
Structural Optimization 16, 19-28 @ Springer-Verlag 1998

A modif ied trust region algorithm for hierarchical N L P

S . A . Nelson I I and P.Y. P a p a l a m b r o s

Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109, USA

A b s t r a c t Large-scale design optimization problems fre-
quently require the exploitation of structure in order to obtain
efficient and reliable solutions. Successful algorithms for general
nonlinear programming problems with theoretical underpinnings
do not usually accommodate any additional structure within the
problem. In this article modifications are made to a trust region
algorithm to take advantage of hierarchical structure without com-
promising the theoretical properties of the original algorithm.

1 I n t r o d u c t i o n

Nonlinear programming (NLP) has now become a common
tool in engineering systems design. As problem size and com-
putational expense increase, so does the difficulty of finding
solutions. It is generally accepted that in order to find solu-
tions efficiently and reliably, additional structure within the
NLP must be exploited (see e.g. Conn et aL 1992; Papalam-
bros 1995). The focus here is on modifying existing algo-
rithms in order to accommodate the special type of structure
known as hierarchical decomposition.

For this work it will suffice to say that a general NLP
is hierarchically decomposable if components of the vector
of variables x can be grouped into p + 1 separate subvectors
x0, X l , . . . , Xp, such that every term in the objective function
and every constraint depends only on the vector of linking
variables x 0 and at most one other vector xj . That is, the
general NLP

min f(x)
xE~n

subject to

g(x) < 0, h(x) = 0, (1)

can be cast in the form

p

min f0(x0) + ~ f j (xo ,x j) xE~n
j = l

subject to

g o (x o) ~ O , h 0 (x o) = 0 ,

g j (x0 ,x j) < 0, j = 1 , . . . , p ,

h j (x0 ,x j) = 0, j = 1 , . . . , p , (2)

because gT [go T, T, T, ,gpT] and h T [hoT, hT, h T = g l g2 2 ,
..., h r] . For the same reason, there is no ambiguity between
writing hi (x) and h j (x0 ,x j) because ha" depends only on
those elements within x which correspond to the subvectors
x 0 and xj . Optimization formulations of engineering system
design problems often have this hierarchically decomposable
structure. Rigorous methods for identifying a hierarchically
decomposed structure within an existing NLP can be found
in the paper by Michelena and Papalambros (1995) and for
formulating an NLP such that hierarchy is prevalent in that
of Krishnamachari and Papalambros (1997).

Solving an approximation of (1) can be expensive if the
number of variables or constraints is large, and inaccurate if
second-order information is approximated. Therefore, the de-
composed form (2) is used to define several subproblems, each
subproblem being the collection of functions which depend on
a particular subvector of variables x j for j = 1, 2 , . . . , p in the
form

min f j (x0, x j) ,
xj 6~nJ

subject to

g j (x0 ,x j) < 0 , h j (x 0 , x j) = 0 . (3)

Each subproblem (3) is necessarily smaller than the unde-
composed problem (2) and can be solved independently if
the linking variables x 0 are treated as parameters.

In a typical hierarchical framework a master problem
(sometimes called a coordination problem) is solved in terms
of x~ for given xj 's . The predicted value for the optimal x~
is passed to the subproblems, each of which is solved with
respect to xj. The values at x* are returned to the master

3
problem and the process is repeated until some convergence
criterion is satisfied. Due to desirable properties such as par-
allelism and subproblem autonomy, hierarchical frameworks
have been studied extensively in engineering design (see So-
bieski 1987; Thareja and Itaftka 1990). The success of NLP
Mgorithrns is at least in part due to established theoretical
properties (global and local convergence), yet many hierar-
chical NLP algorithms in the engineering literature tend to
have an ad hoc nature. For this reason, the work presented
here focuses on modifying existing algorithms and retaining
their theoretical properties as opposed to developing new al-
gorithms.

Guidelines originally proposed by Nelson and Papalam-
bros (1997) can be used to modify an established algorithm
to work in a hierarchical manner. The modified algorithm

20

acquires the advantages of a hierarchically structured al-
gorithm, namely, the utilization of smaller and more accu-
rate approximations, parallelism, and subproblem autonomy
without compromising the convergence properties of the orig-
inal algorithm.

In Section 2, an overview of the modifications is given,
followed by an explanation of a trust region algorithm (TR)
by Yuan (1995) in Section 3. In Section 4, the guidelines from
Section 2 are applied to Yuan's algorithm, resulting in the
sequentially decomposed trust region (SDTR) algorithm. In
Section 5, two numerical examples are given for which both
the TR and SDTR Mgorithms are used to find a solution,
followed by the conclusions in Section 6.

2 G u i d e l i n e s for m o d i f y i n g N L P a l g o r i t h m s

A general NLP algorithm can be summarized by the following
simple steps.

Algorithm 1. General outline of a typical NLP algorithm

1. Start with some initial point x 1, an iteration counter k =
1, and any other necessary parameters.

2. If the convergence criteria are satisfied then stop. Other-
wise at x k, solve an approximation to the NLP (1), giving
a direction for improvement s k.

3. If the candidate point x k + s k is acceptable, define x k+l --
x k + s k , k = k + l , a n d g o t o S t e p 2.

4. Otherwise, take some action to restrict s k (i.e. either per-
form a line search or reduce the trust region) until x k + s k,
is acceptable. Then define x k+ l = x k + s k, k = k + 1,
and go to Step 2.

To accommodate the hierarchy in (2), a step is added
during which the linking variables x 0 are held at their current
value, and each subproblem is optimized while treating the
linking variables as parameters. Nelson and Papaleanbros
(1997) have argued that care must be taken with this extra
step in order to retain the properties of the original algorithm.
The resulting guidelines are summarized here.

First, to retain the global convergence properties of the
original algorithm, coordination between subproblems is per-
formed using an approximate problem which has the same
form as the unmodified algorithm. For example, a quadratic
program would be used if the guidelines were applied to an
SQP algorithm.

Second, in order to retain any established local conver-
gence properties the subproblems are not solved indepen-
dently when near a solution, i.e. the additional step is not
used.

Third, the subproblems are used not only to improve their
respective objective functions while maintaining or obtaining
feasibility, but also to give better estimates of other quantities
used in the algorithm, such as penalty parameters, Hessian
estimates, and trust region radii.

Any algorithm which follows these guidelines is referred
to as a sequentially decomposed (SD) algorithm. The general

outline of the SD algorithm (Algorithm 2) differs very little
from the original algorithm (Algorithm 1).

Algorithm 2. General outline of a sequentially decomposed
(SO) algorithm

1. Start with some initial point x 1 , an iteration counter k =
1, and any other necessary parameters.

2. If the current iterate x k is not near the solution, then
temporarily treat the linking variables x 0 as parameters
and solve each subproblem (3) to obtain a new value for
x j , j = 1 , 2 , . . . , p . If the current i terate x k is near the
solution, go to Step 3.

3. If the convergence criteria are satisfied then stop. Other-
wise solve an approximation to the NLP (1) at x k giving
a direction s k.

4. If the candidate point xk+s k is acceptable, define x k+l =
x k + s k, k = k + l , and go to Step 2. Otherwise, take some
action to restrict s k (i.e. either perform a line search or
reduce the trust region) until x k + s k is acceptable. Then
def inex k + l = x k + s k , k = k + l , a n d g o t o S t e p 2.

Intuitively, the changes implied by these guidelines would
seem to make an algorithm run more efficiently by taking
advantage of some of the structure within the problem. The
proofs that the modified algorithms retain the convergence
properties of the original algorithms are given in the disserta-
tion by Nelson (1997), but these proofs do not guarantee that
the modified algorithm is more efficient in any way. Compu-
tational gains, if any, will become evident only through exper-
imentation as shown in Section 5. In the next two sections,
the above guidelines are applied to a trust region algorithm.

3 A t r u s t r e g i o n a l g o r i t h m

In a trust region algorithm, candidate steps are calculated
by solving a simple approximate problem, but each step is
contained within a finite region where it is assumed the ap-
proximate model is reasonably accurate.

If the candidate step gives a good prediction for the
changes in the objective and the constraints, the size of the
region is increased. If the candidate step does not produce
the expected changes the region is made smaller in order to
ensure convergence. The basic steps of a trust region algo-
ri thm are given in Algorithm 3.

Algorithm 3. Outline of a basic trust region (TR) algorithm

1. Set the iteration counter k = 1. Choose some initial point
x 1, an initial Hessian estimate B 1, and a trust region
radius A 1 > 0.

2. Calculate a candidate step by solving an appropriate ap-
proximate problem while keeping the step s bound within
the trust region A. Denote the solution to the approxi-
mate problem s k. If s k = 0 then stop.

3. Decide if the candidate point x k + s k is acceptable by cal-
culating a penalty function O(x k + sk), an approximate
penalty function r and comparing the two quanti-
ties. If the candidate point x k + s k is not acceptable,
then reduce the size of the trust region and go to Step 2,
otherwise proceed to Step 4.

4. Adjust the trust region radius according to how well the
approximate penMty function r predicts the change in the
actual penMty function O.

5. Generate the next Hessian estimate B k+ l .

6. Set x k+l = x k q- s k, k --- k -F 1 and go to Step 2.

The theoretical framework of trust region algorithms
keeps steps bound, thus providing for two distinct advantages
over line search methods. First, a trust region algorithm
can utilize negative curvature. Methods such as sequential
quadratic programming (SQP) force the Hessian approxima-
tion to be positive definite in order to guarantee a solution
for the quadratic program, so if the actual problem has nega-
tive curvature the algorithm cannot model it. In trust region
algorithms, no such restriction is made.

The second advantage is embedded in the manner that
second-order information is used. If second-order estimates
are bad, line search algorithms will use subsequently erro-
neous search directions, resulting in only small movement and
excessive function calls or even failure during the line search.
In contrast, a trust region algorithm will reduce the domain
over which the approximate model is believed accurate, effec-
tively decreasing the detrimental effects of bad second-order
estimates.

However, there are also disadvantages to trust region algo-
rithms. First, when the trust region is too large, the approx-
imate problem is usually re-solved after reducing the trust
region, which is more computationally expensive than a line
search. Additionally, the approximate problems are in gen-
eral more difficult to solve because of the possible indefinite-
ness of the Hessian.

Yuan's algorithm (1995) uses the nonsmooth penalty
function given in (3)

O(x) = / (x) + ~lle(x)+lloo. (4)

To reduce notation, the vectors of inequalities g and equal-
ities h have been concatenated into a single vector e-W =
[gT, hT]. The cr is a penalty parameter and the super-
script + denotes the amount of violation of a constraint. If
the element c i corresponds to an equality constraint, then
c + = leil , and if c i corresponds to an inequality constraint,

then c + = max(0, ci)

IIc(x)+llo~ =

max (0 , . max {gi},
k z:l...mineq

m a x {Ihil}) . (5)
i=l...meq

At each iteration, a candidate step is calculated by mini-
mizing the approximate problem

r = ~7fs + l s T B s + all(Yes + c)+lloo, min
sEN n

21

subject to

Ilslloo < n . (6)

Any candidate step produced by (3) is bound within a box-
shaped region of radius A. A step is accepted if it produces
improvement in the penalty function, i.e. if O(x) - r >
0. The trust region radius is altered at each iteration accord-
ing to how accurately the approximate function r predicts
changes in the actual penalty function O, using the rule

{ max(2n,411sll~) ifO.9 < r
A k+l = A k if 0.1 < r < 0.9 ,

min(A/4,[]s]]c~/2) if r < 0.1

r - r + s)
where r : (7) r - r

Thus, if r predicts the behaviour of O well, the trust re-
gion radius is expanded so that future iterations can move
more aggressively toward a solution x*. However, if r does
not predict the behaviour of O well, the trust region is re-
duced.
In order to guarantee convergence for trust region algorithms
each iteration must satisfy the fractional Cauchy descent
property originally established by Powell (1975). For the un-
constrained case, there exists some constant 3' such that

ilVf(xk)ll, ~
r r k) < 711Vf(xk)llmin A k, IlBkl]] . (8)

Yuan uses the parameter 5 k as an estimate for 7 and the
related condition

r - r k) < 5ka k min(A k, I l e (x k) + l l ~) , (9)

for the constrained case in order to force convergence and
update the penalty parameter. BasicMly, if (3) does not hold
for some iteration, then the penalty parameter ~r is increased
and the parameter 6 is decreased for all future iterations. For
more details, the reader is referred to Yuan (1995).

4 T h e S D T R a l g o r i t h m

The modified sequentially decomposed trust region (SDTR)
algorithm is as follows.

Algorithm 4. The SDTIt algorithm

1. Set the outer iteration counter k = 1. Choose some x 1
as an initial point and a set of B} for j = 0, 1 ,2 , . . . ,p as

initial sparse Hessian estimates for each subproblem. Also
define some Cauchy parameter estimate 51 > 0, penalty
parameter c~ 1 > 0, and trust region radius A 1 > 0 .

2. If the current i terate x k is near the solution then proceed
to Step 3, otherwise solve each subproblem using the cur-
rent value for the penalty parameter a k, trust region ra-
dius A k, and Cauchy parameter estimate 5 k by applying
Yuan's algorithm to each subproblem (3) for j = 1 . . . p .
Upon completion, set the parameters for the coordination

22

problem A k o-k
4.

by defining : m i n j (A ~) , - - - - - maxj(cr~),

= m a x i (4) , and xk = 21, . " ,x,*l where the
superscript t is used to denote values upon completion of
each subproblem.

p
3. Using B = ~ j = 0 B~ solve the approximate problem (3)

and denote the solution s k. If s k = 0 then stop.

4. Calculate the penalty function ~, approximate penalty
function r and the ratio r. I f r > 0 go to Step 5, otherwise
set A k ---- Nskllcr x k+ l -- x k, k = k + 1 and go to
Step 3.

5. Alter the trust region radius according to (7).

6. Generate B k.+l for each j = 0, 1,2, . . ,p . j

7. If r - r k) < 5kcr k min(A k,llc(x)+llcr) then set
er k+ l = 2or k and 5 k+l = 5k/4, otherwise set ~r k+l = Cr k
and 5 k+l = 5 k.

8. S e t x k + l = x k + s k , k = k + l a n d g o t o S t e p 2 .

Note that if Step 2 were omitted from the modified algo-
rithm, the remaining steps could be viewed as a version of
Yuan's original algorithm. What is meant in Step 2 by "apply
Yuan's algorithm to each subproblem" is that the variables
x 0 are held constant and Yuan's original algorithm is used
to find a solution to each of the subproblems (3). Also in
Step 2, the starting values of the parameters A, or, 5 and
the Hessian estimate B k for the subproblems are the current

values used by the SDTR algorithm. The SDTR algorithm
actually uses p separate Hessian estimates instead of just one.
Yuan's algorithm and analysis are general enough to include
this possibility. Upon completion of Step 2, the penalty pa-
rameter, the trust region radius, and the Cauchy parameter
have all been altered - presumably to better estimates.

4.1 Updating sparse Hessian estimates

According to the definition of a subproblem (3), every func-
tion in a subproblem depends only upon the two subvectors
x 0 and x j . Furthermore, the third guideline in Section 2
states that subproblems should be used not only to improve
their respective objective functions while maintaining or ob-
taining feasibility, but also to give better estimates of other
quantities used in the algorithm such as penalty parameters,
Hessian estimates, and trust region radii.

By rearranging and grouping the terms of the Lagrangian
function

L(x, #, A) ---- f (x) + #g(x) + Ah(x) ----

p

f0(x0) A- E f j (x o ' x j) +/t0g0(x0) A- # j g j (x o , x j) ,
j = l

A0h0(x0) + Ajhj(xo, x j) ,

P
L0 (x0,/to, ~0) + E LJ (xO' x j , 1~1, ~j) , (10)

j=l

where /~ and A are row vectors of Lagrange multipliers for
the inequality and equality constraints, and # j and Aj are
the appropriate vectors of Lagrange multipliers for the j -
th subproblem, a term L j (x o , x j , # j , A j) for each subprob-
lem can be defined. In a manner similar to Griewank and
Toint (1982b,a) and Griewank (1991), SD algorithms use
a Hessian estimate for each subproblem, or equivalently,
a Hessian estimate B j is used to approximate each term

V2Lj (xo ,x j ,# j ,)~ j) . Each Hessian is of dimension n x n,
but has zero values for any element that does not correspond
to x 0 or x j . Updates are made to each Hessian estimate
by defining a step ~j E ~n which has zero values for every
element except for those that correspond to x 0 and x j

s - ~ : [x0 k 4 - i - x k,O, 0 x k + l - k . . . , , j x j , 0 , . . . , 0 ,] . (11)

The change in the gradient of the Lagrangian of a subproblem
after taking the step ~j is then

~ r . . / x k+ l x k + l , -)~j) k k = -- V L j (x o , x j ,#j , ~j) = YJ --~3~ 0 , j ,~3,

V L j (x k -4- ~j, t~j, ~j) - V L j (xk, #j , Aj) . (12)

Note that the row vector y j also has zero values for any
elements which do not correspond to x 0 or x j , as do the

rank one matrices ~ .g.T, yT~T, and y T y j . 3 j
Using these definitions for gj and y j , the sparse Hessian

estimate B j can be updated using any of the popular for-
mulae (i.e. BFGS, DFP, PSB, or any of the Broyden class),

and Bk. +1 will be an effective sparse estimate of the Hessian
3

for the j - th subproblem. This technique is also used during
the subproblems, so that the whole Hessian is updated even
though only the elements corresponding to x j are needed by
the subproblem.

4.2 Testing for closeness

Step 2 in the SDTR algorithm does not specify how to test
when the current iterate x k is close to the solution x*. This
test is needed to preserve the local convergence properties
of the original algorithm, but if the test is restrictive and
each subproblem is solved when x k is close to x*, the SD
algorithm may not converge at the expected rate. However,
if the decision is made aggressively, so that the subproblems
are not used when x k is relatively far from the solution x*,
then computational benefits may not be realized.

Because Yuan's original algorithm converges
q-superlinearly, and the intent is to conserve this property,
the SDTR algorithm should omit Step 2 when q-superlinear
convergence may be evident. According to Yuan (1995), the
trust region algorithm will not converge at a q-superlinear
rate until the trust region bound becomes unnecessary and
successive steps become shorter,

[[sk[[< A k for all k greater than some k0, (13)

[Is k+l[[< [[sk[[for all k greater than some k 1 . (14)

If these conditions hold for a few consecutive steps, then
Step 2 is omitted until convergence or until some iteration
occurs where the conditions fail.

4.3 A correction step

Because the penal ty function (3) is not smooth, SDTR may
be subject to the t rust region analogy of the Maratos effect
described by Yuan (1984). In practice it is necessary to use
a correction step, as suggested by Fletcher (1981). Further
details can be found in the paper by Yuan (1995). Incorpo-
rat ing the correction step is straightforward but is omitted
here for clarity. The correction step is used in the examples
in the next section.

5 E x a m p l e s

In this section, two moderately sized NLP are decomposed
and solved with both the original and the modified version of
the trust region algorithm. In each case, the NLP is solved
using the same star t ing points, tolerances, and algorithm pa-
rameters. Some general comments are made after the exam-
ples are presented.

5.1 A propane combustion problem

The first example is taken from the NASA-Langley's MDO
test suite (see Padula et al. 1996). Originally, the object is
to find x E ~11 such that f i = 0 for i = 1 , 2 , . . . , 11. By
defining the slack variables x12 and x13 , and two addit ional
functions, f12 and f13, the problem can be decomposed into
two subproblems.

The problem can be stated as an unconstrained optimiza-
tion problem by minimizing the sum of the squares of f i for
i = 1 , 2 , . . . , 13. The equations are given below

f l = x 1 + x 4 - - 3 ,

f2 = 2 x 1 + x 2 + x 4 + x 7 + x 8 + x 9 + 2 x 1 0 - R ,

f3 = 2 (z 2 + x 5) + x 6 + x 7 - 8 , f 4 = 2 x 3 + x 9 - 4 R ,

s5 = • - Xl~5, f6 = g 6 ~ - ~ 6 ~ / ~ ,

f8 = K8x l Px4x8 P/-~4
f9 = K 9 ~ 1 ~ - ~4~9 V - 11' 11

px2x lo
f l0 = KlOX21 11 '

f l l = Xll -- (Xl + x2 + x4 + x7 + x12 + x13),

f12 = ~ 1 2 - (~ 5 + ~ 6) , f13 = ~ 1 3 - (x 3 + ~ a + ~ 9 + ~ 1 0) . (1 5)

When decomposed, the first and second subproblems use
the variables x 1 = [x5,x6] T and x 2 = [x3,x8, x9,XlO] T,
respectively,

min ~ f 2 (x o , x l) , (16)
xJ- E~2 j=3,5,6,12

23

min E f 2 (x 0 ' x 2) " (17)
x2E~4 j--2,4,8,9,10,13

The linking yariables are then x 0 = [Xl, x2, x4, x7, x11, x12,
x13] T and the remaining functions are grouped together as
subproblem 0

E f2(x0) " (18)
j=1,7,11

In the computations, the values A = 1.0, ~r = 10.0, 5 =
0.1, P = 40.0, R = 10.0, K 5 = 1.0, K 6 ---- 1.0, K 7 = 1.0,
K 8 = 0.1, K 9 = 1.0, and K10 = 0.1 are used, along with the
star t ing point x = [1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 24, 3, 15] T.

The value of the objective functions and the distance from
the solution are shown in Figs. 1 and 2, respectively.

In Figs. 1 and 2, one increment along the abscissa repre-
sents a single function call or gradient call to any subproblem,
so that the computat ional cost is measured fairly. The sym-
bol • denotes a function call made during the execution of
the first subproblem, the symbol o denotes a function call
during the execution of the second subproblem. All other
function calls are made during the execution of the SDTR al-
gorithm. Thus, one successful i terat ion of the T R algorithm
will move six increments: once for evaluat ing the functions of
subproblem 1, once for evaluat ing the gradients of subprob-
lem 1, and so forth. From both figures, one can see that the
modified algorithm uses fewer function and gradient calls to
arrive at a solution.

gi(x)

g2(x)

g3(x)

g4(x)

gs(x)

g d x) =

K12x2x9

5.2 A parking brake problem

The next example concerns the design of a parking brake and
is adapted from the work of Krishnamaehar i (1996),

min (100x4x5 - x9 - Xll) + (100x6x7 - 30x6x3),
xE!R14

= 2.94 -- 2K7x7xsx10x13 <_ O,

= K 8 - 2K7x7xsxlox13 <_ O,

= x 1 -- x 3 + 0.45x8 < 0,

x5x12
- - 2 K10Xll -< 0,

= K l l X 2 - x l x 6 x 7 <_ 0,

X l

subject to

x6x 3

[o.45, (1.25 +

g7(x) = Xl - z2 + 5 < 0 ,

h l (x) -- x 9 - 2KlX8XlOXl3 = O,

5
h2(x) = x l x 8 x l 0 "4- ~(x2(x 3 -- x l) -- x3(x 2 -- Xl)) = 0,

24

objective function value for propane-combustion example

1_3 ~1~ t~i _, .~- -' ,_
o I - [!~ - - TR algorithm

2 f ~ " SDTR algorithm

10 f ~ _ . , _ ~ _ x duringsubprobleml
~ ~ ~ ~L o duringsubproblem2

r- 101 ~ ' ~ ~ ~

O100 ~'~ t ~ r Jl ~ "L r

m ~ .,H
=> ~ ,: i

~.~]U ~ r l l
.I I.

o ~ i !i!ii!!i

1 0 - 2 ~ i/~ ;: 'J i

10 -4 ' ~ ' ' ~ ' ' ' '

0 50 100 150 200 250 300 350 400
number of function and gradient calls

Fig. 1. Value of the objective function of the propane combustion problem as the iterates progress. One increment along the abscissa
denotes either a function call or a gradient call to any one of the subproblems

x4x~
h3(x) = Xll 1--7 - 0,

h4(x) = x12 - K4(x 2 - Xl) = 0,

h5(x) = x13 - (x8x14) = 0,

h6(x) = x 1 4 - 0 . 8 x 3 = 0 .
x8

The first subproblem uses x I = Ix4, x5, Xll , x13] T

rain f l = 100x4x5 - x9 - Xll ,
xl E~ 4

subject to

g i (x 0 , x l) ~ 0 h i (x 0 , x l) = 0,

g3 (x0 ,x l) ~ 0 h 2 (x 0 , x l) = 0,

g5(x0,Xl) ~ 0 h 4 (x 0 , x l) = 0,

5 < x 4 < 2 0 , 5 < x 5 ~ 3 0 .

The second subproblem uses x2 = [Xl, x2, x3, x6, x7] T

min f2 = 100x6x 7 - 30x6x~,
x2E~ 6

subject to

g2(x0,x2) < 0 h3(x0,x2) = 0,

(19)

(20)

g4(x0,x2) < 0 hs(x0 ,x2) = 0,

g6(x0,x2) < 0 h~(x0,x2) = 0 hT(x0,x2) = 0,

10<_x 1 < 2 4 , 1 0 ~ x 2 < 1 0 2 , 3_<x 3_<183,

5 < x 6 < 20, 5 _< x 7 < 30. (21)

Al though the linking variables are x 0 = [x8, x9, XlO , x12 ,
x14] T, the only remaining functions are the simple bounds
on x 8 ,

160 < x 8 _< 240. (2 2)

The example was performed using the values A = 10.0,
~r = 10.0, and 6 = 0.1, the parameters K 1 = 0.8748,
K 4 = 648.0, K 7 = 0.000459, K 8 = 1221.94, K10 =
324.0, K l l = 2.0, K12 -- 0.000211, and the star t ing
point x = [15,10,180,15, 15,15,10,170,14580,0.16340,4218.8,
-3240,144,0.8470] T. The value of the objective function, and
the distance from the solution are shown in Figs. 3 and 4, re-
spectively. As the figures show, the modified algorithm uses
fewer function and gradient cMls to arrive at a solution.

5.3 Discussion of examples

In both examples, we see tha t the S D T R algori thm reaches
a solution using significantly fewer function calls than the

25

100

,... 10 -1
. 2

o

o 10 -e

0 r "

~ - 3
~ 1 0

10 -4

distance from solution for propane-combust ion example

'- L:_i i

"J" 1

E

- - TR algorithm

- - SDTR algorithm

I "

i -

1 0 - 5 ~ ~ I ~ ~ ~ ,

0 50 100 150 200 250 300 350 400
number of function and gradient calls

Fig. 2. Distance from the solution of the propane combustion problem as the iterates progress. One increment along the abscissa denotes
either a function call or a gradient call to any one of the subproblems.

Table 1. Number and types of function calls and other calculations made for each of the examples

Propane Park ingBrake

TR SDTR TR SDTR

Function calls to subproblem 1
Function calls to subproblem 2
Function calls to subproblem 0
Gradient calls to subproblem 1
Gradient calls to subproblem 2
Gradient calls to subproblem 0
Number of solutions required for (6)

138 82 164 65
138 103 164 54
138 49 164 37
48 36 60 27
48 42 6O 33
48 24 60 13
138 49 164 37

original TR algorithm. If these results hold for larger and
more computationally expensive models, then SDTR would
be worthwhile even without the explicit use of parallelism.
To quantify the computational savings, the number and type
of function calls made during the execution of each algorithm
is given in Table 1.

The most notable difference is the reduction in the num-
ber of function and gradient calls made to subproblem 0.
This is not surprising because analyses to subproblem 0 are
only made during the outer loop (Step 4 in Algorithm 4).
The number of function and gradient calls made to subprob-
lems 1 and 2 has also decreased, even though analysis may

be performed when solving the subproblems (Step 2) or by
the outer loop (Step 4). For very large NLP, the bottleneck
occurs in solving the large approximate problem [in SQP the
QP becomes problematic, and in Yuan's algorithm solving
(6) becomes problematic]. The SDTI:t algorithm still needs a
solution to (6), but it is required fewer times. [The subprob-
lems also need solutions to (6), but the size of the problem is
much smaller.]

With these potential benefits, one may wonder about the
specific causes for the improvements. The convergence anal-
ysis (see Nelson 1997) does not prove any benefits for the
SDTI~ algorithm, only that SDTR has the same convergence

26

- 1 0 0 (

-200(

t -

._o -3O00 .g
t * -

-4000 i .=>
O

-5000

!!
-6000 ~

t " l

-7000 ii! i

objective function value for parking brake example
i i i I I I

. . . . TR algorithm

- - SDTR algorithm

x during subproblem 1

o during subproblem 2

" I .

. . . j

-8000 ' ' ' ' ' ' ' '

0 50 100 150 200 250 300 350 400 450
numberoffunction and gradientcalls

Fig. 3. The value of the objective function for the parking brake problem as the iterates progress. One increment along the abscissa
denotes either a function call or a gradient call to any one of the subproblems

properties as the TR algorithm. However, there are some
plausible hypotheses for the benefits shown in the examples.

First, valid progress is made during the execution of a sub-
problem. This can be seen, for example, by examining Fig.
1. Between the twentieth and fiftieth function call, subprob-
lem 2 makes a significant reduction in the objective function.
It is interesting to note that in Fig. 2 the iterates have not
necessarily moved closer to the solution x*, and we remind
the reader that ensuring global convergence does not require
improving I Ix -x* [I (see Nelson and Papalambros 1997). Ad-
ditionally, if one subproblem requires more work to find a
solution than the other subproblems, SDTR can focus the
effort on the subproblems in need, whereas TR must focus
on the problem as a whole.

Second, the subproblems improve estimates of parame-
ters used during coordination. Admittedly, this is difficult
to prove but some indirect arguments are possible.

The first argument concerns the Hessian estimate: a Hes-
sian estimate effectively alters the search direction from an
inefficient steepest descent direction (for an inaccurate Hes-
sian and a small trust region) to the very efficient Newton
direction (for an exact Hessian). The way that SDTR is
constructed, the Hessian may be updated by the subprob-
lems several times prior to the first coordination problem.
When coordination finally occurs, the Hessian estimate is
much more accurate than the identity matrix, which is usu-
ally the initial Hessian estimate for the unmodified algorithm.

The second argument, although not as concrete, involves

the interplay between the trust region radius and the accu-
racy of the penalty function. Intuitively, if the size of the
trust region was appropriately set by a subproblem, unnec-
essary backtracking could be avoided during coordination.

6 Conc lus ions

The SDTR algorithm offers a simple way of exploiting a hi-
erarchically decomposed structure. As the theoretical prop-
erties are reviewed elsewhere, this paper focused on a de-
scription of the algorithm and the performance during com-
putation. The SDTP~ algorithm is constructed so that the
convergence properties of the TR algorithm are conserved,
but this does not prove that SDTR is more efficient than
TR.

However, the numerical examples do indicate that the
SDTR algorithm is an improvement in that fewer function
and gradient calls are needed to arrive at a solution when
compared to the TR algorithm. Several possible hypotheses
for the improvement were stated, including the facts that the
SDTR algorithm uses subproblems to improve algorithmic
parameters and that SDTR has the ability to concentrate on
a particular subproblem when necessary. It is believed that
these results will extend to larger and more difficult NLP.

27

102

101

100
t -

O
.r

1 0 -1

o
i1)
o 10-2

10 -3

10 -4

distance from solution for parking brake example
r ~ . ~ . ~ i i t i i i i i i

~ ' r" r ' ~ r . , . ~ . . _ "

:l ~ ~ ' ~ ' 1 " ' ~ ~ . ~ . . .

t.
x.

. . . . TR algorithm
- - SDTR algorithm

1 0 - 5 I I I i i I i I I

0 50 100 150 200 250 300 350 400 450
number of function and gradient calls

|
1

Fig. 4. Distance from the solution of the parking brake problem as the iterates progress. One increment along the abscissa denotes
either a function call or a gradient call to any one of the subproblems

A c k n o w l e d g e m e n t s

This research has been partially supported by the Automo-
tive Research Center at the University of Michigan, a US
Army Center of Excellence in Modeling and Simulation of
Ground Vehicles, under Contract No. DAAE07-94-C-R094.
This support is gratefully acknowledged. The authors would
also like to thank R. Krishnamachari and II.M. Kim for de-
veloping the parking brake example.

Refe rences

Corm, A.R.; Gould, N.I.M.; Toint, P.L. 1992: LANCELOT, A
FORTRAN package for large-scale nonlinear optimization. Berlin,
Heidleberg, New York: Springer

Fletcher, R. 1981: Second order corrections for nondifferentiable
optimization. In: Watson, G.A. (ed.) Numerical analysis, Dundee
1981, pp. 85-115. Berlin, Heidelberg, New York: Springer

Griewank, A. 1991: The global convergence of partitioned BFGS
on problems with convex decompositions and Lipschitzian gradi-
ents. Math. Prog. 50, 141-175

Griewank, A.; Toint, P.L. 1982a: Local convergence analysis for
partitioned quasi-Newton updates. Numerische Mathematik 39,
429-448

Grlewank, A.; Toint, P.L. 1982b: Partitioned variable metric up-
dates for large structured optimization problems. Numerische
Mathematik 39, 119-137

Krishnamachari, R. 1996: A decomposition synthesis methodology
]or optimal system design. Ph.D. Thesis, University of Michigan,
Ann Arbor

Krishnama~hari, R.; Papalambros, P.Y. 1997: A decomposition
synthesis methodology for optimal system design. ASME J. Mech.
Des. (to appear)

Michelena, N.; Papalambros, P.Y. 1995: Optimal model-based
decomposition of powertrain system design. ASME J. Mech. Des.
117, 499-505

Nelson, S.A., II 1997: Optimal hierarchical system design via se-
quentially decomposed programming. Ph.D. Thesis, The Univer-
sity of Michigan, Ann Arbor

Nelson, S.A., II; Papalambros, P.Y. 1997: Sequentially decom-
posed programming. AIAA J. 35, 1209-1216

Padula, S.L.; Alexandrov, N.; Green, L.L. 1996: MDO test
suite at NASA Langley Research Center. In: Proc. 6-th
AIAA/NASA/ISSMO Syrup. on Multipdisciplinary Analysis and
Optimization (held in Bellevue, WA), pp. 410-420. AIAA

Papalambros, P.Y. 1995: Optimal design of mechanical engineer-
ing systems. ASME J. Mech. Des. 117, 55-62

Powell, M.J.D. 1975: Convergence properties of a class of mini-
mization algorithms. In: Mangasarian, O.L.; Meyer, R.R.; Robin-
son, S.M. (eds.) Nonlinear programming 2, pp. 1-27. New York:
Academic Press

Sobieszczanski-Sobieski, J.; James, B.B.; Riley, M.F. 1987: Struc-
tural sizing by generalized multilevel optimization. AIAA J. 25,
139-145

28

Thareja, R.R.; Haftka, R.T. 1990: Efficient single-level solution
of hierarchical problems in structural optimization. AIAA J. 28,
506-514

Yuan, Y.-X. 1984: An example of only linearly convergence of

trust region algorithms for nonsmooth optimization. IMA J. Nu-
met. Anal. 4, 327-335

Yuan, Y.-X. 1995: On the convergence of a new trust region algo-
rithm. Numerische Mathematik 70, 515-539

Received Jan. 1, 1998
Communicated by J. Sobieski

