referring to 
D. 
Let us therefore consider some particular q~, b, c as above. Using conservativity, we 
find a formula tp(z,y) and a parameter p e A  such that 

B ~ ~b (b, a)*-W (p, a) ( , )  
for all a~A and therefore for all a<q,  where q ~ B - A  is the first point where ( , )  
fails (or an arbitrary point if ( , )  never fails). Thus, the sentence 

(Vy < q) Irk (b, y)~--~tp(p, y)] 
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is true in B, hence also in D. But, in D, c<q because C<B-A .  So 4)(b,c) is 
equivalent in D to tp(p,c). This means that the truth value of 4)(b,c) can be 
determined by first finding q) and p (which can be done in B) and then evaluating 
~o(p,c) (which can be done in C, as C is an elementary submodel of D). 
"If'. Suppose that B is a non-conservative end extension of A, so there are a 
formula 4)(x, y) and a parameter beB such that no formula ~p(x, y) and parameter 
peA satisfy 

(V a e A) B ~ 4) (b, a)*--W (p, a). 

Fix such ~o and b. Consider sets F(x) of L(A)-formulas with only x free (i.e., not- 
necessarily-complete 1-types over A) such that 

For all finite conjunctions O(x) of formulas in F(x), 
for all standard functions f ,  for all formulas ~p(x) in L(A), ( , )  

for all parameters peA, and for all qeB-A ,  
S ~ 3 x [0 (x) A f (p ,  x) < qn-7  (4) (b, x)*--W (x))]. 

By our choice of 4) and b, ( . )  is true when F(x) is the empty set, since an 
appropriate x can be always be found in A. [The clause f(p,x)<q will hold 
because B is an end extension of A.] Also, the union of a chain of such sets F(x) is 
again such a set. By Zorn's lemma, let F(x) be a maximal set satisfying (*). 
We shall show that F(x) is a complete type over A; note that its consistency is 
obvious by (*). If a(x) were an L(A)-formula, with only x free, such that neither 
~(x) nor its negation were in F(x), then the maximality of F(x) would provide us 
with two finite conjunctions O+(x) and O-(x) of formulas in F(x), two standard 
functions f +  and f -  with parameters p+ and p -  in A, two L(A)-formulas ~p+ and 
y)-, and two elements q+ and q-  of B - A  such that 

B~Vx[O±(x) A +o~(x)/x f+(p +,x)<q± -*(4)(b,x)~--W±(x))], 

where + a  means c~ and -c~ means -7 a. Let 0 be the conjunction of 0 + and 0- ,  let 
f(p,x) be the maximum of the fe(p±,x), let q be the smaller of q-+, and let ~p be 
(~p +/x a) v 0P-/x -7 a). Then 

S ~ Vx [0(x)/x f(p, x) < q--*(4) (b, x)+-~ (x))], 

contrary to ( . )  for F(x). Therefore, F(x) is complete. 
Let C be an extension of A generated over A by a single element c that realizes the 
type F(x) over A. We shall obtain two amalgamations of B and C over A, with 
C < B - A ,  that will be inequivalent because one will satisfy 4)(b, c) while the other 
will not. To find these amalgamations, it suffices to prove the consistency of 
the two theories T ±=  

Complete diagram of Bw 

F(c)w {f(p,c) <q[peA, q e B -  A, f standard} w {_+ 4)(b, c)}. 

To prove the consistency of any finite subtheory of T ±, we may assume (by taking 
the maximum of the f ' s  and the minimum of the q's) that the subtheory contains 
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only one inequality f (p,c)<q.  Its consistency is then given by ( . ) ,  with 
~v=-T-tautology. Therefore, by compactness, T ± is consistent, and the proof  is 
complete. [ ]  

Corollary. Let B be an end extension of A. It is conservative if and only if, for every 
C ~ A, if D is an amalgamation of B and C over A with C < B -  A, then D is an end 
extension of C. 

Proof. If B is a conservative extension of A and C is any extension of A, then 
Theorem 1 provides an amalgamation D that is an end extension of C. I t  clearly 
satisfies C < B - A ,  and, by Theorem 2, it is the only amalgamation satisfying 
C < B -  A, up to equivalence. 
Conversely, recall (Theorem 3 of [4]) that we can always amalgate B and C over A 
with C < B - A ,  since B is assumed to be an end extension of A. If this 
amalgamation is necessarily an end extension, then B is a conservative extension of 
A, by Theorem 1. []  
For  applications of Theorem 2 to combinatorial properties of ultrafilters, see [51. 

Minimal and Ramsey Extensions 

In this section, we consider some combinatorial properties of ultrafilter mappings 
introduced by Baumgartner [1]. Let U and V be ultrafilters over N, and let f map 
U to V; this means that f : N ~ N  and, for each X ~ N ,  X e V  if and only if 
f - I (X )~U.  Such a map induces an elementary embedding of ultrapowers 

f *  : V-prod N ~  U-prod N : [g]v~[gof-jv, 

where the brackets mean equivalence class modulo the indicated ultrafilter. 
Baumgartner calls a map o f f  of U to V selective if, for any function g on N, there is a 
set X~ U such that either g is constant on each of the fibers Xc~f -  1 {n} or g is one- 
to-one on each of these fibers. (If g is constant on some of the fibers and one-to-one 
on others, a smaller XE U will satisfy the definition.) When f is constant and V is 
therefore principal, selectivity of f reduces to the usual definition of selectivity of 
U: every function on N is constant or one-to-one on some set in U. In general, f is 
selective if and only if there is no model A of arithmetic such that 
f *  ( V - p r o d N ) ~  A ~ U - p r o d N .  To see this, it suffices to note that a-function g on 
N is fiberwise constant on a set in U if and only if [g] v e f * ( V - p r o d  N) and that g 
is fiberwise one-to-one on a set in U if and only if the canonical generator [ id]v of 
U - p r o d N  is obtainable, by a standard binary function, from [g]v and [ f l u  
= f * [ i d ] v ,  which means that [g]v and f * ( V - p r o d N )  together generate 
U - p r o d N .  Thus, selective maps of ultrafilters correspond to minimal extensions 
of ultrapowers. For  detailed information about such minimal extensions, see the 
thesis [11] of Eck. 
We call f a Ramsey map from U to V if, whenever the set [N]  2 of two-element 
subsets of N is partitioned into two parts, there is a set X~ U such that all the two- 
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element subsets {x,y}c__X with f ( x )= f (y )  lie in the same part. In Baumgartner's 
terminology [1], this would be called a 1- ]2Z-projection. When f is constant, the 
definition reduces to U being a Ramsey ultrafilter. In general, the definition can be 
reformulated as follows. Let 

E: = {(x, y)e N 2 [x .< y and f (x)  = f(y)} ; 

then the filter generated by E: and the sets X 2 with Xa  U is an ultrafilter. This 
condition can also be expressed model-theoretically. Consider two copies of 
U - p r o d  N, say A 1 and A 2 with isomorphisms el: U - p r o d  N ~ A i  such that their 
intersection is at least f * ( V - p r o d  N), in the sense that the restrictions of c~ 1 and e2 
to f * ( V - p r o d  N) are equal. We do not exclude the possibility that el  (a)= ~2 (b) for 
some a and b outside the range o f f* .  An amalgamation of the two models A~ (over 
their intersection) is determined (up to equivalence) by the 2-type realized by the 
two generators ai=cq([id]v ) of the Ai's. If we assume that a l < a  2 in the 
amalgamation, then this 2-type is an ultrafilter on N 2 containing E: and X 2 for all 
X~ U, and any such ultrafilter arises from some amalgamation. Thus, to say that 
the sets E: and X 2 for X ~ U  generate an ultrafilter is to say that all such 
amalgamations are equivalent. Therefore, f is a Ramsey map if and only if there is 
at most one amalgamation of two copies of U - p r o d N ,  with intersection at least 
f * ( V - p r o d  N), and with the two generators a~ properly ordered (a i < a2). (There 
is always at least one such amalgamation, unless f is an isomorphism.) 
It follows easily from either the combinatorial definitions or the model-theoretic 
characterizations that all Ramsey maps are selective. For  constant maps, the 
converse holds, by Kunen's result ['6] that all selective ultrafilters are Ramsey. 
Baumgartner [1] has observed that the converse fails in general. We shall show, in 
the next theorem, that the converse holds if U - p r o d  N is a conservative extension 
of f * ( V - p r o d N ) .  Since all extensions of N are conservative, this result gives a 
new proof of Kunen's theorem. We shall also show that the conservativity 
assumption is necessary unless f is finite-to-one [i.e., unless f * ( V - p r o d N )  is 
cofinal in U -  prodN].  

Theorem 3. Let A ~ B be models of arithmetic. Then the following are equivalent. 
(1) B is a conservative minimal extension of A. 
(2) A is not cofinal in B, and there is only one amalgamation of two copies of B, with 
intersection at least A but not all of B, up to equivalence and up to interchange of the 
two copies of B. 

Proof. (1)~(2). Assume (1). Then B is a proper end extension of A, so A is not 
cofinal in B. Consider any amalgamation D of two copies B 1 and B z of B, as in (2). 
I fb  is an arbitrary element of B -  A, its images b 1 eB I and bzeB 2 are distinct in D, 
because otherwise the intersection of the two copies of B would include A as well 
as b and would therefore be all of B, by minimality. Interchanging the two copies 
of B if necessary, we may assume that bl <b  2 for a certain, henceforth fixed, 
b ~ B - A .  
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Minimality of B implies that B - A  is a single sky, for if it contained two distinct 
skies then the lower of them, together with all skies below it, would constitute a 
model intermediate between A and B. (See [10] or [4] for the definition of sky; the 
latter reference contains all the facts about skies and amalgamations that will be 
needed here.) The two copies of this sky cannot lie in the same sky of D, for, if they 
did, they would have to intersect by [21 Theorem 1, and then the intersection of 
the two copies of B would be a model intermediate between A and B. Therefore, 
B~ - A < B 2 - A  in D. Applying Theorem 2, with B~ as C and B 2 as B, we find that 
the amalgamation D is unique. 
(2)=~(1). Assume (2). We show first that B is a minimal extension of A. Otherwise, if 
A~C~B, then Theorem 1 of [4] provides an amalgamation as in (2) with 
intersection precisely A and another with intersection C, contrary to (2). 
The initial segment of B that contains A as a cofinal subset is a submodel of B. It is 
not B, by the first clause of(2), so, by the minimality just proved, it must be A. So B 
is an end extension of A. 
Now let q~(x, y) be any L-formula and let be B. We shall find an L(A)-formula ~p (x) 
such that 

(V a~ A)B~ c~(a, b)~--~tp(a). 

This will establish the conservativity of B and thus complete the proof. If bsA, 
then c~(x,b) is the required ~p(x), so we assume b~B-A .  
Let D be the unique amalgamation of Bt and B 2 as in (2), and let b i be the image of 
b in Bi; we may assume b~ < b  2. If an L-formula ~l(u,v) is satisfied in D by the pair 
(bl, bz), then there is an L(A)-formula O(u) satisfied in B by b such that 

A ~  Vu, v [0(u) ^ O(v) ̂  u <v~q(u ,  v)],  

for otherwise a compactness argument would produce an amalgamation as in (2) 
in which r/(bl, bz) is false. 
If 

D~ Vx[dp(x, bO*-~(~(x , b2)], 

then, by the preceding comment, we can find an L(A)-formula O(u), satisfied in B 
by b, such that 

A ~ V u, v [0(u) A 0(v) A u < v -  V x (q~(x, u ) ~  (x, v))]. 

Then the same sentence holds in the elementary extension B of A. If we take b as v 
and any element a~ A satisfying 0 as u, the clauses O(u), O(v) and u < v are satisfied 
(the last because B is an end extension of A), so B ~ V x [q~ (x, a)~--~t h(x, b)]. Of course 
such an a exists as 3xO(x) holds in B, hence in A. So we can take ~(x,a) as our 
~o(x). 
Suppose, therefore, that the assumption of the preceding paragraph fails, so there 
is a smallest element d~D for which (D(d, bl) and ~b(d, b2) are inequivalent ; assume 
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for definiteness that  ¢(d, bl) is false but  ~b(d, b2) is true. So D~t l (b l ,bz ) ,  where 
r/(u, v) is 

3 x [-7 ¢ (x, u) ^ ¢ (x, v) ^ (vy < x) (¢ (y, u ) ~ ¢  (y, v))]. 

Therefore,  there is an L(A)-formula O(u), satisfied in B by b, such that  

A ~  Vu, v[O(u) A O(V) ̂  u < V~tl(U,V)]. (*) 

As u ranges over  the elements satisfying 0 in A, in increasing order,  the truth value 
of ¢(a,  u), for some fixed a e A, can oscillate, but  if the truth values of  ¢(c, u) are no 
longer varying for any c < a, then ( . )  says that  the truth value of q~ (a, u) can change 
only f rom false to true, not  vice versa. Hence, ¢(a ,u)  can change truth value at 
most  once after the truth values of ~b(c, u) have stabilized for all c < a. Formal iz ing 
this argument ,  we obtain a proof,  by internal induction in A, that  the truth value of 
~b(a, u) must  eventually stabilize. Tha t  is, for each a s A  there is a '~A such that  the 
sentence 

Vu, v[0(u) ^ O(v) A a' < u ^ a' < v-+(c~(a, u)*-+(o(a, v))] 

holds in A. It must  therefore also hold in B, and we can satisfy the clauses O(v) and 
a' < v by taking b as v. Thus,  an a t  A satisfies ¢ (a, b) if and only if it satisfies q0 (a, u) 
for all sufficiently large u satisfying O(u). But this criterion for ~o(a,b) does not 
involve any  parameters  f rom A -  B, so it can be checked in A. This means  that  we 
can take 3zVu[O(u)^z<u- -+¢(x , z ) ]  as ~p(x) and the p roof  is complete.  [ ]  
Minor  changes in the first half  of the proof  would yield a s t ronger  form of (2), 
where n copies of B are amalgamated ,  as a consequence of (1). This s t ronger  form 
is, in the case of  ul trapowers,  equivalent to Baumgar tner ' s  definition of an [ ]~- 
projection, so we have, as a corollary, Baumgar tner ' s  result that  a [ ]22-projection 
that  isn't f inite-to-one is an [ ]~-projection for all finite n. 
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