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A modif ied trust  region algorithm for hierarchical N L P  
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A b s t r a c t  Large-scale design optimization problems fre- 
quently require the exploitation of structure in order to obtain 
efficient and reliable solutions. Successful algorithms for general 
nonlinear programming problems with theoretical underpinnings 
do not usually accommodate any additional structure within the 
problem. In this article modifications are made to a trust region 
algorithm to take advantage of hierarchical structure without com- 
promising the theoretical properties of the original algorithm. 

1 I n t r o d u c t i o n  

Nonlinear programming (NLP) has now become a common 
tool in engineering systems design. As problem size and com- 
putational expense increase, so does the difficulty of finding 
solutions. It is generally accepted that in order to find solu- 
tions efficiently and reliably, additional structure within the 
NLP must be exploited (see e.g. Conn et aL 1992; Papalam- 
bros 1995). The focus here is on modifying existing algo- 
rithms in order to accommodate the special type of structure 
known as hierarchical decomposition. 

For this work it will suffice to say that a general NLP 
is hierarchically decomposable if components of the vector 
of variables x can be grouped into p + 1 separate subvectors 
x0, X l , . . . ,  Xp, such that every term in the objective function 
and every constraint depends only on the vector of linking 
variables x 0 and at most one other vector xj .  That is, the 
general NLP 

min f(x)  
xE~n 

subject to 

g(x) < 0, h(x) = 0, (1) 

can be cast in the form 

p 

min f0(x0) + ~ f j ( xo ,x j )  xE~n 
j = l  

subject to 

g o ( x o ) ~ O ,  h 0 ( x o ) = 0 ,  

g j (x0 ,x j )  < 0,  j = 1 , . . . , p ,  

h j (x0 ,x j )  = 0,  j = 1 , . . . , p ,  (2) 

because gT [go T, T, T, ,gpT] and h T [hoT, hT, h T = g l  g2  . . . .  2 ,  
..., h r ] .  For the same reason, there is no ambiguity between 
writing hi (x)  and h j (x0 ,x j )  because ha" depends only on 
those elements within x which correspond to the subvectors 
x 0 and xj .  Optimization formulations of engineering system 
design problems often have this hierarchically decomposable 
structure. Rigorous methods for identifying a hierarchically 
decomposed structure within an existing NLP can be found 
in the paper by Michelena and Papalambros (1995) and for 
formulating an NLP such that hierarchy is prevalent in that 
of Krishnamachari and Papalambros (1997). 

Solving an approximation of (1) can be expensive if the 
number of variables or constraints is large, and inaccurate if 
second-order information is approximated. Therefore, the de- 
composed form (2) is used to define several subproblems, each 
subproblem being the collection of functions which depend on 
a particular subvector of variables x j  for j = 1, 2 , . . . ,  p in the 
form 

min f j  (x0, x j ) ,  
xj 6~nJ 

subject to 

g j (x0 ,x j )  < 0 ,  h j ( x 0 , x j ) = 0 .  (3) 

Each subproblem (3) is necessarily smaller than the unde- 
composed problem (2) and can be solved independently if 
the linking variables x 0 are treated as parameters. 

In a typical hierarchical framework a master problem 
(sometimes called a coordination problem) is solved in terms 
of x~ for given xj 's .  The predicted value for the optimal x~ 
is passed to the subproblems, each of which is solved with 
respect to xj.  The values at x* are returned to the master 

3 
problem and the process is repeated until some convergence 
criterion is satisfied. Due to desirable properties such as par- 
allelism and subproblem autonomy, hierarchical frameworks 
have been studied extensively in engineering design (see So- 
bieski 1987; Thareja and Itaftka 1990). The success of NLP 
Mgorithrns is at least in part due to established theoretical 
properties (global and local convergence), yet many hierar- 
chical NLP algorithms in the engineering literature tend to 
have an ad hoc nature. For this reason, the work presented 
here focuses on modifying existing algorithms and retaining 
their theoretical properties as opposed to developing new al- 
gorithms. 

Guidelines originally proposed by Nelson and Papalam- 
bros (1997) can be used to modify an established algorithm 
to work in a hierarchical manner. The modified algorithm 
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acquires the advantages of a hierarchically structured al- 
gorithm, namely, the utilization of smaller and more accu- 
rate approximations, parallelism, and subproblem autonomy 
without compromising the convergence properties of the orig- 
inal algorithm. 

In Section 2, an overview of the modifications is given, 
followed by an explanation of a trust region algorithm (TR) 
by Yuan (1995) in Section 3. In Section 4, the guidelines from 
Section 2 are applied to Yuan's algorithm, resulting in the 
sequentially decomposed trust  region (SDTR) algorithm. In 
Section 5, two numerical examples are given for which both 
the TR and SDTR Mgorithms are used to find a solution, 
followed by the conclusions in Section 6. 

2 G u i d e l i n e s  for  m o d i f y i n g  N L P  a l g o r i t h m s  

A general NLP algorithm can be summarized by the following 
simple steps. 

Algorithm 1. General outline of a typical NLP algorithm 

1. Start with some initial point x 1, an iteration counter k = 
1, and any other necessary parameters. 

2. If the convergence criteria are satisfied then stop. Other- 
wise at x k, solve an approximation to the NLP (1), giving 
a direction for improvement s k. 

3. If the candidate point x k + s  k is acceptable, define x k+l  -- 
x k + s  k , k = k + l , a n d g o t o S t e p  2. 

4. Otherwise, take some action to restrict s k (i.e. either per- 
form a line search or reduce the trust region) until x k + s  k, 
is acceptable. Then define x k+ l  = x k + s k, k = k + 1, 
and go to Step 2. 

To accommodate the hierarchy in (2), a step is added 
during which the linking variables x 0 are held at their current 
value, and each subproblem is optimized while treating the 
linking variables as parameters. Nelson and Papaleanbros 
(1997) have argued that  care must be taken with this extra 
step in order to retain the properties of the original algorithm. 
The resulting guidelines are summarized here. 

First, to retain the global convergence properties of the 
original algorithm, coordination between subproblems is per- 
formed using an approximate problem which has the same 
form as the unmodified algorithm. For example, a quadratic 
program would be used if the guidelines were applied to an 
SQP algorithm. 

Second, in order to retain any established local conver- 
gence properties the subproblems are not solved indepen- 
dently when near a solution, i.e. the additional step is not 
used. 

Third, the subproblems are used not only to improve their 
respective objective functions while maintaining or obtaining 
feasibility, but also to give better estimates of other quantities 
used in the algorithm, such as penalty parameters, Hessian 
estimates, and trust region radii. 

Any algorithm which follows these guidelines is referred 
to as a sequentially decomposed (SD) algorithm. The general 

outline of the SD algorithm (Algorithm 2) differs very little 
from the original algorithm (Algorithm 1). 

Algorithm 2. General outline of a sequentially decomposed 
(SO) algorithm 

1. Start  with some initial point x 1 , an iteration counter k = 
1, and any other necessary parameters. 

2. If the current iterate x k is not near the solution, then 
temporarily treat the linking variables x 0 as parameters 
and solve each subproblem (3) to obtain a new value for 
x j ,  j = 1 , 2 , . . . , p .  If the current i terate x k is near the 
solution, go to Step 3. 

3. If the convergence criteria are satisfied then stop. Other- 
wise solve an approximation to the NLP (1) at x k giving 
a direction s k. 

4. If the candidate point xk+s k is acceptable, define x k+l  = 
x k + s  k, k = k + l ,  and go to Step 2. Otherwise, take some 
action to restrict s k (i.e. either perform a line search or 
reduce the trust region) until  x k + s k is acceptable. Then 
def inex  k + l = x  k + s  k , k = k + l , a n d g o t o S t e p  2. 

Intuitively, the changes implied by these guidelines would 
seem to make an algorithm run more efficiently by taking 
advantage of some of the structure within the problem. The 
proofs that  the modified algorithms retain the convergence 
properties of the original algorithms are given in the disserta- 
tion by Nelson (1997), but these proofs do not guarantee that 
the modified algorithm is more efficient in any way. Compu- 
tational gains, if any, will become evident only through exper- 
imentation as shown in Section 5. In the next two sections, 
the above guidelines are applied to a trust region algorithm. 

3 A t r u s t  r e g i o n  a l g o r i t h m  

In a trust region algorithm, candidate steps are calculated 
by solving a simple approximate problem, but each step is 
contained within a finite region where it is assumed the ap- 
proximate model is reasonably accurate. 

If the candidate step gives a good prediction for the 
changes in the objective and the constraints, the size of the 
region is increased. If the candidate step does not produce 
the expected changes the region is made smaller in order to 
ensure convergence. The basic steps of a trust region algo- 
ri thm are given in Algorithm 3. 

Algorithm 3. Outline of a basic trust region (TR) algorithm 

1. Set the iteration counter k = 1. Choose some initial point 
x 1, an initial Hessian estimate B 1, and a trust region 
radius A 1 > 0. 

2. Calculate a candidate step by solving an appropriate ap- 
proximate problem while keeping the step s bound within 
the trust region A. Denote the solution to the approxi- 
mate problem s k. If s k = 0 then stop. 



3. Decide if the candidate point x k +  s k is acceptable by cal- 
culating a penalty function O(x k + sk), an approximate 
penalty function r and comparing the two quanti- 
ties. If the candidate point x k + s k is not acceptable, 
then reduce the size of the trust region and go to Step 2, 
otherwise proceed to Step 4. 

4. Adjust the trust region radius according to how well the 
approximate penMty function r predicts the change in the 
actual penMty function O. 

5. Generate the next Hessian estimate B k+ l .  

6. Set x k+l  = x k q- s k, k --- k -F 1 and go to Step 2. 

The theoretical framework of trust region algorithms 
keeps steps bound, thus providing for two distinct advantages 
over line search methods. First,  a trust region algorithm 
can utilize negative curvature. Methods such as sequential 
quadratic programming (SQP) force the Hessian approxima- 
tion to be positive definite in order to guarantee a solution 
for the quadratic program, so if the actual problem has nega- 
tive curvature the algorithm cannot model it. In trust region 
algorithms, no such restriction is made. 

The second advantage is embedded in the manner that  
second-order information is used. If second-order estimates 
are bad, line search algorithms will use subsequently erro- 
neous search directions, resulting in only small movement and 
excessive function calls or even failure during the line search. 
In contrast, a trust region algorithm will reduce the domain 
over which the approximate model is believed accurate, effec- 
tively decreasing the detrimental effects of bad second-order 
estimates. 

However, there are also disadvantages to trust region algo- 
rithms. First,  when the trust region is too large, the approx- 
imate problem is usually re-solved after reducing the trust 
region, which is more computationally expensive than a line 
search. Additionally, the approximate problems are in gen- 
eral more difficult to solve because of the possible indefinite- 
ness of the Hessian. 

Yuan's algorithm (1995) uses the nonsmooth penalty 
function given in (3) 

O(x) = / ( x )  + ~lle(x)+lloo. (4) 

To reduce notation, the vectors of inequalities g and equal- 
ities h have been concatenated into a single vector e-W = 
[gT, hT]. The cr is a penalty parameter and the super- 
script + denotes the amount of violation of a constraint. If 
the element c i corresponds to an equality constraint, then 
c + = leil ,  and if c i corresponds to an inequality constraint, 

then c + = max(0, ci) 

IIc(x)+llo~ = 

max ( 0 , .  max {gi}, 
k z:l...mineq 

m a x  {Ihil})  . (5) 
i=l...meq 

At each iteration, a candidate step is calculated by mini- 
mizing the approximate problem 

r = ~7fs + l s T B s  + all(Yes + c)+lloo, min 
sEN n 
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subject to 

Ilslloo < n .  (6) 

Any candidate step produced by (3) is bound within a box- 
shaped region of radius A. A step is accepted if it produces 
improvement in the penalty function, i.e. if O(x) - r  > 
0. The trust region radius is altered at each iteration accord- 
ing to how accurately the approximate function r predicts 
changes in the actual penalty function O, using the rule 

{ max(2n,411sll~) ifO.9 < r 
A k+l = A k if 0.1 < r < 0.9 , 

min(A/4,[]s]]c~/2) if r < 0.1 

r  - r  + s) 
where r : (7) r - r 

Thus, if r predicts the behaviour of O well, the trust re- 
gion radius is expanded so that  future iterations can move 
more aggressively toward a solution x*. However, if r does 
not predict the behaviour of O well, the trust region is re- 
duced. 
In order to guarantee convergence for trust region algorithms 
each iteration must satisfy the fractional Cauchy descent 
property originally established by Powell (1975). For the un- 
constrained case, there exists some constant 3' such that  

ilVf(xk)ll, ~ 
r  r k) < 711Vf(xk)llmin A k, IlBkl] ] . (8) 

Yuan uses the parameter 5 k as an estimate for 7 and the 
related condition 

r - r  k) < 5ka k min(A k, I l e ( x k ) + l l ~  ) , (9) 

for the constrained case in order to force convergence and 
update the penalty parameter. BasicMly, if (3) does not hold 
for some iteration, then the penalty parameter  ~r is increased 
and the parameter 6 is decreased for all future iterations. For 
more details, the reader is referred to Yuan (1995). 

4 T h e  S D T R  a l g o r i t h m  

The modified sequentially decomposed trust region (SDTR) 
algorithm is as follows. 

Algorithm 4. The SDTIt  algorithm 

1. Set the outer iteration counter k = 1. Choose some x 1 
as an initial point and a set of B} for j = 0, 1 ,2 , . . .  ,p as 

initial sparse Hessian estimates for each subproblem. Also 
define some Cauchy parameter  estimate 51 > 0, penalty 
parameter c~ 1 > 0, and trust region radius A 1 > 0 .  

2. If the current i terate x k is near the solution then proceed 
to Step 3, otherwise solve each subproblem using the cur- 
rent value for the penalty parameter a k, trust region ra- 
dius A k, and Cauchy parameter  estimate 5 k by applying 
Yuan's algorithm to each subproblem (3) for j = 1 . . . p .  
Upon completion, set the parameters for the coordination 
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problem A k o-k 
4. 

by defining : m i n j ( A ~ ) , - - - - -  maxj(cr~), 

= m a x i ( 4 ) ,  and xk = 21, .  " ,x,*l where the 
superscript t is used to denote values upon completion of 
each subproblem. 

p 
3. Using B = ~ j = 0  B~ solve the approximate problem (3) 

and denote the solution s k. If  s k = 0 then stop. 

4. Calculate the penalty function ~,  approximate penalty 
function r and the ratio r. I f r  > 0 go to Step 5, otherwise 
set A k ---- Nskllcr x k+ l  -- x k, k = k + 1 and go to 
Step 3. 

5. Alter the trust region radius according to (7). 

6. Generate B k.+l for each j = 0, 1,2, . . ,p .  j 

7. If r  - r  k) < 5kcr k min(A k,llc(x)+llcr ) then set 
er k+ l  = 2or k and 5 k+l = 5k/4, otherwise set ~r k+l  = Cr k 
and 5 k+l = 5 k. 

8. S e t x  k + l = x  k + s  k , k = k + l a n d g o t o S t e p 2 .  

Note that  if Step 2 were omitted from the modified algo- 
rithm, the remaining steps could be viewed as a version of 
Yuan's original algorithm. What  is meant in Step 2 by "apply 
Yuan's algorithm to each subproblem" is that  the variables 
x 0 are held constant and Yuan's original algorithm is used 
to find a solution to each of the subproblems (3). Also in 
Step 2, the starting values of the parameters A, or, 5 and 
the Hessian estimate B k for the subproblems are the current 

values used by the SDTR algorithm. The SDTR algorithm 
actually uses p separate Hessian estimates instead of just  one. 
Yuan's algorithm and analysis are general enough to include 
this possibility. Upon completion of Step 2, the penalty pa- 
rameter, the trust region radius, and the Cauchy parameter 
have all been altered - presumably to better estimates. 

4.1 Updating sparse Hessian estimates 

According to the definition of a subproblem (3), every func- 
tion in a subproblem depends only upon the two subvectors 
x 0 and x j .  Furthermore, the third guideline in Section 2 
states that  subproblems should be used not only to improve 
their respective objective functions while maintaining or ob- 
taining feasibility, but also to give better  estimates of other 
quantities used in the algorithm such as penalty parameters, 
Hessian estimates, and trust region radii. 

By rearranging and grouping the terms of the Lagrangian 
function 

L(x, #, A) ---- f (x )  + #g(x)  + Ah(x) ---- 

p 

f0(x0) A- E f j ( x o ' x j  ) +/t0g0(x0) A- # j g j ( x o , x j ) ,  
j = l  

A0h0(x0) + Ajhj(xo,  x j ) ,  

P 
L0 (x0,/to, ~0) + E LJ (xO' x j ,  1~1, ~j) ,  (10) 

j=l  

where /~ and A are row vectors of Lagrange multipliers for 
the inequality and equality constraints, and # j  and Aj are 
the appropriate vectors of Lagrange multipliers for the j -  
th subproblem, a term L j ( x o , x j , # j , A j )  for each subprob- 
lem can be defined. In a manner similar to Griewank and 
Toint (1982b,a) and Griewank (1991), SD algorithms use 
a Hessian estimate for each subproblem, or equivalently, 
a Hessian estimate B j  is used to approximate each term 

V2Lj (xo ,x j ,# j , )~ j ) .  Each Hessian is of dimension n x n, 
but has zero values for any element that  does not correspond 
to x 0 or x j .  Updates are made to each Hessian estimate 
by defining a step ~j E ~n which has zero values for every 
element except for those that  correspond to x 0 and x j  

s - ~ :  [x0 k 4 - i - x  k,O, 0 x k + l -  k . . . ,  , j x j , 0 , . . . , 0 , ]  . (11) 

The change in the gradient of the Lagrangian of a subproblem 
after taking the step ~j is then 

~ r . . / x  k+ l  x k + l  , - )~j) k k = -- V L j ( x o , x  j ,#j ,  ~j) = YJ --~3~ 0 , j ,~3, 

V L j ( x  k -4- ~j, t~j, ~j) - V L j (  xk,  #j ,  Aj) .  (12) 

Note that  the row vector y j  also has zero values for any 
elements which do not correspond to x 0 or x j ,  as do the 

rank one matrices ~ .g.T, yT~T, and y T y j .  3 j  
Using these definitions for gj  and y j ,  the sparse Hessian 

estimate B j  can be updated using any of the popular for- 
mulae (i.e. BFGS, DFP, PSB, or any of the Broyden class), 

and Bk. +1 will be an effective sparse estimate of the Hessian 
3 

for the j - th  subproblem. This technique is also used during 
the subproblems, so that  the whole Hessian is updated even 
though only the elements corresponding to x j  are needed by 
the subproblem. 

4.2 Testing for closeness 

Step 2 in the SDTR algorithm does not specify how to test 
when the current iterate x k is close to the solution x*. This 
test is needed to preserve the local convergence properties 
of the original algorithm, but if the test is restrictive and 
each subproblem is solved when x k is close to x*, the SD 
algorithm may not converge at the expected rate. However, 
if the decision is made aggressively, so that  the subproblems 
are not used when x k is relatively far from the solution x*, 
then computational benefits may not be realized. 

Because Yuan's original algorithm converges 
q-superlinearly, and the intent is to conserve this property, 
the SDTR algorithm should omit Step 2 when q-superlinear 
convergence may be evident. According to Yuan (1995), the 
trust region algorithm will not converge at a q-superlinear 
rate until the trust region bound becomes unnecessary and 
successive steps become shorter, 

[[sk[[ < A k for all k greater than some k0, (13) 

[Is k+l[[ < [[sk[[ for all k greater than some k 1 . (14) 

If these conditions hold for a few consecutive steps, then 
Step 2 is omitted until convergence or until some iteration 
occurs where the conditions fail. 



4.3 A correction step 

Because the penal ty  function (3) is not  smooth, SDTR may 
be subject to the t rust  region analogy of the Maratos effect 
described by Yuan (1984). In practice it is necessary to use 
a correction step, as suggested by Fletcher (1981). Further 
details can be found in the paper by Yuan (1995). Incorpo- 
rat ing the correction step is straightforward but  is omitted 
here for clarity. The correction step is used in the examples 
in the next section. 

5 E x a m p l e s  

In this section, two moderately sized NLP are decomposed 
and solved with both the original and the modified version of 
the trust  region algorithm. In each case, the NLP is solved 
using the same star t ing points, tolerances, and algorithm pa- 
rameters. Some general comments  are made after the exam- 
ples are presented. 

5.1 A propane combustion problem 

The first example is taken from the NASA-Langley's MDO 
test suite (see Padula  et al. 1996). Originally, the object is 
to find x E ~11 such that  f i  = 0 for i = 1 , 2 , . . . ,  11. By 
defining the slack variables x12 and x13 , and two addit ional 
functions, f12 and f13, the problem can be decomposed into 
two subproblems. 

The problem can be stated as an unconstrained optimiza- 
tion problem by minimizing the sum of the squares of f i  for 
i = 1 , 2 , . . . ,  13. The equations are given below 

f l  = x 1 + x 4 - - 3 ,  

f2 = 2 x 1 + x 2 + x 4 + x 7 + x 8 + x 9 + 2 x 1 0 - R ,  

f3 = 2 ( z 2 + x 5 ) + x 6 + x 7 - 8 ,  f 4 = 2 x 3 + x 9 - 4 R ,  

s5 = • - Xl~5,  f6 = g 6 ~ -  ~ 6 ~ / ~  , 

f8 = K8x l  Px4x8 P/-~4 
f9 = K 9 ~ 1 ~ -  ~4~9 V - 11' 11 

px2x lo  
f l0 = KlOX21 11 ' 

f l l  = Xll  -- (Xl + x2 + x4 + x7 + x12 + x13),  

f12 = ~ 1 2 - ( ~ 5 + ~ 6 ) ,  f13 = ~ 1 3 - ( x 3 + ~ a + ~ 9 + ~ 1 0 ) . ( 1 5 )  

When decomposed, the first and second subproblems use 
the variables x 1 = [x5,x6] T and x 2 = [x3,x8, x9,XlO] T, 
respectively, 

min ~ f 2 ( x o , x l ) ,  (16) 
xJ- E~2 j=3,5,6,12 
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min E f 2 ( x 0 ' x 2 )  " (17) 
x2E~4 j--2,4,8,9,10,13 

The linking yariables are then x 0 = [Xl, x2, x4, x7, x11, x12, 
x13] T and the remaining functions are grouped together as 
subproblem 0 

E f2(x0)  " (18) 
j=1,7,11 

In the computations,  the values A = 1.0, ~r = 10.0, 5 = 
0.1, P = 40.0, R = 10.0, K 5 = 1.0, K 6 ---- 1.0, K 7 = 1.0, 
K 8 = 0.1, K 9 = 1.0, and K10 = 0.1 are used, along with the 
star t ing point  x = [1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 24, 3, 15] T. 

The value of the objective functions and the distance from 
the solution are shown in Figs. 1 and 2, respectively. 

In Figs. 1 and 2, one increment  along the abscissa repre- 
sents a single function call or gradient  call to any subproblem, 
so that  the computat ional  cost is measured fairly. The sym- 
bol • denotes a function call made during the execution of 
the first subproblem, the symbol o denotes a function call 
during the execution of the second subproblem. All other 
function calls are made during the execution of the SDTR al- 
gorithm. Thus, one successful i terat ion of the T R  algorithm 
will move six increments: once for evaluat ing the functions of 
subproblem 1, once for evaluat ing the gradients of subprob- 
lem 1, and so forth. From both figures, one can see that  the 
modified algorithm uses fewer function and gradient calls to 
arrive at a solution. 

gi(x)  

g2(x) 

g3(x) 

g4(x) 

gs(x) 

g d x )  = 

K12x2x9 

5.2 A parking brake problem 

The next example concerns the design of a parking brake and 
is adapted from the work of Krishnamaehar i  (1996), 

min  (100x4x5 - x9 - Xll)  + (100x6x7 - 30x6x3),  
xE!R14 

= 2.94 -- 2K7x7xsx10x13 <_ O, 

= K 8 - 2K7x7xsxlox13 <_ O, 

= x 1 -- x 3 + 0.45x8 < 0, 

x5x12 
- -  2 K10Xll  -< 0, 

= K l l X  2 - x l x 6 x  7 <_ 0, 

X l  

subject to 

x6x  3 

[o.45,  (1.25 + 

g7(x) = Xl - z2 + 5 < 0 ,  

h l ( x  ) -- x 9 - 2KlX8XlOXl3 = O, 

5 
h2(x ) = x l x 8 x l 0  "4- ~(x2(x 3 -- x l )  -- x3(x 2 -- Xl) ) = 0, 
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objective function value for propane-combustion example 

1_3 ~1~ t~i . . . .  _, .~- -' ,_ 
o I - [ !~  - - TR algorithm 

2 f ~ "  SDTR algorithm 

10 f ~ _ . , _ ~ _  x duringsubprobleml 
~ ~ ~  ~L o duringsubproblem2 

r- 101 ~ ' . . . . . . . . .  ~ ~ ~ 

O100 ~'~ t ~ r  Jl ~ "L r 

m ~ .,H 
=> ~ ,: i 

~.~]U ~ r l l  
.I I. 

o ~ i !i!ii!!i 

1 0 - 2 ~  i/~ ;: 'J i 

10 -4 ' ~ ' ' ~ ' ' ' ' 

0 50 100 150 200 250 300 350 400 
number of function and gradient calls 

Fig. 1. Value of the objective function of the propane combustion problem as the iterates progress. One increment along the abscissa 
denotes either a function call or a gradient call to any one of the subproblems 

x4x~ 
h3(x) = Xll  1--7 - 0, 

h4(x ) = x12 - K4(x  2 - Xl) = 0, 

h5(x ) = x13 - (x8x14) = 0, 

h6(x ) = x 1 4 - 0 . 8 x 3  = 0 .  
x8  

The first subproblem uses x I = Ix4, x5, Xll  , x13] T 

rain f l  = 100x4x5 - x9 - Xll  , 
xl  E~ 4 

subject to 

g i ( x 0 , x l )  ~ 0 h i ( x 0 , x l )  = 0, 

g3 (x0 ,x l )  ~ 0 h 2 ( x 0 , x l )  = 0, 

g5(x0,Xl)  ~ 0 h 4 ( x 0 , x l )  = 0, 

5 < x  4 < 2 0 ,  5 < x  5 ~ 3 0 .  

The second subproblem uses x2 = [Xl, x2, x3, x6, x7] T 

min f2 = 100x6x 7 - 30x6x~, 
x2E~ 6 

subject to 

g2(x0,x2) < 0 h3(x0,x2)  = 0, 

(19) 

(20) 

g4(x0,x2)  < 0 hs(x0 ,x2)  = 0, 

g6(x0,x2)  < 0 h~(x0,x2)  = 0 hT(x0,x2) = 0,  

10<_x 1 < 2 4 ,  1 0 ~ x  2 < 1 0 2 ,  3_<x  3_<183,  

5 < x 6 < 20, 5 _< x 7 < 30. (21) 

Al though the linking variables are x 0 = [x8, x9, XlO , x12 , 
x14] T,  the only remaining functions are the simple bounds 
on x 8 ,  

160 < x 8 _< 240. ( 2 2 )  

The example was performed using the values A = 10.0, 
~r = 10.0, and 6 = 0.1, the parameters  K 1 = 0.8748, 
K 4 = 648.0, K 7 = 0.000459, K 8 = 1221.94, K10 = 
324.0, K l l  = 2.0, K12 -- 0.000211, and the star t ing 
point  x = [15,10,180,15, 15,15,10,170,14580,0.16340,4218.8, 
-3240,144,0.8470] T. The value of the objective function, and 
the distance from the solution are shown in Figs. 3 and 4, re- 
spectively. As the figures show, the modified algorithm uses 
fewer function and gradient  cMls to arrive at a solution. 

5.3 Discussion of examples 

In both examples, we see tha t  the S D T R  algori thm reaches 
a solution using significantly fewer function calls than the 
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Fig. 2. Distance from the solution of the propane combustion problem as the iterates progress. One increment along the abscissa denotes 
either a function call or a gradient call to any one of the subproblems. 

Table 1. Number and types of function calls and other calculations made for each of the examples 

Propane Park ingBrake  

TR SDTR TR SDTR 

Function calls to subproblem 1 
Function calls to subproblem 2 
Function calls to subproblem 0 
Gradient calls to subproblem 1 
Gradient calls to subproblem 2 
Gradient calls to subproblem 0 
Number of solutions required for (6) 

138 82 164 65 
138 103 164 54 
138 49 164 37 
48 36 60 27 
48 42 6O 33 
48 24 60 13 
138 49 164 37 

original TR algorithm. If these results hold for larger and 
more computationally expensive models, then SDTR would 
be worthwhile even without the explicit use of parallelism. 
To quantify the computational savings, the number and type 
of function calls made during the execution of each algorithm 
is given in Table 1. 

The most notable difference is the reduction in the num- 
ber of function and gradient calls made to subproblem 0. 
This is not surprising because analyses to subproblem 0 are 
only made during the outer loop (Step 4 in Algorithm 4). 
The number of function and gradient calls made to subprob- 
lems 1 and 2 has also decreased, even though analysis may 

be performed when solving the subproblems (Step 2) or by 
the outer loop (Step 4). For very large NLP, the bottleneck 
occurs in solving the large approximate problem [in SQP the 
QP becomes problematic, and in Yuan's algorithm solving 
(6) becomes problematic]. The SDTI:t algorithm still needs a 
solution to (6), but it is required fewer times. [The subprob- 
lems also need solutions to (6), but the size of the problem is 
much smaller.] 

With  these potential benefits, one may wonder about the 
specific causes for the improvements. The convergence anal- 
ysis (see Nelson 1997) does not prove any benefits for the 
SDTI~ algorithm, only that  SDTR has the same convergence 
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Fig. 3. The value of the objective function for the parking brake problem as the iterates progress. One increment along the abscissa 
denotes either a function call or a gradient call to any one of the subproblems 

properties as the TR algorithm. However, there are some 
plausible hypotheses for the benefits shown in the examples. 

First, valid progress is made during the execution of a sub- 
problem. This can be seen, for example, by examining Fig. 
1. Between the twentieth and fiftieth function call, subprob- 
lem 2 makes a significant reduction in the objective function. 
It is interesting to note that in Fig. 2 the iterates have not 
necessarily moved closer to the solution x*, and we remind 
the reader that ensuring global convergence does not require 
improving I Ix -x*  [I (see Nelson and Papalambros 1997). Ad- 
ditionally, if one subproblem requires more work to find a 
solution than the other subproblems, SDTR can focus the 
effort on the subproblems in need, whereas TR must focus 
on the problem as a whole. 

Second, the subproblems improve estimates of parame- 
ters used during coordination. Admittedly, this is difficult 
to prove but some indirect arguments are possible. 

The first argument concerns the Hessian estimate: a Hes- 
sian estimate effectively alters the search direction from an 
inefficient steepest descent direction (for an inaccurate Hes- 
sian and a small trust region) to the very efficient Newton 
direction (for an exact Hessian). The way that SDTR is 
constructed, the Hessian may be updated by the subprob- 
lems several times prior to the first coordination problem. 
When coordination finally occurs, the Hessian estimate is 
much more accurate than the identity matrix, which is usu- 
ally the initial Hessian estimate for the unmodified algorithm. 

The second argument, although not as concrete, involves 

the interplay between the trust region radius and the accu- 
racy of the penalty function. Intuitively, if the size of the 
trust region was appropriately set by a subproblem, unnec- 
essary backtracking could be avoided during coordination. 

6 Conc lus ions  

The SDTR algorithm offers a simple way of exploiting a hi- 
erarchically decomposed structure. As the theoretical prop- 
erties are reviewed elsewhere, this paper focused on a de- 
scription of the algorithm and the performance during com- 
putation. The SDTP~ algorithm is constructed so that the 
convergence properties of the TR algorithm are conserved, 
but this does not prove that SDTR is more efficient than 
TR. 

However, the numerical examples do indicate that the 
SDTR algorithm is an improvement in that fewer function 
and gradient calls are needed to arrive at a solution when 
compared to the TR algorithm. Several possible hypotheses 
for the improvement were stated, including the facts that the 
SDTR algorithm uses subproblems to improve algorithmic 
parameters and that SDTR has the ability to concentrate on 
a particular subproblem when necessary. It is believed that 
these results will extend to larger and more difficult NLP. 
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