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APPLICATION OF A TAUBERIAN THEOREM 
TO FINITE M O D E L  THEORY* 

Kevin J. Compton 

Abstract. An extension of a Tauberian theorem of Hardy and Littlewood is proved. 
It is used to show that, for classes of finite models satisfying certain combinatorial 
and growth properties, Cesfiro probabilities (limits of average probabilities over 
second order sentences) exist. Examples of such classes include the class of unary 
functions and the class of partial unary functions. It is conjectured that the result 
holds for the usual notion of asymptotic probability as well as Cesfiro probability. 
Evidence in support of the conjecture is presented. 

O. Introduction 

Suppose that a(x) = ~ a.x", b(x) = ~ b,x", a(x) has radius of convergence R > O, 
n = O  n = O  

lira a(x)= or, and lira bJa n = L. It is easy to show that 
x ~ R  n ~  

. b(x) 
lm - -  = L  (1) 

:,--R a(x) 

(see Theorem 57 of Hardy [8] or Section 7.5 of Titchmarsh [12]).This is an Abelian 
theorem - "... roughly, one which asserts that if a sequence or function behaves 
regularly, then some average of the sequence or function behaves regularly" ([8, 
p. 148]). The sequence bn behaves regularly with respect to an, from which it follows 
that the average defined by (1) behaves regularly. Theorem i, the main theorem of 
the paper, is a partial converse to this theorem. Obtaining a converse requires 
imposition of the conditions an ~ n ~, c~ > - 1, b, = O(an) on hypothesis (1); from this 
it follows the somewhat weakened conclusion 

lim -1 n~l --bk = L.  (2) 
n~oo n k = O  a k 
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If, further, b,/a, is a slowly decreasing sequence (see Section 1 for definitions) then 
lira b,/a,=L. These are Tauberian theorems - "... corrected forms of false 

n ~ o o  

converses of Abelian theorems" ([8, p. 149]). 
Theorem 1 restricted to the case a, = 1 is a Tauberian theorem of Hardy and 
Littlewood (Theorems 92 and 106 of Hardy [8]). The proof of Theorem 1 
presented here is similar to Rubers proof of the Hardy-Littlewood theorem using 
Littlewood and P61ya means [11]. 
The significance of Theorem 1 lies in an application to finite model theory. Fagin 
[5] asked whether first order sentences about unary functions have asymptotic 
probabilities. Lynch [10] answered the question affirmatively, even for structures 
consisting of several unary and partial unary functions. Does Lynch's result extend 
to monadic second order sentences? This is a natural question because many 
combinatorial properties not expressible in first order logic are expressible in 
monadic second order logic. There is some hope of success because a result in 
Cornpton [3] shows that under certain general conditions extended asymptotic 
probabilities - quantities related to expression (i) - will exist. Theorem 1 then 
applies by supposing a growth condition- one broad enough to include the class of 
unary functions- on the class of structures considered. The conclusion, specified in 
Theorem 2, is that Ces~iro probabilities- quantities related to expression (2)- exist 
for monadic second order sentences. Strictly speaking this does not extend Lynch's 
result because Ces~ro probabilities may exist when asymptotic probabilities do 
not: unfortunately, Lynch's techniques do not carry over in an obvious way for 
monadic second order sentences so at present Theorem 2 is the best result in this 
direction. 
It is worthwhile to compare Lynch's approach in [10] to the one in [3] and here. In 
both approaches the logical arguments rely on Ehrenfeucht games. Lynch's use of 
these games is closely tied to the structure of unary functions while in [3] it is more 
general, depending only on broad combinatorial properties. Lynch, consequently, 
obtains an algorithm for computing the probabilities of first order sentences while 
the methods of [3] produce no such algorithm (but in some cases a closer analysis 
will yield an algorithm; see [4]). Lynch's main combinatorial tool is a generaliza- 
tion of the inclusion-exclusion principle, while in [3] it is enumeration by means 
of generating series. These series must have positive radius of convergence, hence 
will not work for classes of more than one unary or partial unary function, in 
contrast to Lynch's techniques. Finally, the main analytic tools for demonstrating 
convergence of asymptotic probabilities are, for Lynch, a theorem similar to the 
Monotone and Dominated Convergence Theorems of real analysis, and here, the 
Tauberian theorem which is the subject of the paper. 
The paper is organized as follows. Section 1 contains preliminary definitions and 
results. Section 2 contains the main result and application. Section 3 presents a 
conjecture which, if true, subsumes part of Lynch's results and part of the results in 
Section 2. Evidence for the conjecture is presented. 
My first proof of Theorem 1 was somewhat like the proof of the Hardy-Littlewood 
Tauberian Theorem from Wiener's Tauberian Theorem (see Hardy [8, p. 300]). I 
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1. Preliminaries 

An often occurring Tauberian condition is that of a sequence being slowly 
decreasing. The sequence a,, n > 0, is slowly decreasing if for every ~ > 0 there are 
N ~ 0 and ~ between 0 and 1 such that a, - am > - e when n > N and in < m _< n (the 
terminology is misleading: slowly decreasing does not imply monotone). 
For  notation and fundamental concepts from model theory consult Chang and 
Keisler [ t ] .  
Fix a finite relational language L and let ~f be a class of L-structures closed under 
isomorphism. Let d ,  be the set of structures in ~f with universe n = {0, 1 . . . . .  n -  1} 
and a. = [dn]. The exponential generating series of c~ is 

~. a, , 
n = 0  . 

(assume a o = 1). For  a sentence ~0 let ~(q~) be the fraction of structures in d ,  that 
satisfy ~o. The labeled asymptotic probability of q) is 

/~(q~) = lim ~(~o) 

whenever this limit exists and otherwise undefined. The superscript g will be 
deleted when the class g is clear from context. The labeled Cesdro probability o fp  is 

n - - 1  

/~(q~) = lim _1 2 #a(~ o) 
n ~ ¢ ¢  n k = O  

whenever this limit exists and otherwise undefined. 
Let 9I be an L-structure. Define a binary relation ~ on the universe of 91 as follows. 
a ~ b if for some relation symbol R in L and sequences ~, )7, i of variables 

91~ (3~, )7, z-)R( ~, a, ;, b, z-) . 

Let ,-~* be the least equivalence relation extending ~ .  The *-equivalence classes are 
called components of 91. Also, a substructure ~B of 91 is called a component of 91 if its 
universe is a component  of 91. A class c~ is closed under components if whenever 
91 ~ c~ and ~3 is a component  of 91 then ~3 ~ ~. 
Since L is relational, unary functions will be defined as relations. Suppose L 
consists of a single symbol R, a binary relation symbol. The class of partial unary 
functions is the set of all L-structures 91 such that 

91~ (Vx, y, z) JR(x, y)/x R(x, z ) ~ y  = z ] .  

The class of unary functions satisfy the further condition 

91~ Vx3yR(x, y). 
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In the sequel it will be important to note that both these classes are closed under 
disjoint unions and components. 

2. The Main Theorem and Application 
Theorem 1. Let an~n =, ~> - 1 ,  an@O for n>=O, b,=O(a~), 

a(x): ~ a.x",  b(x)= ~ bnx n. 
n = O  n = 0  

Then the following are equivalent. 

(i) l im b(x)/a(x)=C. 

(ii) tim -1 n~l _bk = L .  
n ~  n k~--o ak 

Moreover, if (i) holds and bn/a n is slowly decreasing then lim b,/an = L. 
n~oo  

Proof. Without loss of generality bo=0.  Define f :  [0, o~)~]R by f (x )=b~/a , ,  
n <__ x < n + 1. It is easy to verify that 

a(e-X) ~ ~ t~e-Xtdt, 
0 

b(e- x) = ~ t%- ~f(t)dt  + o(a(e- ~)) 
0 

as x - * 0 +  (for the latter observe that a(e-X)-~m as x -~0+) ,  and 

"" - I f (t)dt, 
n k = O a  k x o 

(where n = [x]) as x--. ~ .  
The upper and lower Littlewood means of f ( x )  are 

A(O = lim sup ~ t¢e-~'f(t)dtl ~ t*e-X'dt, 
o Io 

2(~) = lim inf(same), 
x ~ 0 +  

for --1 < ~ < co. Values for ~ = - 1 ,  m are defined by continuity. The upper and 
lower Pdlya means of f ( x )  are 

• 1 ~x f ( t )d t ,  n(¢) = hmsup x_--Z- ~ 

zc(~) = lira inf (same), 

for 0 __< ~ < 1. Values at ~ = 1 are defined by continuity• 
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Thus,  (i) holds precisely when A(a )=  2(e)=  L and (ii) holds precisely when /7 (0 )  
= n(0) = L .  The  theorem then follows f rom the following results of  Rubel  [11]:  
(a) A(~) = 2(~) = L for some  ~, - 1 < ~ < oe, iff A(~) = 2(~) = L for all such ~. 
(b) //(~) = n(~) = L for some  ~, 0 < ~ < I, iff/7(~) = n(~) = L for  all such ~. 
(c) A(oo) = H(1), 2(00) = n(1). 
T o  prove  the second par t  of  the theorem note  that  ifb,Ja, is slowly decreasing then 
for a given e > 0 there are N and  ~, 0 < ~ <'1, such that  f ( x ) - f ( t )  > - e when x > N 
and ~x < t < x. Thus  f ( t ) - f ( x )  > - e when x > N, x < t < x/~. Therefore,  for 
x > N  

i x 1 x/~ 
f ( t ) d t -  e < f ( x )  < ~ f ( t )d t  + e, 

x / ~  x ~x x x 

whence 

L -  e < lim inf f(x)__< lim sup f ( x )  < L + e. 
x ~ o o  x ~ o o  

Lett ing e a p p r o a c h  0 it follows that  lim b,]a,=L. 
n ~ c o  

T h e o r e m 2 .  Let cg be closed under disjoint unions and components with 
[~.[/n! ,,~ An~R-", [d,[ 4:0 for n >_ 0, a > - 1, A, R > 0. Then i~(q~) exists for each 
monadic second order q~. 

Proof Let an=ldn[ ,  bn=[{9.I ~s~ , :  21~q0}[, 

oo b 
a ( x ) =  ~ a, . b(x)= Y' -"x" .  

,=o n~ x ' ,~'o n! 

Since lira a ( x ) = o e  it follows f rom T h e o r e m 4 . 3  of  C o m p t o n  
x ~ R  -- 

Iim b(x)/a(x) exists; Iet its value be L. Pu t  
x ~ R  

n = O  n = O  

[-3] tha t  

- n 1 where an = a.R ~(An.), fin = b,R"/(An !). Hence  d. ,~ n" and 

Theo rem 1, p~(q~) lira 1 "-1  [] = _ 

n~oo n k = O  

l im 6(x) /a(x)=L.  By 

Corollary 3. I f  cg is the class of unary functions or the class of partial unary 
functions then #~(~o) exists for each monadic second order ~o. 

Proof I f  ff is the class of  una ry  functions then ld.I = n" and n"/n ! ,,~ (2n)-  i/2 n-  1/2en 
by Stirling's formula.  I f  cg is the class of  par t ia l  unary  functions Id=l = (n + I)" and  
(n+ 1)"/n!,,~e(2n)-I/Zn-1/2en. Thus,  T h e o r e m  2 applies. [] 
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3. A Conjecture 

When e > 0 Theorem 2 can be strengthened: #~(~0) may be replaced by #(q~). This 
follows from Theorem 6.6 of Compton 13] which says that for ~i. as in the proof of 
Theorem 2 if there is a fixed bound for ~i._ -]4. for all sufficiently large n and all i < n 
then #(q~) exists for each monadic second order ~o. Whether Theorem 2 can be 
similarly strengthened when - 1 < c~ < 0 is open. A possible approach would be to 
show that every monadic second order sentence can be expressed as a Boolean 
combination of monadic second order sentences q~ where #.(¢p) is slowly 
decreasing. 

Conjecture. Theorem 2 remains true when #~(~o) is replaced by #(~o). 
If this conjecture is true then Lynch's result in the case of a single unary function or 
a single partial unary function extends to monadic second order sentences. It is 
unlikely that techniques presented here would apply to the case of more than one 
function or partial function. Indeed, labeled asymptotic probabilities or even 
Ces~iro probabilities of monadic second order sentences may not always exist in 
the case of more than one function. Compare the class of all structures for a 
relational language containing at least one non-unary relation: Glebskii, Kogan, 
Liogon'kii, and Talanov [-6], and independently, Fagin [5], proved for this class 
that #(~o) exists for first order ~0, but Kaufmann and Shelah ['9] showed that this is 
not true for monadic second order ~0. Their example shows in fact that there will be 
monadic second order sentences without limiting probabilities for any reasonable 
notion of asymptotic probability (including Cesfiro probability). This may be a 
common phenomenon in quickly growing classes. 
Theorem 4 lends plausibility to the conjecture. It requires the following 
definition. 

Definition. Let cg be closed under disjoint unions and components. Add unary 
relation symbols R1, R2 . . . . .  R, to the language of this class. If 92 ~ Z, a component 
N-coloring of 9.i is an expansion of 92 to the new language such that the 
interpretations ofR 1, R2, ..., Rs partition the universe of 92 and the components of 
9/refine this partition. That is, elements within the same component will have the 
same color R i. The component N-coloring class ~ for cg is the class of all component 
N-colorings of structures in ~g. ~ is clearly closed under disjoint unions and 
components but in general #e(tp) is not #~(q~) (when they exist): structures from cg 
with many components have greater weight in ~ because their components can be 
colored many ways. 

Theorem 4. Let cg be closed under disjoint unions and components with [d,[/n! 
~An~R -", ct> - 1, A, R>0 .  Let N be an integer not less than 1/(1 +a)  and let 
be the component N-coloring class for ft. Then #~(~o) exists for all monadic second 
order ~o in the language of 9.  
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Proof. Let [~c/.[ = a.. The exponential generating series for cg is 

a(x) = ~ a, , 
n=O ~ -  IX " 

By standard combinatorial methods the exponential generating series for ~ is 
a(x) N (i.e., the formal N th power of the series; see Compton [2] or Goutden and 
Jackson [7] for a discussion of these methods). Let 

a(x)N=a,(x)= ~ a* , 
n=0 ~ .  IX " 

Theorem 41 of Hardy [8] asserts if b ,~n  p, c .~n  ~, and 

( o)c ~, d,x"= b,x" Z c,x" 
n=0  n \ n = 0  / 

then 

d , ~  r(/~+ 1)r(~,+ 1) n~+,+ 1 " 
r(fl + ~) 

Thus, by induction on N, 

a* (AF(~+ 1)) unm 1 +~)_ 1R_.. 
n! r(N(~+ 1)) 

Now for N as in the statement of the theorem, N(1 + ~ ) -  1 >0. By the remark at 
the beginning of Section 3/4~0) exists for each monadic second order ~p. 
Notice that when ct ~ 0 and N = 1, and the theorem is equivalent to the remark at 
the beginning of Section 3, [] 

Corollary 5. I f  ~ is the component N-coloring class, where N ~ 2, for the class of 
unary fimctions or the class of partial unary functions then #~(~o) exists for each 
monadic second order q). 

Thus, weighting unary functions to favor those with more components insures the 
existence of labeled asymptotic probabilities of monadic second order 
sentences. 
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