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A b s t r a c t  A method is presented for the prediction of optimal 
configurations for two-materiai composite continuum structures. 
In the model for this method, both local properties and topology 
for the stiffer of the two materials are to be predicted. The proper- 
ties of the second, less stiff material are specified and remain fixed. 
At the start of the procedure for computational solution, material 
composition of the structure is represented as a pure mixture of the 
two materials. This design becomes modified in subsequent steps 
into a form comprised of a skeleton of concentrated stiffer ma- 
terial, together with a nonoverlapping distribution of the second 
material to fill the original domain. Computational solutions are 
presented for two example design problems. A comparison among 
solutions for different ratios of stiffness between the two materials 
gives an indication of how the distribution of concentrated stiffer 
material varies with this factor. An example is presented as well 
to show how the method can be used to predict an efficient layout 
for rib-reinforcement of a stamped sheet metal panel. 

1 I n t r o d u c t i o n  

We address the problem of how to predict the optimal config- 
uration of a continuum structure composed of two distinct, 
linearly elastic materials. The problem is cast in a form that 
has the stiffer of the component materials treated as "des- 
ignable", while properties of the second, less-stiff material 
are taken to be specified and fixed. The goal in the treat- 
ment of this design problem is twofold:~ (i) to determine the 
local properties of the concentrated stiffer material and (ii) to 
determine its optimal topology, imbedded in the second ma- 
terial which occupies all the remainder of the original domain 
of the structure. The intention is that  this result simulates 
an optimally reinforced two-material composite continuum 
structure. An interpretation of the model for computational 
solution is applied to produce example results in 2D and 3D 
showing the form of such designs. As another type of applica- 
tion, the modelling technique is applied to design the optimal 

layout for rib-reinforcement in a stamped sheet metal panel. 
The analytical formulation for the composite design prob- 

lem is based on the concept that has a designable continuum 
material represented (for linearly elastic material) by its con- 
stitutive tensor. The paper by Bendsce et al. (1994) evidently 
is the first example where the arbitrary tensor-valued func- 
tion representing material properties is treated directly as the 
design variable. [A quite different approach to represent vari- 
able material property within a design problem is described 
by Jacobs el al. (1997)]. In that  presentation as well as sub- 
sequent other applications (see e.g. Bends0e et al. 1995, 1996; 
Bends0e 1995), the design objective was to minimize compli- 
ance and the global cost (isoperimetric) constraint was ex- 
pressed in terms of the trace or the second-order invariant 
of the modulus tensor. The present formulation is stated for 
the same objective, and for the cost constraint based on the 
trace measure of the modulus tensor. 

Results from the cited earlier design formulations are com- 
prised of a prediction of the local form of the optimal mate- 
rial (a zero-shear stiffness, orthotropic material in the case of 
single-purpose design), together with the (continuously vary- 
ing) distribution of the trace of the modulus tensor, the lat- 
ter representing a measure of merit of the material. In the 
present setting, the corresponding result has the form of an 
optimal distribution of a pure mixture of the two constituent 
materials, having effective modulus equal to the sum of the 
constituent moduli. In order to be able to determine the de- 
sign for a physically realistic composite material, i.e. a struc- 
tural composite where the two materials are distinct, a re- 
cently described technique [see Guedes and Taylor (1997a,b) 
and Pawlicki et al. (1998) for example applications in 3D] for 
the computational prediction of optimal topology is applied. 
The technique, which differs sharply from the familiar ap- 
proach [see e.g. Bends0e (1995) and Olhoff ei al. (1997) for 
one material structures and Olhoff et al. (1993) in the case 
of two-dimensionM structures composed of two materials], 
amounts to a step by step computational procedure, making 
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use of the above described continuously varying design as a 
starting point. A finite sequence of repeated solutions to the 
original design problem, each with stepwise, ordered modifi- 
cation to the "unit cost distribution", leads to the final result 
in the form of a composite having the two materials appear as 
effectively distinct but mechanically combined. [A distinctly 
different example where "overlap of materials'  is addressed is 
reported by Rozvany et al. (1982).] 

To summarize the contents of the paper, the model for 
prediction of the optimal composite continuum structure is 
described first in the form of an algorithm, where the ele- 
ments described above are identified with steps in the algo- 
rithm, as are the means to manage the step-wise procedure 
itself. Implementation of the procedure into a form suit- 
able for the production of computational results is described 
next. Example results are presented for the "finite compos- 
ite design" of a cantilevered beam under end load, and for a 
clamped beam subject to a distributed load. Sets of results 
are obtained for both examples to indicate how the layout of 
the stiffer material (reinforcement) is affected by varying the 
relative stiffness of the two materials. As indicated earlier, 
the model for composite design also is applied to predict opti- 
mal patterns for rib reinforcement of a sheet metal panel [the 
interpretation may be contrasted to the treatment of rein- 
forcement of plates by Diaz et al. (1995)], and computational 
results for an example of this application are presented as 
well. 

a) 

2 M o d e l  fo r  t h e  p r o c e d u r e  

Let us consider the linear elastic structure occupying domain 
s subjected to body forces f, boundary tractions t and zero 
displacement on boundary Fu. The structure will be com- 
posed of two materials identified respectively by their elastic- 
ity tensors E 1, for the weaker material and E 2 for the stiffer 
material (see Fig. la). In a simple fiber-reinforced composite, 
for example, the two moduli might correspond to the matrix 
and the fiber materials, respectively. 

The problem we address here is the following. Assum- 
ing that the domain f2 occupied by the complete composite 
structure is specified and fixed, and given an upper bound 
on the amount of available material "2" (stiffer material), we 
seek to identify optimal properties and topology of material 
"2" imbedded in material "1", with no overlap of the less stiff 
material in the region of the stiffer one (see Fig. lb). The ob- 
jective for optimal design is to maximize a measure of the 
overall stiffness of the structure. The E 1 material properties 
are taken to be specified and fixed with E 1 > 0. With Y22 to 
symbolize the part  of the domain taken up by concentrated 
material "2" (to be optimally designed), it is required that in 
the final design ~1 = 1"2- ~2- Since the structural domain 
X? is fixed, this indicates that  material "1" fills the part of 
the original domain not occupied by the optimal material "2" 
without overlap. 

In order to solve the problem described above, the follow- 
ing procedure is proposed. 

Initial design. As a first step assume that  one has a per- 
fect mixture of the two materials [i.e. the effective material 
tensor of the mixture is given by E eft = E 1 + E2; note that 
for the 2D model to simulate laminated structure (see e.g. 

b) 

Fig. 1. The structure subjected to body force f and boundary 
traction t. (a) Initially as a perfect mixture, and (b) as a two 
material composite 

X~ 

1 

I 

Fig. 2. Regularization of the characteristic function 

Pedersen, 1993) the "mixture" provides an authentic model 
for the effective material modulus]. Again, recall that  at the 
final design the materials are to be effectively separated. 

For this mixture and identifying the trace of the E 2 tensor 
as the sensible measure of the material [p = tr (E2)], design 
material "2" to obtain its optimal local properties and dis- 
tribution in s Here the resulting design, obtained using the 
method described by Bendsee et al. (1994), is represented by 
continuously varying p (the plot of p is sometimes referred 
to as the "shades of grey" diagram). Once this solution for 
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the optimal material and its distribution over the structure 
are known, a finite number of optimization sub-problems are 
performed to predict a refinement of it into a design having 
total material separation and concentration of material "2" 
at its upper bound. The redesign of material "2" is accom- 
plished using a weighted unit relative cost method (Guedes 
and Taylor 1997a) for the prediction of optimal topology. The 
method is applied stepwise, where in each step a gradually 
higher value of unit cost is ascribed to regions of relatively low 
value of p. Specific details are provided next, where the pro- 
cedure is first described formally in the form of an algorithm, 
and is later expressed for computational treatment using a 
finite element interpretation of the continuum structure. 

2.1 Algorithm 

It is assumed that an initial design (the shades of grey results 
described above) has been obtained. Based on this result 
and recalling that  "design" is represented by the p field, the 
algorithm is described as follows. 

Step 1. Define an increasing sequence of N evenly spaced 
cutoff values p~, k = 1 , 2 , . . . ,  g such that p~ = -fi/N 
and pC = --fi; p~ = k (-fi/N). An optimization sub- 
problem is to be solved for each value of p~, where 
index k identifies steps in the procedure. The num- 
ber N designates the number of steps to achieve the 
final design. Both N and the upper bound ~ are 
prescribed. Considerations of how properly to select 
values of these data are discussed below. 

Step 2 For a given cut off value p~, identify the following 
subdomains of the structure: 

Step 3. 

n~- = {. e n :  ;k > pc - k} ,  (1) 

subdomain with higher value of material measure p, 

~-  = {x e ~ :  pk < p~} ,  (2) 

subdomain with lower value of material measure p, 

~k = {x E n p k  = ~} ,  (3) 

subdomain with material measure p at its upper 
bound. 

Recall that  p is identified as the trace measure 
of the elasticity tensor E 2, and note that  ~ k  C Y2 t 

and s U X? k = ~.  

With the objective of driving the designable mate- 
rial at each point to either its upper (~) or lower 
(_p_) bound value, a unit relative cost coefficient co is 
modified stepwise in a manner to exaggerate the cost 
of material wherever p has value belo w t h e  cutoff. 
Specifically, the relative unit cost function based on 
the results at step k is set equal to the constant value 
one or ~ according to 

l f o r x e Y 2 k +  
cok= ~ f o r , E n  k ' (4) 

Step 4. 

with value of the constant N >> 1. Total cost at 
the (k + 1)-st step is evaluated according to 

f f  cokPk+l dr2. 

$2 

(5) 

Once the relative unit cost is defined, optimize the 
material "2" elasticity tensor E 2, i.e. determine the 
measure Pk+l,  and the remaining attributes of E 2 
using the cost distribution determined in Step 3. 
This is accomplished by solving the (shades of grey) 
problem, 

min 
E 2 

0 < p < P k + l  = 

t~ (E 2) <_ 
r 

(6 )  

subjected to the following constraints: 

/ [1 - X (~k)]  Eljkgeij(u)ekl(v) d~?+ 

D 

f E jk o j(u)ek (v) - / 

f tivi dF = O V v G V ,  

5 

(7) 

Pk+l + / wPk+l ~- 
f 

d$2 d$2 R,  (8) 

where V represents the set of admissible displace- 
ments and where X (~k)  is the characteristic func- 
tion defined in terms of the set f2 k as 

1 for x C f2 k 
x(~k)= 0 f o r - ~ k  ( 9 )  

Note that u and E 2 in (7) are intended to stand for 
the solution of the current step. 

An alternative, equivalent statement of the equi- 
librium condition (7) is 

/ (.1 
$ 2 - ~  

/ E~jk~ij(u)ek~(v ) d a -  

/ f i v i d ~ 2 - f t i v i d F = O ,  V v E V .  (10) 

n F~ 



Step 5. 

Note that in form (10) for the problem, separation of 
the structure in f2 into the domain f?k where p(x) = 

and the remaining f ? -  f2 k is reflected explicitly in 
the integrals. 

The lower bound p_ is set to have the value on the 

order 10-7~. 

For the equilibrium constraint (7) note that the 
fixed material "1" exists (mixed with material i'2") 
only where the measure of material "2" is not its 
upper bound, i.e. material "1" is removed from the 
region with full material "2". As the procedure con- 
verges this will provide full pointwise separation of 
the two materials. Also in the resource constraint 
we assume, as previously stated, that the material 
unit cost for higher value of the material measure p 
is equal to one, and for the lower value of the measure 
is ~- >> 1. The distribution of material "1" is fixed 
during this step, and the solution obtained provides 
the description Pk+l of the trace of (E2)k+l as well 

f E 2 as the current local material properties i, ijkg) 
k+l" 

Set the cut off value to P~+I" 

Go to Step 2 and repeat the procedure until the 
limiting cutoff value ~ is reached. 

2.2 Optimal distribution of the designable material 

We will analyse in more detail the optimization subproblem 
to be solved in Step 4 of the previous section. The aim of 
this step is to solve the following problem. For a prescribed 
material unit cost function w(x) and fixed sets ~k ,  Y2k+ and 

Y2[, find the optimal distribution of designable material as 
the one that minimizes the structural compliance (maximizes 
the stiffness) of the structure, as stated in the optimization 
problem (6)-(8). 

Following the presentation in the cited Bendsce et al. 
(1994) paper for the treatment of this problem, the optimiza- 
tion problem can be equivalently stated as 

max r a i n  • 
E 2 > o vCV 

_p _~ p = t r  (E  2) ~ ~ 

Eljk, eij(v)ek,(V) d~? + / E2jk, eij(v)ek,(v) dS?}- 
f2 

j f i v i d f 2 - J t i v i d r } ,  
r2 r~ 

subjected to the resource constraint 

i t r  (E 2) dr2+ J ~tr (E 2) d,<R. 

(11) 

(12) 

Note that in this statement of the structural compliance 
optimization problem, the equilibrium constraint is inter- 
preted in the form of a minimum potential energy statement. 
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The design variable E 2 is characterized by the field p(x) 
which identifies global distribution of the trace measure of 
E 2, and by its local tensorial structure. The maximization 
problem in (11) can be split into two successive maximization 
problems (see Bendsce et al. 1994), associated respectively 
with these "field" and "local structure" attributes of E 2. 

Thus (11) is rewritten as 

max max min { ~ { / [ 1 -  X ( ' k ) ]  x 
s m 2 _> 0 vEV 

t r  ( E  2 ) ---- p f'~ 

ElJkgeij(v)ek'(v)d" + f E2jkgeij(v)ekg(v)dS2}- 

/fivid~-JtivgdC}, 
r2 F~ 

(13) 

where the inner maximization identifies the optimal elastic- 
ity tensor within a prescribed value of the trace p (optimal 
relative values among tensor components) and the outer max 
establishes the optimal distribution of the trace of the elas- 
ticity tensor within the prescribed upper and lower bounds 
(optimal material distribution). 

From the fact that the resource constraint is only depen- 
dent on the design variable p, i.e. on a norm of the tensor E 2 
(the trace in our case) and not on its individual components, 
consider, for now, only the inner max rain problem in (13). 
Following the same argument as presented by Bendsce et al. 
(1994), the inner max and rain can be interchanged as 

min max {~{ff {I-x (~k)] x 
vEV ~2 _> o 

t r  (tg 2) ---- p 

Eljkgeij(v)ekg(V) dr2 + S E2jk'eij(V)ek'(V)d~?}- 
C2 

~fividr~-/t~v~dr} 
Ft 

(14) 

Following this transformation, the maximum can be 
solved analytically for the design variable E 2 and has the 
solution 

E]]k e _eij(v)ek~(v) 
= , ( 1 5 )  

with the optimal strain energy density equal to 

7pe,j (.)e ij (v). (16) 

Substituting (16) into (13) one obtains 

p<p~vcV 
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Eljkgeij(v)ekg(V) dr2 + f PSik6jeeij(v)ekg(V) df2}- 
s 

f f ividag-f t ividF},  
rt 

(17) 

subjected to the resource constraint 

ff pd$2 + ff ~pdtg <_ t~. 
W W 

(18) 

[Note.  Result (15) is valid only for one load condition.] 
The previous problem is a maxmin problem where the 

inner minimization has a unique solution. Thus the problem 
is differentiable and the necessary conditions for a maximum 
a r e  

~ % i ( u ) % i ( u )  - A - ,~,~ = O, 

~eij(u)eij(u) - ~A + ~ = 0, 

Vx c (19) 

w e (2o) 

where u(x) is the unique solution of the inner minimization, 
i.e. the displacement of the structure at equilibrium. N o t e  
that these conditions are to be satisfied at the optimum. 

In the previous conditions A is the Lagrange multiplier 
for the resource constraint and ~u and rig are the multipliers 
for the upper and lower bound constraints respectively. 

Complementarity conditions for the problem are 

q ~ ( p - ~ ) = o ,  ~ _ > 0 ,  p _ < ~ ,  w e t ? ,  (21) 

, ~ d s - ; )  = o ,  ~e>- 0, p->8,  vzcg,  (22) 

It follows from (21) and (22) that 

~uqg = 0, Vx E f2. (24) 

From the preceding conditions it can be shown that  A > 0, 
implying that the resource constraint will be active. 

2.3 Optimal distribution of the designable material (alter- 
native formulation) 
As an alternative to the part of the procedure of Section 2.1 
where the fixed material is removed, it is possible to reformu- 
late the problem of optimal distribution of material so that  
the fixed material is gradually removed within the process of 
optimizing the material distribution. 

With this purpose in mind, it is assumed that  within 
the material distribution optimization, the domain occupied 
by the fixed material "1" is the complement of the domain 

$?(p) = {x :  p = ~}, and consequently a function of p. Thus 
problem (13) is restated as 

max max min { 1 { / [1 - Xe (~(p))] x 
O<_p<_~ E ~_>o v~V 

t r  (E 2) ---- p J~ 

f2 

f f f ividf2-/ t ividF},  (25) 
Pt 

where the Xr is an s differentiable regularization of the 
characteristic function of the set ~(p) = {x ff $2 : p = ~}, 
having the properties (see Fig. 2) 

1 i f p = ~  

Xe(P)  = (P+eP--P)2(e-p+2p-2p) if (1 -- e)~ < p < ~ .(26) ( ~ ) 3  

0 if p_< ( 1 -  c)~ 

Note that this regularization is nonsymmetric in the c 
neighbourhood of g and thus imposes the effective separation 
of the two materials on the region tQ(p) (i.e. at all the points 
where p = ~). 

Following the rationale of the previous section we will 
have the same characterization of the optimal material E 2 
(15), but the necessary conditions on p (written for the entire 
domain) are 

dxe(p) zlye Au) kdu) +eij 
dp 

A - q u + r / g = 0 ,  VxEX2, (27) 

where, A, r/u and rjg satisfy the orthogonality conditions (21)- 
(24) and 

0 i f p = ~  

dxe(p) 6(p-~+s~)(~-p) if (1 - ~)~ < p < ~ (28) 
dp -- (~)a  

0 if p _< (1 - ~)~ 

The purpose of this regularization is to implicitly remove 
the fixed material E 1 in regions within f2 where the des- 
ignable material is at its upper bound. Note that for every 
e ~ 0 the problem as stated in (25) is a meaningful design 
problem. However, the limit case (i.e. when s = 0) is not a 
well-posed problem, in the sense that  one can get as close as 
one wants to the designable material upper bound and still 
have fixed material coexisting with the designable material. 

3 M e t h o d  for  c o m p u t a t i o n a l  s o l u t i o n  

As described above, the final structural topology is predicted 
through an iterative procedure where the designabte mate- 
rial is concentrated at its upper bound ~ (remember that the 
trace of elastic tensor is identified as such a measure). This is 
at tained through the solution of a series of material optimiza- 
tion subproblems (defined in Section 2.2) where the material 
unit cost is iteratively adjusted so that  lower trace measures 
impose a higher cost on the resource distribution. 

In the following, the implementation of these steps for 
computation is discussed. 
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Fig.  3. Sketch of material measure p(x) for initial, intermediate and final designs (typical) 

Fig.  5. Optimal topology for E! / (max  E 2) = 10 -z 

Fig. 4. Design domain and boundary conditions 

3.1 Material unit cost 

The basic idea behind a nonuniform mater ia l  unit cost im- 
posed on the resource constraint  is to induce a concentration 
of the designable mater ia l  at its upper  bound (full material) .  
As the first step, the opt imizat ion  problem is solved init ially 
assuming a uniform mater ia l  unit  cost. Based on results for 
this opt imal  solution, the s t ructura l  domain is divided into 
two regions, the par t  s (below cutoff value pC) and f2 + 
(the part  above pC), as defined earlier. Once these sets are 
defined, one computes the new opt imal  mater ia l  dis tr ibut ion 
imposing a higher unit  cost on mater ia l  in $2-,  i.e. the re- 
source constraint  is now changed to 

[ p d ( 2 +  [ ~ - p d $ 2 < / ~ ,  ~ > > 1 .  (29) 

Y2+ f2- 

Fig.  6. Optimal topology for E1/(max E 2) = 1/50 

In Fig. 3 this process is simulated in a one-dimensional 
sketch for initial, intermediate  and final distributions. As- 
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Fig. 7. Optimal topology for E 1/(maxE 2) = 1/10 

Fig. 8. Optimal topology for E 1 / ( m a x E  2) = 1/3 

Fig. 9. Design domain and boundary conditions 

suming that the material distribution is known for the ini- 
tial design, the resulting distribution p(x) for the subsequent 
steps (general step k and final step N) reflects a relative in- 
crease value in regions (g2 - ~2-).  The increase for the k-th 

step, and the concentration of material at the upper bound 
for the final design are shown in separate curves. 

The idea behind this approach is simple, but one major 
feature of the method needs to be addressed. It follows from 
the fact that  the procedure attributes higher unit costs ac- 
cording to regions occupied by low material measure p, rather 
than to the material itself. As a consequence, once a region is 
included in the f2 -  subdomain it tends to remain there. To 
deal with such a feature, care should be taken in the selection 
of the number of cutoff values. 

3.2 Optimal material  distribution 

Once the material unit cost function (~k at the k-th step of 
the topology design procedure) is defined, one can calculate 
the new optimal material distribution. Note that the domain 
occupied by the fixed material is known and fixed during this 
step. 

The methodology adopted is based on a sequential solu- 
tion of the optimality conditions (19) and (20) with the strain 
field calculated using a finite element approximation of the 
elastostatic problem, characterized by the equilibrium state- 
ment (7) (the commercial program ANSYS was exploited for 
this purpose). 

So based on the material unit cost for the procedure step 
k (Wk) and assuming the design variable pe constant at each 
finite element, one can write the optimality conditions sep- 
arately for each element. From the discrete interpretation 
of the these conditions, and introducing the upper and lower 
bound constraint thickness parameter ( (defined by the user), 
the solution is obtained by the fixed point method, 

M i f a e ( p e ) i < M  __ 
(Pc)i+1 = a_~e(pe)i if M < ae(pe) i  <_ M , (30) 

M if M <_ ae(pe) i  

where 

M M_ = max [(1 - ~)(pe) i ,pj  , 

M = min [(1 + ~)(pe)i ,-fi] , 

and with the multiplier ct e given by 

~ e =  (e i j (u )e i j (U))e  (31) 
2wkA 

for each finite element. 
In the previous algorithm, the index "e" ranges over all 

the finite elements, "i" is the iteration counter and 0e iden- 
tifies the average operator applied to the e-th element strain 
field. 

The calculation of the Lagrange multipliers A is deter- 
mined, within each iteration, through a updating scheme that 
imposes the resource constraint 

In the case of the alternative formulation described in 
Section 2.3, where the domain occupied with fixed material is 
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Fig. 10. Final topology for Ea/(maxE 2) = 10 .7 

gradually removed, the fixed point algorithm is as previously 
stated in (30) with the a e factor given by 

_ (eij(u)eij(U))e 

4 E x a m p l e s  

The examples presented below try to demonstrate the ap- 
plicability of the developments described within the context 
of three-dimensional structural applications. The first two 
examples are discretized, for computational purposes with 
eight~node isoparametric brick elements, a uniform finite ele- 
ment mesh and the computational procedure is programmed 
within the ANSYS finite element software. 

4.1 Example 1 

The first example considered is the problem of finding the 
optimal topology of material "2" in an end loaded cantilever 
beam made of an isotropic material with Young's modulus 
E 1 and Poisson's coefficient 0.2 (material "1"). The design 
domain has dimensions 20 • 12 • 1 (see Fig. 4) and the re- 
source constraint upper bound equals 40% of the volume of 
the design domain. 

Material two has a Young's modulus upper bound of 
109 Pa and a lower bound of 101 Pa. The black and white 
procedure takes N = 40 steps and the shades of grey opti- 
mization (step 4 of the procedure) is limited to 5 iterations. 

This example is the 3D equivalent of the 2D example de- 
scribed by Guedes and Taylor (1997a). Even though three- 
dimensional, the model would behave like a two-dimensional 
one due to the small design domain thickness. This fact will 
permit the comparison of the results obtained with the ones 
presented for 2D solutions in the case of nonexistent material 
"1" (see e.g. Guedes and Taylor 1997a). 

The solutions obtained are shown for various ratios be- 
tween the maximum Young's modulus for material "2" (max 
E 2, attained at # = ~) and the Young's modulus for the fixed 
material, E 1 . 

The first solution has a small value of this ratio (10 -7 )  
and consequently is equivalent to the optimal topology design 
problem restricted to one material. The subsequent results 
consider higher material ratios. 

Figures on the left show the designable material imbedded 
within the fixed material. In the right, and to better portray 
the final topology of the designable material, the fixed mate- 
rial is not shown. Note also that for representation purposes 
the designable material (material "2") is identified in black 
color when the two materials are present and in lighter grey 
when material "1" is removed from the figure. 

From the results obtained one can observe that the truss 
like structure inside the domain weakens as the material ratio 
increases. This is attributed to the fact that  as material "1" 
is stiffened, it has an higher contribution in carrying the shear 
load present, thus freeing material "2" to support the bending 
load. 

4.2 Example 2 

This example considers the topology optimization of material 
"2" for the cantilever beam presented in Fig. 9. The design 
domain has dimensions 8 x 8 x 20 and is discretized with 
10264 eight-node isoparametric brick elements. The applied 
force is restricted to a shear force distributed as shown below. 
The resource constraint upper bound is equal to 40% of the 
design domain volume. Material "2" has a Young's modulus 
upper bound of 109 and a lower bound of 101. The black and 
white procedure was done in N = 20 steps and the shades of 
grey optimization (Step 4 of the procedure) is limited to five 
iterations. 

The figures below display the results obtained for different 
ratios of E1/(maxE2). For this example, the fixed material 
("1") is assumed isotropic. For each material ratio, the fi- 
nal result internal structure can be visualized in the various 
transversal and longitudinal cuts shown. 

For this last material ratio, the next figure shows the final 
topology of material "2" with material "1" removed. 

N o t e .  For representation purposes the designable mate- 
rim (material "2") is identified in black colour when the two 
materials are shown and in lighter grey when material "1" is 
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Fig. 11. Final topology for E ~/(max E 2) ----- t0 -7 (longitudinal cuts) 

removed from the figure. 
We note here the big gap between the first (10 -7  ) and 

second material ratio (i0 -7 )  used in the examples. This is 
due to the fact that the changes in topology as a function of 
the material ratio are only easily detectable for ratios above 
10 - 2  

4.3 Example 3: Embossed ribs in stamped plates 

The design model described in this work has many applica- 
tions, among them, the optimum design of reinforcing em- 
bossed ribs (also known as beads) in stamped plates. A 
particular case of the optimization problem (13) is obtained 
when the local structure of the material "2" is fixed and or- 
thotropic, and when materiM "1" is isotropic. In such cases 
it is possible to determine the optimum layout of embossed 
ribs (material "2") within the flat plate (material "1"). In 
order to solve this particular optimization problem the only 
modification required is to fix the form of E 2 in the most 
inner maximization problem in (13). 

Due to the geometric complexity of this real life exam- 
ple it was solved using software developed at Ford for this 

particular application of optimum layout of embossed ribs of 
constant properties. The structure in question is the de&lid 
of a sedan vehicle (see Fig. 17) subject to a vertical load at 
the key switch. The objective of the problem is to maximize 
the stiffness for such load condition by embossing ribs in the 
decklid inner panel. The resource constraint metric is the 
area allowed to be covered by embossed ribs. For this exam- 
ple, embossed areas are limited to 30% of the total decklid 
area. Figures 18 and 19 show the "optimum topology" and 
the "optimum orientation of the principal directions" of the 
embossed ribs, respectively. 

The stiffness of the decklid was increased 100% with the 
resulting topology/orientation of ribs. 

5 Discuss ion 

To contrast the present treatment of two-component compos- 
ite design with common models for the design of continuum 
structures based on homogenization interpretation of a two- 
phase material [the subject is surveyed by Bendste (1995); see 
also Cherkaev and Gibiansky (1997) and Lipton (1988)], note 
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Fig. 12. Final topology for E1/(maxE 2) = 1/10 

Fig. 13. Final topology for E'l /(rnaxE 2) = 1/10 (longitudinal cuts) 

that in the latter the local properties are designated to have 
specific form, e.g. isotropic, rather than to be represented by 
a free modulus tensor. Also, the "zero-one" interpretation 
for the prediction of optimal topology from the latter mod- 

els [Rozvany et al. (1995) provides a survey on methods for 
topology design] results in a ill-posed problem, whereas in 
the present approach topology is predicted on the basis of an 
ordered sequence of solutions to a well-posed optimization 



Fig. 14. Final topology for E1/(raaxE 2) = 1/3 

Fig. 15. Final topology for E1/(max E z) --- 1/3 (longitudinal cuts) 

problem. 

For simplicity, the model for two-component composite 
design is described in this paper  in a relat ively narrow form. 
However, the same method  may  be applied equally well in 

other contexts - -  for s t ructura l  design with nonlinear mate- 
rials as represented by Bendsce et al. (1996), for example, or 
for problems where the local measure of mater ial  cost is ex- 
pressed by an invariant other than  the trace of the modulus 
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Fig. 16. Final topology for E1/ (maxE  2) = 1/3 (material one not shown) 

tensor [see e.g. Taylor and Washabaugh (1995) and Taylor 
(1998) for expressions of generalized cost]. 

Fig.  19. Optimum orientation of embossed beads 

Fig.  17. Computer model of the car decklid 
The first author also expresses appreciation for part ial  

suppor t  received from INVOTAN through the NATO Science 
Fellowships Programme. 

Fig.  18. Optimum topology of embossed ribs using 30% of the 
area 
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