Density of the Medvedev lattice of $\Pi_{1}^{\mathbf{0}}$ classes

Received: November 1, 2001 / Revised version: May 14, 2002 /
Published online: 7 March 2003 - © Springer-Verlag 2003

Abstract

The partial ordering of Medvedev reducibility restricted to the family of Π_{1}^{0} classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π_{1}^{0} class, which we call a "c.e. separating class". We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.

The Medvedev lattice was introduced in [5] to classify problems according to their degree of difficulty. A mass problem is a set of functions f mapping natural numbers to natural numbers and is thought of as representing the set of solutions to some problem. For example, we might consider the set of 4-colorings of a given countably infinite graph G as a set of functions each mapping ω into $\{1,2,3,4\}$. One such set P is reducible to another set Q (written $P \leq_{M} Q$) iff there is a partial computable functional Φ which maps Q into P. Thus if we have a solution in Q, then we can use Φ to compute a solution in P. As usual, $P \equiv_{M} Q$ means that both $P \leq_{M} Q$ and $Q \leq_{M} P, P<_{M} Q$ means $P \leq_{M} Q$ but not $Q \leq_{M} P$, and the Medvedev degree $\mathbf{d g}_{M}(P)$ of P is the class of all sets Q such that $P \equiv_{M} Q$. We will see below that the set of Medvedev degrees is a lattice with meet and join given by the natural operations of direct product and disjoint union. For more on the general notion of Medvedev degrees, see the survey by Sorbi [9].

In this paper, we will examine the sublattice \mathcal{P}_{M} of degrees of Π_{1}^{0} classes of sets, that is, nonempty subclasses of $\{0,1\}^{\omega}$. (We will refer to elements of $\{0,1\}^{\omega}$ simply as sets.) The main result of this paper is that the partial ordering \leq_{M} restricted to this sublattice is dense.

We first introduce some notation. For a finite sequence $\sigma \in\{0,1\}^{n}$, we let $|\sigma|=n$ denote the length of σ. For $\sigma \in\{0,1\}^{n}$ and $X \in\{0,1\}^{\omega}$, we say that σ is an initial segment of $X($ written $\sigma \prec X)$ if $X(i)=\sigma(i)$ for all $i \leq|\sigma|$. The interval $I(\sigma)$ determined by σ is $\left\{X \in\{0,1\}^{\omega}: \sigma \prec X\right\}$. These intervals form a basis for

[^0]Mathematics Subject Classification (2000): 03D30, 03D25
Key words or phrases: Degree of difficulty - Medvedev lattice - Recursive functional Density
the usual product topology on $\{0,1\}^{\omega}$. For $\sigma \in\{0,1\}^{n}, \sigma \frown k$ is the extension of σ to a finite sequence of length $n+1$ with last component k. We sometimes interpret σ as coding a binary number and write, for example, $\sigma<n$.

Let \mathcal{B} be the Boolean algebra of clopen subsets of $\{0,1\}^{\omega}$. Then each interval is in \mathcal{B} and every clopen set is a finite union of intervals. Thus we can define a length $|b|$ for each clopen set $b=I\left(\sigma_{0}\right) \cup \cdots \cup I\left(\sigma_{k-1}\right)$ to be the maximum of $\left\{\left|\sigma_{i}\right|: i<k\right\}$.

A Π_{1}^{0} class $P \subseteq\{0,1\}^{\omega}$ may be viewed as the set $[T]$ of infinite paths X through a computable tree $T \subseteq\{0,1\}^{<\omega}$. We say that $\sigma \in T$ is extendible if there is an infinite path $X \in P$ such that $\sigma \prec X$; let $\operatorname{Ext}(T)$ be the set of extendible nodes of T. Then $[T]=[\operatorname{Ext}(T)]$ and if T is computable, $\operatorname{Ext}(T)$ is a Π_{1}^{0} tree with no dead ends. Note that in fact $\operatorname{Ext}(T)$ depends only on P, since $\operatorname{Ext}(T)=\{\sigma:(\exists X \in P) \sigma \prec X\}$ and we often denote it T_{P}. There is an enumeration P_{e} of the Π_{1}^{0} classes as $P_{e}=\left[T_{e}\right]$, where the relation $\sigma \in T_{e}$ is primitive recursive and the relation $\sigma \in \operatorname{Ext}\left(T_{e}\right)$ is Π_{1}^{0} - see [2].

We begin with some background on the Medvedev reducibility of Π_{1}^{0} classes. First we show that only total functionals are needed.

Lemma 1. For any Π_{1}^{0} subclasses P and Q of ω^{ω}, if $P \leq_{M} Q$, then there exists a total computable functional $F: \omega^{\omega} \rightarrow \omega^{\omega}$ such that $F[Q] \subseteq P$.

Proof. Given that $P \leq_{M} Q$, there is a partial computable functional Φ which maps Q into P. This means that there is a partial computable function ϕ mapping finite sequences to finite sequences such that $\Phi(X)=\cup_{n} \phi(X \mid n)$ and with the property that $\sigma \prec \tau$ implies $\phi(\sigma) \prec \phi(\tau)$. Now Q may be expressed as the set of infinite paths through some computable tree T. Then we can extend the mapping Φ from Q to a total mapping F on $\{0,1\}^{\omega}$ with representing function f defined recursively as follows. Let $f(\emptyset)=\emptyset$. Then for any finite sequence σ and any n, define $f\left(\sigma^{\frown} n\right)$ in two cases. If $\sigma^{\frown} n \in T$, let $f\left(\sigma^{\frown} n\right)=\phi\left(\sigma^{\frown} n\right)$, which must be defined. If $\sigma^{\frown} n \notin T$, let $f\left(\sigma^{\frown} n\right)=f(\sigma) \frown 0$.

The lattice operation of \mathcal{P}_{M} are provided by sum and product operations defined as follows. For $i=0$ or $i=1$, let $Y=(i) X$ mean that $Y(0)=i$ and $Y(n+1)=X(n)$ for all n. Then the direct sum, or disjoint union of P and Q is given by

$$
P \oplus Q=\{(0) X: X \in P\} \cup\{(1) Y: Y \in Q\} .
$$

For two elements $X, Y \in\{0,1\}^{\omega}$, let $\langle X, Y\rangle=Z$, where $Z(2 n)=X(n)$ and $Z(2 n+1)=Y(n)$. Then $P \otimes Q=\{\langle X, Y\rangle: X \in P \& Y \in Q\}$ and is easily seen to be a Π_{1}^{0} class.

We summarize here some basic facts about these meet and join operations.
Proposition 2. For any Π_{1}^{0} classes P, Q and R,
(i) $P \oplus Q \equiv_{M} Q \oplus P$ and $P \otimes Q \equiv_{M} Q \otimes P$;
(ii) $P \otimes(Q \oplus R) \equiv_{M}(P \otimes Q) \oplus(P \otimes R)$ and $P \oplus(Q \otimes R) \equiv_{M}(P \oplus Q) \otimes(P \oplus R)$.
(iii) The Medvedev degree of $P \oplus Q$ is the meet, or greatest lower bound, of the Medvedev degrees of P and Q;
(iv) The Medvedev degree of $P \otimes Q$ is the join, or least upper bound, of the Medvedev degrees of P and Q
(v) If $P \leq_{M} Q$, then, for any $R,(P \otimes R) \oplus Q \equiv_{M} P \otimes(Q \oplus R)$.

Proof. We prove only the second part of (ii) and (v), which we will need for the proof of the Density Theorem.

To see that $P \oplus(Q \otimes R) \equiv_{M}(P \oplus Q) \otimes(P \oplus R)$, we define computable functionals in each direction. First define $\Phi: P \oplus(Q \otimes R) \rightarrow(P \oplus Q) \otimes(P \oplus R)$ by

$$
\Phi((0) X)=\langle(0) X,(0) X\rangle
$$

and

$$
\Phi((1)\langle Y, Z\rangle)=\langle(1) Y,(1) Z\rangle .
$$

Then define $\Psi:(P \oplus Q) \otimes(P \oplus R) \rightarrow P \oplus(Q \otimes R)$ as follows. Given $Z=$ $\langle V, W\rangle \in(P \oplus Q) \otimes(P \oplus R)$, there are three cases.

$$
\begin{aligned}
\text { If } V=(0) X, & \text { let } \Psi(Z)=V ; \\
\text { if } V=(1) Y \text { and } W=(0) X, & \text { let } \Psi(Z)=W ; \\
\text { if } V=(1) Y \text { and } W=(1) Z, & \text { let } \Psi(Z)=(1)\langle Y, Z\rangle .
\end{aligned}
$$

(v) Since $P \leq_{M} Q$, we have $P \oplus Q \equiv_{M} P$ and $P \otimes Q \equiv_{M} Q$. Then $(P \otimes R) \oplus Q \equiv_{M}(P \oplus Q) \otimes(R \oplus Q) \equiv_{M} P \otimes(Q \oplus R)$.

Next we observe that \mathcal{P}_{M} has both a least and a greatest element. The least element $\mathbf{0}$ consists of all classes P which contain a computable element. To see this, just let X_{0} be a computable element of P and define $F(X)=X_{0}$ for any X. Then F maps any class Q into P, so that $P \leq_{M} Q$. In particular, the classes $\{0,1\}^{\omega}$ and $\left\{0^{\omega}\right\}$ are both in $\mathbf{0}$.

We can define arbitrary finite products by iteration. Let $[m, n]=\frac{1}{2}\left((m+n)^{2}+\right.$ $3 m+n)$ be the usual coding of pairs of natural numbers which maps $\omega \times \omega 1-1$ and onto ω. For an infinite sequence X_{0}, X_{1}, \ldots of sets, let $\left\langle X_{0}, X_{1}, \ldots\right\rangle=Z$, where $Z([m, n])=X_{m}(n)$. For an infinite sequence Q_{0}, Q_{1}, \ldots of Π_{1}^{0} classes, let

$$
\Pi_{i=0}^{\infty} Q_{i}=\left\{\left\langle X_{0}, X_{1}, \ldots\right\rangle: X_{i} \in Q_{i} \text { for each } i\right\}
$$

Let U be the product $\Pi_{e=0}^{\infty} P_{e}$. Then $P \leq_{M} U$ for any Π_{1}^{0} class $P=P_{e}$ via the map F which takes $\left\langle X_{0}, X_{1}, \ldots\right\rangle$ to X_{e}, that is, $F(X)=Y$, where $Y(n)=X([e, n])$. Thus the Medvedev degree of U is $\mathbf{1}$.

The Medvedev degree is closely related both to the Turing degree and to the lattice of Π_{1}^{0} classes under inclusion. Whenever $Q \subseteq P$, we always have $P \leq_{M} Q$, by the natural injection of Q into P. Conversely, using the meet operation, whenever $P \leq_{M} Q$, there are classes $P^{\prime} \equiv_{M} P$ and $Q^{\prime} \equiv_{M} Q$ with $Q^{\prime} \subseteq P^{\prime}$. To show that P is not Medvedev reducible to Q, it suffices to find an element X of Q such that no element of P is Turing reducible to X, since if F maps Q into P, then $F(X) \in P$ and $F(X) \leq_{T} X$.

With this in mind, we can find plenty of intermediate degrees, using the result of Jockusch and Soare [4] that there is a Π_{1}^{0} class P such that any two members have incomparable Turing degree. Now such a class has no computable element and thus is uncountable and in fact perfect (see [1], p. 57). Thus we can partition P into two uncountable subclasses, Q and R, such that each member of Q is incomparable with each member of R. It follows that Q and R are Medvedev incomparable. It is not hard to obtain an infinite family of incomparable sets in this way. Binns and Simpson [8] have greatly improved this observation by showing that the free countable distributive lattice can be embedded into \mathcal{P}_{M} below any nonzero degree.

There are two types of classes which are of special interest. For any disjoint computably enumerable (c.e.) sets A and B, define the class of separating sets as follows, where \bar{B} denotes the complement of B.

$$
S(A, B)=\{X: A \subseteq X \subseteq \bar{B}\}
$$

Then $S(A, B)$ is always a Π_{1}^{0} class; we call $S(A, B)$ a c.e. separating class and we call the Medvedev degree of $S(A, B)$ a c.e. separating degree.

In particular, both $\mathbf{0}$ and $\mathbf{1}$ are c.e. separating degrees. For $\mathbf{0}$, let A_{0} be the set of even numbers and B_{0} the set of odd numbers. For $\mathbf{1}$, let A_{1} be the set of theorems of Peano Arithmetic and B_{1} the set of negations of theorems. Applying recent results of Simpson [7], we will sketch an argument that the Medvedev degree of $S\left(A_{1}, B_{1}\right)$ is 1 .

Simpson defined the notion of a productive Π_{1}^{0} class and showed in [7] that any productive class is Medvedev complete. P is productive if there is a splitting function $g: \omega \rightarrow \mathcal{B}$ such that, for all e, if $P_{e} \subseteq P$ and P_{e} is nonempty, then $P_{e} \cap g(e)$ and $P_{e} \backslash g(e)$ are both nonempty. Thus it suffices to show that $S\left(A_{1}, B_{1}\right)$ is productive. Now it is well known that A_{1} and B_{1} are effectively inseparable-see Odifreddi [6], p 356. This means that there is a recursive function ϕ such that, for any x and y, if $A_{1} \subseteq W_{x}$ and $B_{1} \subseteq W_{y}$ and $W_{x} \cap W_{y}=\emptyset$, then $\phi(x, y) \notin W_{x} \cup W_{y}$. The following lemma thus implies that $S\left(A_{1}, B_{1}\right)$ has Medvedev degree 1.

Proposition 3. If A are B are effectively inseparable c.e. sets, then $S(A, B)$ is a productive Π_{1}^{0} class.

Proof. Let $P=S(A, B)$ where A and B are effectively inseparable c.e. sets and and let ϕ be given as above. Define $W_{f(e)}=\left\{n:\left(\forall X \in P_{e}\right) n \in X\right\}$ and $W_{h(e)}=$ $\left\{n:\left(\forall X \in P_{e}\right) n \notin X\right\}$. To see that these are indeed c.e. sets, note that $W_{f(e)}$ has an alternate definition, that is,

$$
n \in W_{f(e)} \quad \Longleftrightarrow \quad\left(\forall \sigma \in\{0,1\}^{n+1}\right)\left(\sigma \in \operatorname{Ext}\left(T_{e}\right) \Longrightarrow \sigma(n)=1\right)
$$

where P_{e} is the set of infinite paths throught the e-th primitive recursive tree T_{e}. Clearly $W_{f(e)} \cap W_{h(e)}=\emptyset$, and if $P_{e} \subseteq P$, then $A \subseteq W_{f(e)}$ and $B \subseteq W_{h(e)}$. Thus $\phi(f(e), h(e))=n \notin W_{f(e)} \cup W_{h(e)}$. Hence there exist X and Y in P_{e} such that $n \in X$ and $n \notin Y$. The splitting function for P can thus be defined by $g(e)=\{X: \phi(f(e), h(e)) \in X\}$.

Let us say that c.e. sets A and B are weakly effectively inseparable if there is a computable function F, mapping ω^{2} into the family of finite sets of natural numbers, such that, for any x and y, if $A \subseteq W_{x}$ and $B \subseteq W_{y}$ and $W_{x} \cap W_{y}=\emptyset$, then $F(x, y)$ contains at least one element which is not in $W_{x} \cup W_{y}$. Of course, effectively inseparable sets are also weakly effectively inseparable, simply by taking the singleton set $\{\phi(x, y)\}$.

We now give a weakened form of the converse of Proposition 3.
Proposition 4. For any disjoint c.e. sets A and B, if $S(A, B)$ is productive, then A and B are weakly effectively inseparable.

Proof. Let $P=S(A, B)$ be productive and let g be given as above. Given x and y, we can define the Π_{1}^{0} class $P_{e}=P_{f(x, y)}=S\left(W_{x}, W_{y}\right)$ and from that obtain the clopen set $G=g(f(x, y))$. Finally, let $F(x, y)=\{0,1, \ldots,|g(f(x, y))|\}$. To see that this works, suppose that in fact $A \subseteq W_{x}, B \subseteq W_{y}$, and $W_{x} \cap W_{y}=\emptyset$. Then $S\left(W_{x}, W_{y}\right)$ is a nonempty subclass of $S(A, B)$. Thus both $P_{e} \cap G$ and $P_{e} \backslash G$ are nonempty. Choose $X \in P_{e} \cap G$ and $Y \in P_{e} \backslash G$. Then by the definition of $F(x, y)$, there exist disjoint intervals $I(\sigma)$ and $I(\tau)$ with $|\sigma|=|\tau| \in F(x, y)$ such that $\sigma \prec X$ and $\tau \prec Y$. Thus there must be some $n \in F(x, y)$ such that $X(n) \neq Y(n)$ and it follows that $n \notin W_{x} \cup W_{y}$.

The family of c.e. separating degrees is closed under join, since

$$
S(A, B) \otimes S(C, D)=S(\langle A, C\rangle,\langle B, D\rangle)
$$

However, the meet of two incomparable c.e. separating degrees is never a c.e. separating degree, as shown by the following.
Lemma 5. For any Π_{1}^{0} class P and any clopen sets G and H, if $P \cap G \leq_{M} P \cap H$, then $P \cap G \equiv_{M} P \cap(G \cup H)$.

Proof. First, $P \cap(G \cup H) \leq_{M} P \cap G$ via the identity map. Fix a computable functional $\Phi: P \cap H \rightarrow P \cap G$ and define $\Psi: P \cap(G \cup H) \rightarrow P \cap G$ by

$$
\Psi(X):= \begin{cases}X, & \text { if } X \in G \\ \Phi(X), & \text { otherwise }\end{cases}
$$

Note that Ψ is computable since clopen sets are simply finite unions of intervals.

Lemma 6. For any c.e. separating class P and any clopen set G, if $P \cap G \neq \emptyset$, then $P \cap G \equiv_{M} P$.

Proof. By Lemma 5, it suffices to prove this for intervals, and we proceed by induction on the length n of σ. If $n=0$, then $I(\sigma)=2^{\omega}$, so $P \cap I(\sigma)=P$. Assume as induction hypothesis that $P \cap I(\sigma) \equiv_{M} P$ for some σ of length n, and suppose that $P \cap I\left(\sigma^{\frown} e\right) \neq \emptyset$. If $P \cap I\left(\sigma^{\frown} 1-e\right)=\emptyset$, then $P \cap I\left(\sigma^{\frown} e\right)=P$. Otherwise, $P \cap I\left(\sigma^{\frown} e\right) \equiv_{M} P \cap I\left(\sigma^{\frown} 1-e\right)$ via the computable maps $X \mapsto X \cup\{n\}$ and $X \mapsto X \backslash\{n\}$. Then by Lemma 5 again,

$$
P \cap I\left(\sigma^{\frown} e\right) \equiv_{M} P \cap\left(I\left(\sigma^{\frown} e\right) \cup I\left(\sigma^{\frown} 1-e\right)\right)=P .
$$

Proposition 7. For any Π_{1}^{0} classes P and Q and any c.e. separating class R, if $P \oplus Q \leq_{M} R$, then either $P \leq_{M} R$ or $Q \leq_{M} R$.

Proof. Fix a computable functional $\Phi: R \rightarrow P \oplus Q$ and set $G:=\{X: \Phi(X) \in$ $I((0))\} . G$ is clopen as the continuous inverse image of an interval. $P \leq_{M} R \cap G$ via the map $X \mapsto(k \mapsto \Phi(X)(k+1))$. If $R \cap G \neq \emptyset$, then by Lemma $6 R \cap G \equiv_{M} R$, so $P \leq_{M} R$. Otherwise $R \backslash G \neq \emptyset$ and we have similarly $Q \leq_{M} R$.

This suggests that we should consider the sublattice of \mathcal{P}_{M} generated by the family of c.e. separating degrees. This turns out to have a simple direct characterization.

Definition 8. For any tree $T \subseteq\{0,1\}^{<\omega}$ and any Π_{1}^{0} class $P \subseteq\{0,1\}^{\omega}$,
(i) T is homogeneous iff $\quad(\forall \sigma, \tau \in T)(\forall i<2)$,

$$
|\sigma|=|\tau| \Longrightarrow\left(\sigma^{\frown} i \in T \Longleftrightarrow \tau^{\frown} i \in T\right) ;
$$

(ii) T is almost homogeneous iff $\exists n(\forall \sigma, \tau \in T)(\forall i<2)$,

$$
n \leq|\sigma|=|\tau| \wedge \sigma \upharpoonright n=\tau \upharpoonright n \Longrightarrow\left(\sigma^{\curvearrowright} i \in T \Longleftrightarrow \tau^{\Upsilon} i \in T\right) ;
$$

The least such n is called the modulus of T;
(iii) P is (almost) homogeneous iff T_{P} is (almost) homogeneous; a Medvedev degree is (almost) homogeneous iff it contains an (almost) homogeneous class;
AH denotes the family of almost homogeneous degrees.
Proposition 9. For any Π_{1}^{0} class P,

$$
P \text { is homogeneous } \quad \Longleftrightarrow \quad P \text { is a c.e. separating class. }
$$

Proof. If $P=S(A, B)$ for c.e. sets A and B, then

$$
\left.T_{P}=\{\sigma:(\forall i<|\sigma|)[\sigma(i)=0 \wedge i \notin A) \vee(\sigma(i)=1 \wedge i \notin B)]\right\}
$$

This is clearly a homogeneous tree. Conversely, if T_{P} is homogeneous, then $P=$ $S(A, B)$ for

$$
A=\left\{n: 0^{n \frown} 0 \notin T_{P}\right\} \quad \text { and } \quad B=\left\{n: 0^{n \frown} 1 \notin T_{P}\right\} .
$$

Corollary 10. For any Π_{1}^{0} class P, if P is almost homogeneous with modulus n, then P is the disjoint union of 2^{n} c.e. separating classes.

Proof. Given $P \in \mathbf{A H}$ with modulus n, for each sequence σ of length n, let $P[\sigma]:=\{X \in P: \sigma \prec X\}$. Each $P[\sigma]$ is homogeneous, so is a c.e. separating class, and clearly P is the disjoint union of the $P[\sigma]$.

Proposition 11. For any Π_{1}^{0} classes P and Q, if P and Q are almost homogeneous, then also $P \oplus Q$ and $P \otimes Q$ are almost homogeneous.

Proof. If P and Q are almost homogeneous with moduli m and n, respectively, then easily $P \oplus Q$ is almost homogeneous with modulus $\max \{m, n\}+1$ and $P \otimes Q$ is almost homogeneous with modulus $2 \max \{m, n\}$.

Theorem 12. AH is the smallest sublattice of \mathcal{P}_{M} which includes the family of c.e. separating degrees.

Proof. By the preceding two propositions, AH is a sublattice of \mathcal{P}_{M} which includes the family of c.e. separating degrees. Let L be any other such lattice; we prove by induction that for all n,

$$
P \text { is almost homogeneous with modulus } n \quad \Longrightarrow \quad \mathbf{d g}_{M}(P) \in L \text {. }
$$

For $n=0$ this is true by Proposition 9, so assume as induction hypothesis that it holds for n and that P is almost homogeneous with modulus $n+1$. Then if for $i<2$ we set $P_{i}:=\{X:(i) X \in P\}, P_{i}$ is almost homogeneous with modulus n, so $\boldsymbol{d g}_{M}\left(P_{i}\right) \in L$ and clearly $P=P_{0} \oplus P_{1}$ so also $\mathbf{d g}_{M}(P) \in L$.

Classes of positive measure are also of interest. We will say that a Medvedev degree has positive measure if it contains some class of positive measure. Thus $\mathbf{0}$ has positive measure, since 2^{ω} has Medvedev degree $\mathbf{0}$. On the other hand, it is a classic result ([3], p. 110) that the computable sets are not a basis for the Π_{1}^{0} classes of positive measure, so that there is a nonzero Medvedev degree of positive measure. It is not hard to see that the Medvedev degrees of positive measure form an ideal of \mathcal{P}_{M}. The precise positive measure is not important here, since it is easy to see that for any Π_{1}^{0} class P of positive measure and any $\epsilon>0$, we can find a Π_{1}^{0} class $Q \equiv_{M} P$ with measure $>1-\epsilon$ and a second Π_{1}^{0} class $R \equiv_{M} P$ with measure $<\epsilon$.

It turns out that $\mathbf{0}$ is the only Medvedev degree which is both an almost homogeneous degree and has positive measure.

Theorem 13. For any Π_{1}^{0} class P of positive measure and any almost homogeneous class $Q>_{M} \mathbf{0}, Q \not \not_{M} P$.

Proof. Suppose first that $Q=S(A, B)$, where A and B are recursively inseparable c.e. sets, and let P have positive measure. Jockusch and Soare ([4], p. 50) proved that the collection $U(Q)$, of all sets X such that some $Y \in Q$ is Turing reducible to X, has measure 0 . Now suppose by way of contradiction that $Q \leq_{M} P$. Then there would be a recursive functional Φ mapping P into Q, so that for each $X \in P$, $Y=\Phi(X)$ is in Q and is Turing reducible to X. Thus $P \subseteq U(Q)$ and hence has measure zero.

Now if Q is almost homogeneous, say with modulus n, then by Corollary 10, Q is the disjoint union of 2^{n} many c.e. separating sets $Q[\sigma]$. If there is a recursive functional Φ mapping P into Q, then P is the disjoint union of the sets $\Phi^{-1}(Q[\sigma])$. Each of these is of measure 0 by the first part of the proof, hence so is P.

It follows in particular that no class of positive measure has degree 1. We now present the main theorem of the paper.

Theorem 14. (Density Theorem) For any Π_{1}^{0} classes P and Q, if $P<_{M} Q$, then there exists $a \Pi_{1}^{0}$ class S such that $P<_{M} S<_{M} Q$.

Proof. Fix Π_{1}^{0} classes $P<_{M} Q$ and corresponding Π_{1}^{0} trees T_{P} and T_{Q} with no dead ends. We shall construct a Π_{1}^{0} class R such that

$$
\begin{align*}
& Q \oplus R \not \bigsqcup_{M} P \tag{1}\\
& Q \not \leq_{M} P \otimes R \tag{2}
\end{align*}
$$

and take, using Proposition 2(v),

$$
S:=(P \otimes R) \oplus Q \equiv_{M} P \otimes(Q \oplus R) .
$$

Then $P<_{M} S<_{M} Q$ as required because of the following four facts:
$P \leq_{M} S$ because S is of the form $P \otimes P^{\prime} ;$
$S \leq_{M} Q \quad$ because $\quad S$ is of the form $Q^{\prime} \oplus Q ;$
$S \not \bigwedge_{M} P \quad$ because otherwise $\quad Q \oplus R \leq_{M} S \leq_{M} P \quad$ contrary to (1);
$Q \not \leq_{M} S$ because otherwise $Q \leq_{M} S \leq_{M} P \otimes R \quad$ contrary to (2).
The class R will be a c.e. separating class $S(A, B)$ and we shall establish (1) by satisfying for all a,

$$
\begin{equation*}
\text { not } \forall X \in P\left(\{a\}^{X} \in Q \oplus R\right) \text {. } \tag{1a}
\end{equation*}
$$

For (2) it will suffice to satisfy for all a,

$$
\begin{equation*}
\text { not } \forall X \in P\left(\{a\}^{X, A} \in Q\right) \text {, } \tag{2a}
\end{equation*}
$$

The strategy for satisfying $(1 a)$ is a variant of the Sacks coding strategy for the density of the c.e. Turing degrees. First note that if (1a) fails, then for all $X \in P$, $\{a\}^{X}$ is of one of the forms (0) Y for some $Y \in Q$ or (1) Z for some $Z \in S(A, B)$. Thus we may think of $\{a\}$ as the union of a map $\left\{a_{0}\right\}: P_{0} \rightarrow Q$ and a map $\left\{a_{1}\right\}: P_{1} \rightarrow S(A, B)$, where P_{0} and P_{1} are two disjoint Π_{1}^{0} subclasses of P whose union is P. The construction involves the enumeration of certain markers $\mathrm{m}_{\sigma, t}^{a}$ into A and B. We shall arrange that under the hypothesis that (1a) fails that there exists a recursive function g such that for all $\sigma \in T_{Q}$,

$$
\sigma^{-} 0 \notin T_{Q} \quad \Longrightarrow \quad \mathrm{~m}_{\sigma, g(\sigma)}^{a} \in A \quad \text { and } \quad \sigma^{\wedge} 1 \notin T_{Q} \quad \Longrightarrow \quad \mathrm{~m}_{\sigma, g(\sigma)}^{a} \in B
$$

Since T_{Q} has no dead ends, this ensures that A and B are disjoint. Then there exists an index a_{2} such that for all $X \in P_{1}$ and all y,

$$
\left\{a_{2}\right\}^{X}(y)= \begin{cases}1, & \text { if } \mathrm{m}_{\sigma_{y}, g\left(\sigma_{y}\right)}^{a} \in\left\{a_{1}\right\}^{X} \\ 0, & \text { otherwise }\end{cases}
$$

where σ_{y} denotes $\left\{a_{2}\right\}^{X} \upharpoonright y$. Now we can show by induction on y that

$$
\left\{a_{1}\right\}^{X} \in S(A, B) \quad \Longrightarrow \quad \sigma_{y} \in T_{Q}
$$

from which it follows that $\left\{a_{2}\right\}^{X} \in Q$ - thus $\left\{a_{2}\right\}: P_{1} \rightarrow Q$. This is trivially true for $y=0$, so assume it for y as induction hypothesis. If both $\sigma_{y}^{〔} 0$ and $\sigma_{y}^{\frown} 1$ belong to T_{Q}, then certainly $\sigma_{y+1} \in T_{Q}$. Otherwise, either $\sigma_{y} 0 \notin T_{Q}$, so

$$
\mathrm{m}_{\sigma_{y}, g\left(\sigma_{y}\right)}^{a} \in A \subseteq\left\{a_{1}\right\}^{X} \Longrightarrow\left\{a_{2}\right\}^{X}(y)=1 \Longrightarrow \sigma_{y+1}=\sigma_{y}^{-} 1 \in T_{Q}
$$

or $\sigma_{y}^{\frown} 1 \notin T_{Q}$, so

$$
\mathrm{m}_{\sigma_{y}, g\left(\sigma_{y}\right)}^{a} \in B \subseteq \overline{\left\{a_{1}\right\}^{X}} \Longrightarrow\left\{a_{2}\right\}^{X}(y)=0 \Longrightarrow \sigma_{y+1}=\sigma_{y}^{\Upsilon} 0 \in T_{Q}
$$

The last implication in each case follows from the hypothesis that T_{Q} has no dead ends. Now, combining indices a_{0} and a_{2} produces a recursive mapping $\left\{b_{1}\right\}$: $P \rightarrow Q$ - that is, $Q \leq_{M} P$, contrary to hypothesis.

The strategy for satisfying ($2 a$) relies on restraints imposed on the enumeration of markers into A and B. The result of these restraints, described below, is to establish the existence of a recursive functional H such that if (2a) fails, then for all $X \in P$ and all y,

$$
\{a\}^{X, A}(y) \simeq\{a\}_{H(X, y)}^{X, A_{H(X, y)}}(y)
$$

It follows that there is an index b_{2} such that for all $X \in P,\left\{b_{2}\right\}^{X}=\{a\}^{X, A} \in Q$ - that is, $\left\{b_{2}\right\}$ witnesses that $Q \leq_{M} P$, contrary to hypothesis.

Before we can continue with the details of the proof, we need to develop some machinery. The basic tools of the proof are the so-called hat trick and the notion of a length of agreement function, which we shall adapt in several ways to the present context.

Definition 15. For any tree T and any s, T^{s} denotes the set of members of T of length s.

Since T_{P} is Π_{1}^{0}, it may be represented as the intersection of a decreasing sequence $\left\langle T_{P, s}: s \in \omega\right\rangle$ of recursive trees with the property that $\lim _{t \rightarrow \infty} T_{P, t}^{s}=$ T_{P}^{S}.

We write $\{a\}_{s}^{\sigma}(y) \simeq i$ to mean that the oracle computation with index a applied to argument y asks questions of the oracle only for $z<|\sigma|$ and converges in at most s steps with value i. Similarly, $\{a\}_{s}^{\sigma} \upharpoonright y \in T$ means that for all $z<y$, there is some i_{z} such that $\{a\}_{s}^{\sigma}(z) \simeq i_{z}$ and $\left\langle i_{0}, i_{1}, \ldots, i_{y-1}\right\rangle \in T$. The basic properties of computations yield immediately the following facts.

Proposition 16. For all values of the variables,

$$
\begin{array}{ll}
\text { (i) }\{a\}^{X}(y) \simeq i & \Longleftrightarrow \exists s\left[\{a\}_{s}^{X \upharpoonright s}(y) \simeq i\right] ; \\
\text { (ii) }\{a\}^{X} \upharpoonright y \in T & \Longrightarrow \exists s\left[\{a\}_{s}^{X \mid s}(y) \in T\right] ; \\
\text { (iii) }\{a\}_{s}^{\sigma}(y) \simeq i & \Longrightarrow \\
\quad(\forall \tau \succeq \sigma)(\forall t \geq s)\{a\}_{t}^{\tau}(y) \simeq i \quad \text { and } \quad(\forall X \succ \sigma)\{a\}^{X}(y) \simeq i ; \\
\text { (iv) }\{a\}_{s}^{\sigma} \upharpoonright y \in T & \Longrightarrow \\
& \Longrightarrow \tau \succeq \sigma)(\forall t \geq s)\{a\}_{t}^{\tau} \upharpoonright y \in T \quad \text { and } \quad(\forall X \succ \sigma)\{a\}^{X} \upharpoonright y \in T .
\end{array}
$$

If P and R are two Π_{1}^{0} classes with associated trees T_{P} and T_{R}, an index a witnesses that $R \leq_{M} P$ iff $\{a\}: P \rightarrow R$ - that is, for all $X \in P,\{a\}^{X} \in R$ or equivalently

$$
\forall y(\forall X \in P)\{a\}^{X} \upharpoonright y \in T_{R}
$$

It will be useful to note an equivalent condition.
Proposition 17. For any Π_{1}^{0} classes P and R and any a and y,

$$
(\forall X \in P)\left[\{a\}^{X} \upharpoonright y \in T_{R}\right] \Longleftrightarrow \exists s\left(\forall \sigma \in T_{P, s}^{s}\right)\left[\{a\}_{s}^{\sigma} \upharpoonright y \in T_{R}\right] .
$$

Hence,

$$
\{a\}: P \rightarrow R \quad \Longleftrightarrow \quad \forall y \exists s\left(\forall \sigma \in T_{P, s}^{s}\right)\left[\{a\}_{s}^{\sigma} \upharpoonright y \in T_{R}\right] .
$$

Proof. By Proposition 16, from the left-hand side it follows that

$$
\begin{equation*}
(\forall X \in P) \exists s\left[\{a\}_{s}^{X \upharpoonright s} \upharpoonright y \in T_{R}\right], \tag{1}
\end{equation*}
$$

and hence, by König's Lemma (compactness)

$$
\begin{equation*}
\exists s(\forall X \in P)\left[\{a\}_{s}^{X \upharpoonright s} \upharpoonright y \in T_{R}\right], \tag{2}
\end{equation*}
$$

since otherwise, $\left\{\sigma \in T_{P}:\{a\}_{|\sigma|}^{\sigma} \upharpoonright y \notin T_{R}\right\}$ is an infinite subtree of the finitely branching tree T_{P}, hence has an infinite path contrary to (1). Now by (2), fix s such that for all $X \in P,\{a\}_{s}^{X \upharpoonright s} \upharpoonright y \in T_{R}$. For some $t \geq s, T_{P, t}^{s}=T_{P}^{s}$, so for each $\tau \in T_{P, t}^{t}, \tau \upharpoonright s \in T_{P}^{s}$. Since T_{P} has no dead ends, for each $\tau \in T_{P, t}^{t}$ there is an $X \in P$ such that $X \upharpoonright s=\tau \upharpoonright s$ and hence $\{a\}_{s}^{\tau \upharpoonright s} \upharpoonright y \in T_{R}$. Then by Proposition 16, $\{a\}_{s}^{\tau \uparrow s} \upharpoonright y=\{a\}_{t}^{\tau} \upharpoonright y$ and the right-hand side holds with t for s. Conversely, given the right-hand side, fix s such that for all $\sigma \in T_{P, s}^{s},\{a\}_{s}^{\sigma} \upharpoonright y \in T_{R}$. Then for each $X \in P, X \upharpoonright s \in T_{P}^{s} \subseteq T_{P, s}^{s}$, so $\{a\}^{X} \upharpoonright y=\{a\}_{s}^{X \upharpoonright s} \upharpoonright y \in T_{R}$. Hence the left-hand side holds.

We introduce next some functions which measure the extent to which the partial recursive function with index a maps one Π_{1}^{0} class P into another R.

Definition 18. For any Π_{1}^{0} classes P and R and any a and s,

$$
\begin{aligned}
\ell^{P, R}(a) & = \begin{cases}\infty, & \text { if }\{a\}: P \rightarrow R ; \\
\text { least } y\left[(\exists X \in P)\{a\}^{X} \upharpoonright(y+1) \notin T_{R}\right], & \text { otherwise; }\end{cases} \\
\ell^{P, R}(a, s) & =\text { least } y\left[\left(\exists \sigma \in T_{P, s}^{s}\right)\{a\}_{s}^{\sigma} \upharpoonright(y+1) \notin T_{R, s}\right] ; \\
\ell^{+P, R}(a, s) & =\max _{s^{\prime} \leq s}\left[\ell^{P, R}\left(a, s^{\prime}\right)\right] .
\end{aligned}
$$

The notation should be interpreted to mean that $a^{X} \upharpoonright(y+1) \notin T_{R}$ holds also if for some $z \leq y,\{a\}^{X}(z) \uparrow$. Thus $\{a\}: P \rightarrow R$ iff $\ell^{P, R}(a)=\infty$ and $\ell^{+P, R}(a, s)$ approximates $\ell^{P, R}(a)$ in the following sense.
Proposition 19. For any Π_{1}^{0} classes P and R,
(i) if $\ell^{P, R}(a)=\infty$, then $\lim _{s \rightarrow \infty} \ell^{+P, R}(a, s)=\infty$;
(ii) if $\ell^{P, R}(a)<\infty$, then for some number $\ell^{+P, R}(a) \geq \ell^{P, R}(a)$,
$\lim _{s \rightarrow \infty} \ell^{+P, R}(a, s)=\ell^{+P, R}(a)$;
(iii) for all $s \leq t, \ell^{+P, R}(a, s) \leq \ell^{+P, R}(a, t)$.

Proof. Part (i) is simply a translation of Proposition 17. For (ii), if $\ell^{P, R}(a)<\infty$, then for some $X \in P,\{a\}^{X} \upharpoonright\left(\ell^{P, R}(a)+1\right) \notin T_{R}$. Let

$$
\bar{y}:=\max \left\{y \leq \ell^{P, R}(a):(\forall X \in P)(\forall z \leq y)\{a\}^{X}(z) \downarrow\right\} .
$$

If $\bar{y}<\ell^{P, R}(a)$, then easily $\lim _{s \rightarrow \infty} \ell^{+P, R}(a, s) \leq \bar{y}+1$. If $\bar{y}=\ell^{P, R}(a)$, then for some \bar{s} and some $\sigma \in T_{P}^{\bar{s}}$,

$$
\left(\forall z \leq \ell^{P, R}(a)\right)\{a\}_{\bar{s}}^{\sigma}(z) \downarrow \quad \text { but } \quad\{a\}_{\bar{s}}^{\sigma} \upharpoonright\left(\ell^{P, R}(a)+1\right) \notin T_{R, \bar{s}} .
$$

Hence, for all $s \geq \bar{s}$,

$$
\exists \sigma \in T_{P_{s}}^{s}\left[\{a\}_{s}^{\sigma} \upharpoonright\left(\ell^{P, R}(a)+1\right) \notin T_{R, s}\right],
$$

so $\ell^{P, R}(a, s) \leq \ell^{P, R}(a)$. Furthermore, by the same argument as for (i), there exist s such that $\ell^{P, R}(a, s)=\ell^{P, R}(a)$ and thus

$$
\lim _{s \rightarrow \infty} \ell^{+P, R}(a, s)=\max \left\{\ell^{P, R}(a), \ell^{+P, R}(a, \bar{s})\right\}=: \ell^{+P, R}(a)
$$

Part (iii) is immediate from the definition.
As part of the proof below we shall need to consider also mappings of the form $\{b\}: P \otimes\{A\} \rightarrow Q$, where A is a c.e. set given by a recursive stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ - that is an increasing chain of finite sets with union A such that the relation $\left\{\langle x, s\rangle: x \in A_{s}\right\}$ is recursive. We recall first the "hat trick", adapted to the current setting. For any computation of the form $\{b\}_{s}^{\sigma, A}(x)$, we denote by $\mathbf{u}\left(A_{s} ; \sigma, b, x, s\right)$ the actual A_{s}-use of the computation - that is, the smallest number which properly bounds all oracle queries to A_{s}. In the following, σ may denote either a finite or infinite sequence.

Definition 20. For any recursive stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A and any b and σ, set

$$
\begin{aligned}
p_{s}: & = \begin{cases}\text { least } p\left[p \in A_{s} \backslash A_{s-1}\right], & \text { if } A_{s} \backslash A_{s-1} \neq \emptyset ; \\
\max A_{s} \cup\{s\}, & \text { otherwise } ;\end{cases} \\
{\widehat{\{b\}_{s}}}_{\sigma, A_{s}}(x) & \simeq \begin{cases}\{b\}_{s}^{\sigma, A_{s}}(x), & \text { if } \mathbf{u}\left(A_{s} ; \sigma, b, x, s\right) \leq p_{s} ; \\
\uparrow, & \text { otherwise } ;\end{cases} \\
\hat{\mathbf{u}}\left(A_{s} ; \sigma, b, x, s\right): & = \begin{cases}\mathbf{u}\left(A_{s} ; \sigma, b, x, s\right), & \text { if } \widehat{\{b\}_{s}^{\sigma, A_{s}}(x) \downarrow ;} \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

 A-correct in the sense that $A_{s} \upharpoonright \mathbf{u}\left(A_{s} ; \sigma, b, x, s\right)=A \upharpoonright \mathbf{u}\left(A_{s} ; \sigma, b, x, s\right)$. s is a true stage in the stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A iff $A_{s} \upharpoonright p_{s}=A \upharpoonright p_{s}$. \mathbf{V}^{A} denotes the set of true stages.

Some familiar properties of computations carry over to this context.
Lemma 21. (Correctness Lemma) For any stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A, any Π_{1}^{0} class P, and any X, σ, b, s and x,
(i) $\{b\}^{X, A}(x) \downarrow \quad \Longleftrightarrow \quad \exists s \widehat{\{b\}}_{s}^{X \mid s, A_{s}}(x) \downarrow$ correctly;
(ii) if ${\widehat{\{b\}_{s}}}_{\sigma, A_{s}}(x) \simeq z$ correctly, then for all $t \geq s$ and $X \supseteq \tau \supseteq \sigma$, $\left\{{\widehat{b}\}_{t}^{\tau, A_{t}}}^{\tau}(x) \simeq z\right.$ correctly and $\{b\}^{X, A}(x) \simeq z$;
(iii) $(\forall X \in P)\{b\}^{X, A}(x) \downarrow \Longleftrightarrow \exists s\left(\forall \sigma \in T_{P, s}^{s}\right){\widehat{\{b\}_{s}}}_{\sigma, A_{s}}(x) \downarrow$ correctly;
(iv) if for all $\sigma \in T_{P, s}^{s}, \widehat{\{b\}}_{s}^{\sigma, A_{s}}(x) \simeq z_{\sigma}$ correctly, then for all $t \geq s$ and all

(v) if $s \in \mathbf{V}^{A}$ and $\widehat{\{b\}}_{s}^{\sigma, A_{s}}(x) \downarrow$, then ${\widehat{\{b\}}\}_{s}^{\sigma, A_{s}}(x) \downarrow \text { correctly. }}^{2}$

Proof. Parts (i) and (ii) are simple consequences of the definitions and furthermore are special cases of (iii) and (iv). For (iii) (\Rightarrow), suppose that $(\forall X \in P)\{b\}^{X, A}(x) \downarrow$. Arguing as in the proof of Proposition 17, there is some t such that for all $\tau \in T_{P, t}^{t}$, $\{b\}^{\tau, A}(x) \downarrow$. Let

$$
u:=\max \left\{\mathbf{u}(A ; \tau, b, x): \tau \in T_{P, t}^{t}\right\}
$$

and choose $s \geq t$ such that $A \upharpoonright u=A_{s} \upharpoonright u$. Then for each $\sigma \in T_{P, s}^{s}$,

$$
{\widehat{\{b}\}_{s}^{\sigma, A_{s}}(x) \simeq\{b\}^{\sigma \upharpoonright t, A}(x) \downarrow, ~ . ~}_{\text {and }}
$$

since $\sigma \upharpoonright t \in T_{P, s} \subseteq T_{P, t}$, and by the choice of s, these computations are correct.
Now suppose that s is such that for all $\sigma \in T_{P, s}^{s},{\widehat{\{b}\}_{S}^{\sigma}}_{\sigma, A_{s}}(x) \simeq z_{\sigma}$ correctly. Then for $u_{\sigma}:=\mathbf{u}\left(A_{s} ; \sigma, b, x, s\right)$, for each $\sigma \in T_{P, s}^{s}, A \upharpoonright u_{\sigma}=A_{s} \upharpoonright u_{\sigma}$, so for all $t \geq s, A \upharpoonright u_{\sigma}=A_{t} \upharpoonright u_{\sigma}$. Hence, for each $\tau \in T_{P, t}^{t}$,
since $\tau \upharpoonright s \in T_{P, t} \subseteq T_{P, s}$, and this computation is correct. Similarly, for $X \in P$,
 (v) is immediate from the definitions.

The associated length of agreement functions are
Definition 22. For any Π_{1}^{0} classes P and Q, any recursive stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A and any a, set

$$
\ell^{P \times A, Q_{(a)}}:=\left\{\begin{array}{l}
\infty, \quad \text { if }\{a\}: P \otimes\{A\} \rightarrow Q ; \\
\text { least } y\left[(\exists X \in P)\{a\}^{X, A} \upharpoonright(y+1) \notin T_{Q}\right], \text { otherwise. }
\end{array}\right.
$$

As recursive approximations to $\ell^{P \times A, Q}$ we set

$$
\ell^{P \times A, Q}(a, s):=\text { least } y\left[\left(\exists \sigma \in T_{P, s}^{s}\right) \widehat{\{a\}}_{s}^{\sigma, A_{s}} \upharpoonright(y+1) \notin T_{Q, s}\right],
$$

and

$$
\ell^{P \times A, Q}(X ; a, s):=\text { least } y\left[\widehat{a a}_{s}^{X \mid s, A_{s}} \upharpoonright(y+1) \notin T_{Q, s}\right],
$$

For any y, we say that $\ell^{P \times A, Q}(a, s) \geq y$ correctly iff all of the following hold:
(i) $\ell^{P \times A, Q}(a, s) \geq y$
(ii) for all $\sigma \in T_{P, s}^{s}$ and all $z<y,{\widehat{a}\}_{S}}_{\sigma, A_{s}}(z) \downarrow$ correctly;
(iii) for all $\sigma \in T_{P, s}^{s}, \widehat{\{a\}}_{s}^{\sigma, A_{s}} \upharpoonright y \in T_{Q}$.

Similarly, $\ell^{P \times A, Q}(X ; a, s) \geq y$ correctly iff all of the following hold:
(iv) $\ell^{P \times A, Q}(X ; a, s) \geq y$
(v) for all $z<y, \widehat{\{a\}_{s}}{ }^{X \mid s, A_{s}}(z) \downarrow$ correctly;
(vi) ${\widehat{\{a\}_{S}}}^{X \mid s, A_{s}} \upharpoonright y \in T_{Q}$.

The key properties of these functions are contained in the following
Lemma 23. (Correctness Lemma for Length CLL) For any Π_{1}^{0} classes P and Q, any recursive stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A, and any a, y and s,
(i) if $y \leq \ell^{P \times A, Q}(a)$, there exists s such that $\ell^{P \times A, Q}(a, s) \geq y$ correctly;
(ii) if $\ell^{P \times A, Q}(a, s) \geq y$ correctly, then $y \leq \ell^{P \times A, Q}(a)$ and for all $t \geq s$, $\ell^{P \times A, Q}(a, t) \geq y$ correctly;
 correctly - in particular, if $s \in \mathbf{V}^{A}$ - then $\ell^{P \times A, Q}(X ; a, s) \geq y$ correctly.

Proof. Part (i) follows by the same methods as in the proof of Proposition 17. For (ii), assume that $\ell^{P \times A, Q}(a, s) \geq y$ correctly. Then for all $\sigma \in T_{P, s}^{s}$ and $z<y$, $\widehat{\{a\}}^{\sigma, A_{s}}(z) \downarrow$ correctly, so by 21(ii), for all $\sigma \in T_{P, s}^{s}$ and all $t \geq s$,

$$
\widehat{\{a\}}_{t}^{\sigma, A_{t}} \upharpoonright y \simeq{\widehat{\{a}\}_{S}^{\sigma, A_{s}} \upharpoonright y \simeq\{a\}^{\sigma, A} \upharpoonright y \in T_{Q} \subseteq T_{Q, t} .}^{\sigma}
$$

Hence for all $\sigma \in T_{P, s}^{s},\{a\}^{\sigma, A} \upharpoonright y \in T_{Q}$. Then on the one hand, for all $X \in P$,

$$
\{a\}^{X, A} \upharpoonright y \simeq \widehat{\{a\}}_{S}^{X \upharpoonright s, A_{s}} \upharpoonright \in T_{Q}, \quad \text { so } \quad \ell^{P \times A, Q}(a) \geq y,
$$

and on the other for all $t \geq s$ and $\tau \in T_{P, t}^{t}$,

$$
{\widehat{a b}\}_{t}^{\tau, A_{t}} \upharpoonright y \simeq \widehat{\{a}_{s}^{\tau \mid s, A_{s}} \upharpoonright y \in T_{Q, t}, \quad \text { so } \quad \ell^{P \times A, Q}(a, t) \geq y . . . ~}_{\text {. }}
$$

For (iii), given the hypotheses, we have

$$
{\widehat{\{a}\}_{s}^{X \mid s, A_{s}} \upharpoonright y \simeq\{a\}^{X, A} \upharpoonright y \in T_{Q}, ~}_{\text {, }}
$$

from which it follows that $\ell^{P \times A, Q}(a, s) \geq y$ correctly.

Corollary 24. For any Π_{1}^{0} classes P and Q, any recursive stage enumeration $\left\langle A_{s}: s \in \omega\right\rangle$ of a set A, and any a, y and s,
(i) if $\ell^{P \times A, Q}(a)=\infty$, then $\lim _{s \rightarrow \infty} \ell^{P \times A, Q}(a, s)=\infty$, and for all $X \in P$, $\lim _{s \rightarrow \infty} \ell^{P \times A, Q}(X ; a, s)=\infty$;
(ii) if $\ell^{P \times A, Q}(a)<\infty$, then for all sufficiently large s, $\ell^{P \times A, Q}(a, s) \geq \ell^{P \times A, Q}(a)$ and for all sufficiently large $s \in \mathbf{V}^{A}$, $\ell^{P \times A, Q}(a, s)=\ell^{P \times A, Q}(a)$.

Proof. Part (i) and the first part of (ii) are immediate from Lemma 23. Choose t large enough that $T_{P, t}^{\ell^{P \times A, Q_{(a)+1}}}=T_{P}^{\ell^{P \times A, Q_{(a)+1}}}$ and suppose, towards a contradiction, that for some $s \geq t$ with $s \in \mathbf{V}^{A}$ that $\ell^{P \times A, Q}(a, s) \geq \ell^{P \times A, Q}(a)+1$. Then for all $\sigma \in T_{P, s}^{s}$,

$$
\widehat{\{a\}}_{s}^{\sigma, A_{s}} \upharpoonright\left(\ell^{P \times A, Q}(a)+1\right) \in T_{Q, s} .
$$

Since $s \in \mathbf{V}^{A}$, the computations are all correct, and by the choice of t, we have

$$
\{a\}^{\sigma, A} \upharpoonright\left(\ell^{P \times A, Q}(a)+1\right) \in T_{Q}
$$

Hence, for all $X \in P,\{a\}^{X, A} \upharpoonright\left(\ell^{P \times A, Q}(a)+1\right) \in T_{Q}$ contrary to the definition of $\ell^{P \times A, Q}(a)$.

We are now ready to continue with the proof of the Density Theorem. The overall structure of the proof is an induction on a to establish (1a) and (2a) simultaneously. To describe the construction, let

$$
\begin{aligned}
r^{P \times A, Q}(b, s) & :=\max \left\{\hat{\mathbf{u}}\left(A_{s} ; \sigma, b, s, z\right): \sigma \in T_{P, s}^{s} \text { and } z \leq \ell^{P \times A, Q}(b, s)\right\} ; \\
R_{s}^{P \times A, Q}(a) & :=\max \left\{r^{P \times A, Q}(b, s): b<a\right\} .
\end{aligned}
$$

For the markers we take $\mathrm{m}_{\sigma, t}^{a}:=\langle a,\langle\sigma, t\rangle\rangle$. We say that $\mathrm{m}_{\sigma, t}^{a}$ is qualified at stage $s \geq t$ iff $\sigma<\ell^{+P, R}(a, t)$ and further

0 -qualified at $s \Longleftrightarrow \mathrm{~m}_{\sigma, t}^{a} \notin B_{s}$ and $\sigma^{\complement} 0 \notin T_{Q, s}$ and $\mathrm{m}_{\sigma, t}^{a}>R_{s}^{P \times A, Q_{(a)} \text {; }}$
1-qualified at $s \Longleftrightarrow \sigma^{\frown} 0 \in T_{Q, s}$ and $\sigma^{\curvearrowright} 1 \notin T_{Q, s}$ and $\mathrm{m}_{\sigma, t}^{a}>R_{s}^{P \times A, Q_{(}}(a)$.
Now the construction is as follows: at stage s, for all $a, \sigma, t<s$,
(i) enumerate into A_{s+1} all markers $\mathrm{m}_{\sigma, t}^{a}$ which are 0 -qualified at s;
(ii) enumerate into B_{s+1} all markers $\mathrm{m}_{\sigma, t}^{a}$ which are 1-qualified at s.

We define as usual

$$
\begin{aligned}
A^{[a]} & :=\{\langle a, y\rangle:\langle a, y\rangle \in A\} \quad \text { (the } a \text {-th column of } A \text {); } \\
A^{[\leq a]} & :=\bigcup_{b \leq a} A^{[b]} ; \\
\mathbf{V}_{a}^{A} & :=\left\{s: A_{s}^{[\leq a]} \upharpoonright p_{s}=A^{[\leq a]} \upharpoonright p_{s}\right\} ; \\
\mathbf{V}_{<a}^{A} & :=\bigcap_{b<a} \mathbf{V}_{b}^{A} .
\end{aligned}
$$

Before addressing directly the conditions ($1 a$) and ($2 a$), we derive some consequences of the construction. We say that $\ell^{P \times A, Q}(b, s) \geq y$ very correctly iff $\ell^{P \times A, Q}(b, s) \geq y$ correctly and

Similarly, $\ell^{P \times A, Q}(X ; b, s) \geq y$ very correctly iff $\ell^{P \times A, Q}(X ; b, s) \geq y$ correctly and

Then, for all a, b, s, and y, and all $X \in P$
(A1) if $s \in \mathbf{V}_{b}^{A}, T_{Q, s}^{y}=T_{Q}^{y}$ and $\ell^{P \times A, Q}(b, s) \geq y$, then $\ell^{P \times A, Q}(b, s) \geq y$ very correctly;
(A2) if $s \in \mathbf{V}_{b}^{A}, y \leq \ell^{P \times A, Q}(b)$ and $\ell^{P \times A, Q}(X ; b, s) \geq y$, then $\ell^{P \times A, Q_{(}}(X ; b, s) \geq y$ very correctly;
(B1) $\lim _{s \in \mathbf{V}_{b}^{A}} \ell^{P \times A, Q}(b, s)=\ell^{P \times A, Q}(b)$;
(B2) if for all $b<a, \ell^{P \times A, Q}(b)<\infty$, then $\lim _{s \in \mathbf{V}_{<a}^{A}} R_{s}^{P \times A, Q}(a)=: R^{P \times A, Q}(a)$ exists and is finite.

For (A1), assume that $s \in \mathbf{V}_{b}^{A}$; we prove by induction on y that

$$
\ell^{P \times A, Q}(b, s) \geq y \quad \text { and } \quad T_{Q, s}^{y}=T_{Q}^{y} \Longrightarrow \ell^{P \times A, Q}(b, s) \geq y \text { very correctly. }
$$

Assume as induction hypothesis that this holds for y and suppose that $\ell^{P \times A, Q}(b, s) \geq$ $y+1$, hence $\ell^{P \times A, Q}(b, s) \geq y$ very correctly (The basis case $y=0$ is identical without any use of an induction hypothesis). Hence, for all $\sigma \in T_{P, s}, \widehat{\{a\}}^{\sigma, A_{s}} \upharpoonright$ $(y+1) \in T_{Q, s}^{y+1} \subseteq T_{Q}$ via correct computations, so $\ell^{P \times A, Q}(b, s) \geq y+1$ correctly, and it suffices to prove that for all $\sigma \in T_{P, s}^{s}$, if $u_{\sigma}:=\hat{\mathbf{u}}\left(A_{s} ; \sigma, b, y+1, s\right)$, then for all $t \geq s, A_{t} \upharpoonright u_{\sigma}=A_{s} \upharpoonright u_{\sigma}$. This is immediate for $t=s$, so assume as induction hypothesis that it holds for t. By the construction, any element $x \in A_{t+1} \backslash A_{t}$ is of the form $x=\langle c, z\rangle$ with $x>R_{t}^{P \times A, Q}(c)$. If $c \leq b$, then

$$
x \in A^{[\leq b]} \backslash A_{s}^{[\leq b]} \quad \text { so } \quad x \geq p_{s} \geq u
$$

because $s \in \mathbf{V}_{b}^{A}$. If $c>b$, then

$$
\begin{aligned}
x>R_{t}^{P \times A, Q}(c) & \geq r^{P \times A, Q}(b, t) \\
& \geq \hat{\mathbf{u}}\left(A_{t} ; \sigma, b, y+1, t\right) \quad \text { since by } 23(\mathrm{ii}), \ell^{P \times A, Q}(b, t) \geq y+1 \\
& \geq u_{\sigma} .
\end{aligned}
$$

Hence, in either case $A_{t+1} \upharpoonright u_{\sigma}=A_{t} \upharpoonright u_{\sigma}=A_{s} \upharpoonright u_{\sigma}$ as desired.
For (A2), for $s \in \mathbf{V}_{b}^{A}$ we prove similarly by induction on $y \leq \ell^{P \times A, Q}(b)$ that

$$
\ell^{P \times A, Q}(X ; b, s) \geq y \quad \Longrightarrow \quad \ell^{P \times A, Q}(X ; b, s) \geq y \text { very correctly. }
$$

Assume as induction hypothesis that this holds for y and suppose that $\ell^{P \times A, Q}(X ; b, s)$ $\geq y+1$, hence $\ell^{P \times A, Q}(X ; b, s) \geq y$ very correctly. It follows from Lemma 23(iii) that $\ell^{P \times A, Q}(X ; b, s) \geq y+1$ correctly, and it suffices to prove that if $u:=\hat{\mathbf{u}}\left(A_{s} ; X \upharpoonright s, b, y+1, s\right)$, then for all $t \geq s, A_{t} \upharpoonright u=A_{s} \upharpoonright u$. This is done exactly as in the proof of (A1).
(B1) is immediate from the Corollary to 23 in case $\ell^{P \times A, Q}(b)=\infty$. If $\ell^{P \times A, Q}(b)<\infty$, then by the same Corollary, for all sufficiently large $s, \ell^{P \times A, Q}(b, s) \geq \ell^{P \times A, Q}(b)$. Furthermore, using (A1), by a proof parallel to the proof of the second half of part (ii) of that Corollary, for all sufficiently large $s \in \mathbf{V}_{b}^{A}, \ell^{P \times A, Q}(b, s)=\ell^{P \times A, Q_{(}}(b)$.

Now (B2) follows, since for sufficiently large $s \in \mathbf{V}_{b}^{A}$, if $\ell^{P \times A, Q}(b)<\infty$,

$$
\begin{aligned}
r^{P \times A, Q}(b, s) & =\max \left\{\hat{\mathbf{u}}\left(A_{s} ; \sigma, b, z, s\right): \sigma \in T_{P, s}^{s} \quad \text { and } \quad z \leq \ell^{P \times A, Q}(b, s)\right\} \\
& =\max \left\{\mathbf{u}(A ; \sigma, b, z): \sigma \in T_{P} \quad \text { and } \quad z \leq \ell(b)\right\} \\
& =r^{P \times A, Q}(b) .
\end{aligned}
$$

Thus under the hypothesis of (B2), for sufficiently large $s \in \mathbf{V}_{<a}^{A}$, $R_{s}^{P \times A, Q}(a)$ has the constant value $R^{P \times A, Q_{(}}(a):=\max \left\{r^{P \times A, Q}(b): b<a\right\}$.

We now proceed to the proof of (1a) and (2a) along with

$$
\begin{equation*}
A^{[a]} \text { and } \quad \mathbf{V}_{a}^{A} \quad \text { are recursive } \tag{3a}
\end{equation*}
$$

by induction on a. Assume as induction hypothesis that (1b), (2b) and (3b) hold for all $b<a$. Hence for all $b<a, \ell^{P \times A, Q}(b)<\infty$ and thus by (B2), $\lim _{s \in \mathbf{V}_{<a}^{A}}$ $R_{s}^{P \times A, Q}(a)=R^{P \times A, Q}(a)$. Suppose towards a contradiction that (1a) fails, so

$$
\ell^{P, Q+R}(a)=\infty \quad \text { and thus } \quad \lim _{s \rightarrow \infty} \ell^{+P, Q+R}(a, s)=\infty
$$

by Proposition 19(i). By (iii) of this Proposition, if

$$
g(\sigma):=\text { least } t\left[\ell^{+P, Q+R}(a, t)>\sigma \wedge \mathrm{m}_{\sigma, t}^{a}>R^{\left.P \times A, Q_{(a)}\right)}\right]
$$

then $\mathrm{m}_{\sigma, g(\sigma)}^{a}$ is qualified at all $s \geq g(\sigma)$, and by (B2), for all sufficiently large
 $\sigma^{\frown} 0 \notin T_{Q, s}$ and 1-qualified at s iff $\sigma^{\frown} 1 \notin T_{Q, s}$. Hence we have

$$
\sigma^{\complement} 0 \notin T_{Q} \quad \Longrightarrow \quad \exists s\left[\mathrm{~m}_{\sigma, g(\sigma)}^{a} \in A_{s+1}\right] \quad \Longrightarrow \quad \mathrm{m}_{\sigma, g(\sigma)}^{a} \in A
$$

and

$$
\sigma^{\frown} 1 \notin T_{Q} \quad \Longrightarrow \quad \exists s\left[\mathrm{~m}_{\sigma, g(\sigma)}^{a} \in B_{s+1}\right] \quad \Longrightarrow \quad \mathrm{m}_{\sigma, g(\sigma)}^{a} \in B
$$

Thus, with a_{2} as in the sketch above, the index b_{1} defined by

$$
\left\{b_{1}\right\}^{X}(y) \simeq \begin{cases}\{a\}^{X}(y+1), & \text { if }\{a\}^{X}(0)=0 \\ \left\{a_{2}\right\}^{X}(y), & \text { if }\{a\}^{X}(0)=1\end{cases}
$$

witnesses that $Q \leq_{M} P$, contrary to hypothesis. Hence (1a) holds and $\ell^{P, Q+R}(a)$ $<\infty$.

We establish next ($3 a$) and argue first that $A^{[a]}$ is recursive. Define

$$
j_{a}(t):=\text { least } s \geq t\left[R_{s}^{P \times A, Q}(a)=R^{P \times A, Q}(a)\right]
$$

j_{a} is well-defined by Proposition 19 and (B2) and is clearly recursive. Now, let k_{a} be a computable function such that

$$
k_{a}\left(\mathrm{~m}_{\sigma, t}^{a}\right) \simeq \begin{cases}0, & \text { if } \sigma \geq \ell^{+P, Q+R}(a) ; \\ A_{j_{a}(\sigma, t)+1}\left(\mathrm{~m}_{\sigma, t}^{a}\right), & \text { if } \sigma<\ell^{+P, Q+R}(a) \quad \text { and } \quad t \geq s_{a} ; \\ A\left(\mathrm{~m}_{\sigma, t}^{a}\right), & \text { otherwise } ;\end{cases}
$$

where

$$
\begin{aligned}
s_{a} & :=\text { least } s\left[\forall \sigma \leq \ell^{+P, Q+R}(a)(\forall i<2)\left(\sigma^{\frown} i \in T_{Q} \Longleftrightarrow \sigma^{\frown} i \in T_{Q, s}\right)\right. \\
& \left.\wedge \quad \ell^{+P, Q+R}(a, s)=\ell^{+P, Q+R}(a) \wedge \forall t \geq s\left(R^{P \times A, Q}(a) \leq R_{t}^{P \times A, Q}(a)\right)\right] .
\end{aligned}
$$

Since the third clause has only finitely many instances, k_{a} is recursive and it suffices to show that for all σ and $t, k_{a}\left(\mathrm{~m}_{\sigma, t}^{a}\right)=A\left(\mathrm{~m}_{\sigma, t}^{a}\right)$. Clearly $\mathrm{m}_{\sigma, t}^{a} \notin A \Longrightarrow$ $k_{a}\left(\mathrm{~m}_{\sigma, t}^{a}\right)=0$. If $\sigma \geq \ell^{+P, Q+R}(a)$, then $\mathrm{m}_{\sigma, t}^{a}$ is never qualified and hence never enumerated into A. Suppose that $\sigma<\ell^{+P, Q+R}(a), t \geq s_{a}$, and $\mathrm{m}_{\sigma, t}^{a} \in A$. Then for some $s \geq t, \mathrm{~m}_{\sigma, t}^{a}$ is 0 -qualified at $s-$ that is,

$$
\sigma<\ell^{+P, Q+R}(a, s), \quad \sigma^{\frown} 0 \notin T_{Q, s} \quad \text { and } \quad \mathrm{m}_{\sigma, t}^{a}>R_{s}^{P \times A, Q}(a) .
$$

But since $j_{a}(t) \geq t \geq s_{a}$, also $\sigma<\ell^{+P, Q+R}\left(a, j_{a}(t)\right), \sigma^{\frown} 0 \notin T_{Q, j_{a}(t)}$ and

$$
\mathrm{m}_{\sigma, t}^{a}>R_{s}^{P \times A, Q}(a) \geq R^{P \times A, Q}(a)=R_{j_{a}(t)}^{P \times A, Q}(a)
$$

Hence $\mathrm{m}_{\sigma, t}^{a}$ is 0 -qualified at $j_{a}(t)$ so $\mathrm{m}_{\sigma, t}^{a} \in A_{j_{a}(t)+1}$ and also $k_{a}\left(\mathrm{~m}_{\sigma, t}^{a}\right)=1$.
Combining this with the induction hypothesis, $A^{[\leq a]}$ is recursive and it follows immediately from its definition that also \mathbf{V}_{a}^{A} is recursive.

Finally, suppose towards a contradiction that (2a) is not satisfied, so $\ell^{P \times A, Q}(a)=\infty$, and define for each X and y,

$$
H(X, y) \simeq \text { least } s\left[s \in \mathbf{V}_{a}^{A} \quad \text { and } \quad \ell^{P \times A, Q}(X ; a, s) \geq y+1\right]
$$

H is partial recursive, and by (A2) and Corollary 24, for all $X \in P$ and all y, $H(X, y)$ is defined and $\ell^{P \times A, Q}(X ; a, H(X, y)) \geq y+1$ correctly. Thus, there is an index b_{2} such that

$$
\left\{b_{2}\right\}^{X}(y) \simeq \widehat{\{a\}}_{H(X, y)}^{X, A_{H(X, y)}}(y) \simeq\{a\}^{X, A}(y),
$$

and $\left\{b_{2}\right\}$ witnesses that $Q \leq_{M} P$, contrary to the hypothesis. Hence (2a) holds and the induction step is complete.

Corollary 25. The partial ordering \leq_{M} restricted to either \mathcal{P}_{M} or to the sublattice $\mathbf{A H}$ of almost homogeneous degrees is dense.

Proof. The first assertion is immediate and the second follows from Theorem 12, since, in the notation of the preceding proof, if P and Q are almost homogeneous, then since R is constructed as a c.e. separating class, also R and hence S is almost homogeneous.

References

1. Cenzer, D.: Π_{1}^{0} classes in computability theory, Handbook of Computability Theory, Studies in Logic and the Foundations of Mathematics, 140, 37-85 (1999)
2. Cenzer, D., Remmel, J.: Index sets for Π_{1}^{0} classes, Ann. Pure and Appl. Logic 43, 3-61 (1998)
3. Hinman, P.G.: Recursion-Theoretic Hierarchies. Perspectives in Mathematical Logic, Springer-Verlag, Berlin (1978)
4. Jockusch, C., Soare, R.: Π_{1}^{0} classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33-56 (1972)
5. Medvedev, Yu.: Degrees of difficulty of the mass problem. Dok. Akad. Nauk SSSR 104, 501-504 (1955)
6. Odifreddi, P.: Classical Recursion Theory. North-Holland (1989)
7. Simpson, S.: Π_{1}^{0} Sets and Models of $W K L_{0}$, to appear in Reverse Mathematics 2001, ed. S. Simpson
8. Binns, S., Simpson, S.: Medvedev and Muchnik Degrees of Nonempty Π_{1}^{0} Subsets of 2^{ω}, preprint, May 2001
9. Sorbi, A.: The Medvedev lattice of degrees of difficulty, in Computability, Enumerability, Unsolvability, London Math. Soc. Lecture Notes 224, Cambridge University Press, Cambridge 289-312 (1996)

[^0]: D. Cenzer: Department of Mathematics, 358 Little Hall, P.O. Box 118105, University of Florida, Gainesville, Fl 32611-8105, USA. e-mail: cenzer@math. ufl. edu
 P.G. Hinman: Department of Mathematics, 2072 East Hall, University of Michigan, Ann Arbor, MI 48109-1109, USA. e-mail: pgh@umich. edu

