The translation theorem ${ }^{\star}$

Peter Cholak ${ }^{\star \star}$
University of Michigan, Department of Mathematics, Ann Arbor, MI 48109-1003, USA
Current address: Cornell University, Department of Mathematics, White Hall, Ithaca, NY 14853, USA

Received December 12, 1992/in revised form August 31, 1993

Summary. We state and prove the Translation Theorem. Then we apply the Translation Theorem to Soare's Extension Theorem, weakening slightly the hypothesis to yield a theorem we call the Modified Extension Theorem. We use this theorem to reprove several of the known results about orbits in the lattice of recursively enumerable sets. It is hoped that these proofs are easier to understand than the old proofs.

0 Introduction

In this paper, we will reconsider some of the known results about orbits in the lattice of recursively enumerable sets. For example, Soare showed that the maximal sets [7] form an orbit in this lattice. The proof of this and other results about orbits are similar in that they all construct an uniformly recursive enumeration satisfying several complex automorphism conditions and then apply Soare's Extension Theorem to these enumerations to yield the desired automorphism. Here we will focus on the recursiveness of these enumerations rather than the complex conditions they must satisfy or the Extension Theorem itself.

We show that it is enough to construct uniformly $\mathbf{0}^{\prime \prime}$-recursive enumerations satisfying these complex conditions rather than uniformly recursive enumerations. $\left\{X_{n, s}\right\}_{n, s<\omega}$ is an uniformly $\mathbf{0}^{\prime \prime}$-recursive enumeration if there is a function h such that $h \leq_{T} \mathbf{0}^{\prime \prime}$ and for all $n, X_{n, s}=W_{h(n), s}$. We do this by applying a new theorem, the Translation Theorem, to translate these uniformly $0^{\prime \prime}$-recursive enumerations into uniformly recursive enumerations.

In Sect. 1, we state the Translation Theorem; the proof can be found in Sect. 2. In Sect. 1, we use the Translation Theorem to prove a slightly different version

[^0]of the Extension Theorem, the Modified Extension Theorem. The hypothesis of the Modified Extension Theorem is weaker than the Extension Theorem in that uniformly $0^{\prime \prime}$-recursive enumerations can be used rather than just uniformly recursive enumerations. However, the conclusion is weaker in the sense that it is not possible to use the Modified Extension Theorem to construct effective automorphisms. We do not consider this much of a weakness, since many of the applications of the Extension Theorem do not construct effective automorphisms and to prove the Extension Theorem using the new Δ_{3}-automorphism techniques we also must remove this possibility.

In the two remaining sections, we prove several results about orbits using uniformly $0^{\prime \prime}$-recursive enumerations rather than uniformly recursive enumerations. In Sect. 3, we reprove Soare's result [7] that the maximal sets form an orbit. In Sect. 4, we reprove Maass's result [6] on the orbits of hyperhypersimple sets. We hope that these new proofs are easier to understand. We assume that the reader is familiar with the construction of automorphisms of the lattice of recursively enumerable sets and the use of the Extension Theorem. For the unfamiliar reader, we suggest [8, XV.4].

1 The statement of the translation theorem and the modified extension theorem

Before we can state the Translation Theorem and the Modified Extension Theorem, we need the following definitions. Only the first three definitions and Definition 1.6 are non-standard in the sense that they either do not appear in [8] or they are slightly different from the similar definition in [8]; otherwise our notation is standard.
Definition 1.1. $\left\{X_{n}\right\}_{n<\omega}$ is an uniformly recursive collection of r.e. sets if there is a recursive function h and for all $n, X_{n}=W_{h(n)}$. $\left\{X_{n}\right\}_{n<\omega}$ is an uniformly $\mathbf{0}^{\prime \prime}{ }^{-}$ recursive collection of r.e. sets if there is a function h such that $h \leq_{T} \mathbf{0}^{\prime \prime}$ and for all $n, X_{n}=W_{h(n)} .\left\{X_{n, s}\right\}_{n, s<\omega}$, is an uniformly $\mathbf{0}^{\prime \prime}$-recursive enumeration if there is a function h such that $h \leq_{T} \mathbf{0}^{\prime \prime}$ and for all $n, X_{n, s}=W_{h(n), s}$.
Definition 1.2. For any e, if we are given uniformly recursive enumerations $\left\{X_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq e, s<\omega}$ of r.e. sets $\left\{X_{n}\right\}_{n \leq e}$ and $\left\{Y_{n}\right\}_{n \leq e}$, define the full e-state of x at stage $s, \nu(e, x, s)$ with respect to (w.r.t.) $\left\{X_{n, s}\right\}_{n, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n, s<\omega}$ to be the triple

$$
\nu(e, x, s)=\langle e, \sigma(e, x, s), \tau(e, x, s)\rangle
$$

where

$$
\sigma(e, x, s)=\left\{i: i \leq e \wedge x \in X_{i, s}\right\}
$$

and

$$
\tau(e, x, s)=\left\{i: i \leq e \wedge x \in Y_{i, s}\right\}
$$

Definition 1.3. Given any collection of r.e. sets $\left\{X_{n}\right\}_{n<\omega}$ and $\left\{Y_{n}\right\}_{n<\omega}$, define the final e-state of $x, \nu(e, x)$ with respect to $\left\{X_{n}\right\}_{n<\omega}$ and $\left\{Y_{n}\right\}_{n<\omega}$ to be the triple

$$
\nu(e, x)=\langle e, \sigma(e, x), \tau(e, x)\rangle
$$

where

$$
\sigma(e, x)=\left\{i: i \leq e \wedge x \in X_{i}\right\}
$$

and

$$
\tau(e, x)=\left\{i: i \leq e \wedge x \in Y_{i}\right\}
$$

Definition 1.4. Given recursive enumerations $\left\{X_{s}\right\}_{s<\omega}$ and $\left\{Y_{s}\right\}_{s<\omega}$ of X and Y, we define
(i) $X \backslash X=\left\{z:(\exists s)\left(z \in X_{s}-Y_{s}\right)\right\}$,
(ii) $X \searrow Y=(X \backslash Y) \cap Y$.

Definition 1.5. Given states $\nu=\langle e, \sigma, \tau\rangle$ and $\nu^{\prime}=\left\langle e^{\prime}, \sigma^{\prime}, \tau^{\prime}\right\rangle$, we define
(i) ν is an initial segment of $\nu^{\prime}\left(\nu \preceq \nu^{\prime}\right)$ iff $e \leq e^{\prime}, \sigma=\sigma^{\prime} \cap\{0,1, \ldots, e\}$, and $\tau=\tau^{\prime} \cap\{0,1, \ldots, e\}$.
(ii) The length of $\nu,|\nu|$, is e.
(iii) $\nu=\nu^{\prime} \mid e$ iff $\nu \preceq \nu^{\prime}$ and $|\nu|=e$.
(iv) ν covers $\nu^{\prime}\left(\nu \geq \nu^{\prime}\right)$ iff $e=e^{\prime}, \sigma \supseteq \sigma^{\prime}$ and $\tau \subseteq \tau^{\prime}$.

Definition 1.6. Assume $\left\{T_{s}\right\}_{s<\omega}$ is a uniformly recursive enumeration of T, an infinite r.e. set. For any e, if we are given uniformly recursive enumerations $\left\{X_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq e, s<\omega}$ of r.e. sets $\left\{X_{n}\right\}_{n \leq e}$ and $\left\{Y_{n}\right\}_{n \leq e}$. For each full e-state ν, define the r.e. set

$$
\begin{aligned}
D_{\nu}^{T}= & \left\{x: \exists t \text { such that } x \in T_{t}-T_{t-1} \wedge \nu=\nu(e, x, t)\right. \text { w.r.t. } \\
& \left.\left\{X_{n, s}\right\}_{n \leq e, s<\omega} \text { and }\left\{Y_{n, s}\right\}_{n \leq e, s<\omega}\right\}
\end{aligned}
$$

If $x \in D_{\nu}^{T}$, we say that ν is the entry e-state of x w.r.t. $\left\{X_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq e, s<\omega}$ into T. We say that D_{ν}^{T} is measured w.r.t. $\left\{X_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq e, s<\omega}$.

Now we have all the definitions needed to state the Translation Theorem and Modified Extension Theorem. First an quick word about some of our notation. There are two kinds of hats: angled hats (${ }^{\wedge}$) and curved hats (${ }^{\wedge}$). The curves hats appear in the Translation Theorem while the angled hats in the Modified Extension Theorem. This notation seems natural since the sets \hat{X} and \hat{X} play similar roles in the corresponding theorems.
The Translation Theorem. Assume $\left\{T_{s}^{\dagger}\right\}_{s<\omega},\left\{\hat{T}_{s}^{\dagger}\right\}_{s<\omega},\left\{U_{n, s}^{\dagger}\right\}_{n, s<\omega},\left\{\hat{V}_{n, s}^{\dagger}\right\}_{n, s<\omega}$, $\left\{\hat{U}_{n, s}^{\dagger}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}^{\dagger}\right\}_{n, s<\omega}$ are uniformly $0^{\prime \prime}$-recursive enumerations of the infinite r.e. sets T^{\dagger} and \hat{T}^{\dagger}, and the uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $\left\{U_{n}^{\dagger}\right\}_{n<\omega}$, $\left\{\hat{V}_{n}^{\dagger}\right\}_{n<\omega},\left\{\hat{U}_{n}^{\dagger}\right\}_{n<\omega}$, and $\left\{V_{n}^{\dagger}\right\}_{n<\omega}$ satisfying the following Conditions:

$$
\begin{gather*}
\forall n\left[\hat{T}^{\dagger} \searrow \hat{U}_{n}^{\dagger}=T^{\dagger} \searrow \hat{V}_{n}^{\dagger}=\emptyset\right] \tag{1.7}\\
(\forall \nu)\left[D_{\nu}^{\hat{T}^{\dagger}} \text { is infinite } \Rightarrow\left(\exists \nu^{\prime} \geq \nu\right)\left[D_{\nu^{\prime}}^{T^{\dagger}} \text { is infinite }\right]\right] \text {, and } \tag{1.8}\\
(\forall \nu)\left[D_{\nu}^{T^{\dagger}} \text { is infinite } \Rightarrow\left(\exists \nu^{\prime} \leq \nu\right)\left[D_{\nu^{\prime}}^{\hat{T}^{\dagger}} \text { is infinite }\right]\right] . \tag{1.9}
\end{gather*}
$$

where for all e-states $\nu, D_{\nu}^{T^{\dagger}}$ is measured w.r.t. $\left\{U_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$ and $D_{\nu}^{\hat{T}^{\dagger}}$ is measured w.r.t. $\left\{\hat{U}_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$ and $\left\{V_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$. Then there is a collection of uniformly r.e. sets $\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$, and uniformly recursive enumerations, $\left\{T_{s}\right\}_{s<\omega},\left\{\hat{T}_{s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega},\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$,
and $\left\{V_{n, s}\right\}_{n, s<\omega}$, of these sets satisfying the following Conditions:

$$
\begin{align*}
& T_{s+1}=T_{s}^{\dagger} \text { and } \hat{T}_{s+1}=\hat{T}_{s}^{\dagger} \tag{1.10}\\
& \forall n\left[\hat{T} \searrow \hat{U}_{n}=T \searrow \widehat{V}_{n}=\emptyset\right] \tag{1.11}
\end{align*}
$$

for all n there is an e_{n} such that $U_{n}^{\dagger}={ }^{*} U_{e_{n}}$,

$$
\begin{equation*}
\hat{V}_{n}^{\dagger} \cup \bar{T}={ }^{*} \hat{V}_{e_{n}} \cap \bar{T}, V_{n}^{\dagger}={ }^{*} V_{e_{n}}, \text { and } \hat{U}_{n}^{\dagger} \cap \overline{\hat{T}}={ }^{*} \hat{U}_{e_{n}} \cap \overline{\hat{T}}, \tag{1.12}
\end{equation*}
$$ for all e, either $U_{e} \backslash T={ }^{*} \hat{V}_{e} \backslash T={ }^{*} V_{e} \backslash \hat{T}={ }^{*} \hat{U}_{e} \backslash \hat{T}={ }^{*} \emptyset$ (hence by Condition 1.11, $\hat{V}_{e}=^{*} \hat{U}_{e}={ }^{*} \emptyset$), or there is an n such that $U_{n}^{\dagger}={ }^{*} U_{e}, \hat{V}_{n}^{\dagger} \cap \bar{T}={ }^{*} \hat{V}_{e} \cap \bar{T}$,

$$
\begin{equation*}
V_{n}^{\dagger}={ }^{*} V_{e}, \text { and } \hat{U}_{n}^{\dagger} \cap \overline{\hat{T}}={ }^{*} \hat{U}_{e} \cap \overline{\hat{T}} \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
(\forall \nu)\left[D_{\nu}^{\hat{T}} \text { is infinite } \Rightarrow\left(\exists \nu^{\prime} \geq \nu\right)\left[D_{\nu^{\prime}}^{T} \text { is infinite }\right]\right], \text { and } \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
(\forall \nu)\left[D_{\nu}^{T} \text { is infinite } \Rightarrow\left(\exists \nu^{\prime} \leq \nu\right)\left[D_{\nu^{\prime}}^{\hat{T}} \text { is infinite }\right]\right] \tag{1.15}
\end{equation*}
$$

where for all e-states ν, D_{ν}^{T} is measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq e, s<\omega}$ and $D_{\nu}^{\hat{T}}$ is measured w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq e, s<\omega}$.
The Modified Extension Theorem. Assume $\left\{T_{s}\right\}_{s<\omega},\left\{\hat{T}_{s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega}$, $\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$ are uniformly $\mathbf{0}^{\prime \prime}$-recursive enumerations of the infinite r.e. sets T and \hat{T} and the uniformly $0^{\prime \prime}$-recursive collection of r.e. sets $\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$ satisfying the following Conditions:

$$
\begin{equation*}
\forall n\left[T \searrow \widehat{U}_{n}=\hat{T} \searrow \widehat{V}_{n}=\emptyset\right] \tag{1.16}
\end{equation*}
$$

where for all e-states ν, D_{ν}^{T} is measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq e, s<\omega}$ and $D_{\nu}^{\hat{T}}$ is measured w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq e, s<\omega}$. Then there is an uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ and $\left\{\hat{V}_{n}\right\}_{n \in \omega}$ such that

$$
\begin{equation*}
\hat{U}_{n} \cap \overline{\hat{T}}={ }^{*} \hat{U}_{n} \cap \overline{\hat{T}}, \quad \bar{V}_{n} \cap \bar{T}={ }^{*} \hat{V}_{n} \cap \bar{T}, \text { and } \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
\exists^{\infty} x \in T \text { with final e-state } \nu \text { w.r.t. to }\left\{U_{n}\right\}_{n<\omega} \text { and }\left\{\hat{V}_{n}\right\}_{n<\omega} \tag{1.20}
\end{equation*}
$$

iff
$\exists^{\infty} \hat{x} \in \hat{T}$ with final e-state ν w.r.t. to $\left\{\hat{U}_{n}\right\}_{n<\omega}$ and $\left\{V_{n}\right\}_{n<\omega}$.
The statement of Soare's Extension Theorem is the same as the statement of the Modified Extension Theorem except the first two occurrences of "uniformly $0^{\prime \prime}$ recursive" are replaced with "uniformly recursive". When one uses the proof in [7] or [8], one can add to the statement of the Extension Theorem that $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ and $\left\{\hat{V}_{n}\right\}_{n \in \omega}$ are uniformly recursive collections of r.e. sets and hence the automorphism
constructed is effective. However, this cannot be added, if one wishes to use the "tree of strategies" proof (see [1] or [2]). Since the array of sets constructed in the Modified Extension Theorem is an uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets, the automorphism produced is an Δ_{3}-automorphism.

The Modified Extension Theorem follows fairly easily from the Translation Theorem and the Extension Theorem. Assume $\left\{T_{s}^{\dagger}\right\}_{s<\omega},\left\{\hat{T}_{s}^{\dagger}\right\}_{s<\omega},\left\{U_{n, s}^{\dagger}\right\}_{n, s<\omega}$, $\left\{\hat{V}_{n, s}^{\dagger}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}^{\dagger}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}^{\dagger}\right\}_{n, s<\omega}$ are uniformly $\boldsymbol{0}^{\prime \prime}$-recursive enumerations of the infinite r.e. sets T^{\dagger} and \hat{T}^{\dagger}, and the uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $\left\{U_{n}^{\dagger}\right\}_{n<\omega},\left\{\hat{V}_{n}^{\dagger}\right\}_{n<\omega},\left\{\hat{U}_{n}^{\dagger}\right\}_{n<\omega}$, and $\left\{V_{n}^{\dagger}\right\}_{n<\omega}$ satisfying the hypothesis of the Modified Extension Theorem and hence the Translation Theorem. Apply the Translation Theorem to get uniformly r.e. sets $\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$, and uniformly recursive enumerations, $\left\{T_{s}\right\}_{s<\omega},\left\{\hat{T}_{s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega}$, $\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$. Apply the Extension Theorem to the uniformly recursive enumeration of this uniformly recursive collection of r.e. sets to get the r.e. sets $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ and $\left\{\hat{V}_{n}\right\}_{n \in \omega}$. For the conclusion of the Modified Extension Theorem restrict the above collection to $\left\{\hat{U}_{e_{n}}\right\}_{n \in \omega}$ and $\left\{\hat{V}_{e_{n}}\right\}_{n \in \omega}$. Using the Translation Theorem it is easy to see that this restricted collection satisfies the conclusion of the Modified Extension Theorem.

2 The proof of the translation theorem

This proof is very similar to the proofs of the extension theorems that can be found in [1] or [2]. We will build a " Δ_{3}-branching" tree Tr and construct the desired sets by using this tree. We will define, by induction, $\operatorname{Tr} \subseteq \omega^{<\omega}$. The construction of the desired sets will be viewed as two giant pinball machines, M and \hat{M}, laid out on top of the tree, $T r$. Unless noted, everything for the (angled) hatted side is the dual. Let Greek letters $\alpha, \beta, \delta, \gamma$, and δ range over $\omega^{<\omega}$. Let $\alpha^{-} \subset \alpha(\neq \lambda$, the empty node $)$ be such that for all $\beta \subset \alpha, \beta \subseteq \alpha^{-}$and $\alpha \cap \beta$ be the least such that for all γ, if $\gamma \subseteq \beta$ and $\gamma \subseteq \alpha$, then $\gamma \subseteq \alpha \cap \beta$.

As we define $T r$, we also define a mechanism for determining f_{s}, the approximation to the true path f (defined formally below) at stage s. (As usual, we will ensure that $f=\liminf f_{s}$.) Briefly, we will use the tree to provide us with indices for the sets $\left\{U_{n}^{\dagger}\right\}_{n<\omega},\left\{\hat{V}_{n}^{\dagger}\right\}_{n<\omega},\left\{\hat{U}_{n}^{\dagger}\right\}_{n<\omega}$, and $\left\{V_{n}^{\dagger}\right\}_{n<\omega}$ and all the entry states.

Each node $\alpha \in \operatorname{Tr}$ will be given four r.e. sets $U_{\alpha}^{\dagger}, V_{\alpha}^{\dagger}, \hat{U}_{\alpha}^{\dagger}$ and $\hat{V}_{\alpha}^{\dagger}$ (α will be given the indices for these sets, more below). If $\alpha \subset f$ then we will ensure that $U_{\alpha}^{\dagger}=U_{|\alpha|}^{\dagger}, \hat{V}_{\alpha}^{\dagger}=\hat{V}_{|\alpha|}^{\dagger}, \hat{U}_{\alpha}^{\dagger}=\hat{U}_{|\alpha|}^{\dagger}, V_{\alpha}^{\dagger}=V_{|\alpha|}^{\dagger}$. Each node α will build four r.e. sets $U_{\alpha}, V_{\alpha}, \hat{U}_{\alpha}$ and \hat{V}_{α}. If $\alpha \subset f$ then we will ensure that $U_{\alpha}=^{*} U_{\alpha}^{\dagger}$, $\widehat{V}_{\alpha} \cap \bar{T}={ }^{*} \hat{V}_{\alpha}^{\dagger} \cap \bar{T}, \hat{U}_{\alpha} \cap \overline{\hat{T}}={ }^{*} U_{\alpha}^{\dagger} \cap \overline{\hat{T}}, V_{\alpha}={ }^{*} V_{\alpha}^{\dagger}$. If $\alpha \not \subset f$ then we will ensure that $U_{\alpha} \backslash T={ }^{*} \bar{V}_{\alpha} \backslash T=^{*} V_{\alpha} \backslash \hat{T}=^{*} \hat{U}_{\alpha} \backslash \hat{T}={ }^{*} \emptyset$. This will allow us to meet Conditions 1.12 and 1.13. (We will assume all eight sets associated with λ are all empty.)

To get the desired uniformly recursive enumerations, we will take some recursive function g from ω into Tr such that g is one to one, onto, and if $g(e)=\alpha$ then for all $\beta \subset \alpha$, there is a $j<e$ such that $g(j)=\beta$ (the existence of such a g is guaranteed by the Recursion Theorem). The enumeration will be the following: $U_{e, s}=U_{g(e), s}$,
$\hat{V}_{e, s}=\hat{V}_{g(e), s}, \hat{U}_{e, s}=\hat{U}_{g(e), s}$, and $V_{e, s}=V_{g(e), s}$. Since the sets we construct off the true path are finite outside T and \hat{T} this enumeration will meet Conditions 1.12 and 1.13 (more details later).

Since the tree and the pinball machines will be interwoven with each other, we need a little general information about how the pinball machines will look and act before we can define $T r$ and the pinball machines. The surfaces of the two pinball machines will be the same, but M will only use balls (integers) from ω and \hat{M} will only use balls (\hat{x}) from $\hat{\omega}$ (almost everything on the hatted side will wear hats).

The surfaces of the machines will be broken up into similar units, the α-unit on M and the $\hat{\alpha}$-unit on \hat{M}, for all $\alpha \in T r$. The α-unit has one gate, G_{α}. When a ball, x, first arrives at the α-unit it is placed above G_{α}. When x passes by G_{α}, we say x has been processed by $G_{\alpha} . G_{\alpha}$ will either hold x forever, use f_{s} to determine which β-unit x will enter next, where β is one of α 's immediate successors or if for some $s, f_{s}<_{L} \alpha$ (defined formally below), x will be permanently removed from the α-unit.

We will consider the sets $T^{\dagger},\left\{U_{\alpha}^{\dagger}\right\}_{\alpha \in T r}$, and $\left\{\hat{V}_{\alpha}^{\dagger}\right\}_{\alpha \in T r}$ as subsets of ω and the sets $T^{\dagger},\left\{\hat{U}_{\alpha}^{\dagger}\right\}_{\alpha \in T r},\left\{V_{\alpha}^{\dagger}\right\}_{\alpha \in T r}$ as subsets of $\hat{\omega}$. We will build $T,\left\{U_{\alpha}\right\}_{\alpha \in T r}$, and $\left\{\hat{V}_{\alpha}\right\}_{\alpha \in T r}$ as subsets of ω and $\hat{T},\left\{\hat{U}_{\alpha}\right\}_{\alpha \in T r}$, and $\left\{V_{\alpha}\right\}_{\alpha \in T r}$, as subsets of $\hat{\omega}$. If $x \in T_{s}^{\dagger}$, then at stage $s+1$ we will remove x from the surface of M and place $x \in T_{s+1}$ (hence we will meet Condition 1.10).

To define $\operatorname{Tr} \subseteq \omega^{<\omega}, M$, and \hat{M} we will proceed as follows: First $\lambda \in \operatorname{Tr}$. (λ is the empty string.) Now, given $\alpha \in \operatorname{Tr}$, we must construct all the immediate successors of α in $T r$. As we proceed, we will also define a mechanism for determining f_{s}. First we need the following definitions:

Definition 2.1. A set of e-states \mathcal{E} is an α-entry set if $|\alpha|=e-1$.
Definition 2.2. Let $\alpha \in \operatorname{Tr}$ and $e=|\alpha|+1$. The α-entry set \mathfrak{E} is valid for α, e_{1} and e_{2} if for all e-states $\nu, \nu \in \mathfrak{E}$ iff the set $D_{\nu}^{T^{\dagger}}$ is infinite, where $D_{\nu}^{T^{\dagger}}$ is measured with respect to the enumeration $\left\{X_{i, s}\right\}_{i \leq e}$ and $\left\{Y_{i, s}\right\}_{i \leq e}$, where $X_{i, s}=U_{\beta, s}^{\dagger}$, if $i<e$ and $\alpha \upharpoonright i=\beta, X_{e, s}=W_{e_{1}, s}, Y_{i, s}=\widehat{V}_{\beta, s}^{\dagger}$, if $i<e$ and $\alpha \upharpoonright \beta$, and $Y_{e, s}=W_{e_{2}}, s$.

There are only finitely many α-entry sets. $\hat{\mathcal{E}}$ is an $\hat{\alpha}$-entry set and $\hat{\mathfrak{E}}$ is valid for α, e_{3} and e_{4} are defined in the same manner. E will always denote an α-entry set and $\hat{\mathfrak{E}}$ an $\hat{\alpha}$-entry set.

Each node, $\beta \notin \lambda$, in Tr will be given, in addition to the indices for four r.e. sets, a β^{-}-entry set and a $\hat{\beta}^{-}$-entry set, \mathfrak{E}_{β} and $\hat{\mathfrak{E}}_{\beta}$. If $\beta=\lambda$, let $\mathfrak{E}_{\lambda}=\hat{\mathfrak{E}}_{\lambda}=\{\langle 0, \emptyset, \emptyset\rangle\}$.

If X is a set of states, let $X \upharpoonright e=\{\nu \upharpoonright e: \nu \in X\}$. Let $\left\{\mathfrak{E}_{i}\right\}$ be a recursive indexing of all entry sets. Let r and n be recursive functions such that for all $i \neq j \leq n(\alpha), \mathfrak{E}_{r(\alpha, i)} \neq \mathfrak{E}_{r(\alpha, j)}$ and $\left\{\mathfrak{E}_{r(\alpha, 0)}, \mathfrak{E}_{r(\alpha, 1)}, \ldots, \mathfrak{E}_{r(\alpha, n(\alpha))}\right\}$ is the set of all α-entry sets.

Defining α 's immediate successors: Assume $\alpha \in \operatorname{Tr}$ and that \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are defined. Let $\beta=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle$. If

$$
\begin{align*}
& i \leq n(\alpha) \text { and if } \nu \in \mathfrak{E}_{r(\alpha, i)}, \text { then } \nu\left||\alpha| \in \mathfrak{E}_{\alpha},\right. \text { and } \tag{2.3}\\
& \quad j \leq \hat{n}(\alpha) \text { and if } \hat{\nu} \in \hat{\mathfrak{E}}_{\hat{r}(\alpha, j)}, \text { then } \hat{\nu}\left||\alpha| \in \hat{\mathfrak{E}}_{\alpha}\right. \tag{2.4}
\end{align*}
$$

then let $\beta \in \operatorname{Tr}, \mathfrak{E}_{\beta}=\mathfrak{E}_{r(\alpha, i)}, \hat{\mathfrak{E}}_{\beta}=\hat{\mathfrak{E}}_{\hat{r}(\alpha, j)}, U_{\beta, s}^{\dagger}=W_{e_{1}, s}, \hat{V}_{\beta, s}^{\dagger}=W_{e_{2}, s}$, $\hat{U}_{\beta, s}^{\dagger}=W_{e_{3}, s}$, and $V_{\beta, s}^{\dagger}=W_{e_{4}, s}$. (We will later use k to help us find the approximation to the true path at stage s.)

Before we continue we need the following definition and lemma. Cof is the index set such that $x \in \operatorname{Cof}$ iff \bar{W}_{x} is finite. It is well known that Cof is Σ_{3}-complete (see [8]) and in fact it is very easy to show the following lemma (the reader who wishes to see the missing proof is directed to [1]) or [1]:

Lemma 2.5. If $A \in \Sigma_{3}$ then there is a recursive function g such that
and

$$
x \in A \Leftrightarrow \exists!k\left[W_{g(x, k)}=\omega\right]
$$

$$
x \notin A \Leftrightarrow \forall k\left[W_{g(x, k)}=^{*} \emptyset\right] .
$$

A mechanism for determining f_{s}. Given an $\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}$, let $n=|\alpha|+1$. Determining whether for all $s, U_{n, s}^{\dagger}=W_{e_{1}, s}$ and for all $q<e_{1}$, there exists an s such that $U_{n, s}^{\dagger} \neq W_{q, s}$, is recursive in $\mathbf{0}^{\prime \prime}\left(\Delta_{3}\right)$. (First find an e such that for all $s, U_{n, s}^{\dagger}=W_{e, s}$, since $\left\{U_{n, s}^{\dagger}\right\}_{n, s<\omega}$ is a uniformly $\mathbf{0}^{\prime \prime}$-recursive enumeration such an e can be found using $0^{\prime \prime}$. Then ask, using $\mathbf{0}^{\prime \prime}$, whether for all s, $W_{e, s}=W_{e_{1}, s}$ and for all $q<e_{1}$, there exists an s such that $W_{e, s} \neq W_{q, s}$). In fact, for all $\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}$, this can be done uniformly in $\mathbf{0}^{\prime \prime}$ for any e_{i}.

Since for any $\gamma=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in T r$, for all $\beta \subseteq \gamma$ the enumerations of $U_{\beta}^{\dagger}, V_{\beta}^{\dagger}, \hat{U}_{\beta}^{\dagger}$ and $\hat{V}_{\beta}^{\dagger}$ are fixed, for any i, determining whether for all $\nu \in \mathfrak{E}_{r(\alpha, i)}, D_{\nu}^{T^{\dagger}}$ is infinite (measured with respect to given enumerations of U_{β}^{\dagger} and $\hat{V}_{\beta}^{\dagger}$, for $\beta \subseteq \gamma$) can be done uniformly in $\mathbf{0}^{\prime \prime}$. Therefore determining for all α, whether $\mathfrak{E}_{r(\alpha, i)}$ is valid for α, e_{1}, and e_{2} can be done uniformly in $\mathbf{0}^{\prime \prime}$.

Let R be the set such that $\left\langle\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j\right\rangle \in R$ if and only if

$$
\begin{aligned}
& \forall s\left(U_{m, s}^{\dagger}=W_{e_{1}, s}\right) \wedge \forall q<e_{1} \exists s\left(U_{m, s}^{\dagger} \neq W_{q, s}\right), \\
& \forall s\left(\hat{V}_{m, s}^{\dagger}=W_{e_{2}, s}\right) \wedge \forall q<e_{2} \exists s\left(\hat{V}_{m, s}^{\dagger} \neq W_{q, s}\right), \\
& \forall s\left(\hat{U}_{m, s}^{\dagger}=W_{e_{3}, s}\right) \wedge \forall q<e_{3} \exists s\left(\hat{U}_{m, s}^{\dagger} \neq W_{q, s}\right), \\
& \forall s\left(V_{m, s}^{\dagger}=W_{e_{4}, s}\right) \wedge \forall q<e_{4} \exists s\left(V_{m, s}^{\dagger} \neq W_{q, s}\right), \\
& i \leq n(\alpha) \text { and } \mathfrak{E}_{r(\alpha, i)} \text { is valid for } \alpha, e_{1}, \text { and } e_{2}, \text { and } \\
& j \leq \hat{n}(\alpha) \text { and } \hat{\mathfrak{E}}_{\hat{r}(\alpha, j)} \text { is valid for } \alpha, e_{3}, \text { and } e_{4}
\end{aligned}
$$

(where $m=|\alpha|+1$). The R is Δ_{3}. For all α there exists at most one $\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j\right\rangle$ such that $\left\langle\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j\right\rangle \in R$. Let $\beta=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}$. Now by Lemma 2.5 there is a recursive function g such that:
(i) $\exists!k\left[W_{g\left(\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right)}=\omega\right]$ iff $\left\langle\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j\right\rangle \in R$
(ii) $\forall k\left[W_{g\left(\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right)}={ }^{*} \emptyset\right]$ iff $\left\langle\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j\right\rangle \notin R$.

Let $C_{\beta}=W_{g\left(\alpha, e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right)}$.
Definition 2.6. (The true path) Let f be a branch in Tr such that $\lambda \subset f$ and if $\alpha \subseteq f$ and there is a unique immediate successor β of α in Tr such that $C_{\beta}=\omega$ then $\beta \subseteq f$. f is called the true path.

Claim 2.7. f is an infinite branch.
Proof. Let $\alpha \in \operatorname{Tr}$ such that $\alpha \subseteq f$. Let $n=|\alpha|+1$. Now there exists e_{i} such that for all $s, U_{n, s}^{\dagger}=W_{e_{1}, s}, \bar{V}_{n, s}^{\dagger}=W_{e_{2}, s}, \hat{U}_{n, s}^{\dagger}=W_{e_{3}, s}, V_{n, s}^{\dagger}=W_{e_{4}, s}$, for all $q<e_{1}$ there exists s such that $U_{n, s}^{\dagger} \neq W_{q, s}$, for all $q<e_{2}$ there exists s such that $\hat{V}_{n, s}^{\dagger} \neq W_{q, s}$, for all $q<e_{3}$ there exists s such that $\hat{U}_{n, s}^{\dagger} \neq W_{q, s}$, and for all $q<e_{4}$ there exists s such that $V_{n, s}^{\dagger} \neq W_{q, s}$. There must exist $i \leq n(\alpha)$ and $j \leq \hat{n}(\alpha)$, such that $\mathfrak{E}_{r(\alpha, i)}$ is valid for α, e_{1} and e_{2} and $\hat{\mathfrak{E}}_{\hat{r}(\alpha, j)}$ is valid for α, e_{3} and e_{4}. Since Conditions (2.3) and (2.4) hold for i and j, we have that for all $k, \alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}$. Therefore there exists a unique k such that for $\beta=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}, C_{\beta}=\omega$. Thus $\beta \subseteq f$.

Hence if $\beta=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \subset f$, then for all $s, U_{n, s}^{\dagger}=U_{\beta, s}^{\dagger}, \hat{V}_{n, s}^{\dagger}=\hat{V}_{\beta, s}^{\dagger}$, $\hat{U}_{n, s}^{\dagger}=\hat{U}_{\beta, s}^{\dagger}, V_{n, s}^{\dagger}=V_{\beta, s}^{\dagger}, \mathfrak{E}_{\beta}$ is valid for α, e_{1} and e_{2} and $\hat{\mathfrak{E}}_{\beta}$ is valid for α, e_{3} and $e_{4} . C_{\beta}$ is called the "chip set" of β and is used to determine the approximation to the true path, f_{s}, at stage s. During the course of the construction we will ensure that $f=\lim \inf f_{s}$ measured with respect to $<_{L}$ (defined below). From now on we will restrict the range of the lower case Greek letters α, β, γ, and δ to Tr.

Definition 2.8. Let $\alpha, \beta \in \operatorname{Tr}$.
(i) α is to the left of $\beta\left(\alpha<_{L} \beta\right)$ if

$$
\begin{gathered}
\exists \gamma \in \operatorname{Tr}\left[\gamma^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \subseteq \alpha \wedge \gamma^{\wedge}\left\langle e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}\right\rangle \subseteq \beta\right. \\
\left.\wedge\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle<\left\langle e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}\right\rangle\right]
\end{gathered}
$$

(ii) $\alpha \leq \beta$ if $\alpha<_{L} \beta$ or $\alpha \subseteq \beta$ (to the left or above).
(iii) $\alpha<\beta$ if $\alpha \leq \beta$ and $\alpha \neq \beta$.
(iv) $\alpha \leq^{*} \beta$ if $\alpha<_{L} \beta$ or $\beta \subseteq \alpha$ (to the left or below).
(v) $\alpha<^{*} \beta$ if $\alpha<_{L} \beta$ or $\beta \subseteq \alpha$.
(vi) Let h be an infinite branch in [Tr] we say $h<_{L} \alpha\left(\alpha \leq h, h<_{L} \alpha\right.$, or $\left.h \leq^{*} \alpha\right)$ if there exists a $\beta \subset h$ such that $\beta<_{L} \alpha\left(\alpha \leq \beta, \beta<_{L} \alpha\right.$, or $\beta \leq^{*} \alpha$).

We will now consider the action of the balls in our pinball machines. We say x is in the α-unit at stage s if x is above gate G_{α} at stage s. The α-region E_{α} of M will be the collection of β-units for $\alpha \subseteq \beta$. We say $x \in E_{\alpha, s}$ iff for some $\beta \supseteq \alpha, x$ is in the β-unit at stage s. We say $x \in E_{\alpha, \infty}$ iff there is some $\beta \supseteq \alpha$ and some s such that for all $t \geq s, x$ is in the β-unit at stage t. We define $\hat{E}_{\alpha}, \hat{E}_{\alpha, s}$, and $\hat{E}_{\alpha, \infty}$ in a similar manner.

We will associate with the balls a function, $\alpha(x, s)$, into Tr such that $\alpha(x, s)=\alpha$ iff x is at the α-unit at stage s. Hence if $x \in T_{s}$ then x is not in the pinball machine and thus $\alpha(x, s) \uparrow . \alpha(x, s)$ will be partially determined by f_{s}. If $\alpha(x, s)=\alpha$ and $f_{s}<_{L} \alpha$, we will set $\alpha(x, s+1)=f_{s} \cap \alpha=\beta$ and we will place x above G_{β} (assuming we have not removed x from M at stage $s+1$). In addition, if $x \leq s$, we will β-reject x for all β such that $f_{s}<_{L} \beta$. We will only allow x to move into a β-unit if $\beta \leq^{*} \alpha(x, s)$ and x is not β-rejected. Hence, we will be able to ensure that $f_{s} \not \chi_{L} \alpha(x, s+1)$. Also we will only allow x to move to the α-unit during or shortly after stages where $\alpha \subseteq f_{s}$.

We will meet the following requirements, $F_{\alpha}, \hat{F}_{\alpha}, Q_{\alpha}, \hat{Q}_{\alpha}, D_{\alpha, \nu}$ and $\hat{D}_{\alpha, \nu}$, for all α.

$$
\text { If } \alpha<_{L} f, \text { then } E_{\alpha, \infty}={ }^{*} \emptyset \text { and } U_{\alpha} \backslash T=^{*} \hat{V}_{\alpha} \backslash T=^{*} \emptyset
$$

F_{α} :

$$
\text { If } \alpha \subset f \text {, then } E_{\alpha, \infty}=^{*} \bar{T}
$$

$$
\text { If } f<_{L} \alpha \text {, then } E_{\alpha, \infty}=\emptyset \text { and } U_{\alpha} \backslash T=^{*} \bar{V}_{\alpha} \backslash T=^{*} \emptyset
$$

If $x \in U_{\beta, s+1}-U_{\beta, s}$ then either $\alpha(x, s) \supseteq \beta$ or $x \in T_{s}$.
If $x \in \hat{V}_{\beta, s+1}-\widehat{V}_{\beta, s}$ then $\alpha(x, s) \supseteq \beta$.

$$
\text { If } x \in T_{s} \text {, then for all } \beta, x \in U_{\beta, s}^{\dagger} \text { iff } x \in U_{\beta, s+1}
$$

If $\alpha(x, s)=\alpha$ then for all $\beta \subseteq \alpha, x \in U_{\beta, s}$ iff $x \in U_{\beta, s}^{\dagger}$ and $x \in \hat{V}_{\beta, s}$ iff $x \in \hat{V}_{\beta, s}^{\dagger}$.
If D_{ν}^{T} is infinite then $\nu \in \mathfrak{E}_{\alpha}$.
$D_{\alpha, \nu}:(\alpha \subset f) \quad$ If $\nu \in \mathfrak{E}_{\alpha}$ and $\nu=\langle | \alpha|, \sigma, \tau\rangle$ then for all $\beta \supseteq \alpha$,

$$
D_{\nu^{*}}^{T} \text { is infinite, where } \nu^{*} \text { is the }|\beta| \text {-state }\langle | \beta|, \sigma, \tau\rangle \text {. }
$$

(In the requirement $D_{\alpha, \nu}, D_{\nu}^{T}$ and $D_{\nu^{*}}^{T}$ are measured with respect to $\left\{U_{\gamma, s}\right\}_{\gamma \subseteq \beta, s<\omega}$ and $\left\{\vec{V}_{\gamma, s}\right\}_{\gamma \subseteq \beta, s<\omega}$.)

First we will show this will be enough to meet Conditions (1.10) through (1.15) of the Translation Theorem. Recall that g is a recursive function from ω into Tr such that g is one to one, onto, and if $g(e)=\alpha$ then for all $\beta \subset \alpha$, there is a $j<e$ such that $g(j)=\beta$. The enumeration will be the following: $U_{e, s}=U_{g(e), s}, \widehat{V}_{e, s}=\hat{V}_{g(e), s}$, $\hat{U}_{e, s}=\hat{U}_{g(e), s}$, and $V_{e, s}=V_{g(e), s}$.

Recall that if $x \in T_{s}^{\dagger}$, then at stage $s+1$ we will remove x from the surface of M and place $x \in T_{s+1}$ and hence $\alpha(x, s+1) \uparrow$. Therefore $T_{s+1}=T_{s}^{\dagger}$ and by Q_{α}, we have for all $n, T \searrow \hat{V}_{n}=\emptyset$.

By F_{α} and Q_{α} and their duals, if $g(e) \not \subset f$, then $U_{e} \backslash T={ }^{*} \hat{V}_{e} \backslash T={ }^{*} V_{e} \backslash T={ }^{*}$ $\hat{U}_{e} \backslash T=^{*} \emptyset$ and if $g(e) \subset f$ then for $n=|g(e)|, U_{n}^{\dagger}={ }^{*} U_{e}, \hat{V}_{n}^{\dagger} \cap \bar{T}={ }^{*} \bar{V}_{e} \cap \bar{T}$, $V_{n}^{\dagger}={ }^{*} V_{e}$, and $\bar{U}_{n}^{\dagger} \cap \overline{\hat{T}}={ }^{*} U_{e} \cap \overline{\hat{T}}$. Since f is infinite, (1.12) and (1.13) are met.

Let $\nu=\langle e, \sigma, \tau\rangle$ be an e-state. Let α be the greatest substring of f such that for some $i \leq e, g(i)=\alpha$. To meet (1.14) and (1.15), we need to translate the e-state ν measured with respect to $\left\{U_{e^{\prime}, s}\right\}_{e^{\prime} \leq e, s<\omega}$ and $\left\{\hat{V}_{e^{\prime}, s}\right\}_{e^{\prime} \leq e, s<\omega}$ to an $|\alpha|$-state $t(\nu)$ measured with respect to $\left\{U_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$ and $\left\{\hat{V}_{\alpha, s}\right\}_{\beta \subseteq \alpha, s<\omega}$. Let $t(\nu)=\langle | \alpha|, u(\sigma), u(\tau)\rangle$ where $u(\varrho)=\{|\beta|: \beta \subseteq \alpha \wedge g(j)=\beta \wedge j \in \varrho\}$ (this is a well-defined $|\alpha|$-state). Since we will meet the requirement F_{α},
D_{ν}^{T} is infinite (measured with $\left\{U_{e^{\prime}, s}\right\}_{e^{\prime} \leq e, s<\omega}$ and $\left\{\widehat{V}_{e^{\prime}, s}\right\}_{e^{\prime} \leq e, s<\omega}$)
iff
$D_{t(\nu)}^{T}$ is infinite (measured with respect to $\left\{U_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$ and $\left\{\hat{V}_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$).
Assume D_{ν}^{T} is infinite (measured as above). Then $D_{t(\nu)}^{T}$ is infinite (measured as above). Since we met $D_{\alpha, t(\nu)}, t(\nu) \in \mathfrak{E}_{\alpha}$. Thus $D_{t(\nu)}^{T^{\dagger}}$ is infinite (measured w.r.t. the given enumerations of U_{n}^{\dagger} and \bar{V}_{n}^{\dagger}). By the hypothesis of the Translation Theorem,
there exists a $|\alpha|$-state $\nu^{\prime} \leq t(\nu)$ such that $D_{\nu^{\prime}}^{\hat{T}^{\dagger}}$ is infinite (measured w.r.t. the given enumerations of \hat{U}_{n}^{\dagger} and V_{n}^{\dagger}). Since $\alpha \subset f, \nu^{\prime} \in \mathcal{E}_{\alpha}$. Now using the inverse of the above procedure we can untranslate this $|\alpha|$-state ν^{\prime} into a $g^{-1}(\alpha)$ state $\hat{\nu}=\hat{t}^{-1}\left(\nu^{\prime}\right)=\left\langle g^{-1}(\alpha), \hat{\sigma}, \hat{\tau}\right\rangle$. Let $\nu^{*}=\langle e, \hat{\sigma}, \hat{\tau}\rangle$ (since $g^{-1}(\alpha) \leq e$, this is a well-defined state). Since $\nu^{\prime} \leq t(\nu), \nu^{*} \leq \nu$. Since we meet $\hat{D}_{\alpha, \hat{\nu}}$ and (2.9), the set $D_{\nu^{*}}^{\hat{T}}$ is infinite (measured w.r.t. $\left\{\hat{U}_{\gamma, s}\right\}_{\gamma \subseteq \alpha, s<\omega}$ and $\left\{V_{\gamma, s}\right\}_{\gamma \subseteq \alpha, s<\omega}$). Hence (1.15) is met. Similar reasoning, shows that (1.14) is met.

We will now explore the action the α-unit will take to meet the above requirements. The behavior of the α-unit depends on α 's mode, $m(\alpha, s)$. α has three modes. If $m(\alpha, s)=o f f$, then there are no balls in the α-region and until α changes its mode no balls will be placed in the α-region. If $m(\alpha, s)=$ on then the α-unit will maintain the balls (in terms of the natural action to meet Q_{α}) that are in the α-unit. If $m(\alpha, s)=a$ (active), then, in addition, to maintaining the balls in the α-unit, α will actively seek out certain balls to ensure $D_{\alpha, \nu}$ is met (α will pull balls it knows will enter T and place them in the proper state). f_{s} will play a role in determine $m(\alpha, s)$. If $f_{s}<_{L} \alpha$, then we will ensure that $m(\alpha, s+1)=o f f$. Otherwise, we will only allow α 's mode to change when $\alpha \subseteq f_{s}$.

When α 's mode is active, the α-unit will try to verify the states in \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are actually the valid entry states. If x enters T at stage s from the α-unit, we will mark the entry state of x on \mathfrak{E}_{α}. Only after all the states in \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are marked, will we allow α to change its mode (assuming $\alpha<_{L} f_{s}$ or $\alpha \subset f_{s}$). If all the states in \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are marked, we say that \mathfrak{E}_{α}, and $\hat{\mathfrak{E}}_{\alpha}$ are completely marked. (Generally marks will be used to witness the occurrence of certain events.)

During the construction we also will use a function $p(\alpha, s) . p(\alpha, s)$ will be used in two ways. First it will be used as a priority ordering (the lower the number the higher priority). If $m(\alpha, s)=a, m(\beta, s)=a$, and they are both actively seeking the same ball (to help met $D_{\alpha, \nu}$ or $D_{\beta, \nu}$) then $p(-, s)$ will be used to determine which unit will receive the ball. $p(-, s)$ will also be used as a restraint. Unless $m(\alpha, s)=a$ and α "pulls" a ball into the α-unit, we will only allow balls less than $p(\alpha, s)$ to enter the α-unit. We will be careful to ensure that $p(-, s)$ is a non-decreasing function. The following notation will be helpful.
Definition 2.10. (i) The α-state of x at stage $s, \nu_{\alpha}(x, s)$, is the $|\alpha|$-state, $\langle | \alpha|, \sigma, \tau\rangle$, where $\sigma=\left\{|\beta|: x \in U_{\beta, s}^{\dagger} \wedge \beta \subseteq \alpha\right\}$ and $\tau=\left\{|\beta|: x \in \widehat{V}_{\beta, s}^{\dagger} \wedge \beta \subseteq \alpha\right\}$.
(ii) The $\hat{\alpha}$-state of \hat{x} at stage $s, \hat{\nu}_{\hat{\alpha}}(\hat{x}, s)$, is the $\hat{\alpha}$-state, $\langle | \hat{\alpha}|, \sigma, \tau\rangle$, where $\sigma=$ $\left\{|\beta|: x \in \hat{U}_{\beta, s}^{\dagger} \wedge \beta \subseteq \hat{\alpha}\right\}$ and $\tau=\left\{|\beta|: x \in V_{\beta, s}^{\dagger} \wedge \beta \subseteq \hat{\alpha}\right\}$. (We will always use $\hat{\nu}_{\alpha}(\hat{x}, s)$ as shorthand for $\hat{\nu}_{\hat{\alpha}}(\hat{x}, s)$.)

The construction

The steps for \hat{M} are the dual of those presented.
Stage $s=0$. Let $T_{0}=\hat{T}_{0}=U_{\alpha, 0}=V_{\alpha, 0}=\hat{U}_{\alpha, 0}=\hat{V}_{\alpha, 0}=\emptyset$. Let $f_{0}=\lambda$. Let $\alpha(x, 0)=\lambda, m(\alpha, 0)=o f f$, and $p(\alpha, 0)=-1$, for all $\alpha \in \operatorname{Tr}$ and for all x.
Stage $s+1$. Unless otherwise explicitly defined all parameters remain the same from stage s to stage $s+1$. Recall that if $\beta=\alpha^{\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle \in \operatorname{Tr}$ then $U_{\beta, s+1}^{\dagger}=W_{e_{1}, s+1}, \hat{V}_{\beta, s+1}^{\dagger}=W_{e_{2}, s+1}, \hat{U}_{\beta, s+1}^{\dagger}=W_{e_{3}, s+1}$, and $V_{\beta, s+1}^{\dagger}=W_{e_{4}, s+1}$.

Step (1) (Enumeration into T.) If $x \in T_{s}^{\dagger}-T_{s-1}^{\dagger}$, then remove x from the surface of M, place $x \in T_{s+1}$, let $\alpha(x, s+1) \uparrow$, and if $\alpha=\alpha(x, s)$ and for all $t \leq s, \alpha \leq^{*} \alpha(x, t)$ (i.e. x has never been below α) mark $\nu_{\alpha}(x, s)$ on \mathfrak{E}_{α} (if $\nu_{\alpha}(x, s)$ appears on \mathfrak{E}_{α}).

Step (2) (Pulling to meet $D_{\alpha, \nu}$.) Let $x \in T_{s+1}^{\dagger}-T_{s}^{\dagger}$. If there exists an α such that
(2.1) $m(\alpha, s)=\alpha$,
(2.2) $f_{s} \nless_{L} \alpha$, and $x \geq|\alpha|$,
(2.3) for all $t \leq s, \alpha \leq^{*} \alpha(x, t)$, and x is not α-rejected,
(2.4) if $m(\alpha(x, s), s)=a$ then $p(\alpha, s)<p(\alpha(x, s), s)$ (so $\alpha \neq \alpha(x, s)$),
(2.5) for all β with $\alpha \cap \alpha(x, s) \subseteq \beta \subset \alpha$ if $m(\beta, s)=a$ then $p(\alpha, s)<p(\beta, s)$,
(2.6) $\nu_{\alpha}(x, s+1) \in \mathfrak{E}_{\alpha}$ and $\nu_{\alpha}(x, s+1)$ is unmarked,
then let α be such that if γ also satisfies (2.1) through (2.6) then either $\alpha<_{L} \gamma$ or $p(\alpha, s)<p(\gamma, s)$. Place x above G_{α} and let $\alpha(x, s+1)=\alpha$. We say α pulled x away from $\alpha(x, s)$. (At the next stage x will enter T and $\nu_{\alpha}(x, s+1) \in \mathfrak{E}_{\alpha}$ will become marked.)

Step (3) (Removing balls from units to the right of the true path.) If $x \leq s+1$, then for all β such that $f_{s}<_{L} \beta, x$ is β-rejected (x is permanently removed from the β-unit). If $x \leq s+1, x \notin T_{s+1}, x$ has not been pulled away from $\alpha(x, s)$, and $f_{s}<_{L} \alpha(x, s)$, then let $\alpha(x, s+1)=\alpha(x, s) \cap f_{s}$ and place x above $G_{\alpha(x, s+1)}$.
Step (4) (Movement on the pinball machine due to f_{s}.) Suppose $\beta \subseteq f_{s}(\beta \neq \lambda)$, $x \notin T_{s+1},|\beta| \leq x \leq p(\beta, s), x$ is not β-rejected, $\beta^{-}=\alpha(x, s)$, and x has not been pulled from $\alpha(x, s)$. Let $\alpha(x, s+1)=\beta$ and place x above $G_{\alpha(x, s+1)}$.

Step (5) (Enumeration into U_{β} and \hat{V}_{β}; meeting Q_{α}.) For all α and for all $x \leq s+1$, such that $\alpha=\alpha(x, s+1$) (if $\alpha(x, s+1)$ was not defined by the above steps then let $\alpha(x, s+1)=\alpha(x, s))$ then for all $\beta \subseteq \alpha, x \in U_{\beta, s}$ iff $x \in U_{\beta, s}^{\dagger}$, and $x \in \hat{V}_{\beta, s}$ iff $x \in \hat{V}_{\beta, s}^{\dagger}$. For all $x \leq s+1$, if $x \in T_{s}$, then for all β, if $x \in U_{\beta, s}^{\dagger}$ then $x \in U_{\beta, s+1}$.
(Clearly this meets Q_{α}.)
The next two steps do not have duals.
Step (6) (Action by f_{s} and changing α 's mode.)
Substep (6.1) (Turning off the α-units to the right of the true path.) If $f_{s}<_{L} \alpha$ and $m(\alpha, s)=o n$ or a, then let $m(\alpha, s+1)=o f f$ and $p(\alpha, s+1)=s+1$.

Substep (6.2) (Changing from on or off to active.) If $\alpha \subseteq f_{s}$ and $m(\alpha, s)=o f f$ or on, let $m(\alpha, s+1)=a, p(\alpha, s+1)=s+1$, and clear all the markers.
Substep (6.3) (Changing from active to on.) If $\alpha \subseteq f_{s}, m(\alpha, s)=a$, and \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are fully marked, do the following: Let $m(\alpha, s+1)=o n$ and $p(\alpha, s+1)=s+1$.

Step (7) (Determining f_{s+1}.) We will define $\gamma_{i, s+1}$ by induction, for $i \leq s+1$. Let $\gamma_{0, s+1}=\gamma$. If there is a stage $t \leq s$ such that $\gamma_{i, s+1} \subseteq f_{t}$, let t be the greatest such stage, otherwise let $t=0$. If there is an immediate successor β of $\gamma_{i, s+1}$ in Tr such that $C_{\beta, s+1} \neq C_{\beta, t}$, then let $\gamma_{i+1, s+1}$ be the $<_{L}$-least such β. Otherwise let $\gamma_{i+1, s+1}=\gamma_{i, s+1}$ (and therefore $f_{s+1}=\gamma_{i, s+1}$). Let $f_{s+1}=\gamma_{s+1, s+1}$.

The verification

The lemmas are dual for \hat{M}.
As we noted before, the true path f is an infinite branch in Tr. It is a straight forward argument to prove that $f=\liminf f_{s}$ (measured with respect to $<_{L}$). (For a very similar proof the reader is directed to [1] or [2].) Clearly Step 5 meets Q_{α}. Hence if $\alpha(x, s)=\alpha$, then $\nu_{\alpha}(x, s)=\nu$ iff $\nu(|\alpha|, x, s)=\nu$ measured with respect to $\left\{U_{\beta, s}\right\}_{\beta \subseteq \alpha}$ and $\left\{\hat{V}_{\beta, s}\right\}_{\beta \subseteq \alpha}$.
Some Easy Facts about $\alpha(-,-)$ and $m(-,-)$. For all x and for all s, we have $x \geq|\alpha(x, s)| ; f_{s} \not \chi_{L} \alpha(x, s+1)$; if $f_{s}<_{L} \alpha$ and $s \geq x$ then x is α-rejected (unable to enter the α-unit) at stage $s+1$; and if x is α-rejected at stage s then for all $t>s$, $\alpha(x, t)<\alpha$ (see Steps 2.2, 2.3, 3, and 4). For all x and s, either $\alpha(x, s+1) \leq^{*} \alpha(x, s) ;$ or $\alpha(x, s+1) \subset \alpha(x, s), x$ is $\alpha(x, s)$-rejected at stage $s+1$ and $f_{s}<_{L} \alpha(x, s)$ (see Step 2.3, 3, and 4). x is in the α-unit at stage s iff $\alpha=\alpha(x, s)$ (by definition of $\alpha(x, s)$ and Step 1). If $m(\alpha, s+1)=o f f$ then for all $x, \alpha \nsubseteq \alpha(x, s+1)$ and either $m(\alpha, s)=$ off or $f_{s}<_{L} \alpha$ (see Steps $2.1,3,4$, and 6.1). We will use these facts without too much reference in the next three lemmas.

Lemma 2.11. For all $k \geq-1$, all $\alpha \in \operatorname{Tr}$, if there is a stage s such that $p(\alpha, s)=k$, then there exists a stage $t>s$ such that either
(i) $p(\alpha, t)=t \neq k$, or
(ii) no new balls enter the α-region after stage t, no new balls enter the $\hat{\alpha}$-region after stage t and for all $t_{1} \geq t, m\left(\alpha, t_{1}\right)=m(\alpha, t)$.

Proof. By induction on $k . p(\alpha, s)$ is a non-decreasing function in s (see Substeps 6.1, 6.2 and 6.3). If for all $s, p(\alpha, s)=-1$ then for all $s, m(\alpha, s)=o f f$ and $E_{\alpha, s}=\hat{E}_{\alpha, s}=\emptyset$ (see Substeps 6.1, 6.2 and 6.3). For all $\alpha \in \operatorname{Tr}$ there does not exist a stage s such that $p(\alpha, s)=0$ (see Stage 0 and Step 6). Hence the lemma holds for $k=-1,0$.

By induction assume the lemma holds for $k^{\prime}<k \neq-1,0$. For all $\alpha \in \operatorname{Tr}$, if $m(\alpha, s) \neq m(\alpha, s+1)$ then $p(\alpha, s) \neq p(\alpha, s+1)=s+1$ (see Step 6). For all $k \geq 1$, for all $\alpha \in \operatorname{Tr}$, there exists a stage s such that $p(\alpha, s)=k$ iff $p(\alpha, k)=k$ and if $p(\alpha, k)=k$ then either $\alpha \subseteq f_{k}$ (see Substep 6.2 and 6.3) or $m(\alpha, k-1) \neq o f f$ and $f_{k}<_{L} \alpha$ (see Substep 6.1). If $m(\alpha, k-1) \neq$ off and $f_{k}<_{L} \alpha$, then $m(\alpha, k)=o f f$, $p(\alpha, k)=k$ and either there exists a stage $t>k$ such that $p(\alpha, t)>k$ or for all $s \geq k, m(\alpha, s)=o f f, p(\alpha, s)=k$, and $E_{\alpha, s}=\hat{E}_{\alpha, s}=\emptyset$. Hence it only remains to show the lemma for $\alpha \subseteq f_{k}$ and k. We will do this by reverse induction for $\alpha \subseteq f_{k}$.

But first we must note the following: If $\beta<^{*} f_{k}$ and $m(\beta, k) \neq o f f$ then there is stage $s_{1}<k$ such that $\beta \subseteq f_{s_{1}}$ and for all s_{2}, if $s_{1} \leq s_{2} \leq k, f_{s_{2}} \not \chi_{L} \beta$. Hence by the induction hypothesis for k there is a stage $t_{1} \geq k$ such that for all $\beta<^{*} f_{k}$ either
(a) $m\left(\beta, t_{1}\right)=o f f$ (hence if β turns on at some later stage $s_{1}, p\left(\beta, s_{1}\right)=s_{1}>k$),
(b) $p\left(\beta, t_{1}\right)>k$, or
(c) no new balls enter the β-region after stage t_{1}, no new balls enter the $\hat{\beta}$-region after stage t_{1}, and for all $t_{3} \geq t_{1}, m\left(\beta, t_{1}\right)=m\left(\beta, t_{3}\right)$.

Let $\alpha \subseteq f_{k}$. Assume that the lemma holds for all β such that $\alpha \subset \beta \subseteq f_{k}$. Assume for all $t \geq k, p(\alpha, t)=k$. Hence for all $t \geq k, m(\alpha, t)=m(\alpha, k) \neq o f f$ and $f_{t} \nless L_{L} \alpha$ (see Step 6). By the induction hypothesis for α there is a stage $t_{2} \geq t_{1}$ such that the above Conditions (a), (b) and (c) hold for all $\beta<^{*} \alpha$ and t_{2} rather than t_{1}.

Assume $\alpha=\lambda$. Now for all $t, \lambda \subseteq f_{t}$. Therefore, we may assume $m(\lambda, k)=a$ (if $m(\lambda, k)=o n$, then there exists a stage $t>k$ such that $m(\lambda, t)=a$; see

Step 6.2). For all $x>k$, if $x \notin T_{t}$ then $\alpha(x, t)=\lambda$ (see Step 4). Since T^{\dagger} is infinite, there exists an $x>k$ and s_{1} such that $x \in T_{s_{1}}^{\dagger}-T_{s_{1}-1}^{\dagger}$. Since we are assuming all eight sets associated with λ are empty, $\nu_{\lambda}(x, t)=\langle 0, \emptyset, \emptyset\rangle$. Hence at some later stage r both $\mathfrak{E}_{\lambda}=\{\langle 0, \emptyset, \emptyset\rangle\}$ and $\hat{\mathfrak{E}}_{\lambda}=\{\langle 0, \emptyset, \emptyset\rangle\}$ are completely marked. Therefore $m(\lambda, r+1)=o n$ and $p(\lambda, r+1)=r+1>k$. A contradiction.

Assume $\alpha \neq \lambda$. New balls may only enter the α-region through Step 2 or 4 . Since for all $t>t_{2}, p(\alpha, t)=k$, after stage t_{2} the action of Step 4 will be able to place only finitely many balls into the α-region. Hence we must show Step 2 can only put finitely many balls into the α-region. Let x be a ball which is placed in α-region after stage t_{2} by Step 2. Say x enters the β-unit at stage t_{3}.

First we will show that $m(\alpha, k)=a$. Since $\alpha \not \subset \alpha\left(x, t_{3}-1\right), \beta$ must be active at stage t_{3} (see Step 2.1). Therefore $p\left(\beta, t_{3}\right)=k_{1} \geq k$ (this follows since β must satisfy either (a), (b) or (c) and the choice of t_{2}). Thus $\alpha \subseteq \beta \subseteq f_{k_{1}}$ and hence if $m\left(\alpha, k_{1}-1\right)=o n$ then $p\left(\alpha, k_{1}\right)=k_{1}$ and $m\left(\alpha, k_{1}\right)=o n$. So $m(\alpha, k)=a$.

Now since $m(\alpha, k)=a$, if Step 2 places a ball into the α-region they must place that ball into the α-unit (see 2.5). Since \mathfrak{E}_{α} is finite, Step 2 can only place finitely many balls into the α-unit (see Steps 1 and 2.6).

Therefore there exists a $t \geq t_{2}$ such that no new balls enter the α-region after stage t. Similar reasoning shows there is a t such that no new balls enter the $\hat{\alpha}$-region after stage t.

Lemma 2.12. (i) If $f<_{L} \alpha$, then for all x there exists s_{x} such that for all $s \geq s_{x}$, $\alpha(x, s)<\alpha$ and for almost all x and for all $s, \alpha \nsubseteq \alpha(x, s)$. (Hence $E_{\alpha, \infty}=\emptyset$ and $U_{\alpha} \backslash T={ }^{*} \hat{V}_{\alpha} \backslash T={ }^{*} \emptyset$.)
(ii) If $\alpha<_{L} f$, then for almost all x and for all $s, \alpha<^{*} \alpha(x, s)$. (Hence $E_{\alpha, \infty}={ }^{*} \emptyset$ and $U_{\alpha} \backslash T=^{*} \hat{V}_{\alpha} \backslash T=^{*} \emptyset$.)
(iii) For all $x \notin T, \alpha(x)=\lim _{s \rightarrow \infty} \alpha(x, s)$ exists.

Proof. We will use without reference many of the facts about $\alpha(-,-)$ mentioned earlier.
(i) Assume $f<_{L} \alpha$. Let $s_{x} \geq x$ be such that $f_{s_{x}}<_{L} \alpha$. We have that for all $s \geq s_{x}, \alpha(x, s)<\alpha$. Since there exists a $\beta \subseteq \alpha$, such that C_{β} is finite (otherwise α is on the true path), there exists an r such that for all $s \geq r, \alpha \nsubseteq f_{s}$ and $m(\alpha, s)=o f f$. Therefore, for all $x \geq r$, for all $s, \alpha \nsubseteq \alpha(x, s)$.
(ii) Assume $\alpha<_{L} f$. There exists a stage t such that for all $s \geq t, \alpha<_{L} f_{s}$ or $f_{s} \subset \alpha$. Hence for all $s \geq t$ and for all $\beta \leq^{*} \alpha, p(\beta, t)=p(\beta, s)$. Therefore by the above lemma, there exists a $t_{1} \geq t$ such that no new balls enter the β-region after stage t_{1} and hence $E_{\beta, \infty}=^{*} \emptyset$, for any $\beta \leq^{*} \alpha$. If $x>\max \left\{p(\beta, t): \beta \leq^{*} \alpha\right\}$, then for all $s, \alpha<^{*} \alpha(x, s)$ (see Steps 3 and 4). Hence for almost all $x, \alpha<^{*} \alpha(x, s)$, for all s.
(iii) Given $x \notin T$ do the following: Let $\alpha \subset f$ such that $|\alpha|=x$. Let $t \geq x$ be such that for all $s \geq t, f_{s} \not \chi_{L} \alpha$. Hence for all $s \geq t$ and for $\beta<_{L} \alpha, p(\beta, t)=p(\beta, s)$. Now, there exists a $t_{1} \geq t$ such that $\alpha \subset f_{t_{1}}$ and for all $\beta<_{L} \alpha$, no new balls enter the β-region after stage t_{1}. If $\alpha\left(x, t_{1}\right)<_{L} \alpha$, then for all $s \geq t_{1}, \alpha(x, s)=\alpha\left(x, t_{1}\right)$; otherwise since $t_{1} \geq x$ and $\alpha \subseteq f_{t_{1}}$, for all β with $\alpha<_{L} \beta, x$ is β-rejected at stage t_{1} (see Step 3) and therefore for all $s>t_{1}, \alpha(x, s) \subseteq \alpha(x, s+1) \subseteq \alpha$ (see Steps 2.2, 2.3, 3 and 4). Hence $\lim _{s \rightarrow \infty} \alpha(x, s)$ exists.

Notation 2.13. Let $k_{\lambda}=0$. For $\alpha \subset f$ with $\alpha \neq \lambda$, let $k_{\alpha}>k_{\alpha^{-}}$be the least stage such that

$$
\begin{gathered}
\alpha \subseteq f_{k_{\alpha}} \\
\text { for all } t \geq k_{\alpha}, \quad f_{t} \not \not_{L} \alpha,
\end{gathered}
$$

for all s, for all $x \geq k_{\alpha}$, if $x \notin T_{s}$ then $\alpha(x, s) \nless_{L} \alpha$, and for all s, for all $\hat{x} \geq k_{\alpha}$, if $\hat{x} \notin \hat{T}_{s}$ then $\hat{\alpha}(\hat{x}, s) \nless_{L} \alpha$.
Such a k_{α} exists since $\alpha \subset f$ and the above lemma. If $x \geq k_{\alpha}$, then for all $\beta<_{L} \alpha, x$ will not enter the β-unit. If $x \geq k_{\alpha}$ and $\alpha(x, s) \supseteq \alpha$, then after stage s such an x cannot leave the α-region unless x enters T and hence for all $t \geq s$, either $\alpha(x, t) \supseteq \alpha$ or $x \in T_{t}$. If $x \geq k_{\alpha}$ is placed in U_{α} or \hat{V}_{α} at stage s then $\alpha \subseteq \alpha(x, s)$ and x is always in the α-region after stage s. If $x \geq k_{\alpha}$ and x is not in the α-region at stage s then $\nu_{\alpha^{-}}(x, s)=\nu_{\alpha}(x, s)$.
Lemma 2.14. Assume $\alpha \subset f$. Then
(i) for all $s \geq k_{\alpha}, m(\alpha, s) \neq$ off, and
(ii) for all $k \geq k_{\alpha}$ there exist s and t such that $t>s \geq k, m(\alpha, s)=a$, and $m(\alpha, t)=$ on. Hence $\lim _{s \rightarrow \infty} p(\alpha, s)=\infty$.
Proof. (i) Since $\alpha \subseteq f_{k_{\alpha}}$ and for all $s \geq k_{\alpha}, f_{s} \not \chi_{L} \alpha, m\left(\alpha, k_{\alpha}\right) \neq o f f$ (see Step 6.2) and for all $s \geq k_{\alpha}, m(\alpha, s) \neq o f f$ (Step 6.1).
(ii) By induction on α. Since $\alpha \subset f$, there exists $s \geq k$ such that $m(\alpha, s)=a$ and $p(\alpha, s) \geq 0$ (see Step 9.2). If $\alpha=\lambda$, then there exists a $t>s$ such that (ii) holds (see the paragraph of the proof of Lemma 2.12 which begins "Assume $\alpha=\lambda$.").

Assume that $\alpha \neq \lambda$ and for all $t_{3} \geq s, m\left(\alpha, t_{3}\right)=a$. Hence for all $t_{3} \geq s$, $p\left(\alpha, t_{3}\right)=p(\alpha, s)$. By 2.12 and the induction hypothesis, there exists a stage $t_{1} \geq s \geq k_{\alpha}$ such that no balls greater than t_{1} enter the α-region or $\hat{\alpha}$-region after stage t_{1} and for all $\beta \subset \alpha, p\left(\alpha, t_{1}\right)<p\left(\beta, t_{1}\right)$. By the choice of k_{α} and t_{1}, no balls greater than k_{α} enter the β-region or $\hat{\beta}$-region for any $\beta \leq^{*} \alpha$. Therefore for all $\beta \leq^{*} \alpha, \beta$ cannot pull from any node γ after stage t_{1}.

We will show that \mathfrak{E}_{α}, and $\hat{\mathfrak{E}}_{\alpha}$ are completely marked at stage t_{1}. Let $\alpha=$ $\alpha^{-\wedge}\left\langle e_{1}, e_{2}, e_{3}, e_{4}, i, j, k\right\rangle$. Let $\nu \in \mathfrak{E}_{\alpha}$. Then for all $s, U_{n, s}^{\dagger}=W_{e_{1}, s}, V_{n, s}^{\dagger}=W_{e_{2}, s}$, $\hat{U}_{n, s}^{\dagger}=W_{e_{3}, s}, V_{n, s}^{\dagger}=W_{e_{4}, s}$, and \mathfrak{E}_{α} is valid for α, e_{1} and e_{2}. Hence there must exist an $x \geq t_{2}$ and $s_{1} \geq t_{2}$ such that $\nu_{\alpha}\left(x, s_{1}\right)=\nu, x \in T_{s_{1}}^{\dagger}-T_{s_{1}-1}^{\dagger}$, and for all $t_{3} \leq s_{1}, \alpha<^{*} \alpha\left(x, t_{3}\right)$. Let s_{1} be the least such stage (this determines the x). If ν were unmarked at stage t_{1}, Step 2 will place x into a β-unit at stage s_{1} for some $\beta \leq^{*} \alpha$. Hence \mathfrak{E}_{α} is completely marked. We can show $\hat{\mathfrak{E}}_{\alpha}$ is completely marked in a similar fashion.

Since $\alpha \subset f$, there exists a $t \geq t_{1}$ such that $\alpha \subseteq f_{t}, m(\alpha, t)=a$ and \mathfrak{E}_{α} and $\hat{\mathfrak{E}}_{\alpha}$ are completely marked at stage t. Therefore $m(\alpha, t+1)=o n ; p(\alpha, t+1)=t+1$; and \mathfrak{E}_{α}, and $\hat{\mathfrak{E}}_{\alpha}$ are not marked at all at stage $t+1$ (see Step 6.3).
Lemma 2.15. For all $\alpha \subset f$, let $\beta \subset f$ such that $\beta^{-}=\alpha$. Then for almost all $x \notin T$, $\beta \subseteq \alpha(x)$. (Hence $E_{\beta, \infty}=^{*} \bar{T}$ and the requirement F_{α} is met.)
Proof. By induction on α. By induction hypothesis, we know that for almost all $x \notin T, \alpha \subseteq \alpha(x)$. We also know that for all γ, if $\beta<_{L} \gamma$ then for all x there exists a stage s such that for all $t \geq s, \alpha(x, t)<_{L} \gamma$ and if $\gamma<_{L} \beta$ then for all $x \geq k_{\alpha}$ and for all $s, \gamma<^{*} \alpha(x, s)$ (see Lemma 2.12). Hence for all $x \notin T$, if $x \geq k_{\alpha}$ then either $\alpha \supseteq \alpha(x)$ or $\beta \subseteq \alpha(x)$ (only Step 3 can move a ball upwards in the machine).

Assume there are infinitely many $x \notin T$ such that $\alpha=\alpha(x)$. Fix $x \geq k_{\beta}$ such that $x \notin T$ and $\alpha=\alpha(x)$. Let s_{x} be such that for all $s \geq s_{x}, \alpha(x, s)=\alpha$. Since $\beta \subset f, x$ is not β-rejected (see Step 3) and there exists a $t_{x} \geq s_{x}$ such that $\beta \subset f_{t_{x}}$, and $x \leq p\left(\beta, t_{x}\right)$ (by the above lemma). Step 4 will set $\alpha\left(x, t_{x}+1\right)=\beta$, a contradiction.
Lemma 2.16. For all $\alpha \subset f, D_{\alpha, \nu}$ is met,
Proof. By induction on α. Let $e=|\alpha|$. Assume $\nu=\langle | \alpha|, \sigma, \tau\rangle \in \mathfrak{E}_{\alpha}$. By Lemma 2.14, \mathfrak{E}_{α}, and $\hat{\mathfrak{E}}_{\alpha}$ are completely marked and unmarked infinitely many times. We can mark ν (on \mathfrak{E}_{α}) at stage s if some ball $x, x \in T_{s+1}-T_{s}$ and $\nu_{\alpha}(x, s)=\nu$ and for all $t \leq s+1, \alpha \leq^{*} \alpha(x, t)$. If $\beta \supseteq \alpha$ then the $|\beta|$-state of x at stage $s+1$ measured with respect to $\left\{U_{\gamma, s}\right\}_{\gamma \subseteq \beta, s<\omega}$ and $\left\{\hat{V}_{\gamma, s}\right\}_{\gamma \subseteq \beta, s<\omega}$ is $\langle | \beta|, \sigma, \tau\rangle$. Since $\lim _{s \rightarrow \infty} p(\alpha, s)=\infty$, there are infinitely many such balls. Hence if $\nu=\langle e, \sigma, \tau\rangle \in \mathfrak{E}_{\alpha}$ then $D_{\nu^{*}}^{T}$ is infinite, where ν^{*} is the $|\beta|$-state $\langle | \beta|, \sigma, \tau\rangle$.

Assume D_{ν}^{T} is infinite (measured with respect to $\left\{U_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$ and $\left.\left\{\widehat{V}_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}\right)$. If $\nu \upharpoonright e-1=\nu$, then, by induction, we are done. If $x \geq k_{\alpha}$ then if $\alpha(x, s) \Longrightarrow \alpha$ then for all $t \geq s \alpha(x, t) \supseteq \alpha(x$ can not move above $\alpha)$. Assume that $x \in D_{\nu}^{T}, x \in T_{s+1}-T_{s}$, and $x \geq k_{\alpha}$. By $Q_{\alpha}, \alpha \subseteq \alpha(x, s)$, since $\nu \upharpoonright e-1 \neq \nu$. Therefore $\nu_{\alpha}(x, s)=\nu$ and $x \in D_{\nu}^{T^{\dagger}}$ measured w.r.t. to $\left\{U_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}^{\dagger}\right\}_{n \leq e, s<\omega}$. Hence $D_{\nu}^{T^{\dagger}}$ is infinite, by Q_{α}, and ν must be in \mathfrak{E}_{α}.

3 Maximal sets form an orbit

Let M_{1} and M_{2} be maximal sets. We show that M_{1} and M_{2} are automorphic in the lattice of recursively enumerable sets. This is a result of Soare (see [7] or [8]) but our proof is different.

Since M_{i} is maximal we know that either $W_{e} \cup M_{i}=^{*} \omega$ or $W_{e} \subseteq^{*} M_{i}$ and furthermore deciding whether $W_{e} \cup M_{i}=^{*} \omega$ or $W_{e} \subseteq^{*} M_{i}$ can be done recursively in $\mathbf{0}^{\prime \prime}$. This and the fact that maximal sets are simple will be the only facts that we will use about maximal sets. As always we will consider $\hat{\omega}$ as a copy of ω; integers from $\hat{\omega}$ will always wear hats; M_{1} as a subset of ω; and M_{2} as a subset of $\hat{\omega}$.

Since we are using the Modified Extension Theorem it is enough to find uniformly $\mathbf{0}^{\prime \prime}$-enumerations $\left\{M_{1, s}\right\}_{s<\omega},\left\{M_{2, s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega},\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$ of the (hopefully) uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $M_{1}, M_{2},\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$ satisfying the following Conditions:

$$
\begin{equation*}
\forall n\left[M_{1} \searrow \hat{U}_{n}=M_{2} \searrow \hat{V}_{n}=\emptyset\right] \tag{3.1}
\end{equation*}
$$

$(\forall \nu)\left[D_{\nu}^{M_{2}}\right.$ is infinite $\Rightarrow\left(\exists \nu^{\prime} \geq \nu\right)\left[D_{\nu^{\prime}}^{M_{1}}\right.$ is infinite $]$, and
$(\forall \nu)\left[D_{\nu}^{M_{1}}\right.$ is infinite $\Rightarrow\left(\exists \nu^{\prime} \leq \nu\right)\left[D_{\nu^{\prime}}^{M_{2}}\right.$ is infinite $\left.]\right]$,
if $n=2 m$ then $U_{n}={ }^{*} W_{m}$ and $V_{n}=\emptyset$ and
if $n=2 m+1$ then $V_{n}=^{*} W_{m}$ and $U_{n}=\emptyset$,
$\exists^{\infty} x \in \bar{M}_{1}$ with final e-state ν w.r.t. to $\left\{U_{n}\right\}_{n<\omega}$ and $\left\{\hat{V}_{n}\right\}_{n<\omega}$
iff
$\exists^{\infty} \hat{x} \in \bar{M}_{2}$ with final e-state ν w.r.t. to $\left\{\hat{U}_{n}\right\}_{n<\omega}$ and $\left\{V_{n}\right\}_{n<\omega}$.
where for all e-states $\nu, D_{\nu}^{M_{1}}$ is measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq e, s<\omega}$ and $D_{\nu}^{M_{2}}$ is measured w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq e, s<\omega}$. (In this section M_{1} with play the role of T and M_{2} that of $\hat{T}_{.}$)

Before we construct this enumeration, we will show that this is enough to conclude that these sets are automorphic. First, by the Modified Extension Theorem, there is an uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ and $\left\{\hat{V}_{n}\right\}_{n \in \omega}$ such that

$$
\begin{equation*}
\hat{U}_{n} \cap \overline{M_{2}}={ }^{*} \hat{U}_{n} \cap \overline{M_{2}}, \quad \hat{V}_{n} \cap \overline{M_{1}}={ }^{*} \hat{V}_{n} \cap \overline{M_{1}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \exists^{\infty} x \in M_{1} \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{U_{n}\right\}_{n<\omega} \text { and }\left\{\hat{V}_{n}\right\}_{n<\omega} \\
& \text { iff } \tag{3.7}\\
& \exists^{\infty} \hat{x} \in M_{2} \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{\hat{U}_{n}\right\}_{n<\omega} \text { and }\left\{V_{n}\right\}_{n<\omega} \text {. }
\end{align*}
$$

From (3.5), (3.6), and (3.7), we have that

$$
\begin{align*}
& \exists^{\infty} x \in \omega \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{U_{n}\right\}_{n<\omega} \text { and }\left\{\hat{V}_{n}\right\}_{n<\omega} \\
& \text { iff } \tag{3.8}\\
& \exists^{\infty} \hat{x} \in \hat{\omega} \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{\hat{U}_{n}\right\}_{n<\omega} \text { and }\left\{V_{n}\right\}_{n<\omega} .
\end{align*}
$$

By (3.4), it is easy to see

$$
\begin{gather*}
\exists^{\infty} x \in \omega \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{W_{e}\right\}_{e<\omega} \text { and }\left\{\hat{V}_{2 e+1}\right\}_{e<\omega} \\
\text { iff } \tag{3.9}\\
\exists^{\infty} \hat{x} \in \hat{\omega} \text { with final } e \text {-state } \nu \text { w.r.t. to }\left\{\hat{U}_{2 e}\right\}_{e<\omega} \text { and }\left\{W_{e}\right\}_{e<\omega},
\end{gather*}
$$

and hence $\Phi\left(W_{\epsilon}\right)=\hat{U}_{2 e}$ and $\Phi^{-1}\left(W_{e}\right)=\hat{V}_{2 e+1}$ defines an automorphism of the lattice of the recursively enumerable sets modulo the finite sets such that $\Phi\left(M_{1}\right)={ }^{*} M_{2}$. Φ can be easily converted into an automorphism Ψ of the lattice of the recursively enumerable sets such that $\Psi\left(M_{1}\right)=M_{2}$ (see [8, XV.2.7]).

We will now focus on meeting (3.1) through (3.5). We will just pick any enumeration of M_{1} and M_{2}. To meet (3.1), we will not enumerate integers into $\hat{U}_{n}\left(\hat{V}_{n}\right)$ once they have entered $M_{2}\left(M_{1}\right)$. Since we will meet (3.4), we can let $\hat{U}_{2 e+1}=\hat{V}_{2 e}=\emptyset$.

A first (failed) attempt to meet (3.5) might go as follows: if $U_{2 e} \cup M_{1}={ }^{*} \omega$ then let $\hat{U}_{2 e}=\omega$, otherwise let $\hat{U}_{2 e}=\emptyset$, and if $V_{2 e+1} \cup M_{2}=^{*} \omega$ then let $\hat{V}_{2 e+1}=\omega$, otherwise let $\vec{V}_{2 e+1}=\emptyset$ (without choosing any enumeration of these sets). Since M_{1} and M_{2} are both maximal, this will meet (3.5) but as we will see this fails to meet the entry Conditions (3.2) and (3.3). Assume that $W_{0} \cup M_{1}=\omega$ and we have the bad luck to enumerate $U_{0}, \widehat{V}_{0}, \hat{U}_{0}$, and V_{0} such that when we only consider 0 -states $D_{\nu}^{M_{1}}$ is infinite (measured w.r.t. the bad enumeration of U_{0} and \widehat{V}_{0}) iff $\nu \in\{\langle 0, \emptyset, \emptyset\rangle,\langle 0,\{0\}, \emptyset\rangle\}$ and $D_{\nu}^{M_{2}}$ is infinite iff $\nu \in\{\langle 0,\{0\}, \emptyset\rangle\}$ (measured w.r.t. to the enumeration of \hat{U}_{0} and V_{0}). Hence (3.3) is not met if $\nu=\langle 0, \emptyset, \emptyset\rangle$. We must ensure that our entry states cohere; this will be done by carefully controlling the enumerations of the desired sets.

We will do this by induction on $e \in \omega \cup\{-1\}$. Assume that we have enumerations $\left\{U_{n, s}\right\}_{n \leq e, s<\omega},\left\{\hat{V}_{n, s}\right\}_{n \leq e, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n \leq e, s<\omega}$, and $\left\{V_{n, s}\right\}_{n \leq e, s<\omega}$ such that

Conditions (3.1) through (3.5) are satisfied when restricted to e-states and $n \leq e$. Furthermore assume that for all $n \leq e$, we have sets \mathfrak{E}_{n} and \mathfrak{R}_{n} of n-states such that

$$
\begin{equation*}
\nu \in \mathfrak{E}_{n} \text { iff } D_{\nu}^{M_{1}} \text { is infinite iff } D_{\nu}^{M_{2}} \text { is infinite, and } \tag{3.10}
\end{equation*}
$$

$$
\begin{aligned}
& \nu \in \Re_{n} \text { iff } \exists^{\infty} x \in \overline{M_{1}}, \nu(n, x)=\nu \text { iff } \exists^{\infty} \hat{x} \in \overline{M_{2}}, \widehat{\nu}(n, \hat{x})=\nu \text { iff } \\
& \text { for all } x \in \overline{M_{1}} \text {, if there exists a stage } s \text { such that } \nu(n, x, s)=\nu, \\
& \text { then } \nu(n, x)=\nu \\
& \text { for all } \hat{x} \in \bar{M}_{2} \text {, if there exists a stage } s \text { such that } \hat{\nu}(n, \hat{x}, s)=\nu, \\
& \text { then } \widehat{\nu}(n, \hat{x})=\nu
\end{aligned}
$$

(where $D_{\nu}^{M_{1}}$ and $\nu\left(n, x, s\right.$) are measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq e, s<\omega}$, $\nu(n, x)$ w.r.t. $\left\{U_{n}\right\}_{n \leq e}$ and $\left\{\hat{V}_{n}\right\}_{n \leq e}, D_{\nu}^{M_{2}}$ and $\hat{\nu}(n, \hat{x}, s)$ w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq e, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq e, s<\omega}$, and $\hat{\nu}(n, \hat{x})$ w.r.t. $\left\{U_{n}\right\}_{n \leq e}$ and $\left\{\hat{V}_{n}\right\}_{n \leq e}$). If $n=-1$, let $\mathbb{E}_{-1}=\mathfrak{R}_{-1}=\{\langle-1, \emptyset, \emptyset\rangle\}$. Given this we will define the enumeration of U_{e+1}, $\hat{V}_{e+1}, \hat{U}_{e+1}$, and V_{e+1} as follows:

Assume that $e+1=2 m$. Hence we must ensure that $U_{e+1}=^{*} W_{m}$. For all s, let $\hat{V}_{e+1, s}=V_{e+1, s}=\emptyset$. Let $\mathfrak{E}_{e+1}^{*}=\left\{\langle e+1, \sigma, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{E}_{e}\right\}$ and $\mathfrak{R}_{e+1}^{*}=\left\{\langle e+1, \sigma, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{R}_{e}\right\}$. There are two cases: either $W_{m} \cup M_{1}={ }^{*} \omega$ or $W_{m} \subseteq^{*} M_{1}$. If $W_{m} \subseteq^{*} M_{1}$, we let $\mathfrak{E}_{e+1}=\mathfrak{E}_{e+1}^{*}, \mathfrak{R}_{e+1}=\mathfrak{R}_{e+1}^{*}, U_{e+1, s+1}=$ $W_{m, s+1} \cap M_{1, s}$, and $\hat{U}_{e+1, s+1}=\emptyset$. Assume $W_{m} \cup M_{1}={ }^{*} \omega$. For all x, \hat{x} and stages s, do the following: Assume $x \notin U_{e+1, s^{*}}$. We will add x to U_{e+1} at stage $s+1$ iff $x \in W_{m, s+1}$ and either $x \in M_{1, s}$ or $\nu(e+1, x, s) \in \mathfrak{R}_{e+1}^{*}$ and for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s+1}^{M_{1}}\right| \geq x$. Assume $\hat{x} \notin \hat{U}_{e+1, s}$. We will add \hat{x} to \hat{U}_{e+1} at stage $s+1$ iff $\hat{x} \notin M_{2, s}, \mathcal{\nu}(e+1, \hat{x}, s) \in \mathfrak{R}_{e+1}^{*}$, and for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s+1}^{M_{2}}\right| \geq \hat{x}$. (Where $\nu(e+1, x, s)$ and $D_{\nu}^{M_{1}}$ are measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq e+1, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq e+1, s<\omega}$, and $\hat{\nu}(e+1, \hat{x}, s)$ and $D_{\nu}^{M_{2}}$ are measured w.r.t. $\left\{\widehat{U}_{n, s}\right\}_{n \leq e+1, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq e+1, s<\omega}$.) Let $\mathfrak{R}_{e+1}=\left\{\langle e+1, \sigma \cup\{e+1\}, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{R}_{e}\right\}$ and $\mathfrak{E}_{e+1}=\mathfrak{E}_{e+1}^{*} \cup \mathfrak{R}_{e+1}$.

By our enumeration if $\nu \in \mathfrak{E}_{e+1}^{*}$ then $D_{\nu}^{M_{1}}$ and $D_{\nu}^{M_{2}}$ are infinite. Since \mathfrak{R}_{e} is the set of maximal e-states and M_{1} and M_{2} are maximal sets, \Re_{e+1} is the set of maximal ($e+1$)-states and hence (3.11) holds. Since M_{1} and M_{2} are simple, if $\nu \in \mathfrak{R}_{e+1}$ then $D_{\nu}^{M_{1}}$ and $D_{\nu}^{M_{2}}$ are infinite. Since for an integer x to be raised into a maximal $(e+1)$-state, x must be in a maximal e-state, (3.10) holds for \mathfrak{E}_{e+1}. From (3.10) and (3.11) it is easy to see that the rest of the induction hypothesis holds. The case where $e+1$ is odd is done in a similar fashion. Hence the enumeration of $\left\{U_{n}\right\}_{n<\omega}$, $\left\{\bar{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$ constructed in this manner will satisfy Conditions (3.1) through (3.5). Conditions (3.10) and (3.11) are exactly the special properties of maximal sets which allow us to conclude that all maximal sets are automorphic.

However, there is still one remaining problem. Why is this enumeration an uniformly $\mathbf{0}^{\prime \prime}$-enumeration? It should be clear that there are functions g_{0}, g_{1}, g_{2}, and g_{3} recursive in $\mathbf{0}^{\prime \prime}$ such that for all e and $s, U_{e, s}=W_{g_{0}(e, s)}, \bar{V}_{e, s}=W_{g_{1}(e, s)}$, $\hat{U}_{e, s}=W_{g_{2}(e, s)}$, and $V_{e, s}=W_{g_{3}(e, s)}$. We need functions g_{0}, g_{1}, g_{2}, and g_{3} recursive in $\mathbf{0}^{\prime \prime}$ such that for all e and $s, U_{e, s}=W_{g_{0}(e), s}, \hat{V}_{e, s}=W_{g_{1}(e), s}, \hat{U}_{e, s}=W_{g_{2}(e), s}$, and
$V_{e, s}=W_{g_{3}(e), s}$. To find such a function we must do the above construction on a tree and use the Recursion Theorem as follows:

Let $\operatorname{Tr}=2^{<\omega}$. At $\alpha \in \operatorname{Tr}$, we will construct r.e. sets $U_{\alpha}, \hat{V}_{\alpha}, \hat{U}_{\alpha}$, and V_{α} and an enumeration of these sets (we build U_{α} and its enumeration in a similar manner to the way we built U_{e+1} and its enumeration). The details of this construction are as follows: We will do this by induction on $\alpha \in \operatorname{Tr}$. If $\alpha=\lambda$, let $\mathfrak{E}_{\alpha}=\mathfrak{R}_{\alpha}=\{\langle-1, \emptyset, \emptyset\rangle\}$ and for all $s, U_{\alpha, s}=\hat{V}_{\alpha, s}=\hat{U}_{\alpha, s}=V_{\alpha, s}=\emptyset$. Assume that we have enumerations $\left\{U_{\beta, s}\right\}_{\beta \subset \alpha, s<\omega},\left\{\hat{V}_{\beta, s}\right\}_{\beta \subset \alpha, s<\omega},\left\{\hat{U}_{\beta, s}\right\}_{\beta \subset \alpha, s<\omega}$, and $\left\{V_{\beta, s}\right\}_{\beta \subset \alpha, s<\omega}$, and sets \mathfrak{E}_{β} and \mathfrak{R}_{β} of $|\beta|$-states. Assume that $|\alpha|-1=2 m$. We will ensure that $U_{\alpha}={ }^{*} W_{m}$. For all s, let $\hat{V}_{\alpha, s}=V_{\alpha, s}=\emptyset$. Let $\mathfrak{E}_{\alpha}^{*}=\left\{\langle | \alpha|, \sigma, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{E}_{\alpha^{-}}\right\}$and $\mathfrak{R}_{\alpha}^{*}=\left\{\langle | \alpha|, \sigma, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{R}_{\alpha^{-}}\right\}$. There are two cases: either $\alpha=\alpha^{-\wedge} 0$ or $\alpha=\alpha^{-\wedge 1}$ (this will be used to code whether $W_{m} \cup M_{1}={ }^{*} \omega$ or $W_{m} \subseteq^{*} M_{1}$). If $\alpha=\alpha^{-\wedge} 0$, we let $\mathbb{E}_{\alpha}=\mathfrak{E}_{\alpha}^{*}, \mathfrak{R}_{\alpha}=\mathfrak{R}_{\alpha}^{*}, U_{\alpha, s+1}=W_{m, s+1} \cap M_{1, s}$, and $\hat{U}_{\alpha, s+1}=\emptyset$. Assume $\alpha=\alpha^{-\wedge} 1$. For all x, \hat{x}, and stages s, do the following: Assume $x \notin U_{\alpha, s}$. We will add x to U_{α} at stage $s+1$ iff $x \in W_{m, s+1}$ and either $x \in M_{1, s}$ or $\nu(|\alpha|, x, s) \in \Re_{\alpha}^{*}$ and for all $\nu \in \mathfrak{E}_{\alpha}^{*},\left|D_{\nu, s+1}^{M_{1}}\right| \geq x$. Assume $\hat{x} \notin \hat{U}_{\alpha, s}$. We will add \hat{x} to \hat{U}_{α} at stage $s+1$ iff $\hat{x} \notin M_{2, s}, \widehat{\nu}(|\alpha|, \hat{x}, s) \in \mathfrak{R}_{\alpha}^{*}$, and for all $\nu \in \mathfrak{E}_{\alpha}^{*},\left|D_{\nu, s+1}^{M_{2}}\right| \geq \hat{x}$. (Where $D_{\nu}^{M_{1}}$ and $\nu(|\alpha|, x, s)$ are measured w.r.t. $\left\{U_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$ and $\left\{\hat{V}_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$, and $D_{\nu}^{M_{2}}$ and $\hat{\nu}(|\alpha|, \hat{x}, s)$ are measured w.r.t. to $\left\{\hat{U}_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$ and $\left\{V_{\beta, s}\right\}_{\beta \subseteq \alpha, s<\omega}$.) Let $\mathfrak{R}_{\alpha}=\left\{\langle | \alpha|, \sigma \cup\{|\alpha|\}, \tau\rangle:\langle e, \sigma, \tau\rangle \in \mathfrak{R}_{\alpha}\right\}$ and $\mathfrak{E}_{\alpha}=\mathfrak{E}_{\alpha}^{*} \cup \mathfrak{R}_{\alpha}$.

By the Recursion Theorem there are recursive functions h_{0}, h_{1}, h_{2}, and h_{3} from Tr into ω such that $U_{\alpha, s}=W_{h_{0}(\alpha), s}, \hat{V}_{\alpha, s}=W_{h_{1}(\alpha), s}, \hat{U}_{\alpha, s}=W_{h_{2}(\alpha), s}$, and $V_{\alpha, s}=W_{h_{3}(\alpha), s}$. Using $0^{\prime \prime}$ choose an infinite branch f through Tr as follows: $\lambda \subseteq f$, if $\alpha \subseteq f$ and $|\alpha|=2 m$ then $\alpha^{\wedge} 1 \subseteq f$ iff $W_{m} \cup M_{1}=^{*} \omega$, and if $\alpha \subseteq f$ and $|\alpha|=2 m+1$ then $\alpha^{\wedge} 1 \subseteq f$ iff $W_{m} \cup M_{2}={ }^{*} \omega$. If $\alpha \subset f$ and $|\alpha|=e+1$ then $U_{e, s}=W_{h_{0}(\alpha), s}, \hat{V}_{e, s}=W_{h_{1}(\alpha), s}, \hat{U}_{e, s}=W_{h_{2}(\alpha), s}$, and $V_{e, s}=W_{h_{3}(\alpha), s}$. Hence we have found an uniformly $0^{\prime \prime}$-enumeration of $\left\{M_{1, s}\right\}_{s<\omega},\left\{M_{2, s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega}$, $\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$ satisfying Conditions (3.1) through (3.5). Therefore M_{1} and M_{2} are automorphic sets.

4 Orbits of hyperhypersimple sets

Let H_{1} and H_{2} be hyperhypersimple sets. Fix some enumeration of H_{1} and H_{2}. Recall from [8], that $\mathscr{L}^{*}(H)$ is the lattice of r.e. supersets of H modulo the finite sets. We say that Ψ is a Σ_{3}-isomorphism from $\mathscr{B}^{*}\left(H_{1}\right)$ to $\mathscr{B}^{*}\left(H_{2}\right)$ iff Ψ is an isomorphism from $\mathscr{S}^{*}\left(H_{1}\right)$ to $\mathscr{L}^{*}\left(H_{2}\right)$ and there is a total Σ_{3}-function h such that $\Psi\left(W_{e} \cup H_{1}\right)=^{*}\left(W_{h(e)} \cup H_{2}\right)$. Assume that Ψ is a Σ_{3}-isomorphisms from $\mathscr{L}^{*}\left(H_{1}\right)$ to $\mathscr{L}^{*}\left(H_{2}\right)$. Hence
$\exists^{\infty} x \in \overline{H_{1}}$ with final e-state ν w.r.t. to $\left\{W_{n}\right\}_{n<\omega}$ and $\left\{W_{h^{-1}(n)}\right\}_{n<\omega}$ iff
$\exists^{\infty} \hat{x} \in \bar{H}_{2}$ with final e-state ν w.r.t. to $\left\{W_{n(n)}\right\}_{n<\omega}$ and $\left\{W_{n}\right\}_{n<\omega}$
(as above we will consider $\hat{\omega}$ as a copy of ω; integers from $\hat{\omega}$ will always wear hats; H_{1} as a subset of ω; and H_{2} as a subset of $\hat{\omega}$). Maass [6] showed that H_{1} and H_{2}
are automorphic sets. We will now, using the above format, provide a new proof of this result.

Before we continue with this proof we will quickly review some needed facts about hyperhypersimple sets and Σ_{3}-functions. If h is total and a Σ_{3}-function, then h is recursive in $\mathbf{0}^{\prime \prime}$. By Lachlan [5] (see (8, X.2.8]), we know that for all e there is a least n_{e} such that

$$
\begin{equation*}
W_{e} \cap W_{n_{e}} \subseteq H_{1} \quad \text { and } \quad W_{e} \cup W_{n_{e}} \cup H_{1}=\omega \tag{4.2}
\end{equation*}
$$

and similarly for H_{2} for all e there is a least \hat{n}_{e} such that

$$
\begin{equation*}
W_{e} \cap W_{\hat{n}_{e}} \subseteq H_{2} \quad \text { and } \quad W_{e} \cup W_{\hat{n}_{e}} \cup H_{2}=\omega \tag{4.3}
\end{equation*}
$$

(in this case think of W_{e} and $W_{\hat{n}_{e}}$ as subsets of $\hat{\omega}$). In addition, we will make the further assumption that for all e,

$$
\begin{equation*}
W_{e} \cap W_{n_{e}} \backslash H_{1}=\emptyset \quad \text { and } \quad W_{e} \cap W_{\hat{n}_{e}} \backslash H_{2}=\emptyset \tag{4.4}
\end{equation*}
$$

for the above enumeration of H_{1} and H_{2}. Furthermore the functions $g(e)=n_{e}$ and $\hat{g}(e)=\hat{n}_{e}$ are recursive in $0^{\prime \prime}$.

We are using the Modified Extension Theorem to help construct the desired automorphism. As above, it is enough to find uniformly $\mathbf{0}^{\prime \prime}$-enumerations $\left\{H_{1, s}\right\}_{s<\omega}$, $\left\{H_{2, s}\right\}_{s<\omega},\left\{U_{n, s}\right\}_{n, s<\omega},\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$ of the uniformly $\mathbf{0}^{\prime \prime}$-recursive collection of r.e. sets $H_{1}, H_{2},\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$ satisfying Conditions (3.1), (3.2), (3.3) and (3.4) and the following Condition:

$$
\begin{gather*}
\text { if } n=4 m \text { then } U_{n}={ }^{*} W_{m} \text { and } V_{n}=\emptyset, \\
\text { if } n=4 m+1 \text { then } U_{n} \cap \overline{H_{1}}=^{*} W_{g(m)} \cap \overline{H_{1}} \text { and } V_{n}=\emptyset, \tag{4.5}\\
\\
\quad \text { if } n=4 m+2 \text { then } V_{n}={ }^{*} W_{m} \text { and } U_{n}=\emptyset, \\
\text { if } n=4 m+3 \text { then } V_{n} \cap \overline{H_{2}}={ }^{*} W_{\hat{g}(m)} \cap \overline{H_{2}} \text { and } U_{n}=\emptyset .
\end{gather*}
$$

(where H_{1} will play the role of M_{1} and H_{2} will play the role of M_{1} in the Conditions from Sect. 3).

We will focus on meeting these Conditions. We will use the above enumerations of H_{1} and H_{2}. To meet (3.1), we will not enumerate integers into $\hat{U}_{n}\left(\hat{V}_{n}\right)$ once they have entered $H_{2}\left(H_{1}\right)$. Since we will meet (4.5), we can let $\bar{V}_{4 e}=\hat{V}_{4 e+1}=\hat{U}_{4 e+2}=$ $\widehat{V}_{4 e+3}=\emptyset$.

A first (again failed) attempt to meet (3.5) might go as follows: let $U_{4 e}={ }^{*} W_{e}$, $\hat{U}_{4 e}={ }^{*} W_{h(e)}, U_{4 e+1}={ }^{*} W_{g(e)}, \hat{U}_{4 e+1}={ }^{*} W_{\hat{g}(h(e))}, V_{4 e+2}=^{*} W_{e}, \hat{V}_{4 e+2}={ }^{*} W_{h^{-1}(e)}$, $V_{4 e+2}=^{*} W_{\hat{g}(e)}$, and $\hat{V}_{4 e+2}=^{*} W_{g\left(h^{-1}(e)\right)}$ (without choosing any enumeration of these sets). By Conditions (4.1), (4.2), and (4.3), for all $e, W_{h(g(e))} \cap \overline{H_{2}}={ }^{*} W_{\hat{g}(h(e))} \cap \overline{H_{2}}$ and $W_{h^{-1}(\hat{g}(e))} \cap \overline{H_{1}}=^{*} W_{g\left(h^{-1}(e)\right)} \cap \overline{H_{1}}$ and therefore Condition (3.5) holds. But this may not meet the entry Conditions (3.2) and (3.3) (again we can produce an example as above). Hence, in addition to constructing these sets, we also must construct the enumerations of these sets.

We will do this by induction on $e \in \omega \cup\{-1\}$. Assume that we have enumerations $\left\{U_{n, s}\right\}_{n \leq 2 e, s<\omega},\left\{\bar{V}_{n, s}\right\}_{n \leq 2 e, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n \leq 2 e, s<\omega}$, and $\left\{V_{n, s}\right\}_{n \leq 2 e, s<\omega}$, such that Conditions (3.1), (3.2), (3.3), (3.5), and (4.5) are satisfied when restricted to n and
n-states where $n \leq 2 e$. Furthermore assume that for all $n \leq e$, we have sets \mathfrak{E}_{n} and \mathfrak{R}_{n} of $2 n$-states such that $\mathfrak{R}_{n} \subseteq \mathfrak{E}_{n}$ and
$\nu \in \mathfrak{E}_{n}$ iff $D_{\nu}^{H_{1}}$ is infinite iff $D_{\nu}^{H_{2}}$ is infinite,
(4.7) if $\exists^{\infty} x \in \overline{H_{1}}, \nu(2 n, x)=\nu$ or $\exists^{\infty} \hat{x} \in \overline{H_{2}}, \hat{\nu}(2 n, \hat{x})=\nu$ then $\nu \in \mathfrak{R}_{n}$, and
if $\nu \in \mathfrak{R}_{n}$ then
for all $x \in \overline{H_{1}}$, if there exists a stage s such that $\nu(2 n, x, s)=\nu$, then $\nu(2 n, x)=\nu$, and
for all $\hat{x} \in \overline{H_{2}}$, if there exists a stage s such that $\hat{\nu}(2 n, \hat{x}, s)=\nu$, then $\bar{\nu}(2 n, \hat{x})=\nu$
(where $D_{\nu}^{H_{1}}$ and $\nu(2 n, x, s)$ are measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq 2 e, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq 2 e, s<\omega}$, $\nu(2 n, x)$ w.r.t. $\left\{U_{n}\right\}_{n \leq 2 e}$ and $\left\{\widehat{V}_{n}\right\}_{n \leq 2 e}, D_{\nu}^{H_{2}}$ and $\widehat{\nu}(2 n, \hat{x}, s)$ w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq 2 e, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq 2 e, s<\omega}$, and $\hat{\nu}(2 n, \hat{x})$ w.r.t. $\left\{U_{n}\right\}_{n \leq 2 e}$ and $\left.\left\{\hat{V}_{n}\right\}_{n \leq 2 e}\right)$. If $n=-1$, let $\mathcal{E}_{-1}=\mathfrak{R}_{-1}=\{\langle-1, \emptyset, \emptyset\rangle\}$.

Since Conditions (4.7) and (4.8) together are weaker than Condition (3.11), we will have more difficulties constructing our enumeration. These two Conditions are weaker than Condition (3.11), since we cannot tell using $0^{\prime \prime}$ whether $W_{e} \cap \overline{H_{1}}={ }^{*} \emptyset$ or not (that would imply that H_{1} and H_{2} are semi-low ${ }_{2}$). Given this we will define the enumeration of $U_{e+1}, \hat{V}_{e+1}, \hat{U}_{e+1}, V_{e+1}, U_{e+2}, \hat{V}_{e+2}, \hat{U}_{e+2}$, and V_{e+2} as follows:

Until otherwise noted ${ }^{`} \nu(2 e+2, x, s)$ and ' $D_{\nu}^{H_{1}}$ are $\nu(2 e+2, x, s)$ and $D_{\nu}^{H_{1}}$ measured w.r.t. $\left\{X_{n, s}\right\}_{n \leq 2 e+1, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq 2 e+1, s<\omega}$, where for $n \leq 2 e, X_{n, s}=$ $U_{n, s}$ and $Y_{n, s}=\hat{V}_{n, s}, X_{2 e+1, s}=W_{m, s}, X_{2 e+2, s}=W_{g(m), s}, Y_{2 e+1, s}=\emptyset$, and $Y_{2 e+2, s}=\emptyset ;{ }^{\prime} \nu(2 e+2, x)$ is $\nu(2 e+2, x)$ measured w.r.t. $\left\{X_{n}\right\}_{n \leq 2 e+1}$ and $\left\{Y_{n}\right\}_{n \leq 2 e+1}$, where for $n \leq 2 e, X_{n}=U_{n}$ and $Y_{n}=V_{n}, X_{2 e+1}=W_{m}, X_{2 e+2}=W_{g(m)}, Y_{2 e+1}=\emptyset$, and $Y_{2 e+2}=\emptyset ;{ }^{`} \nu(2 e+2, \hat{x}, s)$ and ${ }^{'} D_{\nu}^{H_{2}}$ are $\nu(2 e+2, \hat{x}, s)$ and $D_{\nu}^{H_{2}}$ measured w.r.t. $\left\{X_{n, s}\right\}_{n \leq 2 e+1, s<\omega}$ and $\left\{Y_{n, s}\right\}_{n \leq 2 e+1, s<\omega}$, where for $n \leq 2 e, X_{n, s}=\bar{U}_{n, s}$ and $Y_{n, s}=V_{n, s}, X_{2 e+1, s}=W_{h(m), s}, X_{2 e+2, s}=W_{\hat{g}(h(m)), s}, Y_{2 e+1, s}=\emptyset$, and $Y_{2 e+2, s}=\emptyset$; $` \mathcal{\nu}(2 e+2, x)$ is $\nu(2 e+2, x)$ measured w.r.t. $\left\{X_{n}\right\}_{n \leq 2 e+1}$ and $\left\{Y_{n}\right\}_{n \leq 2 e+1}$, where for $n \leq 2 e, X_{n}=\widehat{U}_{n}$ and $Y_{n}=V_{n}, X_{2 e+1}=W_{h(m)}, X_{2 e+2}=W_{\hat{g}(h(m))}, Y_{2 e+1}=\emptyset$, and $Y_{2 e+2}=\emptyset ; D_{\nu}^{H_{1}}$ and $\nu(2 e+2, x, s)$ are measured w.r.t. $\left\{U_{n, s}\right\}_{n \leq 2 e+2, s<\omega}$ and $\left\{\hat{V}_{n, s}\right\}_{n \leq 2 e+2, s<\omega} ; \nu(2 e+2, x)$ w.r.t. $\left\{U_{n}\right\}_{n \leq 2 e+2}$ and $\left\{\hat{V}_{n}\right\}_{n \leq 2 e+2} ; D_{\nu}^{H_{2}}$ and $\hat{\nu}(2 e+2, \hat{x}, s)$ w.r.t. $\left\{\hat{U}_{n, s}\right\}_{n \leq 2 e+2, s<\omega}$ and $\left\{V_{n, s}\right\}_{n \leq 2 e+2, s<\omega}$; and $\bar{\nu}(2 e+2, \hat{x})$ w.r.t. $\left\{U_{n}\right\}_{n \leq 2 e+1}$ and $\left\{\hat{V}_{n}\right\}_{n \leq 2 e+1}$.

Assume that $e+1=4 m$. We will ensure that $U_{e+1}=^{*} W_{m}, \hat{U}_{e+1} \cap \overline{H_{2}}={ }^{*}$ $W_{h(m)} \cap \overline{H_{2}}, U_{e+2} \cap \overline{H_{1}}=^{*} W_{g(m)} \cap \overline{H_{1}}$ and $U_{4 e+2} \cap \overline{H_{2}}={ }^{*} W_{\hat{g}(h(m))} \cap \overline{H_{2}}$. For all s, let $\hat{V}_{e+1, s}=V_{e+1, s}=\hat{V}_{e+2, s}=V_{e+2, s}=\emptyset$. Using $\mathbf{0}^{\prime \prime}$, let \Re_{e+1} be the set of ($2 e+2$)-states such that $\nu=\langle(2 e+2), \sigma, \tau\rangle \in \mathfrak{R}_{e+1}$ iff $\nu \upharpoonright 2 e \in \mathfrak{R}_{e},{ }^{`} D_{\nu}^{H_{1}}$ is infinite, ${ }^{'} D_{\nu}{ }^{H_{2}}$ is infinite, and either $2 e+1 \in \sigma$ or $2 e+2 \in \sigma$ (by Condition (4.4), $\{2 e+1,2 e+2\} \nsubseteq \sigma)$. Let $\mathfrak{E}_{e+1}^{*}=\left\{\langle 2 e+2, \sigma, \tau\rangle:\langle 2 e, \sigma, \tau\rangle \in \mathfrak{E}_{e}\right\}$ and $\mathfrak{E}_{e+1}=\mathfrak{E}_{e+1}^{*} \cup \mathfrak{R}_{e+1}$. For all x, \hat{x} and stages s, do the following. Assume $x \notin U_{e+1, s} \cup U_{e+2, s}$. We will add x to U_{e+1} at stage $s+1$ iff $x \in W_{m, s+1}$ and either $x \in H_{1, s}$ or ${ }^{`} \nu(2 e+2, x, s+1)=\nu^{*} \in \mathfrak{R}_{e+1}$, and either for all $\nu \in \mathbb{E}_{e+1}^{*}$,
$\left|D_{\nu, s}^{H_{1}}\right| \geq x$ or $x \in H_{1, s+1}-H_{1, s}$ and for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s}^{H_{1}}\right| \geq\left|D_{\nu^{*}, s}^{H_{1}}\right|$. Add x to U_{e+2} at stage $s+1$ iff $x \in W_{\hat{g}(h(m)), s+1},{ }_{\nu}^{\nu}(2 e+2, x, s+1)=\nu^{*} \in \mathfrak{R}_{e+1}$, and either for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s}^{H_{1}}\right| \geq x$ or $x \in H_{1, s+1}-H_{1, s}$ and for all $\nu \in \mathfrak{E}_{e+1}^{*}$, $\left|D_{\nu, s}^{H_{1}}\right| \geq\left|D_{\nu^{*}, s}^{H_{1}}\right|$. Assume $\hat{x} \notin \hat{U}_{e+1, s} \cup \hat{U}_{e+2, s}$. Add \hat{x} to \hat{U}_{e+1} at stage $s+1$ iff $\hat{x} \in W_{h(m), s+1}, \widehat{\nu}(2 e+2, \hat{x}, s+1)=\nu^{*} \in \mathfrak{R}_{e+1}$, and either for all $\nu \in \mathfrak{E}_{e+1}^{*}$, $\left|D_{\nu, s}^{H_{2}}\right| \geq \hat{x}$ or $\hat{x} \in H_{2, s+1}-H_{2, s}$ and for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s}^{H_{2}}\right| \geq\left|D_{\nu^{*}, s}^{H_{2}}\right|$. Add \hat{x} to \hat{U}_{e+2} at stage $s+1$ iff $\hat{x} \in W_{\hat{g}(h(m)), s+1},{ }^{\prime} \nu(2 e+2, \hat{x}, s+1)=\nu^{*} \in \mathfrak{R}_{e+1}$, and either for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s}^{H_{2}}\right| \geq \hat{x}$ or $\hat{x} \in H_{2, s+1}-H_{2, s}$ and for all $\nu \in \mathfrak{E}_{e+1}^{*},\left|D_{\nu, s}^{H_{2}}\right| \geq\left|D_{\nu^{*}, s}^{H_{2}}\right|$.

We will now show that this enumeration satisfies the desired properties. Clearly Condition (3.1) holds for $2 e+1$ and $2 e+2$. By Conditions (4.4) and (4.8), for all $x(\hat{x})$ if ${ }^{`} \nu(2 e+2, x, s)=\nu \in \mathfrak{R}_{e+1}\left(\stackrel{\nu}{\nu}(2 e+2, \hat{x}, s)=\nu \in \mathfrak{R}_{e+1}\right)$ then for all $t \geq s$, if $x \notin H_{1, t+1}\left(\hat{x} \notin H_{2, t+1}\right)$ then ${ }^{`} \nu(2 e+2, x, t+1)=\nu(\grave{\nu}(2 e+2, \hat{x}, s)=\nu)$. Therefore Condition (4.8) holds for \mathfrak{R}_{e+1}. By induction on l, we can show for all $\nu \in \mathfrak{E}_{e+1}$, $\left|D_{\nu}^{H_{1}}\right| \geq l$ and $\left|D_{\nu}^{H_{2}}\right| \geq l$. Now using the fact that Condition (4.8) holds for \mathfrak{R}_{e+1}, it is clear that Condition (4.6) holds for \mathfrak{E}_{e+1} and hence Conditions (3.2) and (3.3) hold for $(2 e+2)$-states.

Assume $X=\left\{x: x \in \overline{H_{1}}\right.$ and $\left.\nu(2 e+2, x)=\nu=\langle 2 e+2, \sigma, \tau\rangle\right\}$ is infinite. We will show that $\exists^{\infty} \hat{x} \in \overline{H_{2}}, \nu(2 e+2, x)=\nu, \nu \in \Re_{e+1}$, and either $2 e+1 \in \sigma$ or $2 e+2 \in \sigma$. By the induction hypothesis, $\exists^{\infty} \hat{x} \in \overline{H_{2}}, \widehat{\nu}(2 e, x)=\nu \upharpoonright 2 e$ and $\nu \upharpoonright 2 e \in \mathfrak{R}_{e}$. There exists an infinite subset Y of X such that for all $x \in Y,{ }^{\prime} \nu(2 e+2, x)=\nu^{*}=\left\langle 2 e+2, \sigma^{*}, \tau^{*}\right\rangle$ where $\nu^{*}|2 e=\nu| 2 e$. Since $\overline{H_{1}} \subseteq W_{m} \cup W_{h(m)}, 2 e+1 \in \sigma^{*}$ or $2 e+2 \in \sigma^{*}$. By the choice of h, g, and $\hat{g}, \exists^{\infty} \hat{x} \in \overline{H_{2}}, \grave{\nu}(2 e+2, x)=\nu^{*}$. Since $H_{1}\left(H_{2}\right)$ is simple, ${ }^{\prime} D_{\nu^{*}}^{H_{1}}\left(D_{\nu^{*}}^{H_{2}}\right)$ is infinite. Therefore $\nu \in \Re_{e+1}$. Hence for all $x \notin H_{1}$, if ${ }^{\prime} \nu(2 e+2, x)=\nu^{*}$ then
 So $\nu^{*}=\nu, \exists \exists^{\infty} \hat{x} \in \overline{H_{2}}, \widehat{\nu}(2 e+2, x)=\nu$, and either $2 e+1 \in \sigma$ or $2 e+2 \in \sigma$. Using similar reasoning we can show that Conditions (3.5) and (4.7) hold for ($2 e+2$)-states and $U_{e+1}=^{*} W_{m}, \widehat{U}_{e+1} \cap \overline{H_{2}}=^{*} W_{h(m)} \cap \overline{H_{2}}, U_{e+2} \cap \overline{H_{1}}=^{*} W_{g(m)} \cap \overline{H_{1}}$ and $\widehat{U}_{4 e+2} \cap \overline{H_{2}}={ }^{*} W_{\hat{g}(h(m))} \cap \overline{H_{2}}$.

The case where $e+1=4 m+2$ is done in a similar fashion. Hence the enumeration of $\left\{U_{n}\right\}_{n<\omega},\left\{\hat{V}_{n}\right\}_{n<\omega},\left\{\hat{U}_{n}\right\}_{n<\omega}$, and $\left\{V_{n}\right\}_{n<\omega}$ constructed in this manner will satisfy Conditions (3.1), (3.2), (3.3), (3.5), and (4.5). As before to show that this enumeration is an uniformly $0^{\prime \prime}$-enumeration we must translate the above construction to one done on a tree; a construction where we receive the needed information through the tree rather than using an oracle for $\mathbf{0}^{\prime \prime}$. We use the Recursion Theorem to find the indices for the r.e. sets constructed at each node and an oracle for $0^{\prime \prime}$ to pick out a correct path through the tree and hence the indices witness the fact that our enumeration is an uniformly $0^{\prime \prime}$-enumeration as desired. Other than defining a possible tree for this construction, we will not provide any details.

We will define a tree Tr by induction. First $\lambda \in \operatorname{Tr}$. Assume that $\alpha \in \operatorname{Tr}$, when $\alpha^{\wedge}\left\langle m_{0}, m_{1}, m_{2}, m_{3}, \mathfrak{R}\right\rangle$, where $|\alpha|=m_{0}, m_{i} \in \omega$, and \mathfrak{R} is a set of $(2|\alpha|+2)$-states such that if $\alpha \neq \lambda$ and $\alpha=\beta^{\wedge}\left\langle m_{0}^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}, \mathfrak{R}^{\prime}\right\rangle$ then $\mathfrak{R}|2| \alpha \mid=\mathfrak{R}^{\prime}$. When we translate the above inductive step to one done at some node of the tree, m_{0} will play the role of m, m_{1} will play the role of $h(m), m_{2}$ will play the role of $g(m), m_{3}$
will play the role of $\hat{g}(h(m))$, and \mathfrak{R} the role of \mathfrak{R}_{e+1}. The rest of the details follow without much difficulty.

Hence we have found uniformly $0^{\prime \prime}$-enumerations $\left\{H_{1, s}\right\}_{s<\omega},\left\{H_{2, s}\right\}_{s<\omega}$, $\left\{U_{n, s}\right\}_{n, s<\omega},\left\{\hat{V}_{n, s}\right\}_{n, s<\omega},\left\{\hat{U}_{n, s}\right\}_{n, s<\omega}$, and $\left\{V_{n, s}\right\}_{n, s<\omega}$ satisfying Conditions (3.1), (3.2), (3.3), (3.5), and (4.5). Therefore H_{1} and H_{2} are automorphic sets.

5 Conclusion

We would like to point out that Downey and Stob's result [3] that the hemimaximal sets form an orbit and their work on orbits of Friedberg splittings of hyperhypersimple sets can also be recast in this format. This follows in a natural fashion after the proof in Sects. 3 and 4. Much of Downey and Stob's work [4] on e-splittings and e^{*}-splittings (see [4] for definitions) and orbits can also be recast in this format.

One of the aspects that all of the proofs in this paper have in common is that they all use a tree to provide information recursive in $\boldsymbol{0}^{\prime \prime}$. This is also similar to the Δ_{3} automorphism techniques. In fact, one can combine the proof of Soare's Extension Theorem, the Extension Theorem, and the proof in Sect. 3 (or Sect. 4) to produce a single tree argument showing that the maximal sets form an orbit (or Maass's result on the orbits of hyperhypersimple sets). Such a proof may be shorter but we believe such a proof would hide the exact properties about maximal and hyperhypersimple sets which allowed us to prove these results. By proving these results in pieces, we believe that these properties are more obvious to the reader.

References

1. Cholak, P.: Automorphisms of the lattice of recursively enumerable sets. Ph.D. Dissertation, University of Wisconsin (1991)
2. Cholak, P.: Automorphisms of the lattice of recursively enumerable sets. To appear in Mem. Am. Math. Soc.
3. Downey, R.G., Stob, M.: Automorphisms of the lattice of recursively enumerable sets: orbits. Adv. Math. 92, 237-265 (1992)
4. Downey, R.G., Stob, M.: Friedberg splittings of r.e. sets. Ann. Pure Appl. Logic 59, 175-199 (1993)
5. Lachlan, A.H.: On the lattice of recursively enumerable sets. Trans. Am. Soc. 130, 1-37 (1968)
6. Maass, W.: Orbits of hyperhypersimple sets. J. Symb. Logic 49, 51-62 (1984)
7. Soare, R.: Automorphisms of the lattice of recursively enumerable sets. Part I. Maximal sets. Ann. Math. 100 (2), 80-120 (1974)
8. Soare, R.: Recursively enumerable sets and degrees. Perspectives in Mathematical Logic, Omega series. Berlin Heidelberg New York Tokyo: Springer 1987

[^0]: * Mathematics subject classification (1991): 03D25
 ** The author was partially supported by a NSF Postdoctoral Fellowship and by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University and wishes to thank Michael Stob and Rodney Downey for their help

