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Summary. We state and prove the Translation Theorem. Then we apply the Trans- 
lation Theorem to Soare's Extension Theorem, weakening slightly the hypothesis to 
yield a theorem we call the Modified Extension Theorem. We use this theorem to re- 
prove several of  the known results about orbits in the lattice of  recursively enumerable 
sets. It is hoped that these proofs are easier to understand than the old proofs. 

0 Introduction 

In this paper, we will reconsider some of the known results about orbits in the lattice 
of  recursively enumerable sets. For example, Soare showed that the maximal sets 
[7] form an orbit in this lattice. The proof of  this and other results about orbits 
are similar in that they all construct an uniformly recursive enumeration satisfying 
several complex automorphism conditions and then apply Soare's Extension Theorem 
to these' enumerations to yield the desired automorphism. Here we will focus on the 
recursiveness of these enumerations rather than the complex conditions they must 
satisfy or the Extension Theorem itself. 

We show that it is enough to construct uniformly 0"-recursive enumerations 
satisfying these complex conditions rather than uniformly recursive enumerations. 
{X~,8}~,~.<~ is an uniformly O"-recursive enumeration if there is a function h such 
that h <T  0" and for all n, X~,~ = Wh(,~), ~. We do this by applying a new theorem, 
the Translation Theorem, to translate these uniformly 0"-recursive enumerations into 
uniformly recursive enumerations. 

In Sect. 1, we state the Translation Theorem; the proof can be found in Sect. 2. 
In Sect. 1, we use the Translation Theorem to prove a slightly different version 
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of  the Extension Theorem, the Modified Extension Theorem. The hypothesis of  
the Modified Extension Theorem is weaker than the Extension Theorem in that 
uniformly 0"-recursive enumerations can be used rather than just uniformly recursive 
enumerations. However, the conclusion is weaker in the sense that it is not possible 
to use the Modified Extension Theorem to construct effective automorphisms. We 
do not consider this much of  a weakness, since many of  the applications of the 
Extension Theorem do not construct effective automorphisms and to prove the 
Extension Theorem using the new A 3-antomorphism techniques we also must remove 
this possibility. 

In the two remaining sections, we prove several results about orbits using uniformly 
0"-recursive enumerations rather than uniformly recursive enumerations. In Sect. 3, 
we reprove Soare's result [7] that the maximal sets form an orbit. In Sect. 4, we 
reprove Maass's result [6] on the orbits of  hyperhypersimple sets. We hope that these 
new proofs are easier to understand. We assume that the reader is familiar with the 
construction of  automorphisms of the lattice of recursively enumerable sets and the 
use of the Extension Theorem. For the unfamiliar reader, we suggest [8, XV.4]. 

1 The statement of the translation theorem and the modified extension theorem 

Before we can state the Translation Theorem and the Modified Extension Theorem, 
we need the following definitions. Only the first three definitions and Definition 1.6 
are non-standard in the sense that they either do not appear in [8] or they are slightly 
different from the similar definition in [8]; otherwise our notation is standard. 

Definition 1.1. {X~}n< ~ is an uniformly recursive collection of r.e. sets if there is 
a recursive function h and for all n, X~ = Wh(~). {Xn}~<~o is an uniformly O"- 
recursive collection of r.e. sets if there is a function h such that h --<T 0" and for all 
n, X ~  = Wh(~). {X~,~}~,s< ~, is an uniformly O"-recursive enumeration if there is a 
function h such that h -<T 0~r and for all n, X~,s = Wh(~),~. 

Definition 1.2. For any e, if we are given uniformly recursive enumerations 
{X~,s}~_<c,~<~ o and {Y~,s}~_<c,~<~o of  r.e. sets {X~}~_<~ and {Y~}~<~, define the full  
e-state o f x  at stage s, u(e, x ,  s) with respect to (w.r.t.) {X~,~}~,~<~ and {Y~,~}n,~<~ 
to be the triple 

v(e, x, s) = (e, ~(e, z, s), r(e,  z, s)) 

where 

and 

cr(e ,x ,s)  = {i : i <_ e A x E Xi , s}  

~(e , x , s )  = { i : i  <_ e A x  c ~ ,~} .  

Definition 1.3. Given any collection of r.e. sets {X~}n<~o and {Y~}~<~o, define the 
final e-state of  x,  v(e, x)  with respect to {X~}n<~o and {Y~}n<~ to be the triple 

v(e, x) = (e, ~(e, x), ~-(e, x)) 

where 

and 

~(e , x )  = {i : i ~_ e A x C X i }  

r (e ,x )  = {i : i _ e A x E Y~}. 
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Definit ion 1.4. Given recursive enumerations {X~}~<~ and {Y~}~<~ of X and Y, 
we define 

(i) X \ X  = {z : (3s)(z E X~ - Y~)}, 
(ii) X ~ Y = ( X \ Y )  N Y .  

Definit ion 1.5. Given states u = (e, a, T} and u' = (e', a~, T'}, we define 
(i) u is an initial segment of u ~ (u -< J )  iff e _< e ~, cr = a t A {0, 1, . . . ,  e}, and 

~- = ~-' N {0,  1, . . . ,  e}.  
(ii) The length of u, I l, is e. 

(iii) u = u '  I e i f f u ~ u ' a n d l u [ = e .  
(iv) u covers J (u >_ J )  iff e = e/, ~r _D cd and T C Tq 

Definit ion 1.6. Assume {T~}~<~ is a uniformly recursive enumeration of T,  an 
infinite r.e. set. For any e, if we are given uniformly recursive enumerations 
{X~,~}~<_~,~<~ and {Y~,~}n_<~,~<~ of r.e. sets {X~},~_<~ and {Ya}~_<~. For each 
full e-state u, define the r.e. set 

D T = {x : 3t such that x r T t - T~_ 1 A 11' = lJ (e ,  x ,  t) w.r.t. 

{X~,~}~_<~,~<,~ and {Y~,s}~_<~,~<~} 

If x E D if, we say that u is the entry e-state of x w.r.t. {Xrn~}~<~,~<~ and 

{Yn,~}~_<~,~<~. into T. We say that D~  is measured w.r.t. {X~,~}~_<~,~<~ and 
{Y~,~}~_<~,~<~," 

Now we have all the definitions needed to state the Translation Theorem and 
Modified Extension Theorem. First an quick word about some of our notation. There 
are two kinds of hats: angled hats (^) and curved hats (~). The curves hats appear in the 
Translation Theorem while the angled hats in the Modified Extension Theorem. This 
notation seems natural since the sets ) (  and )? play similar roles in the corresponding 
theorems. 

The  Trans lat ion  T h e o r e m .  Assume {T~}s< ~, {T~}s<~, {U~,s}~,s<~, {~'~,s}n,s<~, 

{ U~,~ }~,~<o~, and {V~,~ }~,~<~o are uniformly O"-recursive enumerations of the infinite 

r.e. sets T* and T~, and the uniformly O'-recursive collection of r.e. sets {U~}~<~, 

{ ~-~ }n<~, { ~7~ }n<~, and { V~ }~<~o satisfying the following Conditions: 

(1.7) 

(1.8) 

(1.9) 

w [ r  % = Tt \ FJ = 0]. 

(Vu) [D~ t is infinite ~ (3u' > u) [D~ Tt is infinite]], and 

(Vu) [D/t  is infinite => (~u' <_ u)[D~,~, t is infinite]]. 

where for all e-states u, D Tt is measured w.r.t. {Unl ,s }n<_e,s<~o? and { lZtn, s }n<e,s<~o_ and 

D~* is measured w.r.t. { n,s}n_<e,s<~, and collection { n,s}n~_e,s<~v" Then there is a 

of uniformly r.e. sets and and uniformly 

recursive enumerations, {Ts}~<o~, {27~}8< ~, {U~,8}~,s<~o, (17~,~}~,~<~, {~ ,~)~ ,~<~,  
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and { V~, s } n,s < ~, of these sets satisfying the following Conditions: 

(1.10) Ts+ 1 : T ] and Ts+, : ~ t ,  

(1.11) vn[:~ \ ~n = T \ ~ = o], 

for all n there is an e~ such that Ut~ =* U~n , 
(1.12) 

~* u :p =* ~ n:~, vd=* v~, and Cr~ n§ =* ~ n §  

for all e, either Ue\T =* Ve\T  =* Ve\T  =* LTe\T =* 0 

(hence by Condition 1.11, ~'~ =* U~ =* 0), or 
(1.13) 

there is an n such that U t =* Ue, ~-t r~ 3~ =* Q~ rq 2P, 

v2 =* v~, and 01 n § =* 8~ n § 

(1.14) (Vu)[D~ is infinite ~ (au' >_ u)[D~ is infinite]], and 

(1.15) (Vu) [D~ is infinite ~ (Bu ~ <_ u)[D~ is infinite]] 

where for all e-states u, DTu is measured w.r.t. (U~,~}n_<e,s<~ and {~,,}n_<~,s<~ 

and D~ is measured w.r.t. {U~,~}n_<~,~<~ and {V~,~}~<~,s<o~. 

The Modified Extension Theorem. Assume {T~}~<~, {T~}~<~, {Un,s}n,~<~,, 

{~7~,.s}~,8<w, (U-,a,s}~,s<w, and {Vn,s}~,8<o. , are uniformly O"-recursive enumerations 

of the infinite r.e. sets T and T and the uniformly O"-recursive collection of r.e. sets 
{U~},,<~, {V~}n<~, {~7 }~<~, and {V~}~<~ satisfying the following Conditions: 

(1.16) Vn[T \ U~ = T \ 9~ = 0], 

(1.17) (Vu)[D~ is infinite ~ (3u' >_ u)[D~ is infinite]], and 

(1.18) (Vu) [Dff is infinite ~ (qu' <_ u)[D~ is infinite]], 

where for all e-states u, D~ is measured w.r.t. {U~,~}~_<r and { [f~,~}n<_~,~<~ and 

D~ is measured w.r.t. {U~,,}n<e,s<w and {V~,s}n<e,s<o~. Then there is an uniformly 

O"-recursive collection of r.e. sets {On}~r and {~Tn}nr ~ such that 

( 1 1 9 )  8~ne=*O~n§ ~n~=*V~n:e ,  and 

~~176 x E T with final e-state u w.r.t, to {Un}n< ~ and {Vn}n<~ 
(1.20) iff 

~ooy: E T with final e-state u w.r.t, to {U~}~<~ and {Vn}~<~. 
The statement of Soare's Extension Theorem is the same as the statement of 

the Modified Extension Theorem except the first two occurrences of "uniformly 0"- 
re'cursive" are replaced with "uniformly recursive". When one uses the proof in [7] 
or [8], one can add to the statement of the Extension Theorem that {0~}~e,o and 
{l)'~}~e ~ are uniformly recursive collections of r.e. sets and hence the automorphism 
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constructed is effective. However, this cannot be added, if one wishes to use the 
"tree of strategies" proof (see [1] or [2]). Since the array of sets constructed in the 
Modified Extension Theorem is an uniformly 0"-recursive collection of r.e. sets, the 
automorphism produced is an A?-antomorphism. 

The Modified Extension Theorem follows fairly easily from the Translation 
Theorem and the Extension Theorem. Assume {Tt}~<~, {7~J}~<~, {Ut }~,~<~, 

( f - t  }~,~<~o, {~rt .~ },~,~<~, and {vt,~ }~,~<~ are uniformly 0"-recursive enumerations 

of the infinite r.e. sets T t and 7 ~t, and the uniformly 0"-recursive collection of 
r.e. sets {Ut}~<~, {r~t}~<~ o, {~t}~<~, and {vt}~<~ satisfying the hypothesis 
of the Modified Extension Theorem and hence the Translation Theorem. Apply the 
Translation Theorem to get uniformly r.e. sets {U~}~<~o, {r~},~<~, {(r }~<~, and 

{V~}~<~, and uniformly recursive enumerations, {T~}~<~, {2fi~}~<~, {U~,~}~,~<~, 

{V~,~}~,~<~o, {(7~,s}~,~<~o, and {V~,~}~,~<~. Apply the Extension Theorem to the 
uniformly recursive enumeration of this uniformly recursive collection of r.e. sets 
to get the r.e. sets {(r } ~  and {l?~}~c ~. For the conclusion of the Modified 

Extension Theorem restrict the above collection to {( /~ }~E~ and { L ~ } ~ .  Using 
the Translation Theorem it is easy to see that this restricted collection satisfies the 
conclusion of the Modified Extension Theorem. 

2 The proof of the translation theorem 

This proof is very similar to the proofs of the extension theorems that can be found 
in [1] or [2]. We will build a "A3-branching" tree Tr and construct the desired sets 
by using this tree. We will define, by induction, Tr _C co <~. The construction of the 
desired sets will be viewed as two giant pinball machines, M and/1)/, laid out on top 
of the tree, Tr. Unless noted, everything for the (angled) hatted side is the dual. Let 
Greek letters o~,/3, ~5, 3`, and ~ range over co <~. Let c~- C c~ (=~ A, the empty node) 
be such that for all/3 C ch /3 C_ c~- and c~ N/3 be the least such that for all 3 ,̀ if 

C_/3 and "7 C_ ch then 3' C_ c~ N/3. 
As we define Tr, we also define a mechanism for determining f~, the approximation 

to the true path f (defined formally below) at stage s. (As usual, we will ensure that 
f = limjnff~.) Briefly, we will use the tree to provide us with indices for the sets 

{Ut}~<~, {r~t}~<~, {(rt}~<~, and {vt}n<~ and all the entry states. 

Each node c~ E Tr will be given four r.e. sets U t ,  V t ,  ~ t  and ~ t  (c~ will be 
given the indices for these sets, more below). If c~ C f then we will ensure that 
U t = U t ~ t  = ~,t ~-t = ~-Itl, V t = v t Each node o~ will build four 

r.e. sets U s, V~, ~-~ and V~. If c~ C f then we will ensure that U~ =* U t ,  

r ~ N T  =* r ~ t N 7  ~, ( r  N7 ~ =* U~ t GSfi, V~ =* V~ t. If c~ g2 f then we will 

ensure that U~\T =* ffc~\T =* V~\2? =* U~\T =* (3. This will allow us to meet 
Conditions 1.12 and 1.13. (We will assume all eight sets associated with A are all 
empty.) 

To get the desired uniformly recursive enumerations, we will take some recursive 
function 9 from w into Tr such that 9 is one to one, onto, and if 9(e) = c~ then for all 
/3 C c~, there is a j < e such that 9(J) =/3  (the existence of such a 9 is guaranteed 
by the Recursion Theorem). The enumeration will be the following: U~,~ = Ug(~),~, 
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l~, s = Vg(~),s, U~,, = ~(~), , ,  and V~,, = Vg(~),~. Since the sets we construct off the 

true path are finite outside T and ~ this enumeration will meet Conditions 1.12 and 
1.13 (more details later). 

Since the tree and the pinball machines will be interwoven with each other, we 
need a little general information about how the pinball machines will look and act 
before we can define Tr and the pinball machines. The surfaces of the two pinball 
machines will be the same, but M will only use balls (integers) from c~ and 2~r 
will only use balls (:~) from & (.almost everything on the hatted side will wear 
hats). 

The surfaces of the machines will be broken up into similar units, the a-unit on 
M and the &-unit on ~/ ,  for all c~ E Tr. The a-unit has one gate, G~. When a ball, 
z,  first arrives at the c~-unit it is placed above G~. When z passes by G~, we say 
z has been processed by G~. G~ will either hold z forever, use f~ to determine 
which/3-unit  x will enter next, where/3 is one of c~'s immediate successors or if for 
some s, f~ < c  c~ (defined formally below), x will be permanently removed from the 
a-unit. 

We will consider the sets T*, {U~t}~ETr, and {V~}~Err as subsets ofaJ and the sets 

T t ,  {~f~}aeTr' {V2}eeETr as subsets of  a3. We will build T, {U~}~sT~, and { L } a C T r  

as subsets of  a~ and T, {~f~}aETr, and {Vc~}a~Tr, as subsets of �9 If  z E TJ,  then at 
stage s + 1 we will remove z from the surface of M and place z E T,+ 1 (hence we 
will meet Condition 1.10). 

To define Tr C w<% M, and M we will proceed as follows: First A E Tr. (A is the 
empty string.) Now, given a E Tr, we must construct all the immediate successors 
of  a in Tr. As we proceed, we will also define a mechanism for determining f~. First 
we need the following definitions: 

Definition 2.1. A set of  e-states e is an a-entry set if la[ = e - 1. 

Definition 2.2. Let a E Tr and e = la] + 1. The a-entry set ~ is valid for a, e t and 

e z if for all e-states u, u E ~ iff the set D~* is infinite, where D ~  t is measured with 

respect to the enumeration {Xi,~}i_<~ and {Y/,~}i_<~, where X~,~ = U~,~, if i < e and 

a I i = / 3 ,  Xe, s = % 1 , 8  , ~i,8 = ~7;,S' i f /  < e and a I/3, and Y~,s = We2,s. 

There are only finitely many c~-entry sets. ~ is an &-entry set and ~ is valid for a, 
e 3 and e 4 are defined in the same manner. ~ will always denote an a-entry set and 

an &-entry set. 
Each node,/3 ~ A, in Tr will be given, in addition to the indices for four r.e. sets, 

a /3 - - en t ry  set and a /3 - - en t ry  set, ~ and ~;~. I f /3  = A, let e:~ = ~ = {(0, (0, ~)}. 
I f  X is a set of  states, let X I e = {u I e : u E X}.  Let {~i} be a recursive 

indexing of all entry sets. Let r and n be recursive functions such that for all 
i :~ j < n(a) ,  ff~(~,~) =~ ~(~, j )  and {~(~,0), ~r(c~,l) ,  " ' ' ,  ~r(c~,n(oe))} is the set of  
all a-entry sets. 

Defining a's immediate successors: Assume a E Tr and that ~ and @~ are defined. 
Let /3 = a ^ (el, e2, e3, e4, i, j ,  k). If  

(2.3) i _< n (a )  and if u E ~r(~,i), then u Vial ~ ~ ,  and 

(2.4) j _< r and if 19 C ~(~, j ) ,  then t~ I Io~l E ~,~, 
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then let ,8 E Tr, e~ = er(~,i), ~ = ~(~,j) ,  U~, s = Wel,S , YJ~,s = We2,s, 

(?~,~ = W~3,~, and V~,~ = Wr (We will later use ~ to help us find the approximation 
to the true path at stage s.) 

Before we continue we need the following definition and lemma. Cof is the index 
set such that x E Cof iff lYd x is finite. It is well known that Col  is Z3-complete (see 
[8]) and in fact it is very easy to show the following lemma (the reader who wishes 
to see the missing proof is directed to [1]) or [1]: 

L e m m a  2.5. I f  A c ~3 then there is a recursive function 9 such that 

x c A ~ ~!l~[W~(x,k) = c~]; 
and 

x f~ A r Vk[W~(x,k) =*  ~]. 

A mechanism for determining fs. Given an c~^(el,e2, e3,e4, i , j , k )  ~ Tr, let 
n = la[ + 1. Determining whether for all s, ut ,~ = W~,~ and for all q < e~, 

there exists an s such that Utn,s 4 = Wq,s, is recursive in 0~(A3). (First find an e 

such that for all s, U t~  = Wr since {ut,~}~,~<~ o is a uniformly 0"-recursive enu- 
meration such an e can be found using 0". Then ask, using 0", whether for all s, 
We, s = Wel,~ and for all q < e~, there exists an s such that W~,~ 4 Wq,~). In fact, 
for all a ^ (e~, e2, e3, e4, i, j,  l~) ~ Tr, this can be done uniformly in O" for any e~. 

Since for any 7 = c~^(el, e2, e~, e 4, i, j,  k) ~ Tr, for all/3 C_ 7 the enumerations of  

U~, VA, ~-~ and f'A are fixed, for any i, determining whether for all u ~ ~r(~,~), D T* 

is infinite (measured with respect to given enumerations of U~ and VA, for /3  C_ 7) 
can be done uniformly in 0". Therefore determining for all c~, whether ~(~, i)  is valid 
for c~, e~, and e 2 can be done uniformly in 0". 

Let R be the set such that (oz, el, e2, e3, e4, i , j )  E R if and only if 

= w ,,p AVq < + %,p,  

= A Vq < # % , p ,  

vs(gr ,  = A Vq < e3Bs((7 ,,  # % , p ,  

VS(Vr~t,s = We4,s ) A Vq < 64~8(Vr~t,s + %,s),  
i _< n(c~) and ~r(~,i) is valid for oz, el, and e2, and 

^ 

j < ~(c~) and ~(c~,j) is valid for o~, e3, and e 4 

(where m --- ]c~ I + 1). The R is A 3. For all c~ there exists at most one @1, e2, e3, e4, i, j )  
such that (c~,el,e2,e3,e4, i , j )  ~ R. Let /3  = c~^(el,e2, e3,e4, i , j , k )  C Tr. Now by 
Lemma 2.5 there is a recursive function 9 such that: 

(i) ~]]r 1,e2,e3,e4,/,j,k) = 03] iff (c~, el,  e2, e3, e4, i, j )  C R 
(ii) V]~[Wg(cx,e l,e2,ea,e4,/,j,h) =*  ~)] iff (oz, el,  e2, e3, e4,/ ,  j) r R. 

Let C o = Wg(c~,el,e2,e3,e4,i,j,k ). 

Definition 2.6. (The true path) Let f be a branch in Tr such that )~ C f and if c~ C_ f 
and there is a unique immediate successor/3 of c~ in Tr such that Cp = cJ then/3 C_ f .  
f is called the true path. 
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Claim 2.7. f is an infinite branch�9 

Proof. Let a E Tr such that a C f .  Let n = ]a[ + 1. Now there exists ei such that for 

all s, U~,~ = W~I,~, l)d,~ = W~2,~, U~,~ = We3,~, V~,~ -- W~4,~, for all q < e 1 there 

exists s such that U~,~ ~- Wq,~, for all q < e 2 there exists s such that 1)~,~ =~ Wq,~, 
for all q < e 3 there exists 8 such that U~,~ =~ Wq,~, and for all q < e 4 there exists s 

such that V,2,~ =~ Wq,~. There must exist i < n(a)  and j < g(a) ,  such that ~(~,i) is 

valid for a ,  e 1 and e 2 and ~§ is valid for a,  e 3 and e 4. Since Conditions (2.3) and 
(2.4) hold for i and j ,  we have that for all k, a ^ @1, e2, e3, e4, i, j, k) E Tr. Therefore 
there exists a unique k such that for/3 = a^(e l ,  e2, e3, e4, i , j ,  k) ~ Tr, C;~ = c~. Thus 

/3 _c f .  [] 

Hence if/3 = a ^ (el, e2, e3, e4, i, j ,  k) C f ,  then for all s, Ut~,~ = U~,~, fTd,~ = ~;,~, 

U~,~ = (;~,~, V~,~ = VA,~, ~ is valid for a,  e 1 and e 2 and ~ is valid for a,  e 3 and 
e 4. C~ is called the "chip set" o f /3  and is used to determine the approximation to 
the true path, f~, at stage s. During the course of  the construction we will ensure that 
f = l iminff~ measured with respect to <L (defined below). From now on we will 
restrict the range of the lower case Greek letters a , /3 ,  7, and ~5 to Tr. 

Definition 2.8. Let c~,/3 E Tr. 
(i) a is to the left o f / 3  (a  <L /3) if 

^ I I I I 3 7 C Tr[7^(el,e2, e3,e4, i , j , k )  C_ a A  7 (el,ez, e3,e4, i / , f , k ' )  C_/3 

A ( e l , e 2 ,  e3 ,  e 4 , % 3 , ] g )  < (e/ l ,  ! ! " " ' �9 . e2, e3 ' e4 ' ~ / f , k , ) ]  

(ii) a _</3 if a <L /3 or a C /3 (to the left or above). 
(iii) a < / 3  i f  a < / 3  and  a =~/3.  
(iv) a _<*/3 if a <L /3 or /3 _C a (to the left or below). 
(v) a < * / 3  if a < L / 3  or / 3 C a .  

(vi) Let h be an infinite branch in [Tr] we say h <L a ( a  < h, h <L a,  or 
h <* a)  if there exists a/3 C h such that/3 <L a (a  < /3, /3 <n  a,  or/3 <* a). 

We will now consider the action of the bails in our pinball machines. We say x is 
in the a-unit at stage s if x is above gate G~ at stage s. The a-region E a of M will 
be the collection of/3-units for a C/3.  We say x E E~,~ iff for some/3 _D a, x is 
in the/3-unit at stage s. We say x E E~,o~ iff there is some/3 _D a and some s such 

that for all t > s, x is in the /3-unit at stage t. We d e f i n e / ~ ,  /~a,~, a n d / ~ , ~  in a 
similar manner. 

We will associate with the balls a function, a(x,  s), into Tr such that a(x,  s) = a 
iff x is at the a-unit  at stage s. Hence if x C T~ then x is not in the pinball machine 
and thus a(x,  s) T. a(x,  s) will be partially determined by f~. If  a(x,  s) = a and 
f~ <L a,  we will set a ( x , s  + 1) = fs N a = /3 and we will place x above G~ 
(assuming we have not removed x from M at stage s + 1). In addition, if x < s, we 
will fl-reject x for all /3 such that fs <L fl- We will only allow x to move into a 
/3-unit if/3 _<* a(x,  s) and x is not/3-rejected. Hence, we will be able to ensure that 
f~ ~L a(x,  s + 1). Also we will only allow x to move to the a-unit  during or shortly 
after stages where c~ C f~. 
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We will meet the following requirements, F~, / ~ ,  Q~, Oa,  D,~,,, 
all o~. 

and/)~,~,, for 

If c~ <z, f ,  then E~ ,~  =*  (3 and U ~ \ T  : *  f ' ~ \ T  : *  (3. 

F~: If c~ C f ,  then E~,oo =*  2P, 

If f <L a ,  then E~,~o = 0 and U ~ \ T  =* V~\T  =*  (3. 

If z E U~,~+ 1 - U~,~ then either c~(z, s) _D/3 or :c E T s . 

If x E V~,~+l - 17"~,~ then c~(x, s) _D/3. 
Q~: 

If x E T~, then for all/3, x E U~, s iff x c UZ,~+I. 

If a (x ,  s ) =  a then for all/3 _C o~, z E Up, s iff z E U~,~ and z �9 1~,~ iff z �9 17"~,~. 

If D T is infinite then v �9 ~ .  

D~,~: ( a c f )  I f v � 9  a n d u =  <lc~l,cr, r )  then for a l l / 3_Da ,  

D T. is infinite, where u* is the Igl-state (I/31,~,~-) �9 

(In the requirement Da,v, D T and D r .  are measured with respect to {U~,s}~ctLs<~ 
and 

First we will show this will be enough to meet Conditions (1.10) through (1.15) 
of the Translation Theorem. Recall that 9 is a recursive function from w into Tr such 
that 9 is one to one, onto, and if g(e) = a then for all fl C a ,  there is a j < e such 
that g(j)  = /3 .  The enumeration will be the following: Ue, ~ = Ug(e),s, l~e, s = Vgte),s, 

(-~-~,~ = 5(~),s '  and E,~ = E(~),~" 

Recall that if x �9 TJ, then at stage s + 1 we will remove :c from the surface of 
M and place z �9 Ts+ 1 and hence a(:c, s + 1) T. Therefore Ts+ 1 = T 2 and by Q~, 
we have for all ~z, T "~ 1~ = (3. 

By F a and Qa and their duals, if 9@) r f ,  then Ue\T  : *  l~e\T : *  Ve\T  : *  
U~\T =*  (3 and if 9(e) C f then for n = I9(e)l, U�88 =*  U~, 9~ M 2P =*  9~ F? 7 ~, 

V~ =*  V~, and U~ F/2# =*  U~ N ~. Since f is infinite, (1.12) and (1.13) are met. 
Let v = (e, cT, r )  be an e-state. Let a be the greatest substring of f such 

that for some i < e, 9(i) = a.  To meet (1.14) and (1.15), we need to translate 
the e-state v measured with respect to {Ue,,~}~,_<~,~< ~ and {l?d,8}~,_<e,~< ~ to an 

Ic~]-state t(v) measured with respect to {U~,~}~c_~,~<~ and {V~,,}p_c~,~<~o. Let 
t(v) = @~l,u(cr),u(r)) where u(9) = {lilt : /3 _c c~ A g0") = /3 A j  �9 ~} (this is 
a well-defined Ic~l-state). Since we will meet the requirement F~, 

D 2 is infinite (measured with {U~,~}~,<_~,s< ~ and {l~,,~}e,_<~,,<~) 

(2.9) iff 

D ~ )  is infinite (measured with respect to {Ug,s}~c_~,s<~ and {l~;~,s}~c~,s<~o ) . 

Assume D r is infinite (measured as above). Then D#,)  is infinite (measured as 
T f above). Since we met D~,t(~), t(u) �9 ~ .  Thus Dt(~) is infinite (measured w.r.t, the 

given enumerations of U�88 and l~#). By the hypothesis of the Translation Theorem, 
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7~t there exists a [c~[-state u ~ _< t(u) such that D~, is infinite (measured w.r.t, the 

given enumerations of U~ and V~). Since c~ C f , u ~ E ff~. Now using the 
inverse of  the above procedure we can untranslate this I~l-state Y into a 9-1(O~) - 
state ~ = ~- l (u ' )  = (g-1(c~), 6-, ?). Let u* = (e,g~,?} (since 9-1(o0 < e, this is a 

well-defined state). Since u ~ < t(u), u* < u. Since we meet/3~,~ and (2.9), the set 

D T. is infinite (measured w.r.t. {U-7,~}-yc_~,~<~ and {VT,~}.y_c~,~<~o). Hence (1.15)is 
met. Similar reasoning, shows that (1.14) is met. 

We will now explore the action the c~-unit will take to meet the above requirements. 
The behavior of  the c~-unit depends on c~'s mode, m(c~, s). c~ has three modes. If  
re(o<, s) = off, then there are no balls in the o<-region and until o< changes its mode no 
balls will be placed in the c~-region. If  m(c~, s) = on then the c~-unit will maintain the 
balls (in terms of  the natural action to meet Q~) that are in the c~-unit. I f  m(c~, s) = a 
(active), then, in addition, to maintaining the balls in the c~-unit, c~ will actively seek 
out certain balls to ensure D~, ,  is met (c~ will pull balls it knows will enter T and 
place them in the proper state), f~ will play a role in determine m(c~, s). I f  f~ <Lc t ,  
then we will ensure that rrz(c~, s + 1) = off. Otherwise, we will only allow c~'s mode 
to change when c~ _c f~. 

When c~'s mode is active, the or-unit will try to verify the states in ~ and ~ are 
actually the valid entry states. If  x enters T at stage s from the c~-unit, we will mark 
the entry state of x on ~ .  Only after all the states in ~ and ~ are marked, will 
we allow ct to change its mode (assuming c~ <L f~ or c~ C f~). I f  all the states in 

ff~ and ~ are marked, we say that ~ ,  and ~ are completely marked. (Generally 
marks will be used to witness the occurrence of certain events.) 

During the construction we also will use a function p(c~, s). p(c~, s) will be used in 
two ways. First it will be used as a priority ordering (the lower the number the higher 
priority). If  m(c~, s) = a, m(/3, s) = a, and they are both actively seeking the same 
ball (to help met D~,~ or D~,~) then p ( - ,  s) will be used to determine which unit 
will receive the ball. p ( - ,  s) will also be used as a restraint. Unless ra(c~, s) = a and 
c~ "pulls" a ball into the c~-unit, we will only allow balls less than p(c~, s) to enter the 
c~-unit. We will be careful to ensure that p ( - ,  s) is a non-decreasing function. The 
following notation will be helpful. 

Definition 2.10. (i) The a-state o f x  at stage s, u~(x, s), is the Ic~l-state, ([al, ~r, ~-}, 
where cr = {I/31 : x ~ u~,~ A/3 _c c~} and ~-= {1~1: x ~ ?~,~ A/3 c_ ~}. 

(ii) The &-state ofc~ at stage s, ~a(~,s), is the &-state, (l&l,~r,~-}, where cr = 

{I/31 : ~ ~ @ ~  A/3 _c &} and ~- = {I/3t : :c ~ V~,~ A/3 C &}. (We will always use 
t~c~(~ , s) as sl~orthand for t)c~(;~ , s).) 

The construction 

The steps for 29/are the dual of those presented. 

Stage s = 0. Let T o = To = U~,o = V~,o = U-~,o = V~,o = 0. Let fo = A. Let 
a (x ,0 )  = A, re (a ,0)  = off, and p(a,  0) = - 1 ,  for all c~ E Tr and for all x. 

Stage s + 1. Unless otherwise explicitly defined all parameters remain the same 
from stage s to stage s + 1. Recall that i f /3  = c~^@l,e2, e3, e4, i , j ,k}  E Tr then 

U~,s+l = Wel,S+l,  ~f;,s+l = We2,s+l, ~f~,s+l = We3,s+l, and V~,.s+l ~ We4,.s+l �9 
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Step (1) (Enumeration into T.)  If  z C T]  - Tst_l, then remove x from the surface of 

M ,  place x E Ts+ 1, let a (x ,  s +  1) T, and if c~ = a (x ,  s) and for all t < s, c~ _<* a (x ,  t) 
(i.e. x has never been below a)  mark us(z  , s) on ~ (if us(z  , s) appears on ~ ) .  

Step (2) (Pulling to meet D~, , . )  Let z E TJ+ 1 - T].  I f  there exists an a such that 

(2.1) m(oL, s) = o~, 

(2.2) f8 ~L  Ct, and z > [ct I, 

(2.3) for all t < s, a <*  a (z ,  t), and z is not a-rejected, 

(2.4) if m(o~(x, s), s) = a then p(c~, s) < p(a(x,  s), s) (so a ~ c~(x, s)), 

(2.5) for all/3 with a M a(x ,  s) C_/3 C a if m(/3, s) = a then p (a ,  s) < p(/3, s), 

(2.6) L,~(z, s + 1) E ~ and ya(z,  s + 1) is unmarked, 

then let a be such that if 7 also satisfies (2.1) through (2.6) then either c~ <L 7 or 
p (a ,  s) < p(% s). Place x above G~ and let a (x ,  s + 1) = a .  We say c~ pulled z away 
from a(x,  s). (At the next stage x will enter T and ~,~(x, s + 1) E ~c~ will become 
marked.) 

Step (3) (Removing balls from units to the right of the true path.) If  x _< s + 1, 
then for al l /3  such that f~ <L /3, x is /3-rejected (x is permanently removed from 
the/3-unit). I f  x < s + 1, x ~ Ts+ 1, x has not been pulled away from a (x ,  s), and 
f8 <L a(X, S), then let a (x ,  s + 1) = a(x,  s) n fs and place x above Ga(x,s+l). 

Step (4) (Movement on the pinball machine due to f~.) Suppose /3 _C fs  (/3 =~ A), 
x ~ T~+ 1, Ifll -< x _< p(/3, s), x is not /3- re jec ted , /3-  = a (x ,  s), and x has not been 
pulled from a(x ,  s). Let a (x ,  s + 1) = / 3  and place z above G~(z,~+l). 

Step (5) (Enumeration into U3 and V~; meeting Q~.) For all a and for all x < s +  1, 
such that a = a (x ,  s + 1) (if a(x,  s + 1) was not defined by the above steps then let 

a(x,  s + 1) = a(x,  s)) then for al l /3 C a ,  x E UZ, ~ iff x E U~,~, mad x ~ l~,.~ iff 

x E f-~,~. For all x < s + 1, if x E T~, then for all/3, if x E U~, s then x E UZ,~+ 1. 

(Clearly this meets Q~.) 

The next two steps do not have duals. 

Step (6) (Action by fs and changing a ' s  mode.) 

Substep (6.1) (Turning off  the a-units to the right of  the true path.) If  fs <L a and 
re(a ,  s) = on or a, then let re (a ,  s + 1) = off and p(a, s + 1) = s + 1. 

Substep (6.2) (Changing from on or off to active.) If  c~ C f~ and m(ct, s) = off or 
on, let m(c~, s + l) = a, p (a ,  s + 1) = s + 1, and clear all the markers. 

Substep (6.3) (Changing from active to on.) If a _C f~, re(a ,  s) = a, and ~ and ~'c~ 
are fully marked, do the following: Let re(a, s + 1) = on and p(a, s + 1) = s + 1. 

Step (7) (Determining f~+l-) We will define "7i,~+i by induction, for i < 8 + 1. Let 
~/0,~+1 = % If  there is a stage ~ < s such that %,~+1 c f t ,  let ~ be the greatest 
such stage, otherwise let t = 0. If  there is an immediate successor /3 of  %,~+1 in 
Tr such that CZ,~+ 1 @ C~,t, then let ~/i+~,s+l be the <L-least  such/3. Otherwise let 
%+1,~+1 = %,~+1 (and therefore f~+~ -%,~+1) .  Let fs+l = %+1,~+~. 
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The verification 

The lemmas are dual for 29I. 
As we noted before, the true path f is an infinite branch in Tr. It is a straight 

forward argument to prove that f = l iminff~ (measured with respect to <L)" (For 
a very similar proof the reader is directed to [1] or [2].) Clearly Step 5 meets Q~. 
Hence if a (x ,  s) = a ,  then u~(x, s) = u iff u(Ic~[, x, s) = u measured with respect to 

{U;~,~}~c = and {17"Z,,}~c_~. 

Some Easy Facts about a ( - , - )  and m ( - , - ) .  For all x and for all s, we have 
x > la(x, s)l; fs ~L a(2C, 8 q- 1); if f~ <L a and s >_ x then x is a-rejected (unable 
to enter the a-unit) at stage s + 1; and if x is a-rejected at stage s then for all t > s, 
a(x,  t) < a (see Steps 2.2, 2.3, 3, and 4). For all x and s, either a(x ,  s +  1) <* a(x,  s); 
or a(x ,  s + 1) c a(x ,  s), x is a(x,  s)-rejected at stage s + 1 and f~ < z  a(x,  s) (see 
Step 2.3, 3, and 4). x is in the a-unit  at stage s iff a = a(x,  s) (by definition of 
a(x,  s) and Step 1). If  re(a,  s + 1) = off then for all x, a ~ a(x,  s + 1) and either 
re(a, s) = off or f~ <L a (see Steps 2.1, 3, 4, and 6.1). We will use these facts 
without too much reference in the next three lemmas. 

Lemma 2.11. For all k > - 1 ,  all a E Tr, if there is a stage s such that p(c~, s) = k, 
then there exists a stage ~ > s such that either 

(i) p(a ,  t) = t ~= k, or 
(ii) no new balls enter the a-region after stage f, no new balls enter the &-region 

after stage t and for all t 1 >_ ~, re(a, t l)  = re(a, O. 

Proof. By induction on k. p(a ,  s) is a non-decreasing function in s (see Substeps 
6.1, 6.2 and 6.3). If  for all s, p ( a , s )  = - 1  then for all s, m ( a , s )  = off and 
E~, 8 = / ~ , ,  = ~ (see Substeps 6.1, 6.2 and 6.3). For all a ~ Tr there does not exist 
a stage s such that p(a ,  s) = 0 (see Stage 0 and Step 6). Hence the lemma holds for 
k =  - 1 , 0 .  

By induction assume the lemma holds for U < k :~ - 1 , 0 .  For all a E Tr, if 
re(a,  s) =~ re(a,  s + 1) then p(a ,  s) :~ p(a ,  s + 1) = s + 1 (see Step 6). For all k > 1, 
for all a E Tr, there exists a stage s such that p(a ,  s) -- k iff p(a,  k) = k and if 
p(a ,  k) = k then either a c fk (see Substep 6.2 and 6.3) or re(a, k - 1) =~ off and 
fk <L a (see Substep 6.1). If  re(a,  k - 1) :~ off and fk <L a,  then re(a,  k) = off, 
p(a,  k) = /~ and either there exists a stage t > h such that p(a ,  t) > k or for all 
s >> k, re(a, s) = off, p(a,  s) = k, and E~,~ = / ) ~  s --- (~. Hence it only remains to 
show the lemma for a C f~ and k. We will do this by reverse induction for a C_ fk. 

But first we must note the following: I f /3  <* fk and m(fl, k) ~: off then there is 
stage .s 1 < k such that/3 C f~l and for all s 2, if s 1 < s 2 < k, f*2 ~L /3" Hence by 

the induction hypothesis for k there is a stage t 1 > k such that for all/3 <* fk  either 
(a) m(/3, t 1) = off (hence if/3 turns on at some later stage s 1, p(/3, sl) = s I > k), 
(b) p(/3, t l)  > h, or 
(c) no new balls enter the/3-region after stage t 1, no new balls enter the/3-region 

after stage tl,  and for all t 3 > f 1, m(/3, t 1) = m(/3, t3). 
Let c~ C_ fk. Assume that the lemma holds for all/3 such that a C/3 C_ fk. Assume 

for all t > k, p(a ,  t) = h. Hence for all ~ >_ k, rn(a, t) = re(a, k) ~: off and f t  ~L a 
(see Step 6). By the induction hypothesis for a there is a stage t 2 > t 1 such that the 
above Conditions (a), (b) and (c) hold for all/3 <* a and Q rather than t 1. 

Assume a = )~. Now for all t, )~ C_ ft .  Therefore, we may assume m()~, k) = a 
(if m()~,k) = on, then there exists a stage t > k such that m()~,t) = a; see 
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Step 6.2). For all x > k, if x ~ T t then a(x , t )  = A (see Step 4). Since T t  

is infinite, there exists an x > k and s 1 such that x E T2~ - T 2 ~ _  1. Since 

we are assuming all eight sets associated with A are empty, ux(x , t )=  (0,0,~). 
Hence at some later stage r both ~;~={(0,(0,~)} and ~a = { ( 0 , 0 , 0 ) }  are com- 
pletely marked. Therefore m ( A , r +  1) -- on and p(A, r  + 1) = r +  1 > k. A 
contradiction. 

Assume c~ ~ I .  New balls may only enter the c~-region through Step 2 or 4. Since 
for all t > t 2, p(c~, t) = k, after stage tz the action of Step 4 will be able to place 
only finitely many balls into the c~-region. Hence we must show Step 2 can only put 
finitely many balls into the c~-region. Let x be a ball which is placed in c~-region after 
stage t~ by Step 2. Say x enters the/3-unit at stage t~. 

First we will show that m(c~, k) = a. Since c~ ~ c~(x, t3 - 1),/3 must be active 
at stage t 3 (see Step 2.l). Therefore p(/3, t3) = k~ > k (this follows since/3 must 
satisfy either Ca), (b) or (c) and the choice of  t~). Thus o~ _C /3 C fk l  a n d  hence if 
m(o~,  ]~1 --  l )  = on then p(c~, k l )  : k 1 and m(c~, kl) : on. So m(c~, k) : a. 

Now since m(c~, k) = a, if Step 2 places a ball into the c~-region they must place 
that bail into the c~-unit (see 2.5). Since ~c~ is finite, Step 2 can only place finitely 
many balls into the c~-unit (see Steps 1 and 2.6). 

Therefore there exists a t > t 2 such that no new balls enter the c~-region after 
stage t. Similar reasoning shows there is a t such that no new balls enter the d-region 
after stage t. [] 

L e m m a  2.12. (i) I f  f <c c~, then for all x there exists sx such that for all s >_ s z, 
c~(x, s) < oz and for almost all x and for all s, c~ ~ c~(x, s). (Hence E~,o~ = 0 and 

u \T =* %\T =* 0.) 
(ii) I f  c~ <L f ,  then for almost all x and for all s, c~ <*  ~(x, s). (Hence 

E ~ , ~  = *  0 and U~\T  =*  V~\T = *  0.) 
(iii) For all x ~ T, c~(x) = lira c~(x, s) exists. 

s ---+ o ~  

Proof. We will use without reference many of the facts about c ~ ( - , - )  mentioned 
earlier. 

(i) Assume f <L c~. Let s x _> x be such that fs~ < c c t .  We have that for all 
s _> s~, c~(z, s) < c~. Since there exists a/3 C c~, such that C a is finite (otherwise c~ is 
on the true path), there exists an r such that for all s > r, c~ ~ fs  and m(c~, s) : off. 
Therefore, for all z > r, for all 8, c~ ~ c~(x, s). 

(ii) Assume c~ < c  f -  There exists a stage t such that for all s _> t, c~ <L f~ or 
f~ C c~. Hence for all s _> t and for all /3 <*  c~, p(/3, t) = pC~3, s). Therefore by the 
above lemma, there exists a t 1 > t such that no new balls enter the /3-region after 
stage t 1 and hence E;~,~ : *  0, for any/9 _<* c~. If  z > max{p(/3, t) "/3 _<* c~}, then 

for all 8, c~ <*  c~(x, s) (see Steps 3 and 4). Hence for almost all x, c~ <*  c~(x, s), for 
all 8. 

(iii) Given z ~ T do the following: Let c~ C f such that Ic~l = z. Let t _> x be 
such that for all s _> t, f~ <L c~. Hence for all s > t and for/3 < r  c~, p(/3, t) = p(/3, S). 
Now, there exists a t 1 > t such that c~ C fh  and for all/3 <L C~, no new balls enter 
the/3-region after stage t 1. If  a(x, t I) <C a, then for all s >_ t 1, a(x, s) = a(x, tl); 
otherwise since t 1 > x and a C ft~, for all/3 with c~ <L /9, X is /3-rejected at stage 
~i (see Step 3) andtherefore  fo~ all s > t 1, a (x ,  s) C c~(x, s + 1) C c~ (see Steps 2.2, 
2.3, 3 and 4). Hence lim c~(x, s) exists. [] 

8---+ r 
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Notation 2.13. Let/~;~ -- 0. For o~ C f with a ~= )~, let k s > k s_  be the least stage 
such that c~ C fk~ ,  

for a l l t > _ k a ,  f t  ~ L  C~, 

for all s, for all x > ha, if x ~ T~ then a(x,  s) g L  a,  and 

for all s, for all :~ >_ ks,  if :~ ~ T~ then &(:~, s) ~L a .  

Such a k a exists since c~ C f and the above lemma. If  x > k a, then for all 
/3 <L a,  X will not enter the/3-unit. If  x > h a and c~(x, s) D c~, then after stage s 
such an x cannot leave the c~-region unless x enters T and hence for all t > s, either 
c~(x, t) _D a or x E T t. If  x >_ k s is placed in U a or l ~  at stage s then a C_ c~(x, s) 
and x is always in the a-region after stage s. If  x >_ h a and x is not in the c~-region 
at stage s then u s_ ix, s) = ua(x , s). 

L e m m a  2.14. Assume c~ C f . Then 
(i) for  all s > k a, m(c~, s) Aft off ,  and 

(ii) for  all k >_ h a there exist s and t such that t > s >> k, m(c~,s) = a, and 
re(a, ~) = on. Hence lim p(a ,  s) = oc. 

8 ---+ 0~3 

Pro@ (i) Since c~ c_ fk~ and for all s >_ k s,  f8 ~ L  a, m(o~, ha) 4 off  (see Step 
6.2) and for all s >_ k a, m(c~, s) =~ off  (Step 6.1). 

(ii) By induction on c~. Since a C f ,  there exists s _> k such that m(c~, s) = a 
and p(c~, s) >_ 0 (see Step 9.2). If  c~ = A, then there exists a t > s such that (ii) holds 
(see the paragraph of  the proof of  Lemma 2.12 which begins "Assume a = ),."). 

Assume that a ~= A and for all ~3 ~ 8, m(o~,t3) = a. Hence for all t~ > s, 
p(c~,t3) = p(o~,s). By 2.12 and the induction hypothesis, there exists a stage 
t 1 > s >_ k s such that no bails greater than t 1 enter the c~-region or &-region after 
stage t 1 and for all/3 C a,  p(c~, t l)  < p(/3, tl). By the choice of h a and t 1, no balls 

greater than k a enter the /3-region or r for any /3 _<* c~. Therefore for all 
/3 <* c~,/3 cannot pull from any node "y after stage t 1. 

We will show that ~a,  and ~ are completely marked at stage t~. Let c~ = 

o~-^(el, e2, e3, e4, i, j ,  h). Let u C e a. Then for all s, U~,~ = W~1,~, ~'~,~ = We2,s , 

U~,~ = Wr V~,8 = W~4,~, and ~a is valid for c~, e 1 and e 2. Hence there must 

exist an x >_ t 2 and s 1 _> t 2 such that Ha(x, sl) = u, x E T~I - T21_ 1, and for all 

t 3 _< Sl, c~ <* c~(x, t3). Let s 1 be the least such stage (this determines the x). If u 
were unmarked at stage ~ ,  Step 2 will place x into a /3-unit at stage Sl for some 
/3 _<* c~. Hence ff~ is completely marked. We can show ~a is completely marked in 
a similar fashion. 

Since c~ C f ,  there exists a ~ >_ t 1 such that c~ C_ f t ,  re(a, t) = a and ~a and ~ 
are completely marked at stage t. Therefore re(a, t + 1) = on; p(a,  t + 1) = t + 1; 
and ~c~, and ~ are not marked at all at stage t + 1 (see Step 6.3). [] 

L e m m a  2.15. For all c~ C f ,  let/3 C f such that /3-  = ct. Then for  almost all x ~ T,  
/3 c_ c~(x). (Hence E Z , ~  =* 2r and the requirement F~ is met.) 

Proof. By induction on a.  By induction hypothesis, we know that for almost all 
x r T, c~ C c~(x). We also know that for all 7, if/3 <L 7 then for all x there exists a 
stage s such that for all t >_ s, c~(x, t) < c  3' and if ",/ <L /3 then for all x >_ k a and 
for all s, 7 <* c~(x, s) (see Lemma 2.12). Hence for all x ~ T, if x > k s then either 
c~ _D c~(x) or/3 C_ c~(x) (only Step 3 can move a ball upwards in the machine). 
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Assume there are infinitely many x ~ T such that a = a(x).  Fix x _> k~ such that 

x ~ T and a = a(x) .  Let s x be such that for all s > s x, a ( x , s )  = a.  Since 
/3 C f ,  x is not /3-rejected (see Step 3) and there exists a tx > s x such that 
/3 C ft~, and x < p(/3, tx) (by the above lemma). Step 4 will set a (x ,  tx + 1) = /3 ,  a 
contradiction. [] 

L e m m a  2.16. For all a C f ,  D~, ,  is met, 

Proof. By induction on a .  Let e = tot I. Assume u = (lal, or, ~-) C ~ .  By Lemma 
2.14, ~a ,  and ~ are completely marked and unmarked infinitely many times. We can 
mark u (on ~ )  at stage s if some ball x, x ~ T~+ 1 - T s and u~(x, s) = u and for all 
t _< s + 1, a _<* a (x ,  t). I f /3 D a then the I/3]-state of  x at stage s + 1 measured with 

respect to {U7,~}7<_/~,~< ~ and {l~7,~}.~_c/~,~< ~ is (I/31, ~, T). Since lim p (a ,  s) = oo, 

there are infinitely many such balls. Hence if u = (e, (7, 7) E ~ then D T is infinite, 
where u* is the ]/3t-state @3[, or, 7). 

Assume D f  is infinite (measured with respect to {U~,s}~_c~,~<~ and 

{V~,~}~c_~,.~<~). If  u I e - 1 = u, then, by induction, we are done. If  x > h~ then if 
a(x,  s) D_ ct then for all t > s a(x ,  t) D_ a ix can not move above a).  Assume that 
x c D T, x C T~+ t - T ~ ,  and x _> k~. By Q~, a c_ a(x ,  s), since u I e -  1 ~: u. There- 

u* ~t fore ua(x , s) = u and x E D Tt measured w.r.t, to { ~,s}~_<e,~<~ and { ~,s}~<~,s<~- 

Hence D Tt is infinite, by Q~, and u must be in ~ .  [] 

3 Maximal sets form an orbit 

Let MI and M 2 be maximal sets. We show that M 1 and M 2 are automorphic in the 
lattice of  recursively enumerable sets. This is a result of  Soare (see [7] or [8]) but 
our proof is different. 

Since M~ is maximal we know that either W~ (2 M i =*  w or W e C* M i and 
furthermore deciding whether W~ [2 M~ = *  w or W~ * M i can be done recursively 
in 0 ~. This and the fact that maximal sets are simple will be the only facts that we 
will use about maximal sets. As always we will consider & as a copy of ~v; integers 
from 05 will always wear hats; M 1 as a subset of  w; and M 2 as a subset of  &. 

Since we are using the Modified Extension Theorem it is enough to find uniformly 

O"-enumerations {Ml,~}s< ~, {M2,s}.s<w, {Un,s}n,s<w, {Vn,s}n,s<~, {Un,s}n,s<~, 
and {V~,~}~,~<~o of the (hopefully) uniformly 0"-recursive collection of r.e. sets 

M 1, M 2, {U~}~<~, {1~}~<~, {~-~}~<~, and {V~}n< ~ satisfying the following 
Conditions: 

(3.1) 
(3.2) 

(3.3) 

(3.4) 

(3.5) 

V, [M1 \ & = \ z& = o], 
(Vu) [ D ~  2 is infinite ~ (3u'  > u ) [ D J  1 is infinite]], and 

(Vu) [ D ~  ~ is infinite ~ (3u '  _< u ) [ D ~  2 is infinite]], 

i f n = 2 m t h e n U ~ = *  W m andV~ = 0 a n d  

i f n = 2 r a + l t h e n V ~ = * W  m a n d U ~ = 0 ,  

3 ~ x  E M 1 with final e-state u w.r.t, to {Un}~< ~ and {Vn}n<~ 

iff 

3~176 E M22 with final e-state u w.r.t, to {U~}~<~ and {V~}~<~. 
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where for all e-states u, D Mx is measured w.r.t. {U~,~}~_<~,~<~ and {1)~,~}~_<~,~<~ 

and D M2 is measured w.r.t. {U-~,~}n_<~,~<~ and {Vn,~}~_<~,.s< ~. (In this section M 1 

with play the role of  T and M 2 that of 2ft.) 
Before we construct this enumeration, we will show that this is enough to conclude 

that these sets are automorphic. First, by the Modified Extension Theorem, there is 
an uniformly 0"-recursive collection of r.e. sets {U-n}nc~o and {17~}~,o such that 

3~ E M 1 with final e-state u w.r.t, to {U~}~<~ and {Q~}~<~ 

(3.7) iff 

3~Y: E M 2 with final e-state u w.r.t, to {U~}~<~ and {V~}~<~. 

From (3.5), (3.6), and (3.7), we have that 

? ~ z  E co with final e-state u w.r.t, to {U~}~<~ and {I?~}~<~ 

(3.8) iff 
3~176 E ~5 with final e-state u w.r.t, to {~.,~}~<~ and {V~}n<~o. 

By (3.4), it is easy to see 

3~176 E c~ with final e-state u w.r.t, to {W~}~<~ and {92e+1}~<~ 
(3.9) iff 

3~176 c c~ with final e-state u w.r.t, to {U-2~}~<~ and {W~}e<~, 

and hence ~(We)  = U2e and ~5-1(W~) = I72~+1 defines an automorphism of  the lattice 
of the recursively enumerable sets modulo the finite sets such that ~(M1) =*  M 2. 
~b can be easily converted into an automorphism k~ of the lattice of the recursively 
enumerable sets such that ~P(M1) = M 2 (see [8, XV.2.7]). 

We will now focus on meeting (3.1) through (3.5). We will just pick any 
enumeration of M 1 and M 2. To meet (3.1), we will not enumerate integers into 
( T  (Q~) once they have entered M 2 (M1). Since we will meet (3.4), we can let 

= = 

A first (failed) attempt to meet (3.5) might go as follows: if  Uae U M  1 = *  co then let 

U-2~ = w, otherwise let U2~ = (3, and if V2e+l U M  2 =*  co then let V2~+1 = co, otherwise 

let V2~+1 = ~ (without choosing any enumeration of these sets). Since M 1 and 21//2 
are both maximal, this will meet (3.5) but as we will see this fails to meet the entry 
Conditions (3.2) and (3.3). Assume that W o U M 1 = co and we have the bad luck to 

enumerate U 0, 1~" 0, U0, and V 0 such that when we only consider 0-states D M1 is infinite 

(measured w.r.t, the bad enumeration of  U o and V0) iff l / E  {(0, !3, 0), (0, {0}, ~)} and 

Dffh is infinite iff u E { (0, {0}, 13) } (measured w.r.t, to the enumeration of U-0 and 
V0). Hence (3.3) is not met if u = (0, ~, 13). We mast  ensure that our entry states 
cohere; this will be done by carefully controlling the enumerations of the desired 
sets. 

We will do this by induction on e E w tJ { - 1  }. Assume that we have enumera- 

tions {U~,~)n_<~,s<~, {V~,s)~_<~,~<~, {U,.,~)n<~,s<~, and {V~,~),~_<e,s< ~ such that 

(3.6) 

and 
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Conditions (3.1) through (3.5) are satisfied when restricted to e-states and n < e. 
Furthermore assume that for all n _< e, we have sets ~n and Yl~ of n-states such that 

(3.10) u ~ ~ 

u ~ 9 ~  iff ~ x  

for all x ~ MI,  
(3.11) 

for all 2 ~ M2, 

i ff  D y  1 is infinite iff D y2 is infinite, and 

MI,  u(n, x) = u iff ~~176 ~ M2, ~(n, 2) = u iff 

if there exists a stage s such that u(n, x,  s) = u, 
then u(n, x)  = u 

if there exists a stage s such that ~(n, 2, s) = u, 
then 9(n, 2) = u 

(where D f f  I and u ( n , x , s )  are measured w.r.t. {U~,~}n_<~,,<~ and {Vn,,}~<~,,<~, 

u (n ,x )  w.r.t. {Un)~_<r and {Vn}n<~, D y 2  and P(n, 2, s) w.r.t. {U~,~}n<~,~<~ 

and {V~,s}n<r and ~(n ,2)  w.r.t. {Un}n<e and {Vn}n_<e)" If  n = --1, let 
~-1  = 9~-1 = {(--1, 9, 0}}. Given this we will define the enumeration of Ue+ I, 

Ve+I, U~+I, and Vr 1 as follows: 
Assume that e 4- 1 = 2m. Hence we must ensure that Ue+ ~ =* W m. For all 

s, let Ve+l,s = Ve+l,s = 9. Let ~e*+l = {(e 4- 1,or, w) " (e, cr, T) E ~ }  and 

~+i*  = { ( e +  1,~, ~-) : (e, or, ~-) E ~e}" There are two cases: either W m U m I =* co 
or W,~ c *  M 1. If  W ~  C* M1, we let ~ + 1  = ~ + 1 ,  ~ + 1  = ~ + 1 ,  U~+l,s+l = 

Wm,~+ 1 N M1, ~, and U~+1,~+I = 0. Assume W ~  U M 1 -=* co. For all x, 2 and 
stages s, do the following: Assume x r U~+ly  We will add x to U~+ 1 at stage 

s 4- 1 iff x E W~,~+ 1 and either x E Mx, ~ or u(e 4- 1 , x , s )  E ~ * ~  and for all 
* M1 u E ~ + 1 ,  [D~,~+I] -> x. Assume ~ r U'r We will add 2 to U-~+I at stage 

* * 3//2 s + 1 iff 2 r M2, ~, D(e+  1,2, s) E Yl~+ 1, and for all u E e~+l, IDa,,,+11 -> 2. (Where 

u ( e + l ,  x, s) and D y l  are measured w.r.t. {Un,s}n<_e+l,s<w and {~fln,s}n<e+l,s<w' and 

~(e 4- 1, 2, s) and D Ma are measured w.r.t. {0~,~}~_<~+I,~<~ and {V~,~}n_<~+l,~<~.) 

Let 91~+ 1 = {(e 4- 1, cr U {e 4- 1}, ~-) : (e, or, ~-) C 9l~} and ~eq-1 = ~e*+l ['j ~e-t-l" 
* D M1 and D ~  2 are infinite. Since 9~  is the By our enumeration if u c ~ + 1  then 

set of maximal e-states and M I and M 2 are maximal sets, 91e+ 1 is the set of  maximal 
(e 4- 1)-states and hence (3.11) holds. Since M l and M 2 are simple, if u ~ ~ + 1  
then D M1 and D M2 are infinite. Since for an integer x to be raised into a maximal 
(e 4- 1)-state, z must be in a maximal e-state, (3.10) holds for ~+1-  From (3.10) 
and (3.11) it is easy to see that the rest of the induction hypothesis holds. The case 
where e 4- 1 is odd is done in a similar fashion. Hence the enumeration of {U~}~<~, 

{l)~}n<~, {U~}~<~o, and {V~}~<~o constructed in this manner will satisfy Conditions 
(3.1) through (3.5). Conditions (3.10) and (3.11) are exactly the special properties of 
maximal sets which allow us to conclude that all maximal sets are automorphic. 

However,  there is still one remaining problem. Why is this enumeration an 
uniformly ff~-enumeration? It should be clear that there are functions g0, g~, 9e, 

and if3 recursive in 0 '~ such that for all e and s, Ue, s = W~0(e,, ), L,~ = I/V~(~,~), 

U~,~ = I/V~2(~,~ ), and V~,~ = Wg3(~,~). We need functions 9o, 9~, 92, and g3 recursive 

in 0" such that for all e and s, Ue, 8 = W~o(e),~, l~e, s = W~(e),~, U-e,~ = %2(e),8, and 
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rife, s = W93(e), s. To find such a function we must do the above construction on a tree 
and use the Recursion Theorem as follows: 

Let Tr = 2 <~. At c~ E Tr, we will construct r.e. sets U s,  1~, ~'a, and V~ and an 
enumeration of these sets (we build U s and its enumeration in a similar manner to the 
way we built U,+ 1 and its enumeration). The details of  this construction are as follows: 
We will do this by induction on c~ E Tr. If  a = A, let ~ = 91~ = { ( - 1 , 0 , 0 ) }  and 

for all s, U~,~ = V~,8 = ~'~,~ = V~,~ = ~). Assume that we have enumerations 

{U~,~}~c~,~< ~, {l)~,~}~c~,~< ~, {(r~,~}~c~,~< ~, and {V~,~}~c~,~< ~, and sets ~ 
and 91~ of [/3J-states. Assume that [c~[ - 1 = 2m. We will ensure that U s =*  W ~ .  

For all s, let l)~,~ = Vc~,s = ~. Let ~* = {([c~l,cr,~- ) : (e, cr,~-) E e ~ - }  and 

9l* = {(Ic~[,~r,~-) : (e, cr,~-) E 91~-}. There are two cases: either c~ = c~-^0 or 
c~ = c~-^l  (this will be used to code whether Wr,  tO M~ =*  w or W ~  C_* M1). If  

c~ = c~-^0, we let e~ = e*c~, 91o~ = 91~, U(x,s+l = Wm,s+l  ~ Ml,~, and ~'~,~+i = @" 
Assume oz = c~- ^ 1. For all z,  :~, and stages s, do the following: Assume z r U~,~. We 

will add z to U s at stage s + l  i f f x  E W~,~+ 1 and either m E M1, ~ or u(Ic~[, z,  s) E 91" 
M1 and for all u E e* ,  ]D,,~+ 1 1 >- m. Assume Sc r (/~,~. We will add ~ to 0~ at stage 

Ma 
~ +  1 i f f ~  ~ M2,~, ~ 91", and for all u E ~*, ]D~,~+it _> :~. (Where 

D M1 and u(Ic~l,z,s) are measured w.r.t. {U;~,~}~_c~,~< ~ and {V~}~c~ ,~<~ ,  and 

D M2 and ~(l~l ,~,  ~) are measured w.r.t, to {U~,~}~c~,~<~o and {V/~,~}/~c~,~<~o. ) Let 

= u (e ,  91 } and e~  = e *  U 91~. 
By the Recursion Theorem there are recursive functions h o, hi,  h2, and h 3 from 

Tr into co such that U~,~ = l/V~0(~), ~, 1~,~ = %1(c~),~ , go~,s - -  Wh2(c~),~, and 
V~,~ = Wt~(~),~. Using 0" choose an infinite branch f through Tr as follows: A C_ f ,  

if c~ C f and Ic~] = 2ra then c~^l C_ f iff W ~  to M 1 =*  co, and if c~ C_ f and 
= 2 ~  + 1 then c~^l c_ f iff W ~  U M 2 =*  co. If  c~ c f and = e + 1 then 

U~,~ = Wh0(~), ~, L ,~  = %~(~),~, U~,~ = Whz(~),~, and V~,~ = %3(~),  ~. Hence we 
have found an uniformly 0"-enumeration of {M~,~}~<~, {M2,~}~< ~, {U~,~}~,~<~, 

{V~,~}~,~<~, {Un,~}u,s<~, and {V~,~}n,s< ~ satisfying Conditions (3.1)through (3.5). 
Therefore M~ and M 2 are automorphic sets. 

4 Orbits of hyperhypersimple sets 

Let H 1 and H 2 be hyperhypersimple sets. Fix some enumeration of f ] l  and H 2. 
Recall from [8], that 2~*(H)  is the lattice of r.e. supersets of H modulo the finite 
sets. We say that ~P is a S3-isomorphism from ~ f * ( H I )  to ~c~*(H2) iff ~ is an 
isomorphism from S * ( H 1 )  to ~ * ( H 2 )  and there is a total S3-function h such that 
# ( W  e tO HI )  =*  (Wh(e) t2 H2). Assume that gt is a Z3-isomorphisms from Y * ( H 1 )  
to ~ * ( H 2 ) .  Hence 

3 ~ x  E H 1 with final e-state u w.r.t, to {Wn}~< ~ and {W h l(~)}n<~ 

(4.1) iff 

E ~  E H 2 with final e-state u w.r.t, to {Wh(~}~<~ and {W~}~<~o 

(as above we will consider :5 as a copy of cv; integers from & will always wear hats; 
H a as a subset of co; and H 2 as a subset of  &). Maass [6] showed that H 1 and H 2 
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are automorphic sets. We will now, using the above format, provide a new proof of  
this result. 

Before we continue with this proof we will quickly review some needed facts 
about hyperhypersimple sets and Z3-functions. If  h is total and a ~3-function, then 
h is recursive in 0". By Lachlan [5] (see (8, X.2.8]), we know that for all e there is 
a least % such that 

(4.2) WeNWn~ C H 1 and WeUWn U H  1 = w ,  

and similarly for H 2 for all e there is a least r such that 

(4.3) W ~ n W n C _ H  2 and W e U W ~ e U H 2 = a J  

(in this case think of W c and W ~  as subsets of  �9 In addition, we will make the 
further assumption that for all e, 

(4.4) W ~ N W ~ \ H I = ( 3  and W e N W a ~ \ H 2 = f )  

for the above enumeration of H 1 and H 2. Furthermore the functions 9(e) = % and 
~0(e) = ?~ are recursive in 0". 

We are using the Modified Extension Theorem to help construct the desired au- 
tomorphism. As above, it is enough to find uniformly 0"-enumerations {Hl,~}s< ~, 

{H2,s},<~, {U~,,}n,s<~, {gn,,}~,~<~, {U~,s}n,~<~, and {Vn,s}~,~< w of the uni- 

formly 0"-recursive collection of r.e. sets H 1, H 2, {U,~}n<~ o, {Vrz}n<~, {U-n}n<oo, 
and {Vn}~< ~ satisfying Conditions (3.1), (3.2), (3.3) and (3.4) and the following 
Condition: 

if n = 4 m  then U~ =*  W,~ and V~ = ~, 

i f n = 4 m + l t h e n U  n N H ~ - - * W g ( ~ ) N ~ a n d V  n = 0 ,  
(4.5) 

if n = 4 m  + 2 then V~ =*  W ~  and U~ = 0,  

if r~ = 4rn + 3 then V~ N ~ =*  W0(~) N H22 and U~ = (0. 

(where H 1 will play the role of M 1 and H 2 will play the role of  M 1 in the Conditions 
from Sect. 3). 

We will focus on meeting these Conditions. We will use the above enumerations 
of H 1 and H 2. To meet (3.1), we will not enumerate integers into (?~ (V'~) once they 

have entered H 2 (H1). Since we will meet (4.5), we can let Q4~ = V4~+1 = (r4~+2 = 

94 +3 = 
A first (again failed) attempt to meet (3.5) might go as follows: let U4~ =*  W e, 

g4e ~-* %(e)' U4e+l =* Wg(e ), ~/-4e+l =* Wo(h(e)), V4e+2 =* We, I~4e+2 =* %-'(e)' 
V4~+2 =*  V(~(~), and V4~+2 =*  l/V~(h-l(~)) (without choosing any enumeration of these 

sets). By Conditions (4.1), (4.2), and (4.3), for all e, Wh(g(~)) N H22 =*  Wo(h(~) ) N 

and W h ~(0(e)) N H~ = *  Wv(~ l(e)) N H-~ and therefore Condition (3.5) holds. But this 
may not meet the entry Conditions (3.2) and (3.3) (again we can produce an example 
as above). Hence, in addition to constructing these sets, we also must construct the 
enumerations of these sets. 

We will do this by induction on e E w U { - 1  }. Assume that we have enumerations 

{g'rhs}rz_<2e,s<co, {gr~,s}rz<2e,s<co, {Ur~,s}n_<2e,s<oa, and {gr~,s}n<_2e,s<w, such that 
Conditions (3.1), (3.2), (3.3), (3.5), and (4.5) are satisfied when restricted to rz and 
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n-states where n _< 2e. Furthermore assume that for all n < e, we have sets ~,~ 
~,~ of 2n-states such that Nn C ffr~ and 

(4.6) u ~ ~,~ iff Dff  ~ is infinite iff Dff  2 is infinite, 

(4.7) if ~~176 ~ H~,u(2n, x) = u or ~ : ~  ~ H2, P(2n,:~ ) = u then u ~ 9 ~ ,  and 

and 

if u E 9 ~  then 

for all x E H 1, if there exists a stage s such that u(2n, x, s) = u, 
(4.8) then u(2n, z)  = u, and 

for all 2 E H 2, if there exists a stage s such that ~(2n, ~, s) = u, 
then ~(2n, 2) = u 

(where Dffl and u(2n, x, s) are measured w.r.t. {Un,s}n<2e,s< w and {I)m,}n_<2e,s<~ o, 

u(2n, z)  w.r.t. {Un}n<2 e and {Vn}r~<2e, D~2 and ~(2n, Y:, s) w.r.t. {(7n,s}n<_2e,s< ~ 
and {V,~,s}~_<2~,s<~ o, and ~(2n,:~) w.r.t. {U,~}~<_ze and {1~,~}~_<2~). If n = - 1 ,  let 

Since Conditions (4.7) and (4.8) together are weaker than Condition (3.11), we 
will have more difficulties constructing our enumeration. These two Conditions are 
weaker than Condition (3.11), since we cannot tell using 0" whether W e N H--- 7 =*  0 
or not (that would imply that H 1 and H 2 are semi-low2). Given this we will define 

the enumeration of Ue+ 1, ~ + 1 '  ~'fe+l' Ve-t-l, Ue+2, ~ §  ~'~e-t-2' and Ve+ 2 as follows: 
H 1 Until otherwise noted ~u(2e + 2, x, s) and D~ are u(2e + 2, x, s) and Dffl 

measured w.r.t. {X,~,s},,_<ze+1,~< ~ and {Y~,s},~<_2r where for n <_ 2e, X~,~ = 

U,~,~ and Y,~,~ = l~,~,,, X2e+l,, = W,~,~, X2~+2,~ = Wg(,~),~, Y2e+t,~ = 0, and 
Yz~+2,s = ~; ' u (2e+2,  x) is u(2e+2,  x) measured w.r.t. {X,~}~_<2~+l and {Y~},~<2r 

where for n _< 2e, X~ = U~ and Y~ = V~, X2e+l = W,~, X2r = Wg(,~), Y2e+x = {0, 
H2 u(2e + 2, ~:, s) and Dff  2 measured and Yze+2 = 0; x 9 ( 2 e + 2 , : ~ , s )  and D .  are 

w.r.t. {Xms}n<2~+,,s<~, and {Y~,s}n<_2~+~,s<~o, where for n < 2e, Xn, s = Un,s and 
Y,~,, = V,~,s, X2~+1,~ = Wh(,~),~, X2e+2,, = Woth(~)),,, Y2~+1,~ = ~, and Y2e+2,, = q); 
'~(2e + 2, x) is u(2e + 2, x) measured w.r.t. {X,~},~<2r 1 and {Y~},~<_2e+l, where for 

n __< 2e, X~ = U,~ and Y~ = V,~, X2~+t = l/Vh(,~ ), X2e+2 = l/l~(h(ra)), Y2e+l = 0, 
and Y2e+2 = (~; Dffl and u(2e + 2, x, s) are measured w.r.C {U~,~},~_<z~+2,~<~ 

and {17",~,~},~_<2r u(2e + 2, z)  w.r.t. {U~},~<2e+2 and {rV~}~_<2e+2; Dff2 and 
f ~  9(2e + 2, a~, s) w.r.t, tU,~,~},~_<2~+2,~<~o and {V,~,~}~_<2~+a,~<~; and 9(2e + 2, ~) w.r.t. 

{Un}n<2~+t and {l~n}n_<2r 1. 
Assume that e + 1 = 4m. We will ensure that Ue+ ~ =*  W,~, Ue+l N H22 =*  

Wh(~) R H-22, Ue+2 rh H~ =* Wg(~) N N and U4e+2 n ~ =* W~(h(,~)) r-i H-2> For 

all s, let 1~+~,~ = V~+~,~ = ~+2,~ = V~+:,~ = ~. Using 0", let ~ + t  be the set 
\ H 1 of (2e + 2)-states such that u = ((2e + 2),~r,r} ~ ~e§  iff u I 2e ~ ~e ,  D~ 

is infinite, ~D~: is infinite, and either 2e + 1 ~ ~ or 2e + 2 ~ o (by Condition 
* = {(2e +2,~7, r} : ( 2e ,~ , r )  ~ ee} (4.4), {2e + 1,2e + 2} 5~ c~). Let e~+ 1 

, 
and ~e+~ = ~e+~ U ~e+l" For all x, :2 and stages s, do the following. Assume 
Z @ Ue+i,  s U Ue+2, s. We will add x to Ue+ 1 at stage s + 1 iff x E Win,s+ ~ and 
either z ~ H~, s or 'u(2e + 2, x , s  + 1) = u* ~ 9l+~,  and either for all u ~ ~e+l, 
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JOy,H1 1 ~ 38, or x E H i , s +  1 - H1, s and  fo r  al l  u E ~e~+l , IOvfi 1] ~ ]DvH.Ts ]. Add z 

to Ue+ 2 at stage s + 1 iff x E Wo(h(m)),s+ 1, ~(2e  + 2, x, s + 1) = u* E fie+l,  and 
H 1 _ either for all u E e~+l, ID,,s I > x or x E Hi,s+ 1 - H1, s and for all u E e~*+l, 

ID~H11 >_ iDff,~l . Assume :~ ~ U~+I,, U U~+2,s. Add :~ to (re+ 1 at stage s + 1 iff 

Y: E Wh(m),s+t, ~ D ( 2 e + 2 , ~ , s +  1) = u* C fib+l, and either for all u E ~e+l, 
H 2 _ IDuH,,21 ~__ X or  X E H2,s+ 1 --  //2, 8 and for all u E ee+ 1, IDu,~l > IDff.2,sl. Add 2: to 

D'~+2 at stage s + l  iff ~ C Wo(h(~)),,+ 1, ~u(2e+2, :~, s +  1) = u* ~ fi~+l, and either for 
H 2 _ ;r H 2 _ all u E ~ + 1 ,  ID~,~I > ~ o r ~  E H2,~+ a - / / 2 ,  ~ and for all u c ~+1 ,  ID~,~I > IDff*2,~] �9 

We will now show that this enumeration satisfies the desired properties. Clearly 
Condition (3.1) holds for 2e + 1 and 2e + 2. By Conditions (4.4) and (4.8), for all 
z (:~) if ~u(2e + 2, z, s) = u c fi~+l (~9(2e + 2, Y:, s) = u E fib+l) then for all t _> s, if 
z ~ H 1,t+1 (:~ r Hz,t+l) then 'u(2e + 2, z, t + 1) = u (~9(2e + 2, Y:, s) = u). Therefore 
Condition (4.8) holds for fi~+l. By induction on l, we can show for all u E ~ + l ,  

ID2,1 >- I and ID~ I >- l. Now using the fact that Condition (4.8) holds for 9l~+ 1, 
it is clear that Condition (4.6) holds for ff~+l and hence Conditions (3.2) and (3.3) 
hold for (2e + 2)-states. 

Assume X = {x : x E H~ and u(2e + 2, z)  = u = (2e + 2, a, ~-) } is infinite. We 
will show that ~ E H2,9(2e + 2, z) = u, u E fie+l,  and either 2e + 1 E (7 

or 2e + 2  C (7. By the induction hypothesis, ~ : ~  E H 2 ,9(2e ,z)  = u I 2e 
and u I 2e ~ fi~. There exists an infinite subset Y of  X such that for all 
z ~ Y,  ~u(2e+2,  z) = u* = ( 2 e + 2 , ~ r * , r * }  where u* I 2e = u I 2e. Since 
H~ C_ W ~  U Wh(~), 2e + 1 E (7* or 2 e + 2  ~ (7*. By the choice of h, 9, 

and ~, ~ ~ ~ ,  ~ (2e  + 2, x) = u*. Since H~ (Ha) is simple, ~r )~  g~r)H2s is 

infinite. Therefore u E fi~+t. Hence for all z r H~, if ~u(2e + 2, z) = u* then 

u(2e + 2, z)  = u* and for all 2 ~ H 2, if ~9(2e + 2, 2) = u* then 9(2e + 2, 2) = u*. 
So u* = u, ~ : ~  E ~ ,  9(2e + 2, z)  = u, and either 2e + 1 ~ cr or 2e + 2 ~ a. Using 
similar reasoning we can show that Conditions (3.5) and (4.7) hold for (2e + 2)-states 

and g e +  1 ----* Wra  , Ue+l  ~ H22 = *  Wh(m) ~ H22, Ur ["/Nil  -~-* % ( m )  ~ Hll and  

The case where e +  1 = 4 m + 2  is done in a similar fashion. Hence the enumeration 
of  {Un}~< ~, {1~}~<~, {U~}~<~, and {V~}~<~ constructed in this manner will 
satisfy Conditions (3.1), (3.2), (3.3), (3.5), and (4.5). As before to show that this 
enumeration is an uniformly 0"-enumeration we must translate the above construction 
to one done on a tree; a construction where we receive the needed information through 
the tree rather than using an oracle for 0". We use the Recursion Theorem to find 
the indices for the r.e. sets constructed at each node and an oracle for 0" to pick 
out a correct path through the tree and hence the indices witness the fact that our 
enumeration is an uniformly 0"-enumeration as desired. Other than defining a possible 
tree for this construction, we will not provide any details. 

We will define a tree Tr by induction. First A ~ Tr. Assume that ~ ~ Tr, when 
c~^(m0, m~, m2,m3,  f i) ,  where Ic~I = m 0, rn~ ~ w, and f i  is a set of  (2Ic~ I + 2)-states 

^ / / / / 
such that if c~ ~= .~ and ct = /3 (mo,r~r m 3 , f i '  } then 9l r 2]c~[ = f i ' .  When 
we translate the above inductive step to one done at some node of the tree, ra 0 will 
play the role of ra, ra~ will play the role of  h(ra), m a will play the role of 9(m), m~ 
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will play the role of  O(h(ra)), and N the role of ~e+l" The rest of  the details follow 
without much difficulty. 

Hence we have found uniformly 0"-enumerations {HI,~}~< ~, {H2,~}s<:o, 

{U,~,~}n,~<~, {177~,~},~,~<~ o, {U,~,~},~,~<~, and {V,~,~},~,~<~o satisfying Conditions (3.1), 
(3.2), (3.3), (3.5), and (4.5). Therefore H 1 and H a are automorphic sets. 

5 Conclusion 

We would like to point out that Downey and Stob's result [3] that the hemimaximal 
sets form an orbit and their work on orbits of Friedberg splittings of  hyperhypersimple 
sets can also be recast in this format. This follows in a natural fashion after the proof in 
Sects. 3 and 4. Much of  Downey and Stob's work [4] on e-splittings and e*-splittings 
(see [4] for definitions) and orbits can also be recast in this format. 

One of the aspects that all of  the proofs in this paper have in common is that they 
all use a tree to provide information recursive in 0", This is also similar to the/_13- 
automorphism techniques. In fact, one can combine the proof of  Soare's Extension 
Theorem, the Extension Theorem, and the proof in Sect. 3 (or Sect. 4) to produce a 
single tree argument showing that the maximal sets form an orbit (or Maass's result 
on the orbits of  hyperhypersimple sets). Such a proof may be shorter but we believe 
such a proof would hide the exact properties about maximal and hyperhypersimple 
sets which allowed us to prove these results. By proving these results in pieces, we 
believe that these properties are more obvious to the reader. 
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