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A b s t r a c t  An optimization method for a frame structure sub- 
jected to a plastic deformation is proposed in this paper. The 
method is based on the generalized layout optimization method 
proposed by Bends0e and Kikuchi in 1988, where the solid-cavity 
composite material is distributed in the admissible domain and 
the cavity size is determined so that it becomes large in the area 
where the strain energy is small. Elasto-plastic analysis based on 
the.homogenization method is carried out to obtain the nonlinear 
average stress-strain relations of a porous material first. Then the 
optimization algorithm of a frame structure is derived by taking 
plastification into account. Finally in order to demonstrate the 
effectiveness of the present algorithm, several numerical examples 
are illustrated. 

1 I n t r o d u c t i o n  

The purpose 6f structural  analysis is mainly to reconfirm the 
safety of a structure planned by well-experienced designers. 
It can predict where the damage will take place by the ap- 
plied load but does not give a better design itself. The de- 
velopment of structural  optimization analysis, however, has 
changed this role of structural analysis to a very active one 
in design. Among optimization methods, sizing optimization 
is the simplest method where sizes of structural members are 
determined by sensitivity analysis. Another method is shape 
optimization in which outline curves of specified structural 
members are determined. Haftka and Grandhi (1986) made 
a detailed survey of this method. The design obtained by 
sizing or shape optimization analysis, however, may not op- 
timal since they do not change the topology of the initial 
design and it is generally very difficult to know the optimal 
topology prior to sizing or shape optimization analysis. 

Bendsoe and Kikuchi (1988) proposed a new approach to 
the topological and shape optimization of linear elastic struc- 
tures, which they named the generalized layout optimization 
method. In this theory, the admissible domain is assumed 
to be filled with microstructures with cavities. The sizes of 
cavities and the rotational angle of microstructures are de- 
termined with a constraint of a given amount of material so 
that the cavities may become larger as the strain energy is 
relatively smaller. One of the main features is that the ho- 
mogenization method is employed to determine the effective 
average elastic constants of the microstructures. The finite el- 
ement implementation of the homogenization method for the 

linear elastic problem was discussed by Guedes and Kikuchi 
(1990). The generalized layout optimization method given by 
Bends0e and Kikuchi (1988) was justified through many nu- 
merical examples by Suzuki and Kikuchi (1991) with studies 
of the effect of support and loading conditions on the solu- 
tion. Diaz and Kikuchi (1992) extended the algorithm for the 
dynamic problem in which the fundamental eigenvalue of a 
structure is maximized by reinforcement using a prescribed 
amount of material. Ma el al. (1993) modified the itera- 
tive method based on the conventional optimali ty criteria for 
more general dynamic problems. 

Due to the research mentioned above, the generalized lay- 
out optimization method has developed rapidly and is ad- 
vancing in linear elastic static or dynamic structural prob- 
lems. In this paper, the algorithm is applied to the optimal 
design of frame structures subjected to plastic deformations. 
Although there has been extensive research on the optimal 
design of frame structures, not much work related to plastic 
deformations has been carried out. It is, however, important  
in designing a frame structure to maximize the energy ab- 
sorption capacity by a plastic deformation to avoid its fatal 
collapse by an earthquake. Here, we treat  such problems in 
that  we shall distribute a prescribed amount of the material 
optimally inside frame members so that  the external work 
done by the prescribed load may become minimum. As a 
result, some domains in structural  members may be hollow. 
To discretize a frame structure, the linear Timoshenko beam 
element proposed by Hughes (1977) is employed with the so- 
called layered approach, where multilayers are assumed in the 
transverse direction. Each layer is assumed to be composed 
of a periodic microstructure with a square cavity whose size 
we shall define by sensitivity analysis. The average uniaxial 
stress-stain relations of the present material  should be known 
as a function of the cavity size in sensitivity analysis. We 
calculate these relations by the elasto-plastic finite element 
analysis based on the homogenization method. 

In the following sections the algorithm of the elasto-plastic 
finite element analysis based on the homogenization method 
is briefly discussed and numerical examples are shown ini- 
tially. Secondly, the average stress-strain relations of the 
present material are calculated for various cavity sizes and 
the relations obtained are approximated as a simple function 
of the cavity size for sensitivity analysis. Then the algorithm 
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of optimal analysis for a frame structure subjected to a plas- 
tic deformation is described, and finally several numerical 
examples of optimization analysis are shown to demonstrate 
the effectiveness of the present algorithm. 

2 E l a s t o - p l a s t i c  f in i t e  e l e m e n t  ana lys i s  b a s e d  on  t h e  
h o m o g e n i z a t i o n  m e t h o d  

As previously mentioned, elasto-plastic finite element anal- 
ysis based on homogenization is conducted in this paper to 
obtain the nonlinear stress strain relations of the solid-cavity 
material. The algorithm of the finite element analysis for 
linear elastic materials based on the homogenization method 
was discussed precisely by Guedes and Kikuchi (1990). Here 
the algorithm is extended to elasto-plastic analysis. In the 
present formulation, the following assumptions are employed. 
• The stress field is the plane stress. 
• The bilinear isoparametric element is employed to discretize 
both the global domain and a microstructure 
• Plastic deformations of each constitutive material inside a 
microstructure follow the plastic flow theory 
• Finite deformations in the global domain are considered 
with the updated Lagrangian formulation while it is neglected 
in a microstructure 

In the last assumption, we limit our objective problems 
to those in which deformations in a microstructure are small. 
This is mainly because we are not interested in the prob- 
lem of local instability in a microstructure. Local instability 
may take place especially in those microstructurs that have a 
fairly large void, which remains unsolved even in the elastic 
problems. 

Assume a two-dimensional problem in which a structure 
is composed of a periodical microstructure as shown in Fig. 
1. 

Fig. 1. Two-dimensional structure composed of a periodical mi- 
crostructure 

If the microstructure can be regarded as infinitely small, 
we can calculate effective material constants by the homog- 
enization method. The material constants may be differ- 
ent throughout the whole structure due to plastification in 
the elasto-plastic analysis, while they are independent of the 
global position and loading history in the elastic analysis. 
It is not a practical idea, however, to calculate these con- 
stants in the whole domain. Here the average material con- 
stants are evaluated at every Gaussian quadrature point in 
a "global" element and stresses in a microstructure are also 
evaluated at the quadrature points. Figure 2 shows the dis- 
cretized global domain and a discretized microstructure at 
a quadrature point. The dots in Fig. 2 shows the Gaussian 
quadrature points of a global element. 

x2 

I. 
Fig. 2. Discretization of the global domain and a microstructure 

2.1 Stiffness equations of the global domain 

In the elasto-plastic analysis, the incremental method is gen- 
erally employed. The principle of the virtual work between 
the n-th and the (n + 1)-th incremental steps for the global 
domain D is give in an incremental form as 

J [SAsgAo'g + 5Ae~r~ ")] dD: (SAug)Z~fg, (1) 

f2 
where 5 expresses variation, Aeg, Ae~ are the linear and 

quadratic strain increments, cr~ n)" represents the average 
stresses within the microstructure at the n-th step, respec- 
tively, and Afg and Aug are external load increments and 
corresponding displacement increments. We define the fol- 
lowing strain-displacement matrix B and the stress-strain 
matrix D H as: 

Asg = BAud,  Ao-g = DHA~g, (2) 

where u~ are the displacements of a global element, and D H 
is composed of the average or homogenized material con- 
stants, the evaluation of which is shown in the next section. 
Substituting (2) into (1), the stiffness equations of the global 
domain are derived as follows: 
Neg Neg 
E K g A u ~  = E A f ~ ,  g g  = i(BtDHB+K0)dD, (3) 
i=1 i=1 f2e 

where Neg is the number of the global elements, De is the 
element domain, f~ expresses the element forces, and K 0 is 
the initial stress matrix derived from the second term on the 
left-hand side of (1). Once the element displacement incre- 
ments Au~ are obtained by solving (3), the average stress 
increments at Gaussian quadrature points should be calcu- 
lated by (2) and added to the stresses at n-th step as 

: @ )  + (4) 
since these are necessary to calculate the initial stress matrix 
K 0 in (3) at the next incremental step. Finally the nodal 
coordinates should be updated. 

2.2 Evaluation of the average material constants 

It is necessary to evaluate D H to compose the stiffness (3). 
The algorithm is briefly described here based on the algo- 
rithm given by Guedes and Kikuchi (1990). 

Consider that a porous material formed by a periodic mi- 
crostructure whose representative length is very small, of or- 
der ~ is subjected to external force. Entreating the higher 
order terms, the displacement at (x, y) can be expressed as 
the sum of the global and the microscopic displacement as 
u e = u0(x) + eu l ( x , y ) ,  (5) 

where 
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kt a"7(=) 
= - X i  ( x , Y ) ~ + u i ( x )  (i, k, / = l, 2) . (6) 

Here x are the global coordinates, y are the local coordinates 
of the microstructure and y = x/e .u(x)  are arbitrary additive 
constants in y; X kg are the solutions 

f Dijpm ~ OUi(Y) dY = i D . . Oui(Y) d,~ Oyj ~3kl c~yj ~ ' 
Y Y 
Vv, • Vy (i , j ,p,m = 1,2), 

Vy = {u • Hl  l u is Yperiodic in the unit cell}, (7) 

respectively. Here H 1 is the Sovolev space, and Y = ( -1 /2 ,  
- 1 / 2 )  x (1/2,1/2) in the y = {yl,y2} coordinate system, 
and Dijkl is the material tensor. The homogenized material 
tensor is given as 

i (  cgXkPg~dY. (8) H 1 Dijk~ -- Dijpm 9ym ] Dijk~ = ~-~ y 

Since Dijki is a function of stress history in the elasto-plastic 
analysis, the stresses inside a microstructure should be cal- 
culated. From (5) and (6), the displacement increments can 
be expressed as 

k~ OAu7 
Aul = -Xi  (x,Y)-~-~-xt ( i ,k , t=  1,2). (9) 

The stress increments in a local element are evaluated as (oAuo oA,,l"  
= Dijk  \ + ) 

If the material is elastic, Dijki is 
e 

Dijk~ = Dijk~ , 

(10) 

(11) 

where D~jk~ is the linear elastic constant for the plane stress 

field. If the material is plastic, it can be expressed as 
D e a e 

D i j k t  = D~k~  - ( ijpq Pq)(arsD.k~) e , (12) 
H # + apqDpqrsars 

where H I is the strain hardening modulus and is expressed 
with the elastic modulus E and the tangential modulus E t 
a s  

H t - EEt 
E - Et '  (13) 

and ars is defined as 

of 
ar8 -  cgO'rs ' 
where f is the flow potential and is chosen as the yon Mists 
yield criterion. The calculated stress increments Act l given 
in (10) are added to the stresses at the present incremental 
stresses as 

a (n+l)  a (n) + (14) 
ij(l) = ij(l) d°ij(t)" 

The number of sampling points to evaluate stresses in an 
element may depend on the problem. Here we employ four 
sampling points identical to the Gaussian quadrature points. 

Since a microstructure is very small compared with the 
global domain, the stress increments Aeri may be fairly large 
even if the global displacement increments are not so large. 
As a result, the equivalent stress may be much larger than 

the yield stress and cause a significant error. Therefore it i s  
preferable to employ the techniques proposed by Owen and 
Hinton (1980) to avoid stresses drifting away from the yield 
surface. 

Figure 3 shows the flow chart of the present algorithm. 

I Data input I 
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Fig. 3. Elasto-plastic FEA of the homogenization method 

2.3 Numerical example of the elasto-plastic analysis of the 
homogenization method 
To examine the present algorithm, the plastic buckling anal- 
ysis of a simply supported beam as shown in Fig. 4a was 
calculated. The beam was assumed to be composed of an 
infinitely small periodic square microstructure which has a 
square cavity in it as shown in Fig. 4b. The direction of the 
y-coordinate system is identical to the x-coordinate system 
initially. The material properties are the elastic modulus E 
= 206 GPa, Poisson's ratio u = 0.3, the yield stress qy -- 294 

MPa and the tangential modulus Et = 10-4E (constant). 
Due to symmetry, one half of the beam is divided to 20 el- 
ements (2× 10) and a prescribed displacement increment is 
given at one end. First it was confirmed that the results 
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for a = 1 (solid) agree well with those obtained by the con- 
ventional finite element analysis without the homogenization 
method. Then several cases for different values of a were 
calculated. As the cavity size became smaller, i.e. a went to 
1, the load-lateral displacement curve converged to that of 
the solid case. The load-lateral displacement curve for a = 
0.6 is shown compared with that for a = 1 in Fig. 5, where 
P is normalized by Py = cryt. The deforming procedure is 
shown in Fig. 6. Although the displacement is fairly large, 
the calculated residual force is generally very small and the 
iteration was seldom required. 

P 

~ t = l  cm w 

x21 p 

Xl 

(a) Buckling of an simply 
supported beam 

Fig. 4. Elasto-plastic analysis 
method 

1 

, y~ 

(b) Unit microstructure 
with a square cavity 

based on the homogenization 

Fig. 6. Deforming process of an axially compressed beam 

of the porous material composed of the uniform and periodic 
square microstructure shown in Fig. 7. These relations are 
necessary in the sensitivity analysis of a frame structure. 

With the algorithm presented in the previous sections, the 
relations can be obtained by calculating the problem shown 
in Fig. 8 where the plate is assumed to be composed of the 
infinitely small periodic microstructure shown in Fig. 7. The 
material properties are the elastic modulus E 0 = 206 GPa, 
Poisson's ratio u = 0.3, the yield stress ~y0 = 294 MPa and 
the tangential modulus E t = O. 
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beam 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 _ _  ~ . L ~ ~  
-0.1 0 0.1 0.2 0.3 0 . 4  

w / I  

5, Load-displacement relations of an axially compressed 

2.4 Stress-strain relation of the porous material 

As mentioned in the Introduction, we are interested in ob- 
taining an optimal design of a frame structure subjected to 
a plastic deformation by use of the generalized layout opti- 
mization method proposed by Bendsce and Kikuchi (1988), 
where the optimal topology and shape is expressed by varying 
the cavity size of the material. A detailed formulation of the 
present optimization problem will be given in the next section 
and here we will calculate the average stress-strain relations 

Y2 

T 
=-Yl 

Fig. 7. Microstructure with a square cavity 

X2 

X1 
Fig. 8. A plate subjected to uniaxial tension 

The average stress-strain relations obtained for various 
cavity sizes are depicted in Fig. 9 where the average stress 
is normalized by the yield stress Cry0, and the average strain 
is normalized by the yield strain ¢y0 = ay0/E0, respectively. 
The development of the area yielded within a microstrueture 
for a = 0.2 and a = 0.6 is shown in Fig. 10. In the black 
elements plastic deformations took place at all the quadrature 
points and in the gray elements plastic deformations occurred 
at some of the quadratic points. It can be observed that the 
procedure of plastification is quite different in these two cases. 



From the average stress-strain curves obtained, the average 
elastic modulus E g  is approximated as 

E g ( a ) =  (~oa)  E 0 ( 0 < a < 0 . 8 ) ,  

E g ( a ) =  ( 7 a + 3 )  Eo (0.8<a_<l.O). (15) 

It would be better to set a very small value as the average 
tangential modulus Eft(a) instead of zero for convenience. 
Here we employ the following value: 

Eft(a) = E0/1000. (16) 

The relation between the calculated and the approximated 
elastic modulus is shown in Fig. 11. Observing the curves 
shown in Fig. 9, we can assume that  the stress-strain curve 
is that  of the elastic-perfectly plastic material and the initial 
yield strain is equal to Cy 0 for every value of a, which results 
in the approximation of the average yield stress as 

H ( 4 3 ) ( 0 < a < 0 . 8 )  cr ( a ) =  ~--~a O'y 0 

o.H(a) = ( T a q  - 3 ) ° ' Y  0 ( 0 . 8 < a < l . O ) .  (17) 
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Fig. 9. Average stress-strain relations of the porous material sub- 
jected to uniform tension 

3 O p t i m i z a t i o n  o f  a f r a m e  s t r u c t u r e  

Here the algorithm of optimization analysis and numerical 
examples are presented. First the characteristics of a linear 
Timoshenko beam are briefly explained. Secondly, the objec- 
tive function to be optimized and the sensitivity analysis are 
discussed. Finally numerical examples are illustrated.- 

3.1 Linear Timoshenko beam elemenl 
In the following formulation, the linear Timoshenko beam el- 
ement shown in Fig. 12 with the layered approach is used 
to discretize a frame structure. The one point quadrature is 
employed to avoid locking. Each layer is assumed to be com- 
posed of a periodic square microstructure with a square hole 
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Fig. 10. Procedure of plastification in the microstructure 
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Fig. 11. Approximated homogenized Young's modulus 

as shown in Fig. 13. We will optimize the material distribu- 
tion in a frame structure by changing the hole size a under a 
total volume constraint. 

The normal and shear strains at x = 0 and the distance 
of z from the neutral axis are expressed with the nodal dis- 
placements and the element length g as 

c - -----7---u2 - ul  + z  , 7 - - - 2  +w2-----7--- ' (18) 

or in a matrix form 

e = B T U  , (19) 

where e = [c, TJ and U are the nodal displacements. We 
assume the stress-strain relations as 

Z 

1,, 1 x 2 
I 

Ul ,W 1 ,01 U2,W2,02 

Fig. 12. Linear Timoshenko beam element with layers 

A~r=EH(a)Ac, Ar- - - -GAT,  (20) 

and EH(a) is the average elasto-plastic modulus of the com- 
posite material while G is the shear modulus and independent 
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Fig. 13. Material with a periodic microstructure with a square 
hole 

of the parameter a. We assume that there is the least material 
in frame members to prevent shear deformations and regard 
the design obtained as the optimal reinforcement. Although 
we may neglect the effect of the shear deformations for most 
of the frame structures, it would be better to consider the ef- 
fect for those frame structures in which fairly short members 
are used. The formulation to consider the shear deformations 
will be discussed later. 

We can express EIt(a) using the results obtained in 2.4 

EH(a) = EOtt(a) (if the material is elastic), 

EH(a) = EtH(a) (if the materialis plastic), (21) 

(20) can be expressed in a matrix form 

Act = DA~,  (22) 

where 

ao- = La , aT j .  (23) 
The incremental stiffness equations of the element are ex- 

pressed as 

K a u  = Af, (24) 

where 

g = / B}eDB T d ~ ,  (25) 

1"2 
and A u  and ,"if are the nodal displacement and the nodal 
force increments, respectively. 

3.2 Optimization algorithm of a frame structure 
Assume we optimize a frame structure so that the external 
work done by the applied force may be minimized. Our ob- 
jective fuction would be 

u 

D 0  
where D is the structural domain, u is the nodal displacement 
vector and f is the external force vector. A volume constraint 
is 

= I [ 1 -  ( 1 -  a) 2 ]d12-  120 _< h 0. (27) 

12 
The optimization problem can be written 

minimize F subject to h(a) < 0, a_e < a < We, (28) 

where _a£, ~£ stand for the permissible minimum and max- 
imum values of the design variables a and are identical to 
0 and 1, respectively. The Lagrangian function of the con- 
strained optimization problem is defined as 

N~ 
L = F + ~h + E [c~i(a_t - hi) + fl~(-dg --ag)], (29) 

l=1 
where A and ag,/3~ are the Lagrange multipliers, and N£ is 
the number of layers. The Kuhn-Tucker conditions of the 
problem become 
OF + ~ Oh 
Oa l ~ =ai-J3£ (g= 1,2,...,Ng), Ah=O, 

ag(a_g-ag)=O (g= l ,2, . . . ,gg),  

flg(ag --5g) = 0 (g = 1,2,..., Ng), (30) 

where 

A>O, ag>_O, flt>_O (g=l ,2 , . . . ,g£) .  
The evaluation of the term OF/Oag is discussed later. Ac- 
cording to the algorithm proposed by Bendsce and Kikuchi 
(1988), ag(g = 1, 2,..., Ng) can be determined as follows. 
(a) Give the initial value ag (£ = 1, 2 , . . . ,  Ng). 
(b) Calculate F by the elasto-plastic analysis. 
(c) Calculate OY/Oag and Oh~Oh& 
(d) Set the initial value of A k. 
(e) Modify a~ (t -- 1 ,2 , . . . ,  Ng) as follows. 

a~ +1 : 

{ m a x [ ( 1 - ~ ) a k , a ~ ]  if k k _~)ak,a~] agDg <_ max[(1 

k k if max [(1-- ~)ak , a_g] < agDg , (31) 
agkDik < min[ ( l+~)ak ,~ / ]  

k k > min[ ( l+~)ak ,~ l ]  ifa D  _ 

where 

(32) 

and ~, l 7 are a move limit and a weighing factor, respectively. 
(f) Modify A k by the bisection method so that the following 
equation is satisfied: 

{ 1 -  [ 1 -  120. ak (v~k)] 2 } dE7 (33) 
1"2 

(g) l%epeat (e)-(f) unti l  ,X k converges. 
(h) Repeat (b)-(g) until a convergence criterion is satisfied 

in the following we derive the term 8F/Sa ~ in the elasto- 
plastic analysis. 

In elasto-plastic analysis, the load-displacement relation 
is approximated to be piecewise linear and the load incre- 
mental method is applied. Using the incremental form, (8) is 
expressed as the summation of the external work increment 
done by the applied loads at each incremental step 

Nstage / 1 k  

z 
i=1 

where Nstage and i stand for the number of the incremental 
steps and the i-th incremental step, respectively. Taking dif- 
ferentiation with respect to the design variable hi, we obtain 
the following equation: 

Nstage 
OF Cfi OAu 1 OAf 1 AfOAu'~ 

= t +  Au-gyia  + / " (35) 
i=1 



Substituting the following relation obtained by differentiating 
the stiffness equations with respect to at: 

~alAu + K OAu = 0, (36) 
we obtain 

Nstage [ ( 
OF OK A u ~  
Oa t E fi  _ K - 1  - - =  ~a/  / +  

i=1 

Ns,ogo [ { [B,  0DBd   au + 
- E u0 ~ J  Oa t ] 

i=1 \,.Q i 

Nst_~agef[ OD 1 0 D  "~ 
- L J  LcO'O---aiAc+-2Ac-O----alalAc) dy2= 

i=1 

i=1 Lk oat 2 Oa t ] 
Where the vectors u 0 and c 0 stand for 

u 0 = K - l f  i, ¢ 0 = B u 0 ,  (38) 

respectively. Equation (37) can be rewritten as 

OF 0 ( f  i ~ r d e d ~ )  0 (  f Uint d~2 ) 

Oa t Oa t Oa t 

-tLe 0 ~  t , (39) 

where Uint, t, Le are the internal work done throughout the 
whole loading procedure, and the thickness and length of the 
layer. 

If we assume that deformations are small and strains in- 
crease monotonously in the present problems, we can derive 
Uin t at c = (el,71) by using of (20) and (2]) as 

Uint = 1 H 2 1 2 ~E0 ( e t ) e l T ~ G T 1  ( i f l e l ] < e y 0 ) ,  

(.Tint 1 H (at)ey 

l H 1 2 ~Et (le,}- %o) a + ~G71 (iflql >_ %0). (40) 
Thus, the differentiation of Uin t with respect to at, is ob- 
tained as 

OUint 
= a E 0 ~ -  ( i f ] e l ] < e y 0 ) ,  

Oa t 

Oa t = aEo ey01Sll- (if levi > %0), (41) 

where 
43 7 

a=4--0 0 < a < 0 . 8 ,  c~=~-~ 0 . 8 < a _ < l .  (42) 
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4 Numer i ca l  examples  o f  the  o p t i m a l  design 

To examine the validity of the present algorithm, four numeri- 
cal examples are shown in this section. The first two examples 
deal with a simple straight beam and an "L"-shaped beam. 
The last two deal with rather complicated frame structures 
and one is subject to the prescribed displacement while the 
other is subjected to the prescribed load. 

,~.1 Example 1 
For the first example, a cantilever with a concentrated load at 
the free end as shown in Fig. 14 was calculated. The volume 
constraint was set to Y20/~2 = 0.5. The beam was equally 
divided into 10 elements which have 10 layers each and the 
prescribed displacement w = 1 mm in the transverse direc- 
tion was incrementally given at the free end. The material 
was uniformly distributed first and an iteration for optimize- 
tion was made after each time w reached 1 mm until the 
solution converged. As the criterion of the convergence of 
optimization, the following condition was employed: 

~je (n+l) 
xt - 10 - 4  , (43) 

U (n) 
ext 

where U (n) is the external work done by the applied load ext 
in the n-th iteration. It should be noted that the present 
algorithm optimizes a design so that the external work may 
be maximum in this case where a prescribed displacement is 
given instead of a prescribed load. The history of the load- 
displacement curve is shown in Fig. 15; Py = (t2c~y)/4 is the 
load which gives the full plastic moment at the fixed end. It 
can be observed that the optimally designed beam has almost 
the same strength as the solid beam although it has only half 
of the material inside. Figure 16 depicts the history of the 
external work done by the prescribed displacement, where 
the external work is normalized by the external work of the 
initial design. For comparison, the result when the material 
is elastic is also shown. It can be observed that external work 
increases drastically and almost converges in the first six it- 
erations. Unlike the case of the linear analysis , the history of 
the external work does not monotonously increase. This is 
due to the discrepancy of OE/Oa at a = 0.8 as shown in Fig. 
11. It can be corrected by employing the continuous func- 
tion for OE/Oa. Figure 17 shows the history of the material 
distribution in the beam. In dark layers, the cavity of the mi- 
crostructure is small, i.e. the material is close to solid. It is 
observed that the material distribution at the 5-th iteration 
is very similar to that of the converged solution. In the con- 
verged solution, the solid and the hollow regions are clearly 
separated. For comparison, the optimal configuration in the 
elastic analysis is shown in Fig. 18. The main difference is 
that the material is not fully filled near the fixed end since a 
plastic hinge is not conformed at the fixed end in the elastic 
analysis. 

~.2 Example 2 
For the second example, the "L"-shaped beam shown in Fig. 
19 was calculated. The prescribed displacement w = 1 mm 
was also given at the free end. The volume constraint was set 
to /20/Y2 = 0.7. Both the vertical and horizontal members 
are divided into 10 elements, respectively, with 8 layers. As 
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Fig. 14. A cantilever subjected to a concentrated load 
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Fig. 15. History of the load-displacement curve of a cantilever 
with a concentrated load 
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Fig. 16. History of the external work of a cantilever 

shown in Example  1, a design improves rapidly in the early 
i terations and changes l i t t le in the lat ter  iterations. Thus the 

convergence condition r r (n+ l ) / r r (n )  Vex t /Vex t was changed from 10 - 4  

in the example to 10 - 3  . The  history of the external work 
is shown in Fig. 20, where it can be observed that  the con- 
vergence is very rapid and the number of i terations reduced 
to 13. Figure 21 depicts the history of the load-displacement 

(a) Initial iteration 

(b) 2nd iteration 

(c) 3rd iteration 

(d) 4th iteration 

(e) 5th iteration 

(f) 21 st(last) iteration 
Fig. 17. Optimal design of a cantilever subjected to a plastic 
deformation 

Fig. 18. Optimal design of an elastic cantilever 

curve. The curve of the 5th i terat ion agrees well with that  
of the 13th iteration. Figure 22a shows the opt imal  design 
obtained and the area yielded at w = 1 m m  for the optimal 
design is shown in Fig. 22b, where a black area expresses 
plastic deformations occurring while a gray area is elastic. 
Since a small deformation is assumed in the present formu- 
lation for frame structures,  the mater ial  distr ibution and the 
area yielded of a vertical  member  is uniform in the longitu- 
dinal direction. However, the mater ial  is not  symmetrical ly 
distributed to the neutral  axis in the vertical member  due to 
the effect of the axial force while it is distr ibuted symmetry  
in the horizontal member.  In rather complex frame struc- 
tures, the asymmetry to the neutral  axis of bending may 
cause failure to obtain the converged solution. In the fol- 
lowing two examples, the material  distr ibution is decided so 
that  the symmetry  to the neutral  axis may be kept. In these 
examples, the same cavity size of the microst ructure  was em- 
ployed for both layers which are at the same distance from 
the neutral axis by taking a mean value of the internal  work. 

l=10 

~ 1 10 

Fig, 19. An L-shaped beam with a concentrated load 
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Fig. 22. Optimal design of a frame with a concentrated toad 

4.3 Example 3 

For the third example, a problem shown in Fig. 23, where a 
frame is subjected to a concentrated vertical load, was cal- 
culated. As mentioned in the previous example, the material 
was distributed symmetrically to the neutral axis in this ex- 
ample. The volume constraint is set to f20/~2 = 0.5. The 
frame was divided into 30 equal elements with 8 layers and 

the prescribed displacement w = 1 mm was given. The con- 
vergence criterion is the same as that of Example 2. The 
histories of the external work is shown in Fig. 24. It can 
be observed that the external work done by the prescribed 
displacement finally becomes nearly three times that of the 
initial design. The history of the load-displacement curve is 
shown in Fig. 25, where the collapse load for the case of a 
= 1 (solid) by the limit analysis is shown as Pmax. It can 
be observed that the optimal design has the same strength 
as that of the fully solid structure. Due to the shear stiff- 
ness, the present optimal design has rather higher strength 
than the theoretical collapse load. To obtain good agreement 
with the theoretical collapse load, the simplest way is to re- 
duce the shear stiffness after the normal stress reaches the 
yield stress. Another method is to employ the higher order 
element. Figure 26 shows the optimal design obtained. It 
can be observed that the material is distributed almost uni- 
formly where the bending moment is nearly zero. Figure 27b 
shows the development of the area yielded for both the initial 
and optimal designs. In the optimal design, the area yielded 
spreads widely while it is limited and the typical beam col- 
lapse mode takes place in the initial design. 

P 

 =10 Jl !,o 
I t l  I 

Fig. 23. A frame subject to a vertical load 

0 5 10 15 20 

Fig. 9.4. History of the external work of a frame structure subject 
to a vertical load 

4.4 Example 4 
As the fourth example, a problem shown in Fig. 28, where 
a frame is subjected to uniformly distributed loads in the 
horizontal direction, was calculated. The prescribed loads 
were given incrementally until the summation of those loads 
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Fig. 25. History of the load-displacement curve of a frame subject 
to a vertical load 
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Fig. 26. Optimal design of a frame subject to a vertical load 

reached P = 9.8 N. The volume constraint was set to 9 0 / ~  
= 0.5. It should be noted that the external work should be 
minimum in this case while it should be maximum in the 
previous examples where the prescribed displacements were 
given. 

In the initial design where the material was distributed 
uniformly, the whole area near the fixed end had yielded be- 
fore the loads reached the prescribed value and the horizon- 
tal displacement of the Point A in Fig. 28 became very large 
since there was little stiffness. As the iteration of optimiza- 
tion went on, the area yielded became smaller and finally 
plastic deformations took place in a very limited area near 
the fixed end. The horizontal displacement of A in the op- 
timal design is 0.16 mm at P = 9.8 N, while it is almost 
30 mm in the initial design. As a result, the external work 
changes drastically as shown in Fig. 29. Figure 30 shows 
the relations between the load P and the horizontal displace- 
ment until 0.5 mm are shown. It can be observed that the 
frame collapsed at a lower load than the prescribed load in 
the early iterations. The collapsed load at the first iteration 
(the initial design) is about 2.5 N while it is over 10 N in 
the optimal design. Figure 31 shows the history of the mate- 
rial distribution. Since the structure is optimized according 
to the normal strain, the element where a bending moment 
and an axial force are very small but a shear force is large 
has little material. This may not be a practical design. This 
would be corrected by setting the least value of the material 
volume for each layer of an element. It can be also corrected 

l----'l [-=] 

N 
NJ 

NI 

~ ,  i ~ i  

(a) Initial design (b) Optimal design 

Fig. 27. History of plastification of a frame subject to a vertical 
load 

by taking a shear deformation into the formulation. As far as 
the shear strain is assumed to be independent of the normal 
strain, the present algorithm can be extended to include a 
shear deformation without any difficulty. Figure 32 depicts 
the area yielded at P = 9.8 N. In the early iterations, plastic 
deformations occur widely but the area becomes very small 
in the optimal design while the yielded area spread wider and 
wider by an iteration in the previous calculations where the 
prescribed displacements were given. 

I / / / / / . ,  
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Fig. 28. A frame subjected to horizontal loads 
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Fig. 30. History of the load-displacement curve of a frame sub- 
jected to horizontal loads 

5 Discuss ion  

The effectiveness of the present algorithm has been demon- 
strated through several numerical examples in the previous 
section. Since the effect of shear deformations is not so im- 
portant for most frame structures, the present algorithm in 
which the effect is neglected would give a practical optimal 
design. It may be better, however, to consider shear defor- 
mations in the optimization of those structures composed of 
short members. The simplest method to consider the effect is 
to assume that the shear modulus in (20) is a function of the 
cavity size as G = GH(a) and that it is independent of the 

modulus EIot(a). In the following, a formulation longitudinal 
with this assumption is discussed. 

Since the shear rigidity should become rapidly small as 
the cavity size becomes large in the present microstructure, 

p 
(a) 1st iteration 

[--1 
(b) 3rd iteration 

.............. . . . . .  1 

I 

(c) 5th iteration 

" rl 

(d) 13th iteration 

Fig. 31. Material distribution of a frame subjected to horizontal 
loads 

we assume Gg(a) as 

GH(a) = a2Go • (44) 

Where GO is the shear rigidity for a = 1 (solid). Substituting 
(44) into (40) and taking differentiation with respect to ae, 
we obtain the following sensitivity instead of (41): 

0Uin t = ~2 
cOat o~Eo~-ba£a072 (iflql  < Cy0), 

cOa~, aEO CyO I~ll - --F agG072 (if ICll > Cy0) , 

(45) 
Example 4 in the previous section was calculated with 

the modified algorithm. As shown in Fig. 33 the optimal de- 
sign obtained is similar to the one calculated with the origi- 
nal algorithm shown in Fig. 31d except area B, where there 
exists little bending moment and therefore little material is 
distributed by the original algorithm. Figure 34 shows the 
comparison of the load-displacement curves of the optimal 
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Fig. 34. Load-displacement curves obtained with the modified 
algorithm 
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Fig. 112. Yielded area of a frame subjected to horizontal loads 

designs obtained with the original and modified algorithms. 
There is no significant difference between them. 

B 

Fig. 33. The optimal design obtained with the modified algorithm 
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6 Conc lus ion  

The generalized layout optimization method proposed by 
BendsCe and Kikuchi (1988) was extended to the optimiza- 
tion of a frame structure subjected to a plastic deformation. 
In the present formulation, the domain in which a material 
can be distributed is limited inside frame members and opti- 
mization is conducted so that the external work done by the 
prescribed load may be minimum. Through the numerical 
examples, it was proven that the present algorithm gives a 
much improved design compared to the initial design and it 
converges well. 
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