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A b s t r a c t  An integrated design procedure which is composed 
of structural design, control design, and actuator locations design 
is proposed in this paper. First, a composite objective function, 
formed by a structural and a control objective, is optimized in 
steady state through the homogenization design method. Then an 
independent modal space control algorithm (IMSC) is performed 
on this optimal structure to reduce the dynamic response. Finally, 
to minimize the control force while still obtaining the same modal 
response for the controlled modes, the optimal choice for actuator 
locations is discussed. 

1 I n t r o d u c t i o n  

Structural vibration control, which has enormous applica- 
tions in engineering, is an important  consideration in the 
design of dynamic systems. During the past two decades, 
substantial effort has been made toward reducing the building 
cost of a structure, and then most of the modern structures 
have become much lighter, less stiff, and therefore more vul- 
nerable to unexpected excessive external loads. In general, 
inherent damping of a flexible structure is very low. Thus, 
once oscillation has started, it will continue for a period with- 
out any large additionM energy input. A modern structural 
control concept is proposed to accomplish the dual purposes 
of making a structure as light as possible and keeping it away 
from the risk of external disturbances. 

The design of an efficient structural control system is 
of fundamental interest to both structural and control engi- 
neers. Systematic approaches for both structural and control 
designs are receiving increased applications. However, these 
design techniques, for the most part,  have been applied in- 
dependently within the entire design process. Traditionally, 
the structural designer develops his design based on strength 
and stiffness requirements, and the control designer creates 
the control algorithm to reduce the dynamic response of a 
structure. The designer of active controls has little input in 
the evolution of the basic structural design, and the structural 
analyst 's  part icipation in control design is limited to provid- 
ing the frequencies and mode shapes. However, there have 
been strong indications recently that  cost as well as response 
improvement can be realized by designing the structure and 
controls simultaneously. 

In work done by Bendsce and Rodrigues (1991), Diaz and 
Kikuchi (1992), Kamat  et al. (1983), and Rozvany and Zhou 
(1991), only the structural optimization problems are studied 
without considering the control system effect. The structure 
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is designed subject to some prescribed stiffness or strength re- 
quirements, and the structural engineers have no idea what 
will happen if they put an actuator in their design. How 
large will the control force be? How will engineers modify or 
change the design of the structure? It is not easy to answer 
these questions directly. In research studied by Balas (1978, 
1979), Rofooei and Tadjbakhsh (1993), Soong (1990), and 
Yang et aI. (1987), a control system is designed to improve 
the dynamic response of a given structure. The control engi- 
neers must find appropriate locations for actuators and use 
a lot of control energy to reduce the response of the struc- 
ture. Furthermore, they do not know how to modify the 
structure which is suitable for control while still satisfying 
the structural design criterion (maximum stress or deforma- 
tion). Thus, a simultaneous integrated design of structure 
and control system is proposed (see Hale et al. 1985; Miller 
and Shim 1987; Kajiwara et al. 1994). These approaches are 
suitable for small dimensional problems because solving two 
point boundary value problems or Riccati equations is too 
expensive. Furthermore, if the final time of our objective 
function is not infinite, the optimal control gains will not be 
constant matrices over time, and then we must calculate and 
store the control gain matrices at every instant of time. The 
cost of computing and storage will be tremendous. Canfield 
and Meirovitch (1994) have proposed an objective designed 
in modal space. Good results are obtained if the structural 
response can be represented by only a few lowest modes. 

The first objective of this paper is to design a structure 
giving consideration to the control effect, second, to devise 
a control algorithm to reduce the vibration without exces- 
sive stress value, and finally, to find a suitable actuator lo- 
cations for additional modal control. The optimal structural 
design is completed through a homogenization design method 
while the steady state (S.S.) control force is obtained by the 
displacement feedback law. Control design for transient re- 
sponse is performed in the modal space; both classical and 
optimal controls are presented. Two structural  dynamic re- 
sponses will be compared. One is the static design structure 
using the approach proposed by Suzuki and Kikuchi (1991). 
The other is the controlled structural  design presented by Ou 
and Kikuchi (1996). It is almost impossible to have an eff• 
cient structural control design without careful selection for 
actuator positions. However, this issue is ignored in most in- 
tegrated structural control design. Some general studies for 
placement of actuators can be found in the papers by John- 
son (1981) and Martin (1978). An approach to selecting an 
optimal actuator location is proposed as a problem of mini- 
mization of the control forces. 
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2 F o r m u l a t i o n  o f  s t r u c t u r a l  o p t i m i z a t i o n  

Shape and topology optimization using the homogenization 
design method has been quite successful recently (Suzuki and 
Kikuchi 1991; Diaz and Kikuchi 1992). Its original idea was 
introduced by Bendsce and Kikuchi (1988). This method is 
based on the concept of optimizing the material distribution 
of infinitely many microscale voids in a perforated structure. 
The optimality criteria derived from the necessary conditions 
of minimizing the mean compliance are solved by an optimal- 
ity criteria (OC) method. For simplicity, we assume that the 
microstructure is defined by three design variables, a, b and 
O, where 1 - a and 1 - b are the size of a rectangular hole 
which is rotated by 8 with respect to x 1 coordinate as shown 
in Fig. 1. 

x 2 

T >x 
Fig. 1. Design variables of a microstructure 

For optimal structural design in steady state, we choose 
an objective function as the sum of the strain energy and 
control energy defined as 

rain J = f t R f  + d t Q d ,  (1) 
a,b,o 

K d  = G l f  + F 
st P(a ,  b) = 0 (2) 

L = (xl ,  x2) 

and 

P ( a , b )  = ~ / ( a .  + b ~ - a . b . ) d a ~ - n  s , (a) 

e=l~e  

where d is an n • 1 displacement vector, a, b and 0 are the de- 
sign vectors, P(a ,  b) = 0 is the material resource constraint, 
G 1 is an n • m location matr ix for the control force and F 
is an n • 1 applied external force vector, f is an m • 1 con- 
trol force vector, nel is total  number of the finite elements, 
and f~e is the element design domain. The magnitudes of 
the matrices Q and R are assigned according to the relative 
importance of the state variables and the control force in the 
minimization procedure. By adjusting the relative values of 
Q and I t ,  one can synthesize the control to achieve a proper 
trade off between these two objectives; L is a constraint for 
the actuator position specified at coordinate (x l ,x2) .  

Using the displacement closed-loop feedback control we 
can assume 

f = _a-lG d, (4) 
then the first equation of (2) becomes 

(K + G I R - 1 G ~ ) d  = F .  (5) 

Reformulating the equilibrium equation yields 

K 2 d  = F ,  (6) 

where K 2 = K + G l l ~  -1  G{ is the modified stiffness matrix 
under the control effect. Problem (6) can be solved by the 
finite element method which is very similar to the standard 
problem K d  = f. The eigenvalues of K are called open-loop 
eigenvalues, the eigenvalues of K 2 are called the closed-loop 
eigenvalues. By introducing this feedback control, the control 
effect will modify the stiffness matrix so that the eigenvalues 
of the structure are shifted. 

The weighting matrix R is chosen as 

R = w/ ( n f i  wi~i )  (7) 

where neig is the number of the critical eigenvalues consid- 
ered in the weighting, W i is a weighting constant for each 
eigenvalue. Thus, the contribution from different eigenvalues 
can be adjusted by Wi, and the ratio of the control objec- 
tive is regulated by w. During the iterations of optimization, 
the order of critical modes may change, and the lowest eigen- 
value is not necessarily the dominant one. If we always use 
the eigenvalues of fixed order to estimate the stiffness of a 
structure, then we probably cannot obtain the good results 
that we expect. We thus use the modal energy to extract 
the critical modes in each iteration, and the stiffness of the 
structure can be estimated correctly. 

3 I n d e p e n d e n t  m o d a l  space  c o n t r o l  

Without considering the structural inherent damping, the 
second-order modal dynamic equation for the i-th mode is 
written as 

~i + Ni~li = r  + F ) ,  (8) 

where rti is the generalized coordinate, Ai is the i-th eigen- 
value and r  the i-th normalized eigenvector. Assume 

r  = Fi  = -giHi - hiiTi, (9) 

then (8) becomes 

t i~i + hiili + Ai~li = Oi F , (10) 

where r i is the modal control force, A i = Ai + gi is the 
dosed-loop eigenvalue. If there are r controlled modes, we 
can write 

f = S - I I  ' ,  ( 1 1 )  

where f is the physical control force, and 

r =  r ;  ' (12) 

S . . . .  G 1 �9 ( la )  

The control designer constructs the modal control forces ac- 
cording to the modal response, and transforms them into the 
physical control forces by (11). Instead of building the con- 
trol based on the whole system, we develop the control for 
the critical modes. This is the key idea of IMSC. 



4 T ime  i n t e g r a t i o n  s c h e m e  

When we apply IMSC to control the structure,  some control 
energy may shift from the controlled modes to the residual 
modes, which is called control spillover effect. It is imprac- 
tical to calculate the response for each modal equation to 
monitor  the spillover effect for large dimensional  problems. 
However, we can simply use an accurate t ime integration 
scheme to est imate the energy of the system. If both the 
kinetic and strain energy are limited in a reasonable range, 
then we can say the spillover effect is not serious. Otherwise, 
we must  el iminate the spillover by either changing the design 
or including more modes to control. 
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Fig. 2. Flow chart for optima] structural control design 

For dynamic problems in t ime domain analysis, we use a 
direct integrat ion method to predict the resp onse of a system. 
The trapezoid rule of the Newmark family is an uncondit ion- 
ally stable method, and it  is an appropriate numerical scheme 
for our problems. The formula of this algorithm is stated as 
follows. Considering the equation of motion 

M~I + C(t + K d  = F ,  (14) 

defining the predictors 

Fig. 4. Optimal structure for static case 

Fig. 5. Optimal structure for controlled structural design 

Fig. 6. Critical mode shape for controlled structural design 

At  2 
(~n+l = dn  + A t , n  + - -7 - (1  -- 2f l )an ,  

Dn+ 1 = v n + (1 -- 7) A t a n ,  (15) 

the displacement and velocity can be found from the correc- 
tors 

d n + l  = ( in+ l  -b f l A t 2 a n + l  , 

~ n + l  = Vn+l  q- 7Z3tan+l  �9 (16) 

The acceleration a n +  1 can be determined by 

( M + T A t C + / ? A t 2 K ) a n + I  = F n +  1 - C~,n+ 1 - K d n +  1 , (17) 

where a = ;i, i ,  = d,  ~ = 1/4 ,  and 7 = 1/2.  

5 D e s i g n  p r o c e d u r e  

A design procedure for a s t ructural  control system was pro- 
posed by Ou and Kikuchi (1996). Here an organized flow 
chart for the design procedure is plotted in Fig. 2. 
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Fig. 7. Dynamic response of Example 1 

6 Classical  con t ro l  t heo ry  for s tep  response  

The transfer function of a second-order differential equation 
(see Phillips and Harbor) for the i-th mode can be written as 

&w2 (18) 
G(s) = s2 + 2r + ~' 
where ~ is a constant, w/ is the natural frequency, ~i is the 
damping ratio. The percent of overshoot P O  is derived as 

P O  = e -~ i=r  I ~ - ~ i 2  x i 0 0 ,  (19)  

the settling time of the system is defined by 
k 

T ~  - ~ i w i  . (20 )  

Choosing the desired PO,  the damping ratio can be deter- 
mined from (19), and usually k = 4 is selected. The gain gi 

is chosen so that -girti is equal to the steady state control 
force obtained in the structural design. 

6.1 Example 1 

Young's modulus = 100 GPa, Poisson's ratio = 0.3, density p 
= 1E-6, design domain: 4 cm by 10 cm, finite element mesh: 
20 by 50, volume constraint: 10, location of actuator: L = 
(5.0, 4.0), P O  = 16.3, time step = 2E-4. 

The optimal designs corresponding to the static problem 
and the controlled structural design are shown in Figs. 4 
and 5. These two designs were obtained by Ou and Kikuchi 
(1996), and the authors concluded that a control force can- 
not be applied at an arbitrary position because of a very 
large maximum stress generated inside the structure at that 
time, i.e. the static design applied by a control force lost the 
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qualification to be studied further there. Thus, two cases for 
step response are studied in this example. Case 1: static de- 
sign, using the approach in the papers by Suzuki and Kikuchi 
(1991), is subject to external forces only. Case 2: the con- 
trolled structural design, obtained in the papers by Ou and 
Kikuehi (1996), is subject to external forces and classical con- 
trol algorithm. The critical mode for Case 2 is the fourth 
mode, which is plotted in Fig. 6; it is also the only con- 
trolled mode. The dynamic response for these two cases is 
shown in Fig. 7. The von Mises stress is evaluated at the 
location where the maximum stress occurred in S.S. in the 
structure. From these charts, we can see that the controlled 
modal displacements achieve the S.S. smoothly without large 
overshoot. The response of the static design is almost twice 
that of the controlled structural design under active control. 
Our current approach achieve the purpose of making a struc- 
ture possess good performance in S.S. and transient region. 

7 O p t i m a l  i n d e p e n d e n t  m o d a l  space  c o n t r o l  

In classical optimal control theory, we must solve the Riccati 
equations for the whole system. These equations need to be 
solved backward and implemented forward in time. Never- 
theless, it is impractical to do so for large dimensional prob- 
lems based on present computing ability. The IMSC was 
introduced to solve n 2 by 2 Riccati equations instead of 
solving the 2n by 2n Riceati equations. The computing cost 
is dramatically reduced, and if only a few modes are domi- 
nant then control of these critical modes will be sufficient to 
control the whole structure. 

The formulation of IMSC, derived by Meirovitch and 
Baruh (1980), associated with the distributed-parameter sys- 
tem can be written briefly as follows. The modal equation 
for the system is 

/'it + wT'iTr = r r ( t ) ,  r = 1 ,2 , . . .  (21) 

Let ~r ( t )  he defined as /Tr(t) = ~ r v r ( t ) ,  then introduce 
the associated modal state vector w r ( t )  and the associated 
control vector W r ( t )  in the form 

' 

: , = - -  , (22) 
Wr ] 

A t =  [ -~r0 Wr ] 0  ' (23) 

the modal state equation is 

~'r (t) = A r w r ( t )  + W r ( t ) .  (24) 

Assume W r  depends on Wr alone, i.e. 

W r  : W r ( w r ) ,  (25) 

the modal control W r  is designed independently of any 
modal state vector other than wr.  The optimal control force 
can be determined from the optimal control theory. The ob- 
jective function is 

n c  

J : X : ,  (26) 
r = l  

where nc is the number of  control led modes, and 

Jr :/(w qrwr + W ~ R r W r ) d t .  (27) 
~ e  
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Minimization of J r ,  yields 

W r  (t) = - R r 1p  (t)wr ( t) ,  (28) 

let Qr = w2I, and R r  can be represented by 

R r =  [ (x~ R~r ] ' (29) 

where P(t)  is the Riccati matr ix which can be obtained by 
solving 2 • 2 Rieatti  equations. When t f  --~ co, the optimal 
generalized modal control gains are 

hr  = (2gr  + i=t~-rl) 1/2 , (31) 

where Rr  = Wr21~r: gr is a gain for modal stiffness and hr  
is a gain for modal damping. Substituting (30) and (31) into 
(9), we can obtain the optimal control force. 
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Fig. 11. Structure and external forces in Example 3 

Fig. 12. First mode shape of the controlled structure 

investigated in this example. Cases 1, 2 and 3 are the re- 
sponse of a controlled structural design (Fig. 5); Case 1 is 
under the state feedback control law (4); in addition to the 
state feedback control, optimal control is applied to Cases 2 
and 3, but Case 2 has smaller weighting R~-r 1 than Case 3. 
Case 4 is the response for the static design (Fig. 4) without 
control. From Figs. 8 and 9, we see the response in Case 
4 is the worst, and larger weighting lYt~ "1 corresponding to 
Case 3 gives us the best performance. We can conclude that 
controlled structural design under optimal control provides 
the best response; the response of the controlled structural 
design without optimal control is still much better than the 
static design. Superposition of these two control forces can 
provide the total control force, see Fig. 10. The optimal con- 
trol does not increase the total control force compared to the 
state feedback control, while it has much better performance. 
This tells us that how important it is to allocate control forces 
appropriately. 
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7.1 Example 2 

120 140 

Two structures used in Example 1 are subject to the initial 
deformation due to the same external forces. Four cases are 

8 Opt ima l  design for  a c t u a t o r  l o c a t i o n s  

When the structure is subject to another external force after 
the structure is installed, changing it to a totally new struc- 
ture is probably too expensive; we can simply find other loca- 
tions for additional actuators to control the exciting modes. 
The placement of actuators for IMSC was first studied by 
Baruh and Meirovitch (1981), who derived the controlled and 
residual modes. They minimized the control spillover into the 
first residual mode and concluded that the work done on the 
controlled modes does not depend on the actuator locations. 
The best actuator locations are the nodes of the first resid- 
ual mode. Although the work on the controlled modes is 
independent of actuator locations, the work tranferred to the 
whole structure does rely on them. Moreover, the control 
force is very large while the work is not so big in some situa- 
tions; then the work is probably not an appropriate measure 
to control system design. Putting actuators at the nodes of 
the first residual mode can avoid spillover to that mode only. 
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Fig. 13. Comparison of response for Example 3 

It does not guarantee good controllability (smaller control 
force). Another criterion for deciding the optimal actuator 
placement was introduced by Lindberg and Longman (1984). 
Here we use their formulation in a more specific and practi- 
cal way by choosing locations that offer good controllability 
without excessive spillover. The criterion is defined as 

ty 

c s  = / f ~ f d t ,  (32) 
0 

which is the product of the control forces, and is an appro- 
priate measure if the magnitude of the control force is more 
considered than the work on the controlled modes. Further- 
more, if we want the controlled modes to posses the same 
response under different choices of actuator locations, we can 

20 40 60 80 100 
Time step 

form a minimization problem after substituting (11) into the 
above equation, 

rain CS = ](S-1F)tS-1Fdt.  (33) 
S J 

0 

If the location selected according to (33) generates too much 
spillover, we must choose another location again until the 
requirements are satisfied. 

8.1 Example 3 
We use the structural and control system designed in Fig. 
5, and assume that the structure is subject to another hori- 
zontal external step forec F2, which excites mainly the first 
mode, see Fig. 11. The location for the fourth modal con- 
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trol was already decided in Example 1. We want to choose 
the best location, which minimizes CS, for an additional ac- 
tuator to control the first mode without excessive spillover. 
We assume that this additional actuator must be installed at 
y -- 4.25 and calculate CS along y -- 4.25. We find that 
location 1 gives us the minimum control energy. To make a 
comparison, we also investigate the response caused by plac- 
ing the actuator at location 2. The repsonse corresponding 
to these two cases is plotted in Fig. 13. The modal displace- 
ments for these two cases are the same, which is exactly we 
want. The kinetic and strain energy response is almost the 
same, but the physical control forces are smaller when we 
put the actuator at location 1. This confirms our previous 
statement that the same modal response can be attained by 
choosing different actuator locations; of course, we select the 
one which offers the smMlest control force without excessive 
spillover according to (33). 

9 Conc lus ions  

A new integrated design procedure for a structural control 
system is presented in this paper. The optimal design of 
a controlled structure and S.S. control forces was achieved 
through the homogenization method and displacement feed- 
back law. The optimal structure obtained satisfies structural 
design requirements without possessing large stress value in 
S.S.; the classical and optimal controls were applied to reduce 
the structural vibration within a reasonable span of time. 
The results show that the dynamic response of the controlled 
structural design with active control is superior to the tra- 
ditional static design. Thus, active control can remove the 
energy from the structure effectively if it is carried out ap- 
propriately. The procedure of finding the actuator locations 
for a given structure, suggested in this paper, can offer the 
same modal response with minimum control forces while the 
spillover is kept low. 
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