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Summary. We state and prove the Translation Theorem. Then we apply the Trans-
lation Theorem to Soare’s Extension Theorem, weakening slightly the hypothesis to
yield a theorem we call the Modified Extension Theorem. We use this theorem to re-
prove several of the known results about orbits in the lattice of recursively enumerable
sets. It is hoped that these proofs are easier to understand than the old proofs.

0 Introduction

In this paper, we will reconsider some of the known results about orbits in the lattice
of recursively enumerable sets. For example, Soare showed that the maximal sets
[7] form an orbit in this lattice. The proof of this and other results about orbits
are similar in that they all construct an uniformly recursive enumeration satisfying
several complex automorphism conditions and then apply Soare’s Extension Theorem
to these enumerations io yield the desired automorphism. Here we will focus on the
recursiveness of these enumerations rather than the complex conditions they must
satisfy or the Extension Theorem itself.

We show that it is enough to construct uniformly 0”-recursive enumerations
satisfying these complex conditions rather than uniformly recursive enumerations.
{Xo s ns<w 18 an uniformly 0"'-recursive enumeration if there is a function h such
that b <p 0" and for all n, X,, ; = W}, ,. We do this by applying a new theorem,
the Translation Theorem, to translate these uniformly 0”-recursive enumerations into
uniformly recursive enumerations.

In Sect. 1, we state the Translation Theorem; the proof can be found in Sect. 2.
In Sect. 1, we use the Translation Theorem to prove a slightly different version
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of the Extension Theorem, the Modified Extension Theorem. The hypothesis of
the Modified Extension Theorem is weaker than the Extension Theorem in that
uniformly 0”-recursive enumerations can be used rather than just uniformly recursive
enumerations. However, the conclusion is weaker in the sense that it is not possible
to use the Modified Extension Theorem to construct effective automorphisms. We
do not consider this much of a weakness, since many of the applications of the
Extension Theorem do not construct effective automorphisms and to prove the
Extension Theorem using the new A;-automorphism techniques we also must remove
this possibility.

In the two remaining sections, we prove several results about orbits using uniformly
0" -recursive enumerations rather than uniformly recursive enumerations. In Sect. 3,
we reprove Soare’s result [7] that the maximal sets form an orbit. In Sect. 4, we
reprove Maass’s result {6] on the orbits of hyperhypersimple sets. We hope that these
new proofs are easier to understand. We assume that the reader is familiar with the
construction of automorphisms of the lattice of recursively enumerable sets and the
use of the Extension Theorem. For the unfamiliar reader, we suggest [8, XV.4].

1 The statement of the translation theorem and the modified extension theorem

Before we can state the Translation Theorem and the Modified Extension Theorem,
we need the following definitions. Only the first three definitions and Definition 1.6
are non-standard in the sense that they either do not appear in [8] or they are slightly
different from the similar definition in [8]; otherwise our notation is standard.

Definition 1.1. {X, }, _ is an uniformly recursive collection of r.e. sets if there is
a recursive function h and for all n, X, = W, ,y. {X,,},, is an uniformly 0"'-
recursive collection of r.e. sets if there is a function A such that h < 0” and for all
n, Xy, = Wiy { X6t n,s<w» 18 an uniformly 0"-recursive enumeration if there is a
function h such that A <7. 0" and for all n, X, . = Wy, ..
Definition 1.2. For any e, if we are given uniformly recursive enumerations
{Xms}nge,s@) and {ans}nge’Kw of r.e. sets {Xn}nge and {Yn}nge’ define the full
e-state of x at stage s, v(e, , s) with respect to (w.r.t.) {X,, .}, ., and {Y, .}, .,
to be the triple

vie,z,s) = (e,a(e,z,3),7(e, T, 9))

where
ole,z,8)={i:i<eAw € X, }

and
e, z,8)={i:i<eNnz €Y, }.

Definition 1.3. Given any collection of r.e. sets {X}, ., and {Y, }, _ , define the
final e-state of z, v(e, x) with respect to {X,}, . and {Y },_ to be the triple

Ve, z) = (e, o(e, x), (€, 7))

where
ole,z)={i:i<enzeX}

and
Tle,x)y={i:i<enzeY}.
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Definition 1.4. Given recursive enumerations {X_}
we define

) X\X={2:3s)(z € X, -Y))},

() X \NY =X\Y)nY.

and {Y,},_ of Xand Y,

s<w s<w

Definition 1.5. Given states v = (e, 0,7) and v/ = {¢/,0’,7'), we define
(i) v is an initial segment of V' (v X V) iff e <€, 0 =0'N{0,1, ..., e}, and
T=7n{0,1,..., e}
(i) The length of v, |V|, is e.
iy v=1 Teiff v < and |v| = e.
(iv) v covers V' (v > V) iffe=¢,0 Do’ and T C 7.

Definition 1.6. Assume {T,}, . is a uniformly recursive enumeration of 7', an
infinite r.e. set. For any e, if we are given uniformly recursive enumerations
{Xn,s}nge,s<w and {Yn,s}nge,s<w of r.e. sets {Xn}nge and {Yn}nge- For each
full e-state v, define the r.e. set

DI = {z: 3t such that z € T, - T, Av=uv(ex,t) wrt.
{Xn,s}nge,s<w and {Yn,s}nge,s<w}

If z € DT, we say that v is the entry e-state of z wrt {X, .}

{Y,, s}nces<w into T. We say that DI is measured w.rt. {X, }
{Yn,s}nge,s<w'

Now we have all the definitions needed to state the Translation Theorem and
Modified Extension Theorem. First an quick word about some of our notation. There
are two kinds of hats: angled hats (") and curved hats (7). The curves hats appear in the
Translation Theorem while the angled hats in the Modified Extension Theorem. This
notation seems natural since the sets X and X play similar roles in the corresponding
theorems.

and
and

n<e,s<w

n<e,s<w

The Translation Theorem. Assume {T]} ., {71} 0 {UL }rscor AV Iniscur
(O] 3 scwr and {V] },, oo, are uniformly 0" -recursive enumerations of the infinite
r.e. sets TT and T, and the uniformly 0" -recursive collection of r.e. sets {UQ;}
(V1Y e {UIY o and (V1Y satisfying the following Conditions:

n<w?

(1.7) va[TT N\ U =11\, Vi =0].
(1.8) DI is infinite = (3 > v) (DT is infinite]], and
(1.9) Vv) [DSJr is infinite = (' < v) [DST is infinite]] .

T + >
where for all e-states v, DL is measuredw.r.t. {U} }, oo o, and{VI Y . and
Pro. £ . ,
DI is measured w.rt. {U] }, <. oo, and {V] }, <o .o, Then there is a collection

of uniformly r.e. sets {U, V<o AV bncos {U. pew» and {V,.}.. ... and uniformly
recursive enumerati()ns’ {Ts}s<w’ {Ts}s<w’ {Un,s}n,s<w’ {Vn,s}n,s<w’ {ﬁn,s}n,s<w’
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and {V,,  }n s<.» Of these sets satisfying the following Conditions:

(1.10) T, =T and T,,, =17,

(1.11) v \NOU =T\ V, =0],

(1.12) for all n there is an e,, such that Ul = *U,,, i
VIUT=*V, nT, V] =*V, , and UinT=*0T, nT,

for all e, either U\T =* V\T *V\T =* U\T=*0
w13 (hence by Condition 1.11, V, =A . ?* (D),A or ]
there is an n such that U} =* U, VInT =*V,nT,
VI=*V,, and UinT=*T,nT,
(1.14) (VV)[DT is infinite = (' > v) [DZ; is infinite]], and
(1.15) (V) [DT is infinite = (3 < v)[ DY, is infinite]]

_ -
where for all e-states v, D,, is measured wr.t. {U, },co oo, and {V, ;}nce sco

1 f
and D] is measured w.r.t. {U, }n<e scw @AV, sInce scw

The Modified Extension Theorem. Assume {T.}, .. {T.}scwr {Unshnscor
{Vn,s}n’xw, (U, s}nscwr and {V,, },, oo, are uniformly 0"-recursive enumerations

of the infinite r.e. sets T and T and the uniformly 0" -recursive collection of r.e. sets
U, o WVatnew 1Untncw: and {V, }, ., satisfying the following Conditions:

(1.16) v[T\OU, =T\, V, =],
1.17) (Yu)[DY is infinite = (' > v) [D is infinite]], and
(1.18) (V) [Dg’ is infinite = (3" < V)[DT, is infinite]],

where for all e-states v, DY is measured w.rt. {U, } <o o @1d{V, }pce o<, and

DT is measured w.rt. {U, ,}r<c ocu ad {Vy, Ince oco- Then there is an uniformiy

0"-recursive collection of r.e. sets {U,},.c., and {V,, }.c., such that
(1.19) O.nt=*0,nT, V,nT=*V,NT, and
3%°g € T with final e-state v w.r.t. to {U,}, .., and {Vn}n<w

(1.20) iff

3%z ¢ T with final e-state v w.r.t. to {U,} and {V,_}

n<w nlw *

The statement of Soare’s Extension Theorem is the same as the statement of
the M0d1ﬁed Extension Theorem except the first two occurrences of “uniformly 0-
recursive” are replaced with “uniformly recursive”. When one uses the proof in {7]
or [8], one can add to the statement of the Extension Theorem that {U,}, .., and

{Vn}ne‘u are uniformly recursive collections of r.e. sets and hence the antomorphism
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constructed is effective. However, this cannot be added, if one wishes to use the
“tree of strategies” proof (see [1] or [2]). Since the array of sets constructed in the
Modified Extension Theorem is an uniformly 0”-recursive collection of r.e. sets, the
automorphism produced is an A;-automorphism.

The Modified Extension Theorem follows fairly easily from the Translation

Theorem and the Extension Theorem. Assume {77}, {T1},c.. {US Jn oo

{f/,is}n’s < {ﬁ};s}n’s <o and {V} } __  are uniformly 0”-recursive enumerations
of the infinite r.e. sets 7% and 77, and the uniformly 0”-recursive collection of
re. sets {US}, <o (Vitico, {U1},co, and {V,},_, satisfying the hypothesis
of the Modified Extension Theorem and hence the Translation Theorem. Apply the
Translation Theorem to get uniformly r.e. sets {U,,},<or {Vi}news 10, }ncws and

{V }new» and uniformly recursive enumerations, {7}, .,» {Ts}ecwr {Un.stnscw

{V, shnscw (U s ins<ws @4 {V, .}, s, Apply the Extension Theorem to the
umformly recursive enumeration of ‘this uniformly recursive collection of r.e. sets
to get the re. sets {U,},c., and {V,},c.. For the conclusion of the Modified

Extension Theorem restrict the above collection to {Uen }new and {\7€n }new- Using
the Translation Theorem it is easy to see that this restricted collection satisfies the

conclusion of the Modified Extension Theorem.

2 The proof of the translation theorem

This proof is very similar to the proofs of the extension theorems that can be found
in [1] or [2]. We will build a “A,-branching” tree Tr and construct the desired sets
by using this tree. We will define, by induction, 7+ C «<“. The construction of the
desired sets will be viewed as two giant pinball machines, M and M, laid out on top
of the tree, Tr. Unless noted, everything for the (angled) hatted side is the dual. Let
Greek letters «, 8, 6, «y, and & range over w<*. Let o~ C «a (£ A, the empty node)
be such that for all 8 C «, § C o~ and « N 3 be the least such that for all ~, if
vC Band vy C o, theny Cang.

As we define Tr, we also define a mechanism for determining £, the approximation
to the true path f (defined formally below) at stage s. (As usual , we will ensure that
f = liminf f_.) Briefly, we will use the tree to provide us with indices for the sets

(U e VI e {U1}, < and {V)]},, . and all the entry states.
Each node a € Tr will be given four re. sets Ul, VI, Ul and V! (« will be
given the indices for these sets, more below) If a C f then we will ensure that

UT = UI \, = VI B UJr = U| ‘, V[ I Each node « will build four

re. sets U, V U,and V. If « C f then we will ensure that U, =* U],

vnT =*VinT, U,nT "UTOTV *VJ.Ifag/ﬁfthenwewill
ensure that U \T =* V\T =* V. \T' =* U \T =* (. This will allow us to meet
Conditions 1.12 and 1.13. (We will assume all eight sets associated with A are all
empty.)

To get the desired uniformly recursive enumerations, we will take some recursive
function g from w into 7r such that g is one to one, onto, and if g(e) = « then for all
8 C a, there is a 7 < e such that g(j) = 3 (the existence of such a g is guaranteed

by the Recursion Theorem). The enumeration will be the following: U, , = U, ..
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VFe,s = qu(e),s’ Ue,s = gle),s? and Ve-z,s = Vg(e),s‘
true path are finite outside 7" and " this enumeration will meet Conditions 1.12 and
1.13 (more details later).

Since the tree and the pinball machines will be interwoven with each other, we
need a little general information about how the pinball machines will look and act
before we can define Tr and the pinball machines. The surfaces of the two pinball
machines will be the same, but M will only use balls (integers) from w and M
will only use balls (£) from & (almost everything on the hatted side will wear
hats).

The surfaces of the machines will be broken up into similar units, the a-unit on
M and the &-unit on M , for all o € Tr. The c-unit has one gate, G,,. When a ball,
x, first arrives at the -unit it is placed above GG,,. When x passes by G, we say
x has been processed by G . G, will either hold x forever, use f, to determine
which G-unit x will enter next, where 3 is one of «’s immediate successors or if for
some s, f, <; o (defined formally below),  will be permanently removed from the
a-unit.

We will consider the sets 71, {Ul},cp., and {VI}_ ;. as subsets of w and the sets
T {01} aers {VdYaer as subsets of &. We will build T, {U,},eq, and {V, }oers

as subsets of w and T, {U,},cpy» and {V,,} ,cp,. as subsets of &. If z € T, then at
stage s + 1 we will remove x from the surface of M and place x € T, ; (hence we
will meet Condition 1.10).

To define Tr C w<¥, M, and M we will proceed as follows: First A € Tr. (A is the
empty string.) Now, given o € Tr, we must construct all the immediate successors
of « in Tr. As we proceed, we will also define a mechanism for determining f,. First
we need the following definitions:

Since the sets we construct off the

Definition 2.1. A set of e-states € is an a-entry set if o] =e — 1.

Definition 2.2. Let o € Tr and e = |a| + 1. The a-entry set € is valid for «, e, and
e, if for all e-states v, v € € iff the set DT" is infinite, where DI is measured with
respect to the enumeration {X; .}, and {Y ;},., where X = U;s, if i <eand
ali=8X,,=W,,Y, =V ifi<eanda[f and¥, =W, s

er,s? B,s’ ey "

There are only finitely many a-entry sets. & is an &-entry set and & is valid for o,
ey and e, are defined in the same manner. € will always denote an «-entry set and
¢ an d-entry set.

Each node, 3 ¢ A, in Tr will be given, in addition to the indices for four r.e. sets,
a 3~ -entry set and a 3 -entry set, €4 and €. If 8 = ), let €, = &, = {(0,0,0)}.

If X is a set of states, let X | e ={v [ e:v € X}. Let {&,} be a recursive
indexing of all entry sets. Let r and n be recursive functions such that for all
iF 7 < @), Cppy F Crayy A {€0 00 Criatyr -0 Engayniay ) 1S the set of
all c-entry sets.

Defining o' s immediate successors: Assume o € Tr and that €_ and &, are defined.
Let 8= 0a"{(e,e5,€s5,64,%, 5, k). If

(2.3) i<n(a) andif v € & then v [ |a| € €,, and

(i)

2.4) j <) andif o€ & then 7 | |of € &,,

Ma,5)?
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then let § € Tr, €; = € @[3 = ézf(oz,j)’

UT,S =W, and Vg’s = W,, - (We will later use % to help us find the approximation
to the true path at stage s.)

Before we continue we need the following definition and lemma. Cof is the index
set such that x € Cof iff W, is finite. It is well known that Cof is X;-complete (see
[8]) and in fact it is very easy to show the following lemma (the reader who wishes
to see the missing proof is directed to [1]) or [1]:

T o1 —
r(e,1)? Uﬁ,s - Welvs’ V/iS - Wezas’

Lemma 2.5. If A € X, then there is a recursive function g such that

and ’

x ¢ A VEIW g . =" 0].

A mechanism for determining f,. Given an «’{e;,e,,es,€4,%,5,k) € Tr, let
n = la| + 1. Determining whether for all s, U}, = W, s and for all ¢ < e,
there exists an s such that ULS + W, is recursive in 0”(A,). (First find an e
such that for all s, U , = W, , since {U] .}, ., is a uniformly 0"-recursive enu-
meration such an e can be found using 0”. Then ask, using 0", whether for all s,
W, s =W, ,and for all ¢ < e, there exists an s such that W, + W, ) In fact,

for all " (e;, ey, €3, €41, J, k) € Tr, this can be done uniformly in 0” for any e,.
Since for any v = " (e;, €5, €5, €4,%, J, k) € Ir, for all 3 C - the enumerations of
Ug, Vg . ﬁg, and Vg are fixed, for any ¢, determining whether for all v € & DfT
is infinite (measured with respect to given enumerations of Ug and Vg, for 8 C )
can be done uniformly in 0”. Therefore determining for all a, whether €, ,, is valid

for e, e,, and e, can be done uniformly in 0”.
Let R be the set such that (o, e, e,,€5,€,,4,7) € R if and only if

r{o,t)?

VsUS, , =W, JAVg<eTsU] ,+W, ),
Vs(Vi . =W, JAVg<eds(V]  +W, ),
Vs(U], , = W,, ) AVg <e3s@) W, ),
Vs(V) =W, JAVg<eds(V), W, ),

i <n(e) and €, . is valid for o, e, and e,, and

j < fi(a)) and @f(ayj) is valid for o, e5, and ¢,

(where m = |a|+1). The R is A,. For all « there exists at most one (e, e,, €5, €4, 1, 7)
such that (&, e, e,,€5,€4,7,5) € R. Let 8 = a™(e],e,,€3,€4,%,7, k) € Tr. Now by
Lemma 2.5 there is a recursive function g such that:

@ KW yae) enenneni = @1 I {a,e1,65,e5,€4,0,5) € R
(ll) Vk[Wg =% (Z)] iff <Of,€1a€2763764>iaj> ¢ R.

(av,e1,62,€3,€4,8,5,k)
Let Cg = Wyise1,e0,63,00005,0)°

Definition 2.6. (The true path) Let f be a branch in 7r such that A C f andif « C f
and there is a unique immediate successor 8 of « in 7r such that Cy = w then 8 C f.
f is called the true path.
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Claim 2.7. f is an infinite branch.

Proof. Leta € Tr such that o« C f. Let n = |a|+ 1. Now there exists e, such that for
all s, U , =W, =W, LU =W, Vi, =W, , forall g <e there

er,s? €7,8° ' n,s e3,8° ' n,s €4,8°
exists s such that U :§= .50 for all g < e, there exists s such that VJr s FWoe
for all ¢ < e, there ex1sts s such that (7):’3 + W, . and for all ¢ < e, there exists s
such that VJ,S + W, s There must exist ¢ < n(a) and j < A(a), such that €, ; is
valid for ¢, e, and e, and @f(a, j is valid for «, e; and e4. Since Conditions (2.3) and
(2.4) hold for ¢ and j, we have that for all k, (e, €,, €5, €4,1, 4, k) € Tr. Therefore
there exists a unique & such that for 3 = o (e, e,, €3, €4,%,5, k) € Tr, Cs = w. Thus

pgef O
Henceif,@—of(el,e2,63,e4,i 4,k) C f.thenforall s, U} , = U Vi =V]

= Uﬁ o Vn s = V , €5 is valid for a, e; and ¢, and (’35 is valid for «, e; and
e4 CB is called the “chlp Set” of § and is used to determine the approximation to
the true path, f,, at stage s. During the course of the construction we will ensure that
f = liminf f, measured with respect to <; (defined below). From now on we will

restrict the range of the lower case Greek letters ¢, 3, v, and 6 to Tr.

Definition 2.8. Let o, 3 € Tr.
(i) « is to the left of S(a <, B) if

H’Y S T7[7A<€1a€2,€37€4,i717 k) g 8% /\’7’\<6176/256§,76:17i/7j/7 k/> g 5
A <€1,62,€3,64,i,j, k> < <€/1,€/2,€g,62,i/,j/,kl>]

(i) a < B if a <, B or a C G (to the left or above).

(i) a< B if <P and o+ 5.

(iv) a<* B if a<; B or 8 C a (to the left or below).

W a<*Bif a<; B or Ca.

(vi) Let h be an infinite branch in [Tr] we say h <, a(a < h, h <; «, or
h <* @) if there exists a § C h such that 8 <; a(@ < 8, B8 <; a, or § <* a).

We will now consider the action of the balls in our pinball machines. We say x is
in the a-unit at stage s if x is above gate G, at stage s. The a-region E,, of M will
be the collection of F-units for o C S. We say x € E, ; iff for some 82 a,xis
in the S-unit at stage s. We say = € F,  iff there is some 3 D « and some s such

that for all ¢ > s, z is in the S-unit at stage t. We define £, Ea - and Eo[,OO ina
similar manner.

We will associate with the balls a function, a(z, s), into Tr such that a(z, s) = «
iff z is at the o-unit at stage s. Hence if « € 7, then x is not in the pinball machine
and thus oz, s) T. afx,s) will be partially determined by f,. If a(z,s) = o and
fs <p a, we will set a(z,s+ 1) = f, N = F and we will place x above Gﬁ
(assuming we have not removed z from M at stage s + 1). In addition, if z < s, we
will B-reject = for all 8 such that f, <; §. We will only allow x to move into a
B-unit if B <* oz, s) and z is not B-rejected. Hence, we will be able to ensure that
fs £ a(z, s+ 1). Also we will only allow = to move to the c-unit during or shortly
after stages where o C f,.
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We will meet the following requirements, F,_, ?’a, Q> Qa, D , and Da o
all a.

If a < f, then E, =" 0 and U\T =* V,\T =*0.
F : IfaCf, then E,  =*T,

If f<,a thenE, —(DandU N\ =*V\T =

If z € Ug ;4 — Ug , then either afz,8) 2 forz €T .

0. Ifzre 175’8“ — ‘7,6,5 then afx,s) 2 3.
* If z € T, then for all B,z € U}, iff z € Uy,

If o(z,5) = o then forall 3 C o, z €Uy, iff z € UJ , and z €V iff z € V] .

If DT is infinite then v € €, .
D,,(@Cf) Ifve€,andv=ala,r)then forall 32 a,

DT, is infinite, where v* is the |8|-state (|3}, 0, 7).

(In the requirement D
and {V—y,s}'ygﬁ,s<w')

First we will show this will be enough to meet Conditions (1.10) through (1.15)
of the Translation Theorem. Recall that g is a recursive function from w into Tr such
that g is one to one, onto, and if g(e) = « then for all 5 C ¢, there is a j < e such
that g(j) = 0. The enumeration will be the following: U, 9,50 Ve’s = Vg(e> o
Ue,s = Ug(e) s and Ve,s = Vg(e),s‘

Recall that if z € TT then at stage s 4+ 1 we will remove x from the surface of
M and place z € T, and hence a(z,s + 1) T. Therefore T, = T and by Q.
we have for all n, T\, V,, = 0.

By F, and @, and their duals, if g(¢) ¢ f, then U\T =* V\T =* VAT =
UNT =* 0 and if g(e) C f then for n = |g(e)|, Ul =* U, VT NT=*V.nT,
VnT =* V., and (7); Nt =* U,n 7. Since f is infinite, (1.12) and (1.13) are met.

Let v = {e,0,7) be an e-state. Let o be the greatest substring of f such
that for some 7 < e, g(1) = «. To meet (1.14) and (1.15), we need to translate
the e-state v measured with respect 10 {Uy  tor<e s<0 ad {Vyr J}orce oy 10 an
|la-state ¢(v) measured with respect to {Up ;}scq <, and {V%S}BQQ,KW Let

t) = {ja|,u(o), uw(r)) where u(g) = {|B8] : B8 C aAg(j) = BAj € g} (this is
a well-defined |a-state). Since we will meet the requirement F,,

. DT and DT, are measured with respect to W, shycp scw

D is infinite (measured with {Uy ,}orce oor and {V Yorce scn)
2.9 iff
DY, is infinite (measured with respect to {Us .} gcn s ad {V5 }gca scw)-

Assume DT is infinite (measured as above). Then Dt(u) is infinite (measured as

above). Since we met D, 4, {(v) € €. Thus Dt(y) is infinite (measured w.r.t. the
given enumerations of U} and V7). By the hypothesis of the Translation Theorem,
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there exists a |a|-state v/ < #(v) such that DZ:T is infinite (measured w.r.t. the

given enumerations of U and V). Since o C f , v/ € €&,. Now using the
inverse of the above procedure we can untranslate this |o|-state 2’ into a g~ !(w)-
state 0 = 71(V)) = (g7 Hw), 5, 7). Let v* = (¢,6, ) (since g~ (a) < e, this is a
well-defined state). Since v/ < (), v* < v. Since we meet ﬁa,ﬁ and (2.9), the set

DL, is infinite (measured w.r.t. {U, .} . o, and {V, 1, . o,). Hence (1.15) is
met. Similar reasoning, shows that (1.14) is met.

We will now explore the action the a-unit will take to meet the above requirements.
The behavior of the a-unit depends on a’s mode, m(a, s). o has three modes. If
m(a, s) = off , then there are no balls in the a-region and until « changes its mode no
balls will be placed in the a-region. If m(«, s) = on then the a-unit will maintain the
balls (in terms of the natural action to meet ) that are in the c-unit. If m(c, s) = a
(active), then, in addition, to maintaining the balls in the a-unit, o will actively seek
out certain balls to ensure D, , is met (o will pull balls it knows will enter T" and
place them in the proper state). fs will play a role in determine m(c, s). If f, <; «,
then we will ensure that m(a, s + 1) = off . Otherwise, we will only allow o’s mode
to change when o C f,.

When «’s mode is active, the a-unit will try to verify the states in €, and @a are
actually the valid entry states. If x enters T' at stage s from the a-unit, we will mark
the entry state of 2 on &_,. Only after all the states in &€, and &_ are marked, will
we allow o to change its mode (assuming o <; f, or oo C f,). If all the states in
¢, and &, are marked, we say that €_, and &_ are completely marked. (Generally
marks will be used to witness the occurrence of certain events.)

During the construction we also will use a function p(c, s). p(«, s) will be used in
two ways. First it will be used as a priority ordering (the lower the number the higher
priority). If m(«a, s) = a, m(3,s) = a, and they are both actively seeking the same
ball (to help met D, , or Dy ) then p(—,s) will be used to determine which unit
w111 receive the ball. p(— s) wﬂl also be used as a restraint. Unless m(c, s) = a and

o “pulls” a ball into the a-unit, we will only allow balls less than p(«, s) to enter the
o-unit. We will be careful to ensure that p(—, s) is a non-decreasing function. The
following notation will be helpful.

Definition 2.10. (i) The a-state of x at stage 3, v, (z, s), is the |a|-state, (|, o, 7),
where 0 = {|8|: z € UT7S/\5§04} and7={|ﬁ|:mEVg75A6§a}.
(ii) The 6z state of & at stage s, D4(Z,s), is the a-state, (|&|,0,7), where 0 =

{I8] ABC a} and T ={|g] 1z € VT,S A B C &} (We will always use
D,(Z,5s) as sgorthand for Dy (2, s).)

The construction

The steps for M are the dual of those presented.
Stage s = 0. LetTO:TO:U% V.o 00 = a()_@ Let f, = A. Let
a(z,0) = A, m(a, 0) = off, and p(e, 0) = —1 for all & € Tr and for all z.

Stage s + 1. Unless otherwise explicitly defined all parameters remain the same
from stage s to stage s + 1. Recall that if 8 = o"{e|, e,,e5,€4,%,j, k) € Tr then

= i i i
Ub it = Wepoots Vioss = W anrs O o1 = Wey areand Vj = W, 0
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Step (1) (Enumeration into 7.) If x € Ts'T — T;‘_l, then remove x from the surface of

M,placez € T, |, leta(z,s+1) T,and if & = oz, s) and forall t < s, <* oz, )
(i.e. = has never been below o) mark v, (z,s) on €, (if v (z, s) appears on €_).
Step (2) (Pulling to meet D,, ,..) Let z € T) |

2.1) m(a, s) = a,

22) f, £, o, and z > |,

(2.3) forall t < 5, a <* a(z, t), and z is not a-rejected,

(2.4 if m(a(z, ), s) = a then p(a, ) < p(a(z, 8), 8) (0 & F oz, s)),

(2.5) for all 8 with a Nalz,s) C B C a if m(8,s) = a then p(e, s) < p(B, 5),

(2.6) v, (z,s+ 1) € €, and v,(z, s + 1) is unmarked,

— T If there exists an o such that

then let o be such that if -y also satisfies (2.1) through (2.6) then either o <, -y or
pla, 8) < p(, s). Place z above G, and let oz, s+ 1) = a. We say « pulled x away
from a(z, s). (At the next stage = will enter T" and v, (z,s + 1) € €, will become
marked.)

Step (3) (Removing balls from units to the right of the true path.) If z < s+ 1,
then for all 8 such that f, <, 0, x is S-rejected (z is permanently removed from
the B-unit). If © < s+ 1, z ¢ T, ;, = has not been pulled away from «(z, s), and

fs <p alz, ), then let a(x,s + 1) = a(z, s) N f, and place x above Ga(m7s+1).

Step (4) (Movement on the pinball machine due to f,.) Suppose 8 C f (8 + \),
¢ T, 18] <z < pB,9), x is not S-rejected, f~ = a(z, s), and = has not been

pulled from o(z, s). Let o(z, s + 1) = [ and place z above G, ...

Step (5) (Enumeration into U, and V. meeting ¢J,.) Forall o and for all z < s+1,
such that o = a(z, s + 1) (f oz, s + 1) was not defined by the above steps then let
a(z,s + 1) = a(z,s)) then forall 8 C a, z € Uy, iff z € U} ,, and z € V, , iff

zeV] Forallz <s+1,if z €T, then forall 3, if z € U}, then z € Uy ;.
(Clearly this meets () ,.)
The next two steps do not have duals.

Step (6) (Action by f; and changing o’s mode.)

Substep (6.1) (Turning off the a-units to the right of the true path.) If f, <, o and
m(a, s) = on or a, then let m(a, s+ 1) = off and p(a, 5+ 1) = s+ 1.

Substep (6.2) (Changing from on or off to active.) If o C f, and m(w, s) = off or
on, let m(e, s + 1) = a, pla, s+ 1) = s+ 1, and clear all the markers.

Substep (6.3) (Changing from active to on.) If o C f,, m(a, s) = a, and €_ and @a
are fully marked, do the following: Let m(e, s + 1) = on and p(er, s+ 1) = s+ 1.

Step (7) (Determining f,,,.) We will define Y;,s+1 Dy induction, for ¢ < s+ 1. Let
Yo,s+1 = 7v- If there is a stage ¢ < s such that v, .., C f,, let ¢ be the greatest
such stage, otherwise let ¢ = 0. If there is an immediate successor 3 of ~; ;. in
Tr such that Cg .,y + Cpg,, then let v, ., be the <;-least such 3. Otherwise let
Yig1,541 = V41 (and therefore fo =y, ). Let [ =Y,y o1
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The verification

The lemmas are dual for M.

As we noted before, the true path f is an infinite branch in Tr. It is a straight
forward argument to prove that f = liminf f, (measured with respect to <;). (For
a very similar proof the reader is directed to [1] or [2].) Clearly Step 5 meets .
Hence if o(z, 5) = «, then v (z, 8) = v iff v(|a|, z, 8) = v measured with respect to

{Uﬁ,s}ﬁga and {Vﬁ,s}ﬁga'

Some Easy Facts about o—,—) and m(—,—). For all x and for all s, we have
z > lodz, s)s f, £ alx,s+ 1) if f, <; o and s > x then z is a-rejected (unable
to enter the c-unit) at stage s+ 1; and if x is a-rejected at stage s then for all ¢ > s,
a(z,t) < o (see Steps 2.2, 2.3, 3, and 4). For all z and s, either a(z, s+1) <* a(z, s);
or ofz,s+ 1) C a(z, s), x is a(z, s)-rejected at stage s+ 1 and f, <; oz, s) (see
Step 2.3, 3, and 4). z is in the a-unit at stage s iff o = a(z,s) (by definition of
a(z, sy and Step 1). If m(e, s + 1) = off then for all z, & € a(z,s+ 1) and either
m(a, s) = off or f, <, a (see Steps 2.1, 3, 4, and 6.1). We will use these facts
without too much reference in the next three lemmas.

Lemma 2.11. For all k > —1, all a € Tr, if there is a stage s such that p(a, s) = k,
then there exists a stage t > s such that either

) pla,t)y=tFk, or

(ii) no new balls enter the a-region after stage t, no new balls enter the &-region
after stage t and for all t| > t, m(a,t;) = m(a,t).

Proof. By induction on k. p(a, s) is a non-decreasing function in s (see Substeps
6.1, 6.2 and 6.3). If for all s, p(e,s) = —1 then for all s, m(a,s) = off and
E,,= L, =0 (see Substeps 6.1, 6.2 and 6.3). For all « € Tr there does not exist

a stage s such that p(e, s) = 0 (see Stage 0 and Step 6). Hence the lemma holds for
k=-1,0.

By induction assume the lemma holds for &' < k& == —1,0. For all o € Tr, if
mle, s) = mfa, s+ 1) then p(a, s) £ p(a, s+ 1) = s+ 1 (see Step 6). For all k£ > 1,
for all o € Tr, there exists a stage s such that p(a, s) = k iff p(a, k) = k and if
pla, k) = k then either o C f, (see Substep 6.2 and 6.3) or m(a, k — 1) & off and
fi <p, o (see Substep 6.1). If m(a, k — 1) == off and f,, <; o, then m(a, k) = off,
pla, k) = k and either there exists a stage ¢ > k such that p(a,t) > k or for all
s >k, m(a,s) = off, pla,8) = k,and E,, , = Ea . = 0. Hence it only remains to
show the lemma for o C f, and k. We will do this by reverse induction for o C f,.

But first we must note the following: If 8 <* f, and m(3, k) =+ off then there is
stage s; < k such that § C f, and for all s,,if s, <5, <k, f, #; . Hence by
the induction hypothesis for k there is a stage ¢; > k such that for all 3 <* f, either

(a) m(B,t;) = off (hence if 3 turns on at some later stage s, p(8, 5;) = s; > k),

(b) p(B,t) > k. or

(c) no new balls enter the 3-region after stage ¢;, no new balls enter the B-region
after stage t,, and for all t; > ¢, m(03,t;) = m(B,{3).

Let oo C f,.. Assume that the lemma holds for all 5 such that « C 8 C f;.. Assume
forallt > k, p(a,t) = k. Hence for all t > k, m(c,t) = m(a, k) + off and f, £, «
(see Step 6). By the induction hypothesis for o there is a stage ¢, > ¢, such that the
above Conditions (a), (b) and (c) hold for all 8 <* « and ¢, rather than ¢,.

Assume o = A. Now for all £, A C f,. Therefore, we may assume m(\, k) = a
(if m(\ k) = on, then there exists a stage t > k such that m(\,t) = a; see
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Step 6.2). For all > k, if z ¢ T, then a(x,t) = A (see Step 4). Since T
is infinite, there exists an z > k and s, such that z € TST1 - TSTI_I. Since
we are assuming all eight sets associated with A are empty, v,(z,t)=/(0,0,0).
Hence at some later stage  both &, ={(0,0,0)} and &, ={(0,0,0)} are com-
pletely marked. Therefore m(A,r + 1) = on and p(A\, 7+ 1) = r+1 > k. A
contradiction.

Assume « = A. New balls may only enter the -region through Step 2 or 4. Since
for all ¢ > ¢,, p(a,t) = k, after stage t, the action of Step 4 will be able to place
only finitely many balls into the a-region. Hence we must show Step 2 can only put
finitely many balls into the a-region. Let x be a ball which is placed in a-region after
stage ¢, by Step 2. Say x enters the S-unit at stage %5.

First we will show that m(ca, k) = a. Since o € o(z,t; — 1), § must be active
at stage ?; (see Step 2.1). Therefore p(5,13) = k; > k (this follows since 3 must
satisfy either (a), (b) or (c) and the choice of £,). Thus o C 5 C fk1 and hence if
m(e, ky — 1) = on then p(a, k) = k; and m(w, k;) = on. So m(w, k) = a.

Now since m{a, k) = a, if Step 2 places a ball into the a-region they must place
that ball into the c-unit (see 2.5). Since €, is finite, Step 2 can only place finitely
many balls into the a-unit (see Steps 1 and 2.6).

Therefore there exists a £ > ¢, such that no new balls enter the c-region after
stage (. Similar reasoning shows there is a ¢ such that no new balls enter the &-region
after stage t. [J

Lemma 2.12. (i) If f < o, then for all x there exists s, such that for all s > 5_,
alx, 8) < a and for almost all x and for all s, « € a(z, s). (Hence Eyo= 0 and
UNT =* V\T =*0.)

(i) If @ <; f, then for almost all z and for all s, a <* ofz,s). (Hence
E, o =" 0and U\T =* V\T =* ()

(iii) Forallx ¢ T, a(z) = lim a(z,s) exists.

Proof. We will use without reference many of the facts about a(—, —) mentioned
earlier.

(i) Assume [ <, a. Let s, > x be such that f, <, «. We have that for all
8> s,, alx,s) < o. Since there exists a § C «, such that C; is finite (otherwise o is
on the true path), there exists an r such that for all s > r, € f, and m(«, s) = off.
Therefore, for all > r, for all s, a € a(x, s).

(ii) Assume o < f. There exists a stage ¢ such that for all s > ¢, o <, f, or
f. C . Hence for all s > ¢ and for all 3 <* a, p(8,1) = p(83, s). Therefore by the
above lemma, there exists a ¢, > ¢ such that no new balls enter the 3-region after
stage ¢, and hence Eg ., =* 0, for any 8 <* a. If z > max{p(3,t) : # <* a}, then
for all 5, @ <* a(z, s) (see Steps 3 and 4). Hence for almost all z, o <™ ofz, 5), for
all s.

(iii) Given = ¢ T do the following: Let o C f such that |a| = x. Let t > x be
such that forall s > ¢, f. £; o. Hence for all s > ¢ and for 4 <; «, p(5,t) = p(5, ).
Now, there exists a ¢; > t such that o C f, and for all § <, o, no new balls enter
the (-region after stage ¢;. If ax,?;) <, «, then for all s > tl, oz, 8) = o, ) );
otherwise since ¢; > z and a C f, , for all 8 with a < 8, = is (-rejected at stage
t; (see Step 3) and therefore for all 5>1,, alz,s) C alz,s+1) C o (see Steps 2.2,
2.3, 3 and 4). Hence Slingo oz, s) exists. [l



100 P. Cholak

Notation 2.13. Let k, = 0. For a C f with o == A, let k, > k,— be the least stage
such that aCfp ,

forallt > k,, f, £ «,
for all s, for all x > k,, if x ¢ T, then a(z,s) £, o, and
for all s, for all # > k_, if 2 ¢ T, then &%, s) £ .

Such a k, exists since @ C [f and the above lemma. If © > k_, then for all
8 < «, z will not enter the S-unit. If z > &, and a(z,s) D o, then after stage s
such an x cannot leave the a-region unless x enters 7' and hence for all ¢ > s, either
oz, t) Daorx € T,. If ¢ >k, is placed in U, or V, at stage s then & C oz, 5)
and z is always in the a-region after stage s. If z > k£, and z is not in the a-region
at stage s then v, (z,s) = v (z, s).

Lemma 2.14. Assume o C f. Then

() for all s > k,, m(c, s) % off, and

(i) for all k > k,, there exist s and t such that t > s > k, m(a, s) = a, and
m{a, t) = on. Hence slim pla, 8) = .

Proof. (i) Since a C f, and for all s > k,, f, &1 a, m(a, k,) =+ off (see Step
6.2) and for all s >k, m(c, s) F off (Step 6.1).

(i1) By induction on «. Since o« C f, there exists s > k such that m(a,s) = a
and p(a, s) > 0 (see Step 9.2). If o = A, then there exists a £ > s such that (ii) holds
(see the paragraph of the proof of Lemma 2.12 which begins “Assume o = A.”).

Assume that o £ A and for all ty > s, m(a,t;) = a. Hence for all ¢y > s,
pla,t3) = pla,s). By 2.12 and the induction hypothesis, there exists a stage
t; > s > k,, such that no balls greater than £; enter the a-region or &-region after
stage ¢, and for all 8 C a, p(a,t;) < p(8,t,). By the choice of &k, and %, no balls
greater than k, enter the B-region or [B-region for any 8 <* «. Therefore for all

B <* o, 3 cannot pull from any node  after stage i
We will show that €_, and @a are completely marked at stage t;. Let o =

a”" (e}, ey,€3,€4,0,5, k). Let v € €. Then for all s, Ul . =W, , VI =W,

e1,s’ 'n,s €3,8?

(7;:78 =W, Vie= W, s and €, is valid for o, e; and e,. Hence there must
exist an x > ¢, and s; > 1, such that v (z,5) = v, T € TJ] - TsT];p and for all

ty < sy, @ <* a(z,t;). Let s, be the least such stage (this determines the z). If v
were unmarked at stage t;, Step 2 will place = into a S-unit at stage s; for some
B <* a. Hence €& is completely marked. We can show @a is completely marked in
a similar fashion.

Since o C f, there exists a t > ¢, such that o C f,, m(c,t) = a and €_ and &_
are completely marked at stage ¢t. Therefore m{a,t + 1) = on; pla,t + 1) =t +1;
and €_, and &, are not marked at all at stage t 4 1 (see Step 6.3). O

Lemma 2.15. Forall o C f, let 3 C f such that 3~ = . Then for almost all x & T,
B C a(x). (Hence Eg =* T and the requirement F, is met.)

Proof. By induction on «. By induction hypothesis, we know that for almost all
z¢T, o € ofx). We also know that for all , if 8 < v then for all  there exists a
stage s such that for all £ > s, a(x,t) <; v and if v < 3 then for all x > k, and
for all s, v <* a(x, s) (see Lemma 2.12). Hence for all = ¢ T, if 2 > k,, then either
a D a(z) or § C alzx) (only Step 3 can move a ball upwards in the machine).
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Assume there are infinitely many z ¢ T such that & = a(z). Fix = > kg such that
z ¢ T and o = a(z). Let s, be such that for all s > s, oz, s) = a. Since
B C f, x is not B-rejected (see Step 3) and there exists a t, > s, such that
B C fy,.and z < p(B,t,) (by the above lemma). Step 4 will set a(z,t, + 1) =3, a
contradiction. [

Lemma 2.16. For all o C f, Da,y is met,

Proof. By induction on «. Let e = |a|. Assume v = (|a|,0,7) € €,. By Lemma
2.14, €, and @a are completely marked and unmarked infinitely many times. We can
mark v (on €) at stage s if some ball z, z € T, | —~ T, and v_(x, s) = v and for all
t<s+1,a<*axt) If 3D «then the |3]-state of x at stage s+ 1 measured with
respect t0 {U, . }cp.5<0 a4 {V,, }cp5<0 18 (18], 0,7). Since lim_p(a, 5) = oo,
there are infinitely many such balls. Hence if v = (e, 0, 7) € €, then DZ, is infinite,
where v* is the |3]-state (|8], 0, 7).

Assume DI is infinite (measured with respect to {Us stocas<w and
{Vﬁ,s}ﬂga,s<w)‘ If v [ e — 1 = v, then, by induction, we are done. If z > k_ then if
a(z,s) 2 « then for all £ > s a(x,t) O o (z can not move above «). Assume that
zeDl zeT, ~T, andz > k,. By Q,, a C oz, s), since v | e—1 = v. There-
fore v (z,s) =vandz € DET measured w.r.t. to {U] },c, e and {VI 3 o .

Hence DZT is infinite, by ¢}, and v must be in €_. [

3 Maximal sets form an orbit

Let M, and M, be maximal sets. We show that M, and M, are automorphic in the
lattice of recursively enumerable sets. This is a result of Soare (see [7] or [8]) but
our proof is different.

Since M, is maximal we know that either W, U M, =* w or W, C* M, and
furthermore deciding whether W, U M; =* w or W, C* M, can be done recursively
in 0”. This and the fact that maximal sets are simple will be the only facts that we
will use about maximal sets. As always we will consider & as a copy of w; integers
from @& will always wear hats; M, as a subset of w; and M, as a subset of ©.

Since we are using the Modified Extension Theorem it is enough to find uniformly

0" -enumerations {Mlys}s<w’ {M2,5}3<w= {Un,s}n,s<w’ {Vn,s}n,s<u’ {Un,s}n,s<w’
and {V,, .}, s<, of the (hopefully) uniformly 0"-recursive collection of r.e. sets

My, My, {U}ecos {Vitnews {00} nee, and {V,}, ., satisfying the following
Conditions:

G.1) Yn[M, N\ U, = M, \\V,, =01,
(3.2) (V) (D2 is infinite = (3’ > v)[D)" is infinite]], and
(3.3) (Vv) [Di”I is infinite = (/' < v) [folz is infinite]],

if n=2m then U, =* W, and V, = ) and
ifn=2m+1thenV, =* W, and U, =0,
3%z ¢ M, with final e-state v w.r.t. to {U,},,., and {V,}
3.5) iff
3%°4% € M, with final e-state v w.r.t. to {U}

(3.4)

nw n<w

and {V,_}

n<w n<w *
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where for all e-states v, D)1 is measured w.r.t. {U, ,}, <. ., and {Vn,s}nge,s<w
and D2 is measured w.r.t. {ﬁn,s}nge,s<w and {V,, ;}n<c s<, (In this section M,
with play the role of T and M, that of T".)

Before we construct this enumeration, we will show that this is enough to conclude
that these sets are automorphic. First, by the Modified Extension Theorem, there is

an uniformly 0”-recursive collection of r.e. sets {U, },c., and {V, } .., such that

necw
(3.6) U.NnM,=*U,0M, V,nM, ="V, M,
and
3%z € M, with final e-state v w.rt. to {U, },, ., and {V,}.

3.7 iff
3°% € M, with final e-state v w.r.t. to {U, },,.,, and {V,}

From (3.5), (3.6), and (3.7), we have that

n<w *

3%% € w with final e-state v w.r.t. to {U,}, . and {V,}
(3.8) iff
3°°% € & with final e-state v w.r.t. to {U, },,.,, and {V,,}

n<w

n<w *

By (3.4), it is easy to see

3%z € w with final e-state v w.r.t. to {W,}, ., and {‘72e+1}e<w
(3.9) iff

3°°% € & with final e-state v w.r.t. to {Uy }.,, and {W,}. ...,

e<w

and hence $(W,) = U,, and &~ '(W,) = V,, 41 defines an automorphism of the lattice
of the recursively enumerable sets modulo the finite sets such that ¢(M;) =* M,.
@ can be easily converted into an automorphism ¥ of the lattice of the recursively
enumerable sets such that ¥(M;) = M, (see [8, XV.2.7]).

We will now focus on meeting (3.1) through (3.5). We will just pick any
enumeration of M; and M,. To meet (3.1), we will not enumerate integers into
ﬁn (Vn) once they have entered M, (M,). Since we will meet (3.4), we can let
U2e+1 = ‘/26 = @

A first (failed) attempt to meet (3.5) might go as follows: if U,, UM, =™ w then let
U,, = w, otherwise let U, = ), and if Vaer1 UM, =¥ w then Jet ‘72e+1 = w, otherwise

let V,., = 0 (without choosing any enumeration of these sets). Since M, and M,
are both maximal, this will meet (3.5) but as we will see this fails to meet the entry

Conditions (3.2) and (3.3). Assume that W, U M, = w and we have the bad luck to
enumerate U, V,, U, and V;, such that when we only consider O-states D1 is infinite
(measured w.r.t. the bad enumeration of U, and Vp) iff v € {(0,0,0), (0, {0},0)} and

D2 s infinite iff v € {(0,{0},8)} (measured w.rt. to the enumeration of U, and
Vp). Hence (3.3) is not met if v = (0,0,3). We must ensure that our entry states
cohere; this will be done by carefully controlling the enumerations of the desired
sets.

We will do this by induction on e € w U {—1}. Assume that we have enumera-

tions {Un,s}nge,s<w’ {vn,s}nge,s<w’ {Un,s}nge,s<w’ and {Vn,s}71§e,s<w such that
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Conditions (3.1) through (3.5) are satisfied when restricted to e-states and n < e.
Furthermore assume that for all n < e, we have sets &_ and R, of n-states such that

(3.10) v € € iff DM is infinite iff D22 is infinite, and

v € R, iff 3%z € My, v(n,z) = v iff 3°% € M,, D(n, &) = v iff
for all € M, if there exists a stage s such that v(n, z, s) = v,
3.11) then v(n,x) = v

for all & € M,, if there exists a stage s such that ¥(n, £, s) = v,
then ¥(n, %) = v

(where D}t and v(n,z,s) are measured w.rt. {U, },<. ., and {Vn,s}n§6,5<w’
vn,@) wit {Upbne, and {V,},c., DY and D(n,2,5) wite {0, Juceocw
and {V, }n<e scw and D(n, &) wrt {U },c. and {V,}, ). Hn = —1, let
¢, =%R_, = {(-1,0,0)}. Given this we will define the enumeration of U,
VH, U +1» and V__ | as follows:

€
i Assume that ¢ + 1 = 2m. Hence we must ensure that U, ; =* W,,. For all
s, let Vorre = Vg = 0. Let €5, = {{e+ L,0,7) : (e,0,7) € €.} and
1 =1{(e+1,0,7): (e,0,7) € R, }. There are two cases: either W,, UM, =
or W C* M. If W, CF My, we let €.y = €e+1’ E)ﬁie+1 = 9{;1’ Uett,s01 =
Wipae1 VM, ,, and U,y = 0. Assume W, U M, w. For all z, & and
stages s, do the following: Assume z ¢ U,,, . We W111 add x to U, at stage

s+ 1iff z € W,, ,, and either = € Mls or v(e + 1,z,s) € R, and for all
vee€n,|D ys+1| > z. Assume £ ¢ U,y . We will add 2 to .., at stage
s+1iff 2 ¢ M, ,, 9(e+1,2,5) € RE, |, and for all v € €}, ID”H} > &. (Where
w(e+1,z,s) and D)1 are measured w.rt. {U,, .}, <ot1 o<, and { n,s}n§e+1,s<w’ and
D(e+1,%,s) and D2 are measured w.r.t. {U,, ,}rcor1ocw a0d {V, Frcoit scw?)
Let R, ={(e+1,0U{e+1},7):{e,0,7) ¢ R } and €, = ES  UR,,,.

By our enumeration if v € €%, then D} and D2 are infinite. Since fR, is the
set of maximal e-states and M, and M, are maximal sets, R, is the set of maximal
(e -+ 1)-states and hence (3.11) holds. Since M, and M, are simple, if v € R_,
then DM and D> are infinite. Since for an integer z to be raised into a maximal
(e + 1)-state, z must be in a maximal e-state, (3.10) holds for &€_,,. From (3.10)
and (3.11) it is easy to see that the rest of the induction hypothesis holds. The case
where e+ 1 is odd is done in a similar fashion. Hence the enumeration of {U }, ..
V) ew {0} e and {V,}, ., constructed in this manner will satisfy Conditions
(3.1) through (3.5). Conditions (3.10) and (3.11) are exactly the special properties of
maximal sets which allow us to conclude that all maximal sets are automorphic.

However, there is still one remaining problem. Why is this enumeration an
uniformly 0”-enumeration? It should be clear that there are functions g,, g, 95,

et

and g5 recursive in 0" such that for all e and s, U, ; = W . . ‘76,5 = Wy .50
f]e s = Wgz(e g and V, o = ga(e,s)- Ve need functions g,, g;, ¢,, and g; recursive

in 0” such that for all e and 8, Uy, V,.=W, Upo =W, (o). and

go(e) s? gi1(e),s? “e,s
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Ve,s = Wye),s- To find such a function we must do the above construction on a tree

and use the Recursion Theorem as follows: L

Let Tr = 2<“. At « € Tr, we will construct r.e. sets U,, V, U,, and V,, and an
enumeration of these sets (we build U, and its enumeration in a similar manner to the
way we built U,_ ;| and its enumeration). The details of this construction are as follows:
We will do this by 1nduct1on on E Tr.ifa=Alet €, =R, = {(-1,0,0)} and
for all s, U, , = U Vys = 0. Assume that we have enumerations
{U,@ s}ﬁCa s<w? {V,@, }BCa s<w? {Uﬂ, },BCa s<w> and {Vﬁ s}ﬁCa s<w»> and sets €,
and R4 of |f|-states. Assume that o] — 1 = 2m. We will ensure that U, =* W,
Forall s, let V,, =V, , = 0. Let €% = {{la],0,7) : {e,0,7) € Ga_} and
R = {{lal,0,7) : {e,0,7) € R,-}. There are two cases: either @ = o~ "0 or
a = o~ "1 (this will be used to code whether W, U M, =*wor W, C* M)). It
a=a""0, we let €, = €%, ?R =R%, Uy op1 =W o MM, and U, ., = 9.
Assume a = o~ 1. For all z, £, and stages s, do the following: Assume z ¢ U,, .. We
will add « to U, at stage s+1iff z € W, _,, and either z € M, _ or v(|al, z,s) € R,
and for all v € €, IDV 1l >z Assume & ¢ U, . We will add 2 to U, at stage
s+ 1iff & ¢ M, , (||, &,5) € R, and for all v € €, 1D”+1| > £. (Where
D} and v(jal, x, s) are measured w.rt. {Us }scy oc, and v 5.5} 8Ca,s<wr a0d
D} and 9(|ol, £, 5) are measured w.r.t. to {Ug Y gca acw a0d {Vg  Facq scn-) Let
Ro = {{la,oU{lal}, 7) i (e,0,7) € R,} and €, = ETUR,,

By the Recursion Theorem there are recursive functions h,, h;, h,, and A4 from
Tr into w such that U, . = W, V,, = Wh (e,s° u,, = Wi(e,s» and

o, a,s
Vi,s = Wh(a,s- Using 0" choose an infinite branch f through Tr as follows: A C f,
if o C f and || = 2m then o1 C fiff W,, UM, =* w, and if o C f and
|| = 2m +1 then o1 C f iff W,,, U M, *w.IfaCfand|oz|=e+1then
Ues = Who(a) s Ve s = Wh,(a) P Ue s = Whyw,s» and V, , = Wh3(a),s' Hence we
have found an uniformly 0”-enumeration of {M; .}, {M }scn {Upn st scws
{Vms}n,Kw, {ﬁn’s}n,xw, and {V,, . },, ., satisfying Conditions (3.1) through (3.5).
Therefore M, and M, are automorphic sets.

4 Orbits of hyperhypersimple sets

Let H, and H, be hyperhypersimple sets. Fix some enumeration of I, and H,.
Recall from [8], that Z*(H) is the lattice of r.e. supersets of H modulo the finite
sets. We say that ¥ is a X;-isomorphism from Z*(H,) to F*(H,) iff ¥ is an
isomorphism from £*(H,) to £™*(H,) and there is a total X;-function A such that
T(W, U Hy) =* (W, U H,). Assume that ¥ is a Xs-isomorphisms from %*(H,)
to £*(H,). Hence

3%z € H, with final e-state v w.r.t. to {W,}
4.1 iff
3% € H, with final e-state v w.rt. to {W,,}

n<w and {thl(n)}n«.u

and {W,,}

(as above we will consider @ as a copy of w; integers from & will always wear hats;
I, as a subset of w; and H, as a subset of @). Maass [6] showed that /7, and f,

n<w n<w
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are automorphic sets. We will now, using the above format, provide a new proof of
this result.

Before we continue with this proof we will quickly review some needed facts
about hyperhypersimple sets and X;-functions. If h is total and a X;-function, then
h is recursive in 0”. By Lachlan [5] (see (8, X.2.8]), we know that for all e there is
a least n, such that

4.2) W.nw, CH ad W, UW, UH =w,
and similarly for H, for all e there is a least #, such that
4.3) W.nw, CH, and W, UW, UH,=w

(in this case think of W, and W, as subsets of @). In addition, we will make the
further assumption that for all e,

4.4 W, NW, \H,=0 and W.NW, \H,=10

for the above enumeration of H, and H,. Furthermore the functions g(e) = n, and
g(e) = N, are recursive in 0",

We are using the Modified Extension Theorem to help construct the desired au-
tomorphism. As above, it is enough to find uniformly 0”-enumerations {1} ;},,.,

{H2,5}3<w’ {Un,s}n,s<w’ {Vn,s}n,s<w’ {Un,s}n,s<w’ and {Vn,s}n,s<w of the uni-
formly 0”-recursive collection of r.e. sets H;, Hy, {Upn}ncws (Vatnews {Untncws
and {V,,}, .., satisfying Conditions (3.1), (3.2), (3.3) and (3.4) and the following
Condition:

if n =4m then U, >kW and V, =0,

if n = 4m + 1 then U, N H, =* T/Vg(m)ﬁH1 and V,, =0,
ifn=4m+2then V,, =* W, and U, =0,

if n.=4m + 3 then V, N H, =* W, N H, and U, = 0.

4.5)

(where H, will play the role of M, and H, will play the role of M, in the Conditions
from Sect. 3).

We will focus on meeting these Conditions. We will use the above enumerations
of H, and H,. To meet (3.1), we will not enumerate integers into U (V ) once they
have entered I, (H,). Since we will meet (4.5), we can let V,, = V/,_ 1= =0, =
V;le+3 - @

A ﬁrst (again failed) attempt to meet (3.5) might go as follows: let U,, =* W_,

e

__* _k (7 _ ok
U Wh(e)’ U4e+1 - Wg(e)’ U4e+l - Wg(h(e))’ V;le+2 - We’ ‘/;16-5—2 - Wh"’l(e)’

YQE = Wg(e>, and V,, =" W n—1(ey (without choosing any enumeration of these

sets). By Conditions (4.1), (4.2), and (4.3), for all e, W ;e N Hy =" Wiy N H,
and Wy, 15 N H, =" W1 N Fl and therefore Condition (3.5) holds. But this
may not meet the entry Conditions (3.2) and (3.3) (again we can produce an example
as above). Hence, in addition to constructing these sets, we also must construct the
enumerations of these sets.

We will do this by induction on e cw U{—1}. Assume that we have enumerations

{ }n<2e s<w? { }n<2es <w? { }n<26 s<w? and { }n<2e s<w? such that
Cond1t1ons (3 1D, (3. 2) (3.3), (3.5), and (4.5) are satisfied when restricted to n and
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n-states where n < 2e. Furthermore assume that for all n < e, we have sets € and
R,, of 2n-states such that R, C € and

(4.6) v € €, iff D is infinite iff D2 is infinite,
4.7y if 3°z € H,v(2n,z) = v or 3°% € H,,5(2n, %) = v then v € R, and

if v € R, then
forall x € E, if there exists a stage s such that v(2n,z,s) = v,
(4.8) then v(2n, x) = v, and
for all € _FTZ, if there exists a stage s such that ¥(2n, £, s) = v,
then v(2n, &) = v

(where DI and v(2n, z, 5) are measured w.r.t. {U,, },, <o o<, a0d {A s Tn<2e s<awr
v(2n,z) wrt {U,}, <5, and v, Fn<oes DE2 and U(Zn ,s)y wat {0, stn<ae s<w
and {V,, . }coe s and 20, 2) wrt. {U, }, o and Vitncoe) I n = —1, let
QE—l = ER—l = {<—17®’ ®>}

Since Conditions (4.7) and (4.8) together are weaker than Condition (3.11), we
will have more difficulties constructing our enumeration. These two Conditions are
weaker than Condition (3.11), since we cannot tell using 0" whether W, N H, =* 0
or not (that would imply that H, and H, are semi-low,). Given this we will define
the enumeration of U, ., V.., U.,1, Vo1, Ue s, Ve+2, U, and V, ., as follows:

Until otherwise noted ‘v(2e + 2,x,8) and ‘DHl are v(2e + 2,z,s) and th
measured w.r.t. {X,, .}, 511 o, and { S}ﬂ<2€+1 s<w> Where forn < 2e, X =

Un,s and Yn, Vn 57 X2e+1,s - Wm EM X2e+2,s = W, g(m),s? Yr2e+l 3 @’ and
Yoera s = 0 'v(2e+2,2) is v(2e+2, ) measured w.rt. {X,, }nSZEJrl and {Y Fr<oests
where forn < 2e, X, = U, and Y, =V, X1 = W, Xpe s = W, gomy Yoerr = 0,
and Y., = 0; '0(2e + 2,%,5) and ‘D2 are v(2e + 2,£,s) and D2 measured
Wt { X, Fn<rett scw 30 {Y, Fncreit scws Where forn <2e, X, = U, and
Yoo =Yoo Xoer1s = Whimsr Xaer2,s = Wonimy o0 Yaerr,s = 0 and Yoo 15 o =6
V(Ze +2,7) is v(2e + 2, z) measured w.r.L. 1 X a<zers and {Y,,}, <50, where for

n<2e X, =U,and Y, =V, X001 = Wiy Xperz = Wynamyr Yoer1 = 0.
and Yy, ., = @ DIt and v(2e + 2,z,5) are measured w.rt. {U, 3}, cocin scw
and {Vn, }n<2e+2 s<w; I/(26 + 2 33) Ww.r.L. {U }nS2e+2 and {Vn}n§2e+2; DVHZ and
DQ2e+2,2,8) Wt {U, }n<oei s< AV, }hcaein scps and #Q2e+2,2) wort.

U, }n<2@+1 and {V }n<2@+1
Assume that e + 1 = 4m We will ensure that U et = W U N H, =

Wiy N Has Upig NV H = Wiy VH and Upery N Hy =% Wygnimy 0 H2 For

all s,let V, = Ve+1,s =V, = Vs, = 0. Using 0, let R, be the set

of (2e + 2)-states such that v = ((2e +2),0,7) € R, iff v [ 2e € R, ‘D
is infinite, ‘D2 is infinite, and either 2¢ + 1 € o or 2e + 2 € o (by Condition
4.4), {26+ it 26+2} Z o). Let €, = {(2e + 2,0,7) : (2e,0,7) € €.}
and €, = €7, UR,,,. For all =, & and stages s, do the following. Assume
z ¢ Upq U U€+23 We will add = to U+1 at stage s+ 1 iff x € W, ., and

either z € H, , or 'w(2e +2,z,s + 1) = v* € R, and either for all v € €},
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IDIi| > zorz € Hy,,, —H, and for all v € €%,,, [DH1| > DI | Add =

to U, at stage s + 1 iff & € Wy 0110 PRe+2,2,5+1) = v* € R, and

either for all v € €}, [DIl| >z orz € H ., — H,, and for all v € €F,,

DHi| > D™t | Assume £ ¢ O UlU,,,,. Add 2 to U, at stage s + 1 iff
v,8 v¥s etl,s e+2,s e+1

€ Wiy or1r \PQRe+2,8,5+ 1) = v* € R, and either for all v € &F |,

\Df| > & or & € Hy py — Hy, and for all v € €, [DI2] > |D2 |. Add 2 to
U, ., atstage s+1iff & € Wiy 1. V2642, 8, s4+1) = v* € R, |, and either for

allv € €, D2 > & or & € Hy ., —Hy, and forall v € €}, |DI2| > | D2 |.

We will now show that this enumeration satisfies the desired properties. Clearly
Condition (3.1) holds for 2e + 1 and 2e + 2. By Conditions (4.4) and (4.8), for all
() if‘'vQe+2,z,8)=v € Ry (PRe+2,8,5)=ve R, ) then forallt > s, if
x ¢ Hy @ ¢ H, ;) then ‘we+2,z,t+1) =v (PQe+2,2,s) = v). Therefore
Condition (4.8) holds for R_, . By induction on [, we can show for all v € &
|DF1| > 1 and |D[2| > 1. Now using the fact that Condition (4.8) holds for R, ;,
it is clear that Condition (4.6) holds for €_,, and hence Conditions (3.2) and (3.3)
hold for (2e + 2)-states.

Assume X = {z:z € H, and v(2e + 2,2) = v = (2 + 2,0,7)} is infinite. We
will show that 3°% € H,,0(2e + 2,z) = v, v € R, and either 2 +1 € o
or 2e + 2 € o. By the induction hypothesis, 3% € 172, ve,x) = v | 2e
and v [ 2e ¢ R, There exists an infinite subset ¥ of X such that for all
z €Y, v2e+2,2) = v* = (2e +2,6%,7) where v* | 2e = v | 2e. Since
H CW,uU Wimy» 26 +1 € o or 2¢ +2 € o*. By the choice of A, g,
and §, 3%°2 € H,, '0(2e + 2,2) = v*. Since H, (H,) is simple, ‘D1 (D) s
infinite. Therefore v € R, ;. Hence for all z ¢ H,, if ‘v(2e + 2,2) = v* then
v(2e +2,z) =v* and for all £ ¢ H,, if ‘D(2¢ + 2,2) = v* then 0(2e + 2, 2) = v*.
Sov* =v, I®°% € 172, UQe+2,z) =v, and either 2e+1 € o or 2e +2 € . Using
similar reasoning we can show that Conditions (3.5) and (4.7) hold for (2¢ -+ 2)-states
and U,y =* W, Upyy 0 Hy =% Wy N Hy, U,y NH, =* Wy 0 H, and
Usesn N Hy =" Wiy N I,

The case where e+1 = 4m+2 is done in a similar fashion. Hence the enumeration
of {U,}cw {Vatnew {Untpew, and {V,}, ., constructed in this manner will
satisfy Conditions (3.1), (3.2), (3.3), (3.5), and (4.5). As before to show that this
enumeration is an uniformly 0”-enumeration we must translate the above construction
to one done on a tree; a construction where we receive the needed information through
the tree rather than using an oracle for 0. We use the Recursion Theorem to find
the indices for the r.e. sets constructed at each node and an oracle for 0” to pick
out a correct path through the tree and hence the indices witness the fact that our
enumeration is an uniformly 0/’ -enumeration as desired. Other than defining a possible
tree for this construction, we will not provide any details.

We will define a tree Tr by induction. First A € Tr. Assume that o € Tr, when
a’{mgy, my, my, ms, R), where |a| = my, m,; € w, and R is a set of (2|a|+ 2)-states
such that if o # X and a = 3" (my, m}, mb, m§, R’) then R | 2|a| = R'. When
we translate the above inductive step to one done at some node of the tree, m, will
play the role of m, m, will play the role of h(m), m, will play the role of g(m), m,

e+1>
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will play the role of §(h(m)), and R the role of R, ;. The rest of the details follow
without much difficulty.
Hence we have found uniformly 0”-enumerations {H; .}, ., {Hj }ecus

{Up s tnscw Vnstnocw Unatnacw and {V, }, _, satisfying Conditions (3.1),
(3.2), (3.3), (3.5), and (4.5). Therefore H, and H, are automorphic sets.

5 Conclusion

We would like to point out that Downey and Stob’s result [3] that the hemimaximal
sets form an orbit and their work on orbits of Friedberg splittings of hyperhypersimple
sets can also be recast in this format. This follows in a natural fashion after the proof in
Sects. 3 and 4. Much of Downey and Stob’s work [4] on e-splittings and e*-splittings
(see [4] for definitions) and orbits can also be recast in this format.

One of the aspects that all of the proofs in this paper have in common is that they
all use a tree to provide information recursive in 9”. This is also similar to the A,-
automorphism techniques. In fact, one can combine the proof of Soare’s Extension
Theorem, the Extension Theorem, and the proof in Sect. 3 (or Sect. 4) to produce a
single tree argument showing that the maximal sets form an orbit (or Maass’s result
on the orbits of hyperhypersimple sets). Such a proof may be shorter but we believe
such a proof would hide the exact properties about maximal and hyperhypersimple
sets which allowed us to prove these results. By proving these results in pieces, we
believe that these properties are more obvious to the reader.
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