Douglas Cenzer · Peter G. Hinman

Density of the Medvedev lattice of Π_1^0 classes

Received: November 1, 2001 / Revised version: May 14, 2002 / Published online: 7 March 2003 – © Springer-Verlag 2003

Abstract. The partial ordering of Medvedev reducibility restricted to the family of Π_1^0 classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π_1^0 class, which we call a "c.e. separating class". We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.

The Medvedev lattice was introduced in [5] to classify problems according to their degree of difficulty. A mass problem is a set of functions f mapping natural numbers to natural numbers and is thought of as representing the set of solutions to some problem. For example, we might consider the set of 4-colorings of a given countably infinite graph G as a set of functions each mapping ω into $\{1, 2, 3, 4\}$. One such set P is reducible to another set Q (written $P \leq_M Q$) iff there is a partial computable functional Φ which maps Q into P. Thus if we have a solution in Q, then we can use Φ to compute a solution in P. As usual, $P \equiv_M Q$ means that both $P \leq_M Q$ and $Q \leq_M P$, $P <_M Q$ means $P \leq_M Q$ but not $Q \leq_M P$, and the Medvedev degree $\mathbf{dg}_M(P)$ of P is the class of all sets Q such that $P \equiv_M Q$. We will see below that the set of Medvedev degrees is a lattice with meet and join given by the natural operations of direct product and disjoint union. For more on the general notion of Medvedev degrees, see the survey by Sorbi [9].

In this paper, we will examine the sublattice \mathcal{P}_M of degrees of Π_1^0 classes of sets, that is, nonempty subclasses of $\{0, 1\}^{\omega}$. (We will refer to elements of $\{0, 1\}^{\omega}$ simply as *sets*.) The main result of this paper is that the partial ordering \leq_M restricted to this sublattice is dense.

We first introduce some notation. For a finite sequence $\sigma \in \{0, 1\}^n$, we let $|\sigma| = n$ denote the length of σ . For $\sigma \in \{0, 1\}^n$ and $X \in \{0, 1\}^\omega$, we say that σ is an *initial segment* of *X* (written $\sigma \prec X$) if $X(i) = \sigma(i)$ for all $i \le |\sigma|$. The *interval* $I(\sigma)$ determined by σ is $\{X \in \{0, 1\}^\omega : \sigma \prec X\}$. These intervals form a basis for

P.G. Hinman: Department of Mathematics, 2072 East Hall, University of Michigan, Ann Arbor, MI 48109-1109, USA. e-mail: pgh@umich.edu

Mathematics Subject Classification (2000): 03D30, 03D25

Key words or phrases: Degree of difficulty – Medvedev lattice – Recursive functional – Density

D. Cenzer: Department of Mathematics, 358 Little Hall, P.O. Box 118105, University of Florida, Gainesville, Fl 32611-8105, USA. e-mail: cenzer@math.ufl.edu

the usual product topology on $\{0, 1\}^{\omega}$. For $\sigma \in \{0, 1\}^n$, σ^k is the extension of σ to a finite sequence of length n + 1 with last component k. We sometimes interpret σ as coding a binary number and write, for example, $\sigma < n$.

Let \mathcal{B} be the Boolean algebra of clopen subsets of $\{0, 1\}^{\omega}$. Then each interval is in \mathcal{B} and every clopen set is a finite union of intervals. Thus we can define a length |b| for each clopen set $b = I(\sigma_0) \cup \cdots \cup I(\sigma_{k-1})$ to be the maximum of $\{|\sigma_i| : i < k\}$.

A Π_1^0 class $P \subseteq \{0, 1\}^{\omega}$ may be viewed as the set [T] of infinite paths X through a computable tree $T \subseteq \{0, 1\}^{<\omega}$. We say that $\sigma \in T$ is *extendible* if there is an infinite path $X \in P$ such that $\sigma \prec X$; let Ext(T) be the set of extendible nodes of T. Then [T] = [Ext(T)] and if T is computable, Ext(T) is a Π_1^0 tree with no *dead ends*. Note that in fact Ext(T) depends only on P, since $Ext(T) = \{\sigma : (\exists X \in P) \ \sigma \prec X\}$ and we often denote it T_P . There is an enumeration P_e of the Π_1^0 classes as $P_e = [T_e]$, where the relation $\sigma \in T_e$ is primitive recursive and the relation $\sigma \in Ext(T_e)$ is $\Pi_1^0 -$ see [2].

We begin with some background on the Medvedev reducibility of Π_1^0 classes. First we show that only total functionals are needed.

Lemma 1. For any Π_1^0 subclasses P and Q of ω^{ω} , if $P \leq_M Q$, then there exists a total computable functional $F : \omega^{\omega} \to \omega^{\omega}$ such that $F[Q] \subseteq P$.

Proof. Given that $P \leq_M Q$, there is a partial computable functional Φ which maps Q into P. This means that there is a partial computable function ϕ mapping finite sequences to finite sequences such that $\Phi(X) = \bigcup_n \phi(X \upharpoonright n)$ and with the property that $\sigma \prec \tau$ implies $\phi(\sigma) \prec \phi(\tau)$. Now Q may be expressed as the set of infinite paths through some computable tree T. Then we can extend the mapping Φ from Q to a total mapping F on $\{0, 1\}^{\omega}$ with representing function f defined recursively as follows. Let $f(\emptyset) = \emptyset$. Then for any finite sequence σ and any n, define $f(\sigma^{-}n)$ in two cases. If $\sigma^{-}n \in T$, let $f(\sigma^{-}n) = \phi(\sigma^{-}n)$, which must be defined. If $\sigma^{-}n \notin T$, let $f(\sigma^{-}n) = f(\sigma)^{-}0$.

The lattice operation of \mathcal{P}_M are provided by sum and product operations defined as follows. For i = 0 or i = 1, let Y = (i)X mean that Y(0) = i and Y(n + 1) = X(n) for all *n*. Then the direct sum, or disjoint union of *P* and *Q* is given by

$$P \oplus Q = \{(0)X : X \in P\} \cup \{(1)Y : Y \in Q\}.$$

For two elements $X, Y \in \{0, 1\}^{\omega}$, let $\langle X, Y \rangle = Z$, where Z(2n) = X(n) and Z(2n+1) = Y(n). Then $P \otimes Q = \{\langle X, Y \rangle : X \in P \& Y \in Q\}$ and is easily seen to be a Π_1^0 class.

We summarize here some basic facts about these meet and join operations.

Proposition 2. For any Π_1^0 classes P, Q and R,

- (i) $P \oplus Q \equiv_M Q \oplus P$ and $P \otimes Q \equiv_M Q \otimes P$;
- (ii) $P \otimes (Q \oplus R) \equiv_M (P \otimes Q) \oplus (P \otimes R)$ and $P \oplus (Q \otimes R) \equiv_M (P \oplus Q) \otimes (P \oplus R)$.
- (iii) The Medvedev degree of $P \oplus Q$ is the meet, or greatest lower bound, of the Medvedev degrees of P and Q;

- (iv) The Medvedev degree of $P \otimes Q$ is the join, or least upper bound, of the Medvedev degrees of P and Q
- (v) If $P \leq_M Q$, then, for any R, $(P \otimes R) \oplus Q \equiv_M P \otimes (Q \oplus R)$.

Proof. We prove only the second part of (ii) and (v), which we will need for the proof of the Density Theorem.

To see that $P \oplus (Q \otimes R) \equiv_M (P \oplus Q) \otimes (P \oplus R)$, we define computable functionals in each direction. First define $\Phi : P \oplus (Q \otimes R) \to (P \oplus Q) \otimes (P \oplus R)$ by

$$\Phi((0)X) = \langle (0)X, (0)X \rangle$$

and

$$\Phi((1)\langle Y, Z\rangle) = \langle (1)Y, (1)Z\rangle.$$

Then define $\Psi : (P \oplus Q) \otimes (P \oplus R) \rightarrow P \oplus (Q \otimes R)$ as follows. Given $Z = \langle V, W \rangle \in (P \oplus Q) \otimes (P \oplus R)$, there are three cases.

- If V = (0)X, let $\Psi(Z) = V$; if V = (1)Y and W = (0)X, let $\Psi(Z) = W$; if V = (1)Y and W = (1)Z, let $\Psi(Z) = (1)\langle Y, Z \rangle$.
- (v) Since $P \leq_M Q$, we have $P \oplus Q \equiv_M P$ and $P \otimes Q \equiv_M Q$. Then $(P \otimes R) \oplus Q \equiv_M (P \oplus Q) \otimes (R \oplus Q) \equiv_M P \otimes (Q \oplus R).$

Next we observe that \mathcal{P}_M has both a least and a greatest element. The least element **0** consists of all classes P which contain a computable element. To see this, just let X_0 be a computable element of P and define $F(X) = X_0$ for any X. Then F maps any class Q into P, so that $P \leq_M Q$. In particular, the classes $\{0, 1\}^{\omega}$ and $\{0^{\omega}\}$ are both in **0**.

We can define arbitrary finite products by iteration. Let $[m, n] = \frac{1}{2}((m+n)^2 + 3m+n)$ be the usual coding of pairs of natural numbers which maps $\omega \times \omega$ 1-1 and onto ω . For an infinite sequence X_0, X_1, \ldots of sets, let $\langle X_0, X_1, \ldots \rangle = Z$, where $Z([m, n]) = X_m(n)$. For an infinite sequence Q_0, Q_1, \ldots of Π_1^0 classes, let

$$\Pi_{i=0}^{\infty} Q_i = \{ \langle X_0, X_1, \dots \rangle : X_i \in Q_i \text{ for each } i \}.$$

Let U be the product $\prod_{e=0}^{\infty} P_e$. Then $P \leq_M U$ for any $\prod_1^0 \text{class } P = P_e$ via the map F which takes $\langle X_0, X_1, \ldots \rangle$ to X_e , that is, F(X) = Y, where Y(n) = X([e, n]). Thus the Medvedev degree of U is **1**.

The Medvedev degree is closely related both to the Turing degree and to the lattice of Π_1^0 classes under inclusion. Whenever $Q \subseteq P$, we always have $P \leq_M Q$, by the natural injection of Q into P. Conversely, using the meet operation, whenever $P \leq_M Q$, there are classes $P' \equiv_M P$ and $Q' \equiv_M Q$ with $Q' \subseteq P'$. To show that P is not Medvedev reducible to Q, it suffices to find an element X of Q such that no element of P is Turing reducible to X, since if F maps Q into P, then $F(X) \in P$ and $F(X) \leq_T X$.

With this in mind, we can find plenty of intermediate degrees, using the result of Jockusch and Soare [4] that there is a Π_1^0 class *P* such that any two members have incomparable Turing degree. Now such a class has no computable element and thus is uncountable and in fact perfect (see [1], p. 57). Thus we can partition *P* into two uncountable subclasses, *Q* and *R*, such that each member of *Q* is incomparable with each member of *R*. It follows that *Q* and *R* are Medvedev incomparable. It is not hard to obtain an infinite family of incomparable sets in this way. Binns and Simpson [8] have greatly improved this observation by showing that the free countable distributive lattice can be embedded into \mathcal{P}_M below any nonzero degree.

There are two types of classes which are of special interest. For any disjoint computably enumerable (c.e.) sets *A* and *B*, define the class of separating sets as follows, where \overline{B} denotes the complement of *B*.

$$S(A, B) = \{X : A \subseteq X \subseteq \overline{B}\}.$$

Then S(A, B) is always a Π_1^0 class; we call S(A, B) a *c.e. separating class* and we call the Medvedev degree of S(A, B) a *c.e. separating degree*.

In particular, both **0** and **1** are c.e. separating degrees. For **0**, let A_0 be the set of even numbers and B_0 the set of odd numbers. For **1**, let A_1 be the set of theorems of Peano Arithmetic and B_1 the set of negations of theorems. Applying recent results of Simpson [7], we will sketch an argument that the Medvedev degree of $S(A_1, B_1)$ is **1**.

Simpson defined the notion of a *productive* Π_1^0 class and showed in [7] that any productive class is Medvedev complete. *P* is productive if there is a *splitting function* $g : \omega \to \mathcal{B}$ such that, for all e, if $P_e \subseteq P$ and P_e is nonempty, then $P_e \cap g(e)$ and $P_e \setminus g(e)$ are both nonempty. Thus it suffices to show that $S(A_1, B_1)$ is productive. Now it is well known that A_1 and B_1 are *effectively inseparable*-see Odifreddi [6], p 356. This means that there is a recursive function ϕ such that, for any x and y, if $A_1 \subseteq W_x$ and $B_1 \subseteq W_y$ and $W_x \cap W_y = \emptyset$, then $\phi(x, y) \notin W_x \cup W_y$. The following lemma thus implies that $S(A_1, B_1)$ has Medvedev degree **1**.

Proposition 3. If A are B are effectively inseparable c.e. sets, then S(A, B) is a productive Π_1^0 class.

Proof. Let P = S(A, B) where A and B are effectively inseparable c.e. sets and and let ϕ be given as above. Define $W_{f(e)} = \{n : (\forall X \in P_e)n \in X\}$ and $W_{h(e)} = \{n : (\forall X \in P_e)n \notin X\}$. To see that these are indeed c.e. sets, note that $W_{f(e)}$ has an alternate definition, that is,

$$n \in W_{f(e)} \quad \iff \quad (\forall \sigma \in \{0, 1\}^{n+1}) (\sigma \in Ext(T_e) \implies \sigma(n) = 1),$$

where P_e is the set of infinite paths throught the *e*-th primitive recursive tree T_e . Clearly $W_{f(e)} \cap W_{h(e)} = \emptyset$, and if $P_e \subseteq P$, then $A \subseteq W_{f(e)}$ and $B \subseteq W_{h(e)}$. Thus $\phi(f(e), h(e)) = n \notin W_{f(e)} \cup W_{h(e)}$. Hence there exist X and Y in P_e such that $n \in X$ and $n \notin Y$. The splitting function for P can thus be defined by $g(e) = \{X : \phi(f(e), h(e)) \in X\}$. Let us say that c.e. sets A and B are weakly effectively inseparable if there is a computable function F, mapping ω^2 into the family of finite sets of natural numbers, such that, for any x and y, if $A \subseteq W_x$ and $B \subseteq W_y$ and $W_x \cap W_y = \emptyset$, then F(x, y) contains at least one element which is not in $W_x \cup W_y$. Of course, effectively inseparable sets are also weakly effectively inseparable, simply by taking the singleton set $\{\phi(x, y)\}$.

We now give a weakened form of the converse of Proposition 3.

Proposition 4. For any disjoint c.e. sets A and B, if S(A, B) is productive, then A and B are weakly effectively inseparable.

Proof. Let P = S(A, B) be productive and let g be given as above. Given x and y, we can define the Π_1^0 class $P_e = P_{f(x,y)} = S(W_x, W_y)$ and from that obtain the clopen set G = g(f(x, y)). Finally, let $F(x, y) = \{0, 1, \ldots, |g(f(x, y))|\}$. To see that this works, suppose that in fact $A \subseteq W_x$, $B \subseteq W_y$, and $W_x \cap W_y = \emptyset$. Then $S(W_x, W_y)$ is a nonempty subclass of S(A, B). Thus both $P_e \cap G$ and $P_e \setminus G$ are nonempty. Choose $X \in P_e \cap G$ and $Y \in P_e \setminus G$. Then by the definition of F(x, y), there exist disjoint intervals $I(\sigma)$ and $I(\tau)$ with $|\sigma| = |\tau| \in F(x, y)$ such that $\sigma \prec X$ and $\tau \prec Y$. Thus there must be some $n \in F(x, y)$ such that $X(n) \neq Y(n)$ and it follows that $n \notin W_x \cup W_y$.

The family of c.e. separating degrees is closed under join, since

$$S(A, B) \otimes S(C, D) = S(\langle A, C \rangle, \langle B, D \rangle).$$

However, the meet of two incomparable c.e. separating degrees is never a c.e. separating degree, as shown by the following.

Lemma 5. For any Π_1^0 class P and any clopen sets G and H, if $P \cap G \leq_M P \cap H$, then $P \cap G \equiv_M P \cap (G \cup H)$.

Proof. First, $P \cap (G \cup H) \leq_M P \cap G$ via the identity map. Fix a computable functional $\Phi : P \cap H \rightarrow P \cap G$ and define $\Psi : P \cap (G \cup H) \rightarrow P \cap G$ by

$$\Psi(X) := \begin{cases} X, & \text{if } X \in G; \\ \Phi(X), & \text{otherwise.} \end{cases}$$

Note that Ψ is computable since clopen sets are simply finite unions of intervals.

Lemma 6. For any c.e. separating class P and any clopen set G, if $P \cap G \neq \emptyset$, then $P \cap G \equiv_M P$.

Proof. By Lemma 5, it suffices to prove this for intervals, and we proceed by induction on the length *n* of σ . If n = 0, then $I(\sigma) = 2^{\omega}$, so $P \cap I(\sigma) = P$. Assume as induction hypothesis that $P \cap I(\sigma) \equiv_M P$ for some σ of length *n*, and suppose that $P \cap I(\sigma^-e) \neq \emptyset$. If $P \cap I(\sigma^-1-e) = \emptyset$, then $P \cap I(\sigma^-e) = P$. Otherwise, $P \cap I(\sigma^-e) \equiv_M P \cap I(\sigma^-1-e)$ via the computable maps $X \mapsto X \cup \{n\}$ and $X \mapsto X \setminus \{n\}$. Then by Lemma 5 again,

$$P \cap I(\sigma^{\frown} e) \equiv_M P \cap \left(I(\sigma^{\frown} e) \cup I(\sigma^{\frown} 1 - e) \right) = P.$$

Proposition 7. For any Π_1^0 classes P and Q and any c.e. separating class R, if $P \oplus Q \leq_M R$, then either $P \leq_M R$ or $Q \leq_M R$.

Proof. Fix a computable functional $\Phi : R \to P \oplus Q$ and set $G := \{X : \Phi(X) \in I((0))\}$. *G* is clopen as the continuous inverse image of an interval. $P \leq_M R \cap G$ via the map $X \mapsto (k \mapsto \Phi(X)(k+1))$. If $R \cap G \neq \emptyset$, then by Lemma 6 $R \cap G \equiv_M R$, so $P \leq_M R$. Otherwise $R \setminus G \neq \emptyset$ and we have similarly $Q \leq_M R$.

This suggests that we should consider the sublattice of \mathcal{P}_M generated by the family of c.e. separating degrees. This turns out to have a simple direct characterization.

Definition 8. For any tree $T \subseteq \{0, 1\}^{<\omega}$ and any Π_1^0 class $P \subseteq \{0, 1\}^{\omega}$,

(i) *T* is homogeneous iff $(\forall \sigma, \tau \in T)(\forall i < 2)$,

$$|\sigma| = |\tau| \Longrightarrow (\sigma^{\frown} i \in T \iff \tau^{\frown} i \in T);$$

(*ii*) *T* is almost homogeneous iff $\exists n (\forall \sigma, \tau \in T) (\forall i < 2)$,

$$n \leq |\sigma| = |\tau| \land \sigma \upharpoonright n = \tau \upharpoonright n \Longrightarrow (\sigma^{-}i \in T \iff \tau^{-}i \in T);$$

The least such n is called the modulus *of T*;

(iii) P is (almost) homogeneous iff T_P is (almost) homogeneous; a Medvedev degree is (almost) homogeneous iff it contains an (almost) homogeneous class; AH denotes the family of almost homogeneous degrees.

Proposition 9. For any Π_1^0 class P,

P is homogeneous \iff *P* is a c.e. separating class.

Proof. If P = S(A, B) for c.e. sets A and B, then

$$T_P = \left\{ \sigma : (\forall i < |\sigma|) \left[\sigma(i) = 0 \land i \notin A \right) \lor (\sigma(i) = 1 \land i \notin B) \right] \right\}.$$

This is clearly a homogeneous tree. Conversely, if T_P is homogeneous, then P = S(A, B) for

$$A = \{n : 0^n \cap 0 \notin T_P\}$$
 and $B = \{n : 0^n \cap 1 \notin T_P\}.$

Corollary 10. For any Π_1^0 class P, if P is almost homogeneous with modulus n, then P is the disjoint union of 2^n c.e. separating classes.

Proof. Given $P \in AH$ with modulus *n*, for each sequence σ of length *n*, let $P[\sigma] := \{X \in P : \sigma \prec X\}$. Each $P[\sigma]$ is homogeneous, so is a c.e. separating class, and clearly *P* is the disjoint union of the $P[\sigma]$.

Proposition 11. For any Π_1^0 classes P and Q, if P and Q are almost homogeneous, then also $P \oplus Q$ and $P \otimes Q$ are almost homogeneous.

Proof. If *P* and *Q* are almost homogeneous with moduli *m* and *n*, respectively, then easily $P \oplus Q$ is almost homogeneous with modulus $\max\{m, n\} + 1$ and $P \otimes Q$ is almost homogeneous with modulus $2 \max\{m, n\}$.

Theorem 12. AH is the smallest sublattice of \mathcal{P}_M which includes the family of c.e. separating degrees.

Proof. By the preceding two propositions, **AH** is a sublattice of \mathcal{P}_M which includes the family of c.e. separating degrees. Let *L* be any other such lattice; we prove by induction that for all *n*,

P is almost homogeneous with modulus $n \implies \mathbf{dg}_M(P) \in L$.

For n = 0 this is true by Proposition 9, so assume as induction hypothesis that it holds for *n* and that *P* is almost homogeneous with modulus n + 1. Then if for i < 2 we set $P_i := \{X : (i)X \in P\}$, P_i is almost homogeneous with modulus *n*, so $\mathbf{dg}_M(P_i) \in L$ and clearly $P = P_0 \oplus P_1$ so also $\mathbf{dg}_M(P) \in L$.

Classes of positive measure are also of interest. We will say that a Medvedev degree has positive measure if it contains some class of positive measure. Thus **0** has positive measure, since 2^{ω} has Medvedev degree **0**. On the other hand, it is a classic result ([3], p. 110) that the computable sets are not a basis for the Π_1^0 classes of positive measure, so that there is a nonzero Medvedev degree of positive measure. It is not hard to see that the Medvedev degrees of positive measure form an ideal of \mathcal{P}_M . The precise positive measure is not important here, since it is easy to see that for any Π_1^0 class P of positive measure and any $\epsilon > 0$, we can find a Π_1^0 class $Q \equiv_M P$ with measure $> 1 - \epsilon$ and a second Π_1^0 class $R \equiv_M P$ with measure $< \epsilon$.

It turns out that **0** is the only Medvedev degree which is both an almost homogeneous degree and has positive measure.

Theorem 13. For any Π_1^0 class P of positive measure and any almost homogeneous class $Q >_M 0$, $Q \not\leq_M P$.

Proof. Suppose first that Q = S(A, B), where A and B are recursively inseparable c.e. sets, and let P have positive measure. Jockusch and Soare ([4], p. 50) proved that the collection U(Q), of all sets X such that some $Y \in Q$ is Turing reducible to X, has measure 0. Now suppose by way of contradiction that $Q \leq_M P$. Then there would be a recursive functional Φ mapping P into Q, so that for each $X \in P$, $Y = \Phi(X)$ is in Q and is Turing reducible to X. Thus $P \subseteq U(Q)$ and hence has measure zero.

Now if Q is almost homogeneous, say with modulus n, then by Corollary 10, Q is the disjoint union of 2^n many c.e. separating sets $Q[\sigma]$. If there is a recursive functional Φ mapping P into Q, then P is the disjoint union of the sets $\Phi^{-1}(Q[\sigma])$. Each of these is of measure 0 by the first part of the proof, hence so is P.

It follows in particular that no class of positive measure has degree **1**. We now present the main theorem of the paper.

Theorem 14. (Density Theorem) For any Π_1^0 classes P and Q, if $P <_M Q$, then there exists a Π_1^0 class S such that $P <_M S <_M Q$.

Proof. Fix Π_1^0 classes $P <_M Q$ and corresponding Π_1^0 trees T_P and T_Q with no dead ends. We shall construct a Π_1^0 class R such that

$$Q \oplus R \not\leq_M P; \tag{1}$$

$$Q \not\leq_M P \otimes R; \tag{2}$$

and take, using Proposition 2(v),

$$S := (P \otimes R) \oplus Q \equiv_M P \otimes (Q \oplus R).$$

Then $P <_M S <_M Q$ as required because of the following four facts:

 $P \leq_M S$ because *S* is of the form $P \otimes P'$; $S \leq_M Q$ because *S* is of the form $Q' \oplus Q$; $S \not\leq_M P$ because otherwise $Q \oplus R \leq_M S \leq_M P$ contrary to (1); $Q \not\leq_M S$ because otherwise $Q \leq_M S \leq_M P \otimes R$ contrary to (2).

The class *R* will be a c.e. separating class S(A, B) and we shall establish (1) by satisfying for all *a*,

not
$$\forall X \in P(\{a\}^X \in Q \oplus R).$$
 (1*a*)

For (2) it will suffice to satisfy for all a,

not
$$\forall X \in P(\{a\}^{X,A} \in Q),$$
 (2*a*)

because from this it follows that $Q \not\leq_M P \otimes \{A\}$, which implies (2).

The strategy for satisfying (1a) is a variant of the Sacks coding strategy for the density of the c.e. Turing degrees. First note that if (1a) fails, then for all $X \in P$, $\{a\}^X$ is of one of the forms (0)Y for some $Y \in Q$ or (1)Z for some $Z \in S(A, B)$. Thus we may think of $\{a\}$ as the union of a map $\{a_0\} : P_0 \to Q$ and a map $\{a_1\} : P_1 \to S(A, B)$, where P_0 and P_1 are two disjoint Π_1^0 subclasses of P whose union is P. The construction involves the enumeration of certain markers $\mathsf{m}_{\sigma,t}^a$ into A and B. We shall arrange that under the hypothesis that (1a) fails that there exists a recursive function g such that for all $\sigma \in T_Q$,

$$\sigma^{\frown}0 \notin T_Q \implies \mathsf{m}^a_{\sigma,g(\sigma)} \in A \text{ and } \sigma^{\frown}1 \notin T_Q \implies \mathsf{m}^a_{\sigma,g(\sigma)} \in B.$$

Since T_Q has no dead ends, this ensures that A and B are disjoint. Then there exists an index a_2 such that for all $X \in P_1$ and all y,

$$\{a_2\}^X(y) = \begin{cases} 1, & \text{if } \mathsf{m}^a_{\sigma_y, g(\sigma_y)} \in \{a_1\}^X; \\ 0, & \text{otherwise,} \end{cases}$$

where σ_y denotes $\{a_2\}^X \upharpoonright y$. Now we can show by induction on y that

$${a_1}^X \in S(A, B) \implies \sigma_y \in T_Q,$$

from which it follows that $\{a_2\}^X \in Q$ — thus $\{a_2\}: P_1 \to Q$. This is trivially true for y = 0, so assume it for y as induction hypothesis. If both $\sigma_y^{\frown} 0$ and $\sigma_y^{\frown} 1$ belong to T_Q , then certainly $\sigma_{y+1} \in T_Q$. Otherwise, either $\sigma_y^{\frown} 0 \notin T_Q$, so

$$\mathsf{m}^{a}_{\sigma_{y},g(\sigma_{y})} \in A \subseteq \{a_{1}\}^{X} \implies \{a_{2}\}^{X}(y) = 1 \implies \sigma_{y+1} = \sigma_{y}^{\frown} 1 \in T_{Q}$$

or $\sigma_v^{-1} \notin T_Q$, so

$$\mathsf{m}^{a}_{\sigma_{y},g(\sigma_{y})} \in B \subseteq \overline{\{a_{1}\}^{X}} \implies \{a_{2}\}^{X}(y) = 0 \implies \sigma_{y+1} = \sigma_{y}^{\frown} 0 \in T_{Q}.$$

The last implication in each case follows from the hypothesis that T_Q has no dead ends. Now, combining indices a_0 and a_2 produces a recursive mapping $\{b_1\}$: $P \rightarrow Q$ — that is, $Q \leq_M P$, contrary to hypothesis.

The strategy for satisfying (2a) relies on restraints imposed on the enumeration of markers into *A* and *B*. The result of these restraints, described below, is to establish the existence of a recursive functional *H* such that if (2a) fails, then for all $X \in P$ and all *y*,

$$\{a\}^{X,A}(y) \simeq \{a\}^{X,A_{H(X,y)}}_{H(X,y)}(y).$$

It follows that there is an index b_2 such that for all $X \in P$, $\{b_2\}^X = \{a\}^{X,A} \in Q$ — that is, $\{b_2\}$ witnesses that $Q \leq_M P$, contrary to hypothesis.

Before we can continue with the details of the proof, we need to develop some machinery. The basic tools of the proof are the so-called *hat trick* and the notion of a *length of agreement* function, which we shall adapt in several ways to the present context.

Definition 15. For any tree T and any s, T^s denotes the set of members of T of length s.

Since T_P is Π_1^0 , it may be represented as the intersection of a decreasing sequence $\langle T_{P,s} : s \in \omega \rangle$ of recursive trees with the property that $\lim_{t\to\infty} T_{P,t}^s = T_P^s$.

We write $\{a\}_{s}^{\sigma}(y) \simeq i$ to mean that the oracle computation with index *a* applied to argument *y* asks questions of the oracle only for $z < |\sigma|$ and converges in at most *s* steps with value *i*. Similarly, $\{a\}_{s}^{\sigma} \upharpoonright y \in T$ means that for all z < y, there is some i_{z} such that $\{a\}_{s}^{\sigma}(z) \simeq i_{z}$ and $\langle i_{0}, i_{1}, \ldots, i_{y-1} \rangle \in T$. The basic properties of computations yield immediately the following facts.

Proposition 16. For all values of the variables,

$$(i) \{a\}^{X}(y) \simeq i \iff \exists s \left[\{a\}_{s}^{X \mid s}(y) \simeq i \right];$$

$$(ii) \{a\}^{X} \mid y \in T \implies \exists s \left[\{a\}_{s}^{X \mid s}(y) \in T \right];$$

$$(iii) \{a\}_{s}^{\sigma}(y) \simeq i \implies (\forall \tau \geq \sigma) (\forall t \geq s) \{a\}_{t}^{\tau}(y) \simeq i \text{ and } (\forall X \succ \sigma) \{a\}^{X}(y) \simeq i;$$

$$(iv) \{a\}_{s}^{\sigma} \mid y \in T \implies (\forall \tau \geq \sigma) (\forall t \geq s) \{a\}_{t}^{\tau} \mid y \in T \text{ and } (\forall X \succ \sigma) \{a\}^{X} \mid y \in T. \Box$$

If *P* and *R* are two Π_1^0 classes with associated trees T_P and T_R , an index *a* witnesses that $R \leq_M P$ iff $\{a\} : P \to R$ — that is, for all $X \in P$, $\{a\}^X \in R$ or equivalently

$$\forall y (\forall X \in P) \{a\}^X \upharpoonright y \in T_R.$$

It will be useful to note an equivalent condition.

Proposition 17. For any Π_1^0 classes *P* and *R* and any *a* and *y*,

$$(\forall X \in P) \left[\{a\}^X \upharpoonright y \in T_R \right] \quad \Longleftrightarrow \quad \exists s (\forall \sigma \in T^s_{P,s}) \left[\{a\}^\sigma_s \upharpoonright y \in T_R \right].$$

Hence,

$$\{a\}: P \to R \quad \Longleftrightarrow \quad \forall y \exists s (\forall \sigma \in T^s_{P,s}) \left[\{a\}^{\sigma}_s \upharpoonright y \in T_R \right].$$

Proof. By Proposition 16, from the left-hand side it follows that

$$(\forall X \in P) \exists s \left[\{a\}_s^{X \upharpoonright s} \upharpoonright y \in T_R \right], \tag{1}$$

and hence, by König's Lemma (compactness)

$$\exists s (\forall X \in P) \left[\{a\}_{s}^{X \upharpoonright s} \upharpoonright y \in T_{R} \right],$$
(2)

since otherwise, $\{\sigma \in T_P : \{a\}_{|\sigma|}^{\sigma} \upharpoonright y \notin T_R\}$ is an infinite subtree of the finitely branching tree T_P , hence has an infinite path contrary to (1). Now by (2), fix *s* such that for all $X \in P$, $\{a\}_s^{X \upharpoonright s} \upharpoonright y \in T_R$. For some $t \ge s$, $T_{P,t}^s = T_P^s$, so for each $\tau \in T_{P,t}^t, \tau \upharpoonright s \in T_P^s$. Since T_P has no dead ends, for each $\tau \in T_{P,t}^t$ there is an $X \in P$ such that $X \upharpoonright s = \tau \upharpoonright s$ and hence $\{a\}_s^{\tau \upharpoonright s} \upharpoonright y \in T_R$. Then by Proposition 16, $\{a\}_s^{\tau \upharpoonright s} \upharpoonright y = \{a\}_t^{\tau} \upharpoonright y$ and the right-hand side holds with *t* for *s*. Conversely, given the right-hand side, fix *s* such that for all $\sigma \in T_{P,s}^s, \{a\}_s^{\sigma} \upharpoonright y \in T_R$. Then for each $X \in P, X \upharpoonright s \in T_P^s \subseteq T_{P,s}^s$, so $\{a\}^X \upharpoonright y = \{a\}_s^{X \upharpoonright s} \upharpoonright y \in T_R$. Hence the left-hand side holds.

We introduce next some functions which measure the extent to which the partial recursive function with index *a* maps one Π_1^0 class *P* into another *R*.

Definition 18. For any Π_1^0 classes P and R and any a and s,

$$\ell^{P,R}(a) = \begin{cases} \infty, & \text{if } \{a\} : P \to R; \\ \text{least } y \Big[(\exists X \in P) \; \{a\}^X \upharpoonright (y+1) \notin T_R \Big], & \text{otherwise;} \end{cases}$$
$$\ell^{P,R}(a,s) = \text{least } y \big[(\exists \sigma \in T^s_{P,s}) \; \{a\}^\sigma_s \upharpoonright (y+1) \notin T_{R,s} \big]; \\ \ell^{+P,R}(a,s) = \max_{s' \leq s} \big[\ell^{P,R}(a,s') \big]. \end{cases}$$

The notation should be interpreted to mean that $a^X \upharpoonright (y+1) \notin T_R$ holds also if for some $z \leq y$, $\{a\}^X(z) \uparrow$. Thus $\{a\} : P \to R$ iff $\ell^{P,R}(a) = \infty$ and $\ell^{+P,R}(a,s)$ approximates $\ell^{P,R}(a)$ in the following sense.

Proposition 19. For any Π_1^0 classes P and R,

- (i) if $\ell^{P,R}(a) = \infty$, then $\lim_{s \to \infty} \ell^{+P,R}(a,s) = \infty$;
- (ii) if $\ell^{P,R}(a) < \infty$, then for some number $\ell^{+P,R}(a) \ge \ell^{P,R}(a)$, $\lim_{s \to \infty} \ell^{+P,R}(a,s) = \ell^{+P,R}(a);$ (iii) for all s < t, $\ell^{+P,R}(a, s) < \ell^{+P,R}(a, t)$.

Proof. Part (i) is simply a translation of Proposition 17. For (ii), if $\ell^{P,R}(a) < \infty$, then for some $X \in P$, $\{a\}^X \upharpoonright (\ell^{P,R}(a) + 1) \notin T_R$. Let

$$\overline{y} := \max\{y \le \ell^{P,R}(a) : (\forall X \in P) (\forall z \le y) \{a\}^X(z) \downarrow\}$$

If $\overline{y} < \ell^{P,R}(a)$, then easily $\lim_{s \to \infty} \ell^{+P,R}(a,s) \le \overline{y} + 1$. If $\overline{y} = \ell^{P,R}(a)$, then for some \overline{s} and some $\sigma \in T_p^{\overline{s}}$,

$$(\forall z \le \ell^{P,R}(a))\{a\}_{\overline{s}}^{\sigma}(z) \downarrow \quad \text{but} \quad \{a\}_{\overline{s}}^{\sigma} \upharpoonright (\ell^{P,R}(a)+1) \notin T_{R,\overline{s}}.$$

Hence, for all $s > \overline{s}$,

$$\exists \sigma \in T_{P_s}^s \left[\{a\}_s^\sigma \upharpoonright (\ell^{P,R}(a)+1) \notin T_{R,s} \right],$$

so $\ell^{P,R}(a,s) \leq \ell^{P,R}(a)$. Furthermore, by the same argument as for (i), there exist s such that $\ell^{P,R}(a,s) = \ell^{P,R}(a)$ and thus

$$\lim_{s \to \infty} \ell^{+P,R}(a,s) = \max\{\ell^{P,R}(a), \ell^{+P,R}(a,\bar{s})\} =: \ell^{+P,R}(a).$$

Part (iii) is immediate from the definition.

As part of the proof below we shall need to consider also mappings of the form $\{b\}: P \otimes \{A\} \to O$, where A is a c.e. set given by a recursive stage enumeration $\langle A_s : s \in \omega \rangle$ — that is an increasing chain of finite sets with union A such that the relation $\{\langle x, s \rangle : x \in A_s\}$ is recursive. We recall first the "hat trick", adapted to the current setting. For any computation of the form $\{b\}_s^{\sigma,A}(x)$, we denote by $\mathbf{u}(A_s; \sigma, b, x, s)$ the actual A_s -use of the computation — that is, the smallest number which properly bounds all oracle queries to A_s . In the following, σ may denote either a finite or infinite sequence.

Definition 20. For any recursive stage enumeration $\langle A_s : s \in \omega \rangle$ of a set A and any b and σ , set

$$p_{s} := \begin{cases} least \ p \ [p \in A_{s} \setminus A_{s-1}], & if \ A_{s} \setminus A_{s-1} \neq \emptyset; \\ \max \ A_{s} \cup \{s\}, & otherwise; \end{cases}$$

$$\widehat{\{b\}}_{s}^{\sigma, A_{s}}(x) \simeq \begin{cases} \{b\}_{s}^{\sigma, A_{s}}(x), & if \ \mathbf{u}(A_{s}; \sigma, b, x, s) \leq p_{s}; \\ \uparrow, & otherwise; \end{cases}$$

$$\widehat{\mathbf{u}}(A_{s}; \sigma, b, x, s) := \begin{cases} \mathbf{u}(A_{s}; \sigma, b, x, s), & if \ \widehat{\{b\}}_{s}^{\sigma, A_{s}}(x) \downarrow; \\ 0, & otherwise. \end{cases}$$

We say that $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \downarrow$ correctly iff $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \downarrow$ and the computation is A-correct in the sense that $A_{s} \upharpoonright \mathbf{u}(A_{s}; \sigma, b, x, s) = A \upharpoonright \mathbf{u}(A_{s}; \sigma, b, x, s)$. s is a true stage in the stage enumeration $\langle A_{s} : s \in \omega \rangle$ of a set A iff $A_{s} \upharpoonright p_{s} = A \upharpoonright p_{s}$. \mathbf{V}^{A} denotes the set of true stages.

Some familiar properties of computations carry over to this context.

Lemma 21. (*Correctness Lemma*) For any stage enumeration $\langle A_s : s \in \omega \rangle$ of a set A, any Π_1^0 class P, and any X, σ , b, s and x,

- (i) $\{b\}^{X,A}(x) \downarrow \iff \exists s \ \{\widehat{b}\}_{s}^{X \upharpoonright s,A_{s}}(x) \downarrow correctly;$ (ii) if $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \simeq z$ correctly, then for all $t \ge s$ and $X \supseteq \tau \supseteq \sigma$, $\{\widehat{b}\}_{t}^{\tau,A_{t}}(x) \simeq z$ correctly and $\{b\}^{X,A}(x) \simeq z;$ (iii) $(\forall X \in P)\{b\}^{X,A}(x) \downarrow \iff \exists s \ (\forall \sigma \in T_{P,s}^{s}) \ \{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \downarrow correctly;$
- (iv) if for all $\sigma \in T_{P,s}^{s}$, $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \simeq z_{\sigma}$ correctly, then for all $t \geq s$ and all $\tau \in T_{P,t}^{t}$, $\{\widehat{b}\}_{t}^{\tau,A_{t}}(x) \simeq z_{\tau \upharpoonright s}$ correctly, and for all $X \in P$, $\{b\}^{X,A}(x) \simeq z_{X \upharpoonright s}$; (v) if $s \in \mathbf{V}^{A}$ and $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \downarrow$, then $\{\widehat{b}\}_{s}^{\sigma,A_{s}}(x) \downarrow$ correctly.

Proof. Parts (i) and (ii) are simple consequences of the definitions and furthermore are special cases of (iii) and (iv). For (iii) (\Rightarrow), suppose that ($\forall X \in P$) {b}^{X,A}(x) \downarrow . Arguing as in the proof of Proposition 17, there is some *t* such that for all $\tau \in T_{P,t}^{t}$, {b}^{τ,A}(x) \downarrow . Let

$$u := \max\{\mathbf{u}(A; \tau, b, x) : \tau \in T_{P_t}^t\}$$

and choose $s \ge t$ such that $A \upharpoonright u = A_s \upharpoonright u$. Then for each $\sigma \in T^s_{P,s}$,

$${\widehat{\{b\}}}^{\sigma,A_s}_s(x) \simeq {\{b\}}^{\sigma \upharpoonright t,A}(x) \downarrow,$$

since $\sigma \upharpoonright t \in T_{P,s} \subseteq T_{P,t}$, and by the choice of *s*, these computations are correct.

Now suppose that s is such that for all $\sigma \in T_{P,s}^s$, $\{\widehat{b}\}_s^{\sigma,\widehat{A}_s}(x) \simeq z_{\sigma}$ correctly. Then for $u_{\sigma} := \mathbf{u}(A_s; \sigma, b, x, s)$, for each $\sigma \in T_{P,s}^s$, $A \upharpoonright u_{\sigma} = A_s \upharpoonright u_{\sigma}$, so for all $t \ge s$, $A \upharpoonright u_{\sigma} = A_t \upharpoonright u_{\sigma}$. Hence, for each $\tau \in T_{P,t}^t$,

$$\widehat{\{b\}}_t^{\tau,A_t}(x) \simeq \widehat{\{b\}}_s^{\tau \upharpoonright s,A_s}(x) \simeq z_{\tau \upharpoonright s}$$

since $\tau \upharpoonright s \in T_{P,t} \subseteq T_{P,s}$, and this computation is correct. Similarly, for $X \in P$, $\{b\}^{X,A}(x) \simeq \{\widehat{b}\}^{X \upharpoonright s,A_s}_s(x) \simeq z_{X \upharpoonright s}$. This establishes (iv) as well as (iii) (\Leftarrow). Finally, (v) is immediate from the definitions.

The associated length of agreement functions are

Definition 22. For any Π_1^0 classes P and Q, any recursive stage enumeration $\langle A_s : s \in \omega \rangle$ of a set A and any a, set

$$\ell^{P \times A, \mathcal{Q}}(a) := \begin{cases} \infty, & \text{if } \{a\} : P \otimes \{A\} \to \mathcal{Q}; \\ \text{least } y \left[(\exists X \in P) \ \{a\}^{X, A} \upharpoonright (y+1) \notin T_{\mathcal{Q}} \right], & \text{otherwise.} \end{cases}$$

As recursive approximations to $\ell^{P \times A,Q}$ we set

$$\ell^{P \times A, Q}(a, s) := least \ y \left[(\exists \sigma \in T^s_{P, s}) \ \widehat{\{a\}}^{\sigma, A_s}_s \upharpoonright (y+1) \notin T_{Q, s} \right],$$

and

$$\ell^{P \times A, \mathcal{Q}}(X; a, s) := least y \left[\{ \widehat{a} \}_{s}^{X \upharpoonright s, A_{s}} \upharpoonright (y+1) \notin T_{\mathcal{Q}, s} \right],$$

For any y, we say that $\ell^{P \times A, Q}(a, s) > y$ correctly iff all of the following hold:

(i) $\ell^{P \times A, Q}(a, s) > v$ (ii) for all $\sigma \in T^s_{P,s}$ and all z < y, $\{\widehat{a}\}^{\sigma,A_s}_s(z) \downarrow$ correctly; (iii) for all $\sigma \in T_P^s$, $\{\widehat{a}\}_s^{\sigma, A_s} \upharpoonright y \in T_Q$.

Similarly, $\ell^{P \times A, Q}(X; a, s) \ge y$ correctly iff all of the following hold:

(iv)
$$\ell^{P \times A, Q}(X; a, s) \ge y$$

(v) for all $z < y$, $\{\widehat{a}\}_{s}^{X \upharpoonright s, A_{s}}(z) \downarrow$ correctly;
(vi) $\{\widehat{a}\}_{s}^{X \upharpoonright s, A_{s}} \upharpoonright y \in T_{Q}$.

The key properties of these functions are contained in the following

Lemma 23. (*Correctness Lemma for Length CLL*) For any Π_1^0 classes P and Q, any recursive stage enumeration $\langle A_s : s \in \omega \rangle$ of a set A, and any a, y and s,

- (i) if $y \leq \ell^{P \times A, Q}(a)$, there exists s such that $\ell^{P \times A, Q}(a, s) \geq y$ correctly; (ii) if $\ell^{P \times A, Q}(a, s) \geq y$ correctly, then $y \leq \ell^{P \times A, Q}(a)$ and for all $t \geq s$, $\ell^{P \times A,Q}(a,t) > y$ correctly;
- (iii) if $\ell^{P \times A, Q}(a) \ge y$, $\ell^{P \times A, Q}(X; a, s) \ge y$ and for all z < y, $\{\widehat{a}\}_{s}^{X \upharpoonright s, A_{s}}(z) \downarrow$ correctly in particular, if $s \in \mathbf{V}^{A}$ then $\ell^{P \times A, Q}(X; a, s) \ge y$ correctly.

Proof. Part (i) follows by the same methods as in the proof of Proposition 17. For (ii), assume that $\ell^{P \times A}, \check{\mathcal{Q}}(a, s) \ge y$ correctly. Then for all $\sigma \in T^s_{P,s}$ and z < y, $\{\widehat{a}\}^{\sigma,A_s}(z) \downarrow \text{correctly, so by } 21(\text{ii}), \text{ for all } \sigma \in T^s_{P,s} \text{ and all } t \ge s,$

$$\{\widehat{a}\}_{t}^{\sigma,A_{t}} \upharpoonright y \simeq \{\widehat{a}\}_{s}^{\sigma,A_{s}} \upharpoonright y \simeq \{a\}^{\sigma,A} \upharpoonright y \in T_{Q} \subseteq T_{Q,t}.$$

Hence for all $\sigma \in T^s_{P,s}$, $\{a\}^{\sigma,A} \upharpoonright y \in T_Q$. Then on the one hand, for all $X \in P$,

$$\{a\}^{X,A} \upharpoonright y \simeq \widehat{\{a\}}_s^{X \upharpoonright s,A_s} \vDash T_Q, \text{ so } \ell^{P \times A,Q}(a) \ge y,$$

and on the other for all $t \geq s$ and $\tau \in T_{P,t}^{t}$,

$$\{\widehat{a}\}_t^{\tau,A_t} \upharpoonright y \simeq \{\widehat{a}\}_s^{\tau \upharpoonright s,A_s} \upharpoonright y \in T_{\mathcal{Q},t}, \text{ so } \ell^{P \times A,\mathcal{Q}}(a,t) \ge y.$$

For (iii), given the hypotheses, we have

$$\widehat{\{a\}}_s^{X \upharpoonright s, A_s} \upharpoonright y \simeq \{a\}^{X, A} \upharpoonright y \in T_Q,$$

from which it follows that $\ell^{P \times A, Q}(a, s) > y$ correctly.

Corollary 24. For any Π_1^0 classes P and Q, any recursive stage enumeration $\langle A_s : s \in \omega \rangle$ of a set A, and any a, y and s,

- (i) if $\ell^{P \times A, Q}(a) = \infty$, then $\lim_{s \to \infty} \ell^{P \times A, Q}(a, s) = \infty$, and for all $X \in P$, $\lim_{s \to \infty} \ell^{P \times A, Q}(X; a, s) = \infty$;
- (ii) if $\ell^{P \times A, Q}(a) < \infty$, then for all sufficiently large s, $\ell^{P \times A, Q}(a, s) \ge \ell^{P \times A, Q}(a)$ and for all sufficiently large $s \in \mathbf{V}^A$, $\ell^{P \times A, Q}(a, s) = \ell^{P \times A, Q}(a)$.

Proof. Part (i) and the first part of (ii) are immediate from Lemma 23. Choose *t* large enough that $T_{P,t}^{\ell^{P \times A,Q}(a)+1} = T_P^{\ell^{P \times A,Q}(a)+1}$ and suppose, towards a contradiction, that for some $s \ge t$ with $s \in \mathbf{V}^A$ that $\ell^{P \times A,Q}(a,s) \ge \ell^{P \times A,Q}(a) + 1$. Then for all $\sigma \in T_{P,s}^S$,

$$\widehat{\{a\}}_{s}^{\sigma,A_{s}} \upharpoonright (\ell^{P \times A,Q}(a)+1) \in T_{Q,s}$$

Since $s \in \mathbf{V}^A$, the computations are all correct, and by the choice of t, we have

$$\{a\}^{\sigma,A} \upharpoonright (\ell^{P \times A,Q}(a)+1) \in T_Q.$$

Hence, for all $X \in P$, $\{a\}^{X,A} \upharpoonright (\ell^{P \times A, Q}(a) + 1) \in T_Q$ contrary to the definition of $\ell^{P \times A, Q}(a)$.

We are now ready to continue with the proof of the Density Theorem. The overall structure of the proof is an induction on a to establish (1a) and (2a) simultaneously. To describe the construction, let

$$r^{P \times A, Q}(b, s) := \max\{\hat{\mathbf{u}}(A_s; \sigma, b, s, z) : \sigma \in T^s_{P,s} \text{ and } z \le \ell^{P \times A, Q}(b, s)\};$$

$$R^{P \times A, Q}_s(a) := \max\{r^{P \times A, Q}(b, s) : b < a\}.$$

For the markers we take $\mathsf{m}_{\sigma,t}^a := \langle a, \langle \sigma, t \rangle \rangle$. We say that $\mathsf{m}_{\sigma,t}^a$ is *qualified at* stage $s \ge t$ iff $\sigma < \ell^{+P,R}(a,t)$ and further

0-qualified at
$$s \iff \mathsf{m}_{\sigma,t}^a \notin B_s$$
 and $\sigma^{\frown}0 \notin T_{Q,s}$ and $\mathsf{m}_{\sigma,t}^a > R_s^{P \times A,Q}(a)$;
1-qualified at $s \iff \sigma^{\frown}0 \in T_{Q,s}$ and $\sigma^{\frown}1 \notin T_{Q,s}$ and $\mathsf{m}_{\sigma,t}^a > R_s^{P \times A,Q}(a)$.

Now the construction is as follows: at stage *s*, for all *a*, σ , *t* < *s*,

- (i) enumerate into A_{s+1} all markers $\mathsf{m}_{\sigma,t}^a$ which are 0-qualified at s;
- (ii) enumerate into B_{s+1} all markers $\mathbf{m}_{\sigma,t}^{a}$ which are 1-qualified at s.

We define as usual

$$A^{[a]} := \{ \langle a, y \rangle : \langle a, y \rangle \in A \} \text{ (the } a\text{-th column of } A);$$

$$A^{[\leq a]} := \bigcup_{b \leq a} A^{[b]};$$

$$\mathbf{V}_{a}^{A} := \{ s : A_{s}^{[\leq a]} \upharpoonright p_{s} = A^{[\leq a]} \upharpoonright p_{s} \};$$

$$\mathbf{V}_{$$

Before addressing directly the conditions (1*a*) and (2*a*), we derive some consequences of the construction. We say that $\ell^{P \times A, Q}(b, s) \ge y$ very correctly iff $\ell^{P \times A, Q}(b, s) \ge y$ correctly and

for each
$$\sigma \in T^s_{P,s}$$
, if $\{\widehat{b}\}^{\sigma,A_s}_s(y) \downarrow$, then $\{\widehat{b}\}^{\sigma,A_s}_s(y) \downarrow$ correctly.

Similarly, $\ell^{P \times A, Q}(X; b, s) \ge y$ very correctly iff $\ell^{P \times A, Q}(X; b, s) \ge y$ correctly and

if
$$\{\widehat{b}\}_{s}^{X \upharpoonright s, A_{s}}(y) \downarrow$$
, then $\{\widehat{b}\}_{s}^{X \upharpoonright s, A_{s}}(y) \downarrow$ correctly.

Then, for all a, b, s, and y, and all $X \in P$

- (A1) if $s \in \mathbf{V}_b^A$, $T_{Q,s}^y = T_Q^y$ and $\ell^{P \times A, Q}(b, s) \ge y$, then $\ell^{P \times A, Q}(b, s) \ge y$ very correctly;
- (A2) if $s \in \mathbf{V}_b^A$, $y \le \ell^{P \times A, Q}(b)$ and $\ell^{P \times A, Q}(X; b, s) \ge y$, then $\ell^{P \times A, Q}(X; b, s) \ge y$ very correctly;
- (B1) $\lim_{s \in \mathbf{V}_{h}^{A}} \ell^{P \times A, Q}(b, s) = \ell^{P \times A, Q}(b);$
- (B2) if for all $b < a, \ell^{P \times A, Q}(b) < \infty$, then $\lim_{s \in \mathbf{V}_{<a}^{A}} R_{s}^{P \times A, Q}(a) =: R^{P \times A, Q}(a)$ exists and is finite.

For (A1), assume that $s \in \mathbf{V}_{h}^{A}$; we prove by induction on y that

$$\ell^{P \times A, Q}(b, s) \ge y$$
 and $T^{y}_{Q, s} = T^{y}_{Q} \Longrightarrow \ell^{P \times A, Q}(b, s) \ge y$ very correctly.

Assume as induction hypothesis that this holds for y and suppose that $\ell^{P \times A, Q}(b, s) \ge y + 1$, hence $\ell^{P \times A, Q}(b, s) \ge y$ very correctly (The basis case y = 0 is identical without any use of an induction hypothesis). Hence, for all $\sigma \in T_{P,s}$, $\{\widehat{a}\}^{\sigma,A_s} \upharpoonright (y+1) \in T_{Q,s}^{y+1} \subseteq T_Q$ via correct computations, so $\ell^{P \times A, Q}(b, s) \ge y+1$ correctly, and it suffices to prove that for all $\sigma \in T_{P,s}^s$, if $u_{\sigma} := \hat{\mathbf{u}}(A_s; \sigma, b, y+1, s)$, then for all $t \ge s$, $A_t \upharpoonright u_{\sigma} = A_s \upharpoonright u_{\sigma}$. This is immediate for t = s, so assume as induction hypothesis that it holds for t. By the construction, any element $x \in A_{t+1} \setminus A_t$ is of the form $x = \langle c, z \rangle$ with $x > R_t^{P \times A, Q}(c)$. If $c \le b$, then

$$x \in A^{[\leq b]} \setminus A^{[\leq b]}_s$$
 so $x \ge p_s \ge u$

because $s \in \mathbf{V}_{b}^{A}$. If c > b, then

$$x > R_t^{P \times A, Q}(c) \ge r^{P \times A, Q}(b, t)$$

$$\ge \hat{\mathbf{u}}(A_t; \sigma, b, y + 1, t) \quad \text{since by 23(ii), } \ell^{P \times A, Q}(b, t) \ge y + 1$$

$$\ge u_{\sigma}.$$

Hence, in either case $A_{t+1} \upharpoonright u_{\sigma} = A_t \upharpoonright u_{\sigma} = A_s \upharpoonright u_{\sigma}$ as desired.

For (A2), for $s \in \mathbf{V}_b^A$ we prove similarly by induction on $y \leq \ell^{P \times A, Q}(b)$ that

$$\ell^{P \times A, Q}(X; b, s) \ge y \implies \ell^{P \times A, Q}(X; b, s) \ge y$$
 very correctly.

Assume as induction hypothesis that this holds for y and suppose that $\ell^{P \times A, Q}(X; b, s) \ge y + 1$, hence $\ell^{P \times A, Q}(X; b, s) \ge y$ very correctly. It follows from Lemma 23(iii) that $\ell^{P \times A, Q}(X; b, s) \ge y + 1$ correctly, and it suffices to prove that if $u := \hat{\mathbf{u}}(A_s; X \upharpoonright s, b, y + 1, s)$, then for all $t \ge s$, $A_t \upharpoonright u = A_s \upharpoonright u$. This is done exactly as in the proof of (A1).

(B1) is immediate from the Corollary to 23 in case $\ell^{P \times A, Q}(b) = \infty$. If $\ell^{P \times A, Q}(b) < \infty$, then by the same Corollary, for all sufficiently large $s, \ell^{P \times A, Q}(b, s) \ge \ell^{P \times A, Q}(b)$. Furthermore, using (A1), by a proof parallel to the proof of the second half of part (ii) of that Corollary, for all sufficiently large $s \in \mathbf{V}_{b}^{h}, \ell^{P \times A, Q}(b, s) = \ell^{P \times A, Q}(b)$.

Now (B2) follows, since for sufficiently large $s \in \mathbf{V}_{b}^{A}$, if $\ell^{P \times A, Q}(b) < \infty$,

$$r^{P \times A, Q}(b, s) = \max\{\hat{\mathbf{u}}(A_s; \sigma, b, z, s) : \sigma \in T^s_{P, s} \text{ and } z \le \ell^{P \times A, Q}(b, s)\}$$
$$= \max\{\mathbf{u}(A; \sigma, b, z) : \sigma \in T_P \text{ and } z \le \ell(b)\}$$
$$=: r^{P \times A, Q}(b).$$

Thus under the hypothesis of (B2), for sufficiently large $s \in \mathbf{V}_{< a}^{A}$, $R_{s}^{P \times A, Q}(a)$ has the constant value $R^{P \times A, Q}(a) := \max\{r^{P \times A, Q}(b) : b < a\}$.

We now proceed to the proof of (1a) and (2a) along with

$$A^{[a]}$$
 and \mathbf{V}_a^A are recursive (3*a*)

by induction on *a*. Assume as induction hypothesis that (1*b*), (2*b*) and (3*b*) hold for all b < a. Hence for all b < a, $\ell^{P \times A, Q}(b) < \infty$ and thus by (B2), $\lim_{s \in \mathbf{V}_{<a}} R_s^{P \times A, Q}(a) = R^{P \times A, Q}(a)$. Suppose towards a contradiction that (1*a*) fails, so

$$\ell^{P,Q+R}(a) = \infty$$
 and thus $\lim_{s \to \infty} \ell^{+P,Q+R}(a,s) = \infty$

by Proposition 19(i). By (iii) of this Proposition, if

$$g(\sigma) := \text{ least } t \left[\ell^{+P,Q+R}(a,t) > \sigma \wedge \mathsf{m}^a_{\sigma,t} > R^{P \times A,Q}(a) \right],$$

then $\mathsf{m}_{\sigma,g(\sigma)}^{a}$ is qualified at all $s \geq g(\sigma)$, and by (B2), for all sufficiently large $s \in \mathbf{V}_{a}^{A}, R_{s}^{P \times A, Q}(a) = R^{P \times A, Q}(a)$ so for $\sigma \in T_{Q}, \mathsf{m}_{\sigma,g(\sigma)}^{a}$ is 0-qualified at *s* iff $\sigma \cap 0 \notin T_{Q,s}$ and 1-qualified at *s* iff $\sigma \cap 1 \notin T_{Q,s}$. Hence we have

$$\sigma^{\frown} 0 \notin T_Q \implies \exists s \left[\mathsf{m}^a_{\sigma,g(\sigma)} \in A_{s+1} \right] \implies \mathsf{m}^a_{\sigma,g(\sigma)} \in A,$$

and

$$\sigma^{-1} \notin T_Q \implies \exists s \left[\mathsf{m}^a_{\sigma,g(\sigma)} \in B_{s+1} \right] \implies \mathsf{m}^a_{\sigma,g(\sigma)} \in B,$$

Thus, with a_2 as in the sketch above, the index b_1 defined by

$$\{b_1\}^X(y) \simeq \begin{cases} \{a\}^X(y+1), & \text{if } \{a\}^X(0) = 0; \\ \{a_2\}^X(y), & \text{if } \{a\}^X(0) = 1; \end{cases}$$

witnesses that $Q \leq_M P$, contrary to hypothesis. Hence (1*a*) holds and $\ell^{P,Q+R}(a) < \infty$.

We establish next (3a) and argue first that $A^{[a]}$ is recursive. Define

$$j_a(t) := \text{ least } s \ge t \left[R_s^{P \times A, Q}(a) = R^{P \times A, Q}(a) \right]$$

 j_a is well-defined by Proposition 19 and (B2) and is clearly recursive. Now, let k_a be a computable function such that

$$k_{a}(\mathsf{m}_{\sigma,t}^{a}) \simeq \begin{cases} 0, & \text{if } \sigma \geq \ell^{+P,Q+R}(a); \\ A_{j_{a}(\sigma,t)+1}(\mathsf{m}_{\sigma,t}^{a}), & \text{if } \sigma < \ell^{+P,Q+R}(a) & \text{and} \quad t \geq s_{a}; \\ A(\mathsf{m}_{\sigma,t}^{a}), & \text{otherwise}; \end{cases}$$

where

$$s_a := \text{ least } s \left[\forall \sigma \leq \ell^{+P,Q+R}(a) (\forall i < 2) \Big(\sigma^{\hat{}} i \in T_Q \iff \sigma^{\hat{}} i \in T_{Q,s} \Big) \right.$$
$$\wedge \quad \ell^{+P,Q+R}(a,s) = \ell^{+P,Q+R}(a) \land \forall t \geq s \left(R^{P \times A,Q}(a) \leq R_t^{P \times A,Q}(a) \right) \right].$$

Since the third clause has only finitely many instances, k_a is recursive and it suffices to show that for all σ and t, $k_a(\mathsf{m}^a_{\sigma,t}) = A(\mathsf{m}^a_{\sigma,t})$. Clearly $\mathsf{m}^a_{\sigma,t} \notin A \Longrightarrow k_a(\mathsf{m}^a_{\sigma,t}) = 0$. If $\sigma \ge \ell^{+P,Q+R}(a)$, then $\mathsf{m}^a_{\sigma,t}$ is never qualified and hence never enumerated into A. Suppose that $\sigma < \ell^{+P,Q+R}(a)$, $t \ge s_a$, and $\mathsf{m}^a_{\sigma,t} \in A$. Then for some $s \ge t$, $\mathsf{m}^a_{\sigma,t}$ is 0-qualified at s — that is,

$$\sigma < \ell^{+P,Q+R}(a,s), \quad \sigma^{\frown} 0 \notin T_{Q,s} \quad \text{and} \quad \mathsf{m}^a_{\sigma,t} > R^{P \times A,Q}_s(a).$$

But since $j_a(t) \ge t \ge s_a$, also $\sigma < \ell^{+P,Q+R}(a, j_a(t)), \sigma^0 \notin T_{Q,j_a(t)}$ and

$$\mathsf{m}^{a}_{\sigma,t} > R^{P \times A,Q}_{s}(a) \ge R^{P \times A,Q}(a) = R^{P \times A,Q}_{j_{a}(t)}(a).$$

Hence $\mathbf{m}_{\sigma,t}^a$ is 0-qualified at $j_a(t)$ so $\mathbf{m}_{\sigma,t}^a \in A_{j_a(t)+1}$ and also $k_a(\mathbf{m}_{\sigma,t}^a) = 1$.

Combining this with the induction hypothesis, $A^{[\leq a]}$ is recursive and it follows immediately from its definition that also \mathbf{V}_a^A is recursive.

Finally, suppose towards a contradiction that (2*a*) is not satisfied, so $\ell^{P \times A, Q}(a) = \infty$, and define for each *X* and *y*,

$$H(X, y) \simeq \text{ least } s \left[s \in \mathbf{V}_a^A \text{ and } \ell^{P \times A, Q}(X; a, s) \ge y + 1 \right].$$

H is partial recursive, and by (A2) and Corollary 24, for all $X \in P$ and all *y*, H(X, y) is defined and $\ell^{P \times A, Q}(X; a, H(X, y)) \ge y + 1$ correctly. Thus, there is an index b_2 such that

$$\{b_2\}^X(y) \simeq \{\widehat{a}\}_{H(X,y)}^{X,A_{H(X,y)}}(y) \simeq \{a\}^{X,A}(y),$$

and $\{b_2\}$ witnesses that $Q \leq_M P$, contrary to the hypothesis. Hence (2*a*) holds and the induction step is complete.

Corollary 25. The partial ordering \leq_M restricted to either \mathcal{P}_M or to the sublattice **AH** of almost homogeneous degrees is dense.

Proof. The first assertion is immediate and the second follows from Theorem 12, since, in the notation of the preceding proof, if P and Q are almost homogeneous, then since R is constructed as a c.e. separating class, also R and hence S is almost homogeneous.

References

- Cenzer, D.: Π⁰₁ classes in computability theory, *Handbook of Computability Theory*, Studies in Logic and the Foundations of Mathematics, **140**, 37–85 (1999)
- Cenzer, D., Remmel, J.: Index sets for Π⁰₁ classes, Ann. Pure and Appl. Logic 43, 3–61 (1998)
- Hinman, P.G.: Recursion-Theoretic Hierarchies. Perspectives in Mathematical Logic, Springer-Verlag, Berlin (1978)
- Jockusch, C., Soare, R.: Π⁰₁ classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33–56 (1972)
- Medvedev, Yu.: Degrees of difficulty of the mass problem. Dok. Akad. Nauk SSSR 104, 501–504 (1955)
- 6. Odifreddi, P.: Classical Recursion Theory. North-Holland (1989)
- 7. Simpson, S.: Π_1^0 Sets and Models of WKL_0 , to appear in *Reverse Mathematics 2001*, ed. S. Simpson
- Binns, S., Simpson, S.: Medvedev and Muchnik Degrees of Nonempty Π⁰₁ Subsets of 2^ω, preprint, May 2001
- Sorbi, A.: The Medvedev lattice of degrees of difficulty, in *Computability, Enumerability, Unsolvability*, London Math. Soc. Lecture Notes 224, Cambridge University Press, Cambridge 289–312 (1996)