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Abstract Analytical target cascading is a method for design
optimization of hierarchical, multilevel systems. A quadratic
penalty relaxation of the system consistency constraints is
used to ensure subproblem feasibility. A typical nested so-
Iution strategy consists of inner and outer loops. In the in-
ner loop, the coupled subproblems are solved iteratively
with fixed penalty weights. After convergence of the inner
loop, the outer loop updates the penalty weights. The article
presents an augmented Lagrangian relaxation that reduces the
computational cost associated with ill-conditioning of sub-
problems in the inner loop. The alternating direction method
of multipliers is used to update penalty parameters after a
single inner loop iteration, so that subproblems need to be
solved only once. Experiments with four examples show that
computational costs are decreased by orders of magnitude
ranging between 10 and 1000.

Keywords Multidisciplinary optimization -
Decomposition - Analytical target cascading -
Augmented Lagrangian relaxation - Penalty functions

1 Introduction

Analytical target cascading (ATC) is a model-based, multi-
level, hierarchical optimization method for systems design
(Kim 2001; Kim et al. 2002, 2003; Michelena et al. 2003).
ATC formalizes the process of propagating top-level targets
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throughout the design hierarchy. The single top-level element
of the hierarchy represents the overall system, and each lower
level element represents a subsystem or component of its par-
ent element. Elements within an ATC problem hierarchy are
coupled through target and response variables. Targets are set
by parent elements for its children, while responses defined
by the children define how close these targets can be met.

At each element, an optimization problem is formulated
to find local variables, responses to its parent, and targets for
its children that minimize an inconsistency weighted penalty
function while meeting local design constraints. Each ele-
ment may use one or more analysis models to determine the
responses to the propagated targets. In turn, these responses
are rebalanced up to higher levels by iteratively changing
targets and designs to achieve consistency. Subproblems are
not independent, and a coordination strategy is required to
define the sequence in which subproblems are solved, and
responses and targets are exchanged.

Note that distributed design optimization using decompo-
sition usually incurs higher total computational costs than an
all-in-one (AIO) strategy, unless some special problem struc-
ture is exploited. The use of decomposition is typically dic-
tated by inability to solve the problem as AIO and/or a desire
to follow a distributed design strategy, as is often the case in
product development organizations. Still, reduction of com-
putational burden is very important for any decomposition-
based strategy.

Following the classification of Alexandrov and Lewis
(1999), ATC belongs to the same class as collaborative opti-
mization (CO) (Braun 1996; Braun et al. 1997). Nevertheless,
several differences between the methods have been identified
(see Allison et al. 2005). One important difference is that a
convergence proof is available for ATC (Michelena et al.
2003) but not yet available for CO (Alexandrov and Lewis
2002). Indeed, this article discusses how various convergent
methods available from nonlinear programming (see, e.g.,
Bertsekas 2003) can be applied to ATC.

Numerical experiments with ATC show that finding ac-
curate solutions requires significant computational effort due
mainly to two issues (Tzevelekos et al. 2003; Michalek
and Papalambros 2005a; Tosserams 2004). Large weights
are required for accurate subproblem solutions, and many



An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers

177

iterations, and thus subproblem optimizations, are required
in the coordination strategy that solves the decomposed prob-
lem. Both issues originate in the relaxation technique used to
transform and decompose the original design problem. Ide-
ally, targets and responses are exactly equal at the solution,
and consistency constraints are used to force targets and re-
sponses to match. For feasibility of subproblems, however,
these consistency constraints have to be relaxed, allowing in-
consistencies between targets and responses. These inconsis-
tencies are then minimized with a quadratic penalty function.

For the quadratic penalty function in general, large
weights are required to find accurate solutions (Bertsekas
2003). The relation between weights and solution accuracy
is not known a priori, motivating the setting of weights at
arbitrarily large values. These large weights, however, intro-
duce ill-conditioning of the problem and cause computational
difficulties (Michalek and Papalambros 2005a; Tosserams
2004). Another property of the quadratic penalty function is
that it is not separable, and therefore, subproblems are depen-
dent. This dependency is addressed by a coordination strategy
that defines an iterative process of solving subproblems and
exchanging targets and responses. This iterative coordination
procedure, possibly nested for more than two levels, heavily
impacts computational cost, especially for higher accuracies
(Tzevelekos et al. 2003; Tosserams 2004).

To overcome the weight setting problem, particularly
when targets cannot be fully met, Michalek and Papalambros
(2005a) proposed a nested solution algorithm that finds the
minimal required weights for a solution within user-specified
inconsistency levels. The inner loop of the algorithm solves
the decomposed ATC problem with a coordination scheme.
The outer loop then updates the penalty weights based on
information of the inner loop. This process is repeated until
the desired inconsistency level is reached. Numerical experi-
ments show improved but still large computational effort for
solving the inner loop problem.

To reduce the costs of inner loop coordination, Lassiter
et al. (2005) have proposed an alternative relaxation. Instead
of the nonseparable quadratic penalty function, they pro-
posed the separable ordinary Lagrangian function, so that
subproblems of the inner loop become independent and must
be solved only once. Consistency is completely handled by
the outer loop parameter updates. Drawback of this method
is that subproblems can become unbounded. Still, this ap-
proach is very promising and is complementary to the one
proposed here.

In this article, we propose and investigate ATC problem
relaxation with an augmented Lagrangian penalty function
(see, e.g., Bertsekas 2003). By means of the augmented La-
grangian function relaxation, ill-conditioning is reduced for
the ATC problem of the inner loop because accurate solutions
can be obtained for smaller weights.

Inthe augmented Lagrangian relaxation, the subproblems
are still dependent. The inner loop requires an iterative co-
ordination scheme to solve the coupled ATC subproblems.
To reduce the cost of inner loop coordination, we apply the
alternating direction method of multipliers (Bertsekas and

Tsitsiklis 1989). For this method, the inner loop coordina-
tion reduces to solving each subproblem only once.

This article is organized as follows. First, the decompo-
sition procedure for ATC is presented. Then the quadratic
penalty function, the augmented Lagrangian penalty func-
tion, and the alternating direction method of multipliers for
ATC are presented, followed by numerical results obtained
from experiments on a number of example problems. Finally,
these results are discussed and main findings are presented.

2 ATC problem decomposition

In preparation for the penalty relaxation method, a general
procedure for decomposing hierarchical problems into
ATC subproblems is given first. The notation used here
differs slightly from the work of Michalek and Papalambros
(2005b) and more clearly illustrates the penalty relax-
ation technique for ATC. Equivalence of the two notations
is shown in Appendix.

Consider the general all-in-one (AIO) system design
problem:

min f(z)
subject to g(z) < 0, (1)
h(z) = 0,

where z is the complete vector of all design variables, f is the
overall objective function, g and h are all the inequality and
equality constraint functions, respectively. Unless indicated
otherwise, all vectors are column vectors.

Assume that the AIO problem (1) has an underlying hi-
erarchy of N levels with a total of M elements (see Fig. 1 for
an example with the ATC index notation). In the following,
the index ij indicates that a quantity is relevant to element j
atlevel i, wherei =1,...,Nand j=1,..., M.

Each element has a number of local variables x;;, and
elements are coupled through target variables t;;, so z =
[X11s - Xnus 822, .. typy] (see Fig. 2). Assume further-
more that the objective function is additively separable by el-
ement f = f11 + ...+ fyuy, and that constraints are separable

Element index j

Level index i
-
I
N

o [5] () (o

Fig. 1 Example hierarchical problem structure
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Fig. 2 Variable allocation in example hierarchical problem structure

by element g = [g11,...,gvm] and h = [hy, ..., hyy].

The structured AIO problem is then defined as:

N
min DO it k- b+ ke,

i=l jed; 5
subject to g;; (X;j, tij, tit1)k; > ...,t(i+1)kcij) <0, )
hi (X, tij, tir kg -« - t(i+1)k6[j) =0,

Vie&,i=1,...,N,

where x;; is the vector of local variables of element j at level
i; t;; is the vector of target variables shared by element j at
level i with its parent at level i — 1; &; is the set of elements
atlevel i (e.g., &3 = {4,5,6} inFig. 1); 6;; = {k1, ..., kcl.].}
is the set of children of element j atlevel i (e.g., 622 = {4, 5}
in Fig. 1); ¢;; is the number of children of element j at level
i; fij is the local objective of element j at level i; g;; is the
vector of inequality constraints of element j at level i; h;; is
the vector of equality constraints of element j at level i.

Element j atleveli of the hierarchy shares target variables
t;; withits parent. Response copies r;; are introduced to make
the objective functions and constraint sets fully separable
with respect to the decision variables of the problem. The
response copies are forced to match the original targets by
consistency constraints:

3)

where the constraint values ¢;; are the inconsistencies be-
tween targets for element j at level i and its responses. Al-
though the objective and constraint functions can now be
separated by element, the consistency constraints cannot and
are therefore the coupling constraints of the problem . The
modified AIO problem after introduction of response copies
and consistency constraints is given by:

cij =t —r; =0,

N
_min Y > fii(Xij)
Xi1-oXNM j=1 je&;
subject to g;; (X;;) < 0,
h;; (Xij) =0,

“4)

where X;; = [X;j, Xij, tit ks - -
Vied&,i=1,...,N,

LRV

Note that the solution set to problem (4) solves the original
structured problem (2).

For decomposition purposes, inconsistencies between
targets and responses are allowed. By allowing inconsis-
tencies, subproblems will have feasible solutions even for
unattainable targets. Ideally, these inconsistencies are zero at
the solution, and therefore, they are minimized with a penalty
function 7 which is added to the objective. This procedure
is also known as relaxation of the problem. The relaxed AIO
problem is given by:

_ min
X11seees XNM

N
DN &) + e, ... Xym)
i=l jed;
subject to g;;(X;;) <0,
h;;(xij) =0,
where X;; = [X;j, Xij, tis ks -+ - » t(i+1)kc,.j],
Vie&,i=1,...,N,

&)

with ¢ = [ecop, ..
sistencies.

For a general penalty function 7, the problem can be de-
composed by defining subproblems P;; as solving the relaxed
AIO problem (5) for only a subset of decision variables X;;.
The resulting general subproblem P;; is given by:

.,cyp] being the vector of all incon-

H;lin flj(ilj) =+ T[(c(illa cees iN/V[))
Xij
subject to g;;(X;;) <0,
h;; (xij) =0,
where X;; = [Xij, Tij, it 1)k s - -

©)
.

. t(z—&-l)kyij
Note that subproblems are in general not separable due to the
penalty function 7 (c) which depends on variables of more
than one subproblems. Through the nonseparable penalty
function, consistency between subproblems is maintained.
A coordination strategy has to be defined that specifies how
and when the coupled subproblems are to be solved.

For ATC, the quadratic penalty function is used for re-
laxing the problem:

N

m(e) =mqe) = woe 3=>_ > Il wijoci I3

i=2 jeé;

(N

where w = [W22, ..., Wy ] is a vector of penalty weights,
and the o symbol is used to denote a term-by-term multiplica-
tion of vectors such that[ay, ap, ..., a,] o [b1, by, ..., b,] =
[a1b1, azba, . .., a,b,]. The quadratic penalty function is
nonseparable due to the quadratic terms.

In each subproblem, only the penalty terms have to be
included that depend on the inconsistencies of a subproblem
with its parent and its children; the remaining terms are con-
stant with respect to the subproblem’s variables X;; and can
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be dropped. For an intermediate-level subproblem P;;, this
gives:

7Q(Fijs bt ks -+ s it Dk, ) =
I wijoeij lI3 + Z I Witk © €t 1=
=
B ®)
Il wij o (t;j —rij) ”2
+ Y Warnk o (G — i) 13,
ke
which gives the general ATC subproblem P;;:
ninn fii i+ Il wij o (tij —rij) |13
ij
+ 3 I Witk © (Gnk — Fa+ne) 13
ket ©)
subject to g;;(X;;) <0,
h;;j(xij) =0,

NE

where X;; =[x, rij, tit kg - - s

B AR

Information flows to and from a subproblem P;; are depicted
in Fig. 3.

The expanded use of local objectives is not explicitly in-
cluded in the convergence proof for ATC coordination strate-
gies of Michelena et al. (2003). However, with convex local
objectives and constraints, the convergence proof still holds
for the notation presented here.

3 Augmented Lagrangian relaxation for ATC

One of the most widely used penalty functions is the aug-
mented Lagrangian penalty function (Bertsekas 2003):

maL(e) = viet [ woe |3

N
T 2
Z Z(V,;,-Cij-i- I wij ocij [I12),

i=2 jes&;

(10)

Optimization inputs Optimization outputs

[

[

[

\

\
from parent: | to parent:

\

\

!

targets y y responses

Subproblem P;

local variables X;

local objective f,.j
local constraints g;, h//'

from children: to children:

responses targets

t(i+1)k

|
|
|
|
Fis 1)k 1
|
|

Fig. 3 Information flow for analytical target cascading (ATC) subprob-
lem P;; of (9)

where v = [v22, ..., viyu] is the vector of Lagrangian mul-
tiplier parameters. One can easily observe that for v = 0, the
augmented Lagrangian function (10) reduces to the quadratic
penalty function currently used for ATC, (7).

Again, in subproblem P;;, only terms that depend on its
variables have to be included:

TAL(Tij, Cit1)kys - - - t(i+1)/<qj) =
=i+ Y Vipnetaroet | wijocij I3
kG?a”,'j
+ Z I Witk © Carig 3=
ke‘ﬁj
I T 4 ot — 1) |12
Vii¥ij + Z Yi+1)k G+Dk+ |l wij o (t;; —rij) ||2
ke%ﬂ,-j
+ D I Warnk o (trnk — Tarnp) 5 -
ke,

an

Note that the linear terms in the subproblem depend only
on responses to its parent and targets to its children, and not
on the inconsistencies. The reason for this is the additively
separability of the linear terms: vie)=vit—r) =vit—
vIr. Since only terms that depend on X; ;j have to be included
in P;;, one of the two terms, either vTt or —vTr, is constant
and may be dropped.

With the augmented Lagrangian relaxation, the general
subproblem P;; is given by:

T

Z Virnrba+nk
ke‘ﬁj

+ Il wij o (t;; —rij) I3

+ > 1 Warnk © (trnk — Fapne) 13

keti

subject to g;;(X;;) <0,

h;; (Xij) =0,

where Xij = [Xij, Xij, tir kg - - - t(i+1)kfij]‘

min f;;Xij) — v};rij +

12)

For v = 0, subproblem P;; reduces to the ATC subproblem
formulation of (9).

Because only linear terms are added to the objective
function, the inner loop coordination schemes presented by
Michelena et al. (2003) can be used to solve the augmented
Lagrangian relaxed ATC subproblems of (12).!

Unless stated otherwise, the reader is referred to
Bertsekas (2003) for the following discussion of augmented
Lagrangian relaxation techniques and parameter update
strategies.

! For convergence, convexity of the objective and constraint func-
tions as well as separability of constraints are required. Subproblems
with the augmented Lagrangian penalty function have convex objec-
tives, and therefore, the convergence proof of Michelena et al. (2003)
also applies to the ATC subproblems under the augmented Lagrangian
relaxation.
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3.1 Relaxation error

An important observation is that the solution to the relaxed
problem (5) for the augmented Lagrangian function is not
equal to the solution to the original problem (2), i.e., an error
is introduced by relaxation. Only for exact penalty functions
do both solutions coincide. However, many of these exact
penalty functions exhibit difficult properties from an algo-
rithmic point of view such as nondifferentiability at the solu-
tion and unknown minimal parameter values. Inexact penalty
functions, like the augmented Lagrangian, have more favor-
able numerical properties but introduce the aforementioned
relaxation error.

Under the augmented Lagrangian function, the relaxation
error can be reduced by two mechanisms:

1. Selecting v close to A
2. Selecting w to be very large

Here A} is the vector of Lagrange multipliers associated
with the consistency constraints (3) at the optimal solution
of the modified AIO problem (4).

The latter mechanism was used for ATC by Michalek
and Papalambros (2005a) because only the quadratic part of
the augmented Lagrangian function was utilized. A nested
algorithm for automatic weight selection was implemented
to arrive at solutions with a desired inconsistency level to
avoid setting arbitrarily large weights. In the inner loop of the
algorithm, the decomposed ATC problem is solved for fixed
penalty weights, while the outer loop updates the penalty
weights based on information of the inner loop.

Updating weights takes very little time, but a large com-
putational effort is required for solving the decomposed op-
timization problem of the inner loop. We show here that the
augmented Lagrangian form of ATC significantly reduces the
computational costs required to solve the inner loop prob-
lem. Large costs for the quadratic penalty function are in-
curred because weights must approach infinity for accurate
solutions introducing ill-conditioning of the problem (as ob-
served by Michalek and Papalambros (2005a)). Through the
augmented Lagrangian, ill-conditioning of the problem can
be avoided by using an appropriate strategy to find v arbitrar-
ily close to multipliers A} and keeping the weights relatively
small.

3.2 Parameter update schemes

The success of the augmented Lagrangian relaxation depends
on the ability of the outer loop update mechanism to drive v
to A. A linear updating scheme for selecting new terms v for
the next outer loop iterate (k + 1) is given by:

yEED — v 4 ow®) o W o C(K), (13)

where index (x) refers to the outer loop iterate number. New
estimates v*D for the optimal Lagrange multipliers A are
computed from the old estimates v®), weights w®) and
inconsistencies ¢() at the solution to the inner loop ATC
problem at iterate (x). The combination of updating scheme

(13) and the augmented Lagrangian penalty function is also
known as the method of multipliers.

Under convexity assumptions, the method of multipliers
can be shown to converge to the optimal solution as long as
the sequence wO w o w® g nondecreasing. Often a
linear update scheme for w is used:
wi D = gwt), (14)
where 8 > 1 is strictly necessary for convex objective func-
tions, but typically 2 < 8 < 3 is recommended to speed up
convergence. For nonconvex objectives and larger values of
w, the quadratic term of the penalty function also acts as a
local “convexifier.”

The method of multipliers is proven to converge to the
optimal solution of the original design problem (4) (see
Bertsekas 2003), whereas for the weighting update method
proposed by Michalek and Papalambros (2005a) for ATC
with the quadratic penalty function, no convergence proof is
available.

3.3 Method of multipliers for ATC

The method of multipliers iterative solution algorithm for
ATC under the augmented Lagrangian relaxation is given
below.

Algorithm 1: Method of Multipliers for ATC

Step O: (Initialize) Define decomposed problem and ini-
tial solutions estimates x@, r©® and t© . Setx = 0, and
define penalty parameters for first iteration v(!) and w(!.

Step 1: (Inner loop: solve ATC problem) Set k = k + 1,
solve the decomposed problem with fixed v?) and w*),
and obtain new solution estimates x*, r®  and t®,

Step 2: (Check convergence) If outer loop converged, set
k = K and stop; otherwise proceed to step 3.

Step 3: (Outer loop: update penalty parameters) Update
penalty parameters to v«TD and w®*D using (13)
and (14) and results from step 1, and return to step 1.

level 1 H level 1 |
I I
| | !
i level 2 | i level 2 i
! — | ! !
i y 3 i T
i level 3 | level 3

b Nested top-down

o
Z

ested bottom-up

Fig.4 Convergent coordination schemes for solving the inner loop ATC
problem (Michelena et al. 2003)
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As stated before, available convergent ATC coordination
strategies can be used to solve the inner loop ATC problem
with the augmented Lagrangian relaxation.

Current inner loop coordination strategies for ATC re-
quire an iterative coordination scheme. This coordination
scheme, possibly nested for more than two problems, defines
in what order subproblems are solved and when targets and
responses are communicated. Figure 4 depicts two conver-
gent inner loop coordination strategies for three-level prob-
lems. In the nested bottom-up scheme of Fig. 4a, the lower
two levels 2 and 3 have to converge to a solution before their
responses are sent to the top level 1. When responses are sent
up, level 1 is solved once and updated targets are sent to the
bottom two levels. This process is repeated until all three lev-
els have jointly converged to the solution of the inner loop
problem. The nested top-down scheme of Fig. 4b is the mir-
ror image of the nested bottom-up scheme: levels 1 and 2
have to converge before sending their targets to level 3.

3.4 Alternating direction method of multipliers for ATC

To reduce the computational effort required for the inner loop
solution coordination, we propose the use of the alternat-
ing direction method of multipliers (Bertsekas and Tsitsiklis
1989). The alternating direction method prescribes to solve
each subproblem only once for the inner loop of the method
of multipliers instead of solving one of the iterative inner
loop coordination schemes of Fig. 4.

Two convergent ATC subproblem solution sequences for
convex problems are depicted in Fig. 5.2 For convergence to
the optimal solution, subproblems that share variables must
be solved sequentially; they cannot be solved in parallel. Sub-
problems that are not coupled, however, can be solved in
parallel. For the hierarchical ATC structure, subproblems at
the same level can be solved in parallel, but subproblems
at adjacent levels have to wait for the target and response
updates that are being computed (see Fig. 5a for a possible
level-by-level sequence).

An interesting observation for multilevel hierarchical
problems is that subproblems at all odd levels only depend
on targets and responses from subproblems at even levels.
Therefore, all subproblems at odd levels may first be solved
in parallel, after which all subproblems at even levels can be
solved, also in parallel, with the updated targets and responses
determined at the odd levels. With this odd—even sequence
(depicted in Fig. 5b) parallelization of subproblem solution
can be exploited to reduce computational time.

The alternating direction method of multipliers converges
to the solution of (4), assuming convexity of objective and
constraint functions and fixed penalty weights. In contrast
to the ordinary method of multipliers, increasing weights w
has a negative effect on convergence. Setting weights too
small, however, may result in unbounded subproblems. For
subproblems with a convex local objective, weights w may

2 See Bertsekas and Tsitsiklis (1989) for more specific conditions for
convergence of the alternating direction method of multipliers.

level 1
3 T |
I I
level 2 | level 1 level 3 ||
I I
I I
o _________.I
, !
level 3 level 2

a Level-by-level b 0dd-even levels

Fig. 5 Convergent inner loop solution sequences for the alternating
direction method of multipliers

be set to a relatively small value and need not be updated
in the outer loop. For nonconvex objectives, the “convexify-
ing” contribution of the quadratic term is still required for
convergence.

4 Numerical results

Three penalty functions and penalty parameter update
schemes are investigated with respect to their numerical
performance:

QP Quadratic penalty function with the weight up-
date method of Michalek and Papalambros
(2005a)

AL Augmented Lagrangian function with method of
multipliers

AL-AD Augmented Lagrangian function with alternat-
ing direction method of multipliers

For the QP and AL formulations, the nested top-down coor-
dination scheme (see Fig. 4) is used for the inner loop. For
AL-AD, we use the odd—even sequence depicted in Fig. 5b
for the inner loop.

QP is evaluated here as the baseline case representing
the state-of-the-art in ATC solution algorithms. As input, the
weight update method requires desired inconsistencies which
can be set by the user.

Stopping criteria The outer loop solution procedure for all
three methods is considered converged when the reduction of
inconsistencies at two successive solution estimates is suffi-
ciently small:
I e® — e o< 1, (15)
with ¢®) denoting the vector of all inconsistencies at out-
er loop iterate (x), and T some user defined termination
tolerance.

For the inner loop of QP and AL, convergence is checked
by monitoring the decrease in the total objective function f
of the relaxed problem (5). The inner loop is said to have
converged when the difference in objective function between
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two consecutive inner loop iterations is smaller than some
termination tolerance Tyc:

If® — D] < 1y, (16)

with (&) the current inner loop iterate, and where we use
Tare = 7/10.

Subproblem solver settings Subproblems are solved using
the TomLab (Holmstrgm et al. 2004) solver NPsol for Mat-
Lab 6.5.0. (Mathworks 2002). Analytical gradients of the ob-
jectives and constraints are supplied explicitly to the solver.
Default TomLab solver settings are used; only the maximal
number of iterations is set to 10°.

Performance indicators Three measures are used to quan-
tify numerical performance: accuracy, overall computational
cost, and the average number of subproblem redesigns. Ac-
curacy is defined as the absolute solution error e:
e =]z~ 2% |, (17
where z* is the known optimal solution, and 2% is the solu-
tion found by ATC. Overall computational cost is measured
by the total number of function evaluations reported by the
subproblem solver NPsol. Finally, the number of subproblem
redesigns is the average number of times a subproblem is op-
timized during solution of the problem. From a practical point
of view, one seeks to minimize this number of redesigns. The
following examples show that the use of the alternating di-
rection method of multipliers (AL-AD) significantly reduces
this number of redesigns.

Note that we do not compare computational results for
ATC to the AIO solution of the example problems since im-
proving computational efficiency by decomposition is not the
aim here. The examples are used to illustrate the differences
in computational costs between QP, AL, and AL-AD.

4.1 Example 1: geometric programming problem 1

This first example is a two-level decomposition of the geo-
metric programming problem (18) (Tosserams 2004). The

103
—— QP
” ©- AL
& -+ AL-AD
£ 10*
<
>
()
=1 O
2 o °© .
g 10° -7
B=1 + 7
107! 1072 1073 104 10

solution error

a Computational cost

problem is a reduced version of a problem used by Kim
(2001), which is used later below as the second example.

subject to g1 = (Z3_2 + Zﬁ)zs_2 —-1=<0
g = (2429257 -1<0
2 2 2y =2 _
hi=(53+2z,"+z5)z; —1=0
h2=(z§+zg+z%)22_2—1=0
21,22,...,27 20

(18)

The optimal solution (rounded) to this problem is z* =
[2.15,2.06, 1.32,0.76, 1.07, 1.00, 1.47] with all constraints
active. This solution and also solutions to the other problems
are obtained by solving the AIO problem (18) with NPsol.

The decomposition of the problem used here consists of
a top-level element 1 with one child element 2 at the bot-
tom level. The target variable linking the two elements is z5.
Variables z1, z3, z4 are allocated to element 1, along with
the objective f1 and constraints g1, #1. Similarly, variables
72, 26, 27, Objective f>, and constraints g, h> are allocated
to element 2. Note that for the example problems presented
in this article, alternative, perhaps more obvious, decomposi-
tions are possible. The ones selected here were merely chosen
to illustrate the computational differences between QP, AL,
and AL-AD for a given problem decomposition.

Figure 6 displays the computational costs for finding the
solution for the three different methods as a function of the
absolute solution error e. Termination tolerances are set to
T =1072,1073, 107, 107> (markers from left to right). For
all experiments, initial penalty parameters are v(!) = 0 and
w) =1, and the starting point is 20 =13,3,3,3,3,3,3].
For QP, the desired inconsistencies for the four experiments
were set to ¢ = 10_2, 1()_2'5, 1()_3, 1()_3'5; for AL, we use
B = 2; and for AL-AD, we take g = 1.

The difference between the three strategies is large. AL-
AD and AL perform much better than QP. Compared to
QP, AL-AD reduces overall computational cost by factors
10-100, with the reduction becoming larger for more accu-
rate solutions. Note that for AL and AL-AD, the generated
sequences {v“)} converge to the optimal Lagrange multipli-
ers A} of the consistency constraints ¢ in the modified AIO
problem (4).

3 —— QP
10 ©- AL
-+ AL-AD
2
.20
g 10?
el
2 0-°
o~ - yo--"
T
10! 7
107! 1072 1073 104 107

solution error

b Number of redesigns

Fig. 6 Example 1: computational cost and average number of redesigns as a function of the solution accuracy
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The results in Fig. 6 show a two-step reduction in over-
all computational cost. The first reduction is realized by us-
ing the augmented Lagrangian function (from QP to AL).
The second reduction is realized by the alternating direction
method, resulting in a reduction of inner loop subproblem op-
timizations (from AL to AL-AD). Subproblems for AL-AD
have to be optimized for only a relatively small number of
times (*20) to arrive at accurate solutions, in contrast to QP
where a much larger number of subproblems optimizations
is required (*1000).

4.2 Example 2: geometric programming problem 2

The second example problem is a three-level decomposition
of posynomial geometric programming problem (19), earlier
used by Kim (2001), Tzevelekos et al. (2003), Michalek and
Papalambros (2005a), and Tosserams (2004).

min  f =27 +23
215214
subject to g; = (z3 +Z%)ZS -1<0
gz—(z5+z6 )zZ -1=0

= (3 +zz —1<0
g4 = (5" + 22z —1<0
g5 = (z%l +z2p )sz —-1=<0
g6 = (z%1 + z%z)za —1<0
=2 +z;° +z§)z;2 ~1=0
hz = (z5+26+z%)z% -1 _0
(Zg +29 +z10 +z“)z3 —1=0
h4_(Z11+Z12+Z13+Z14)Z6 —1=0
21,22, +.-,214 > 0
(19)
The unique optimal solution to this problem (rounded) is z* =
[2.84, 3.09, 2.36,0.76, 0.87, 2.81, 0.94, 0.97, 0.87, 0.80,
1.30, 0.84, 1.76, 1.55] with all constraints active.

The decomposition selected for this problem consists of
five elements on three levels: a top-level element (1) with two
children (2 and 3) at level 2, each with one child (4 and 5,
respectively) at the bottom level. The target variables linking
element 1 and its children 2 and 3 are z; and z2, respectively.

108
—— QP
2 107 ©- AL
£ -+ AL-AD
2 106
g
(5] 0O
1=}
£ 10° o~
2 o
Z 104 -
= P -
-
103
10° 107! 1072 1073 104

solution error

a Computational cost

Variables z3 and zg link elements 2 and 4, and 3 and 5, respec-
tively. Furthermore, elements 2 and 3 are coupled through
variable zs5, which is coordinated by element 1. Elements 4
and 5 share variable 711, which is also coordinated by element
1. The remaining variables z4, z7, 28, 29, 210, 212, 213, Z14 are
local variables of elements 2, 3, 4, 4, 4, 5, 5, 5, respectively.
The objective is allocated to element 1, inequality constraints
g1, 82, 83, 84, 85, 86 are allocated to elements 2, 3,4, 4,5, 5,
respectively, and equality constraints &y, hy, h3, h4 are allo-
cated to elements 2, 3, 4, and 5, respectively.

Figure 7 displays the overall costs and the number of re-
designs as a function of the absolute solution accuracy e.
Termination tolerances are set to 7 = 1072, 1073, 1074,
10~ (markers from left to right). Initial penalty param-
eters are v(D =0 and w) =1, and the feasible ini-
tial solution estimate is z® = [5, 5, 2.76, 0.25, 1.26, 4.64,
1.39,0.67,0.76, 1.7,2.26, 1.41, 2.71, 2.66], which is also
used by Michalek and Papalambros (2005a). For QP, we
have ¢ = 1072, 10723, 1073, 1073-3; for AL, we take g =
2; and for AL-AD, we use 8 = 1.

A large reduction in computational cost and redesigns can
be observed for AL-AD when compared to QP (factors of
10-1,000), which becomes larger as solution errors become
smaller. For both cases, again we see the two-step reduc-
tion from QP via AL to AL-AD. The augmented Lagrangian
relaxation causes the reduction from QP to AL, and the non-
iterative inner loop of AL-AD reduces the average number of
subproblem optimizations from AL to AL-AD, resulting in
another reduction of overall costs. Again, the Lagrange mul-
tiplier estimates for the consistency constraints as generated
by AL and AL-AD converge to the same values as obtained
by solving the modified AIO problem directly.

4.3 Example 3: geometric programming problem 2
with attainable top-level targets

In the previous example, the top-level objective f = z% + z%
can be seen as deviations of system responses rj| = [z1, z2]
from fixed top-level targets t;; = [0, 0]: f =|| t;1 —ryg ||%.
Since the top-level targets cannot be met, inconsistencies
between elements of the hierarchy can never become zero
for finite weights for QP. However, when top-level targets
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Fig. 7 Example 2: computational cost and average number of redesigns as a function of the solution accuracy
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Fig. 8 Example 3: computational cost and average number of redesigns as a function of the solution error for geometric programming problem

with attainable targets

are attainable, inconsistency-zeroing weights exist. Actually,
any positive valued weight would suffice (see Michalek and
Papalambros 2005a) to arrive at a consistent system.

To investigate the impact of attainable top-level targets
on the performance of the three update strategies, targets for
problem (19) are set to t;; = [2.9,3.1]: f = (z1 — 292+
(zo — 3.1)%. Note that the optimal solution to the AIO prob-
lem for attainable targets is only unique in z; and z3 (z} =
2.9, z5 = 3.1). The remaining variables are nonunique and
may be chosen arbitrarily as long as the constraints of (19)
are satisfied.

Furthermore, the Lagrange multipliers of the consistency
constraints (3) are all zero at the solution. This follows im-
mediately from the first-order optimality condition. Since,
for attainable targets, the gradient of the objective is zero
at the solution, the Lagrange multipliers of all constraints,
including the consistency constraints, must be zero.

This provides an interesting observation when looking at
the augmented Lagrangian penalty function (10). As argued,
the augmented Lagrangian relaxation is accurate when the
multiplier estimates are close to the optimal multiplier values.
Since these optimal values are zero for attainable targets,
the augmented Lagrangian function reduces to the quadratic
penalty function when the optimal multiplier values are used.
For attainable top-level targets, the augmented Lagrangian
approach AL is expected to no longer outperform QP.

Figure 8 displays the overall costs and the coordination
efficiency for attainable targets as a function of the solu-
tion error? Termination tolerances are setto T = 10_2, 10_3,
10~#, 10~ (markers from left to right). Initial penalty param-
eters are v{D = 0 and w1 = 1, and the feasible initial so-
lution estimate is again z©) = [5, 5,2.76,0.25, 1.26, 4.64,
1.39, 0.67, 0.76, 1.7, 2.26, 1.41, 2.71, 2.66]. The desired
inconsistencies for QP are set to ¢ = 1072,10725, 1073,
10739 for AL, we take 8 = 2;and for AL-AD,weuse 8 = 1.

As expected, the results of QP and AL are very similar.
However, the difference in cost for QP and AL compared
to AL-AD is significant (factor 10-20 reduction), even for

3 Because only z; and z; have unique solutions, the solution error e
here only includes deviations from [z}, z3] = [2.9, 3.1].

attainable targets. Apparently, the more frequent updates of
the Lagrange multiplier estimates (each time all subproblems
have been solved) are able to find an accurate solution faster
than the iterative inner loop coordination strategies.

For the iterative inner loop strategies QP and AL, no outer
loop updates are required since the Lagrange multipliers are
initially at their optimal values (zero). At convergence of the
inner loop, all inconsistencies are zero and the algorithm can
be terminated. This explains why the computational costs of
QP and AL for solving the problem with attainable targets are
lower than the costs for unattainable targets (compare Figs. 8
and 7). For unattainable targets, ATC has to search for the
optimal penalty parameter values, which takes a number of
outer loop updates, and therefore more computational effort.

For the noniterative inner loop strategy AL-AD, how-
ever, the inner loop is not solved until convergence. Instead,
in the inner loop each subproblem is only solved once. As
a result, inconsistencies are typically nonzero after an inner
loop. This causes the Lagrange multiplier updates in (13)
to become nonzero and to initially move away from their
optimal (zero) values. Upon convergence of the outer loop,
the Lagrange multipliers finally become zero again. Appar-
ently, the additional freedom in Lagrange multiplier updates
in AL-AD reduces the overall computational cost of ATC
when compared to AL.

An important characteristic of all three ATC methods is
the ability to find optimal and consistent designs even when
the solutions to the AIO problem and, therefore, the decom-
posed problem, are nonunique. The optimal solution to the
above example problem is only unique in 2 of the 14 design
variables, and ATC finds an optimal, feasible, and consistent
design, even for the nonunique optimal target and response
values at the lower levels.

4.4 Example 4: structural optimization problem

The fourth example is a structural optimization problem
based on the analytical mass allocation problem of Allison
etal. (2005). The goal of the structural optimization problem
is to find the dimensions of the members that minimize the
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mass of the loaded structure depicted in Fig. 9a. Constraints
are posed on stresses, deflections, and transmitted forces.

The above structure consists of three cantilever beams
clamped at one end and, at the other end, connected to each
other by two tensile rods. Beams and rods are assumed to
have circular cross-sections. Optimization variables of the
structural optimization problem are the diameters of the
three beams d;,i = 1,2, 3 and the two rods d;. j, j =1, 2.
The lengths of beams and rods L = 1 m are fixed, as well
as the applied vertical load at the end of beam 1, F| =
1000 N.

The AIO structural optimization problem is defined as:

3

2
min Z mi + Z my,
di,dy,d3,dr1,dr2 “ 1 o

subjectto g1, =0p,; —0 <0 i=1,2,3 (20)
gzijzo’a’j—o_'fo j=1,2
Bi=Fi—-F<0 i=1273
ga=fi—fi<0

where m; is the mass of beam i, m; ; is the mass of rod j, o ;
is the bending stress in beam i, 0, ; is the axial stress in rod
J» Fti 1s the force transmitted at the clamped end of beam i,
and fi is the vertical deflection of beam 1. Constraint limits
for stress (o), transmitted force (F;), and vertical deflection
of beam 1 (f1) are set to 127 -10 6 N/m?, 400 N, and 27 mm,
respectively. The optimal solution to this problem (rounded)
is z* = [0.0346, 0.0349, 0.0294, 0.0046, 0.0028].
Masses m; and m;, ; are defined by:

m; = %d}Lp i=1,2,3 Q1)
m=2d? Lp  j=1.2 (22)
rj = g o J=15

with p the density of the material (set to p = 2700 kg/m?).
Expressions for the bending stresses, oy, ;, axial stresses,
03, j» beam deflections, f;, and rod elongations f; ; are avail-

able from elementary beam theory and the free-body diagram
of Fig. 9b:

32L(F; — F;
Ob.; =M i=1223 (23)
md;
64L° (F; — Fit1)
= =123 24
i 3rEd} &4
4Fjy
oaj=—0  j=12 (25)
ndr,/
4Fj 1L
fl‘,j ﬂEdr%] .] ( )

with F;,i = 2, 3 the axial force inrod i — 1, F; = 1000 N

the vertical load applied at the end of beam 1, and E the

Young’s modulus of the beams and rods (set to E=70 GPa).
From connectivity of members, we also have:

hy;=fi—finn—fri=0 i=12 27)

where f; is the vertical deflection of beam i, and f; ; is the
elongation of rod i.

The problem is decomposed into three elements j =
1,2, 3 at three levels, each designing a part of the structure.
The top-level element 1 optimizes for beam 1 and rod 1 di-
mensions (X;1 = {d1, dr.1}), intermediate-level element 2 op-
timizes for beam 2 and rod 2 dimensions (x22 = {d2, d;2}),
and lower level element 3 optimizes the dimensions of beam
3 (x33 = {d3}). Axial force, F>, and deflection of beam 2,
f2, couple element 1 and its child element 2 (see Fig. 9b).
Similarly, axial force, F3, and deflection of beam 3, f3, cou-
ple element 2 and its child element 3. In this example, these
shared variables are not design variables of the original prob-
lem, but are artifacts of decomposition. In the AIO formula-
tion of (20), they can be solved for explicitly, but in the ATC
decomposition of the problem, they need to be added to the
set of optimization variables.

Ms Fis Fs
— C 1 i
| T f
Fy '3 3
‘d3 J M, Fio Fs F,
+=7 L ] T
| F, f,  F3y'f f,
—t |
d F, F
2 N, M, t1 2
| C SN £
4 L f1 F2 f1
| F1

a Structure

Fig. 9 Three-bar two-rod structural design problem

b Freebody diagram
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Fig. 10 Example 4: computational cost and average number of redesigns as a function of the solution error for structural optimization problem

The objective mass functions are allocated to the ele-
ments as fi; = mi +my 1, f20 = my + me,and f33 = m3.
Inequality constraints limiting stresses (g;, €»), transmitted
forces (g3), and deflection of beam 1 (g4) are allocated
as gi1 = {g1.,1, 82.1, 83,1, 84}> €2 = {g1.2, §2,2, 83,2}, and
233 = {g1.3, g3.3}. Connectivity constraints h; are allocated
ashy; = {h11} and hyy = {hy2}.

Figure 10 displays the overall costs and the coordina-
tion efficiency for attainable targets as a function of the
solution error.* Termination tolerances is set to T = 10_2,
1073,1074,107 (markers from left to right). Initial
penalty parameters are v(!) =0 and w) = 1, and the in-
feasible initial solution estimate is z© = [0.035, 0.035,
0.03, 0.003, 0.003]. The desired inconsistencies for QP
are set to ¢ = 1072, 1072, 1073, 1073-3; for AL, we take
B = 2; and for AL-AD, we use 8 = 1.

Again, a large reduction in computational cost can be ob-
served for AL-AD when compared to QP (factors of 10-100),
which becomes larger as solution errors become smaller. For
both cases, again we see the two-step reduction from QP via
AL to AL-AD. Again, the multipliers obtained with AL and
AL-AD converge to the same Lagrange multipliers of the
consistency constraints as in the modified AIO problem.

5 Discussion

All experiments show that great computational benefits can
be gained by using the augmented Lagrangian relaxation with
the alternating direction method of multipliers (AL-AD). The
first cause of reduction is the avoidance of ill-conditioning
due to large weights. With the augmented Lagrangian relax-
ation, weights do not need to approach infinity for the error
to go to zero, which is the case for the quadratic penalty func-
tion currently used for ATC. The second reduction in costs is
obtained by reducing the inner loop coordination effort. With
the alternating direction method, the iterative inner loop co-
ordination for ATC is reduced to solving each subproblem
only once. Although more outer loop iterations are required,

4 The solution error is determined for scaled variables Zggled. The
vector of scaling factors is s = [102, 102, 102, 103, 103] such that
Zscaled = S © Z, and Z° [3.46, 3.48, 2.94, 4.56, 2.79].

scaled —

the total number of subproblem optimizations is reduced with
AL-AD.

For the iterative inner loop coordination of AL, many con-
vergent strategies have been proposed. Besides the iterative
ATC nested coordination strategies presented by Michelena
et al. (2003) (e.g., Fig. 4), Bertsekas and Tsitsiklis (1989)
present the nonlinear Gauss—Seidel algorithm, which is also
called the Block Coordinate Descent algorithm (Bertsekas
2003). By establishing that inner loop ATC problems can
be solved with the nonlinear Gauss—Seidel algorithm, one
is no longer restricted to the nested coordination strategies
of Michelena et al. (2003). Top-down iterative scheme 1 of
Tzevelekos et al. (2003) actually is an implementation of
the Gauss—Seidel algorithm and therefore can be proven to
converge to the optimal solution of the inner loop problem.
The odd—even scheme of Fig. 5b applied iteratively is also
a convergent implementation of this algorithm. Note that for
two-level problems, all of the above coordination strategies
are equal and iterate between solving the top and bottom
level.

Another convergent iterative coordination strategy is
presented by Ruszczynski (1995): the diagonal quadratic
approximation (DQA) method, which is a modified version
of the nonlinear Jacobi algorithm (Bertsekas and Tsitsiklis
1989). The DQA method approximates the interaction of
subproblems within the inner loop by approximating the
quadratic terms of the augmented Lagrangian. As a result,
inner loop subproblems are independent and can be solved
in parallel, also allowing nonhierarchical problems. An iter-
ative inner loop updating strategy for targets and responses
is required for convergence.

Convergent alternatives also exist for the noniterative in-
ner loop coordination of AL-AD. One of them is the level-
by-level sequence of Fig. 5a, but one can also think of a
subproblem-by-subproblem sequence that allows for non-
hierarchical problem structures.

For the experiments presented here, the noniterative inner
loop coordination of AL-AD tended to be less sensitive to
termination tolerances and solver settings, when compared
to the iterative and nested QP and AL. In the near future,
we intend to investigate the numerical properties of the inner
loop alternatives presented above.
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Furthermore, the generic penalty relaxation of ATC pre-
sented in this paper provides a basis for further improvement.
Much research has been performed on penalty function meth-
ods, also in combination with decomposition (Lasdon 1970;
Bertsekas and Tsitsiklis 1989; Bertsekas 2003). Implemen-
tation of other penalty function relaxations and appropriate
update strategies may lead to further improvement of ATC.

6 Conclusion

An early concern with ATC has been the computational
cost associated with the coordination solution strategies.
This work shows that overall computational costs and
the number of subproblem optimizations can be reduced
by large orders of magnitude using an augmented La-
grangian relaxation. Indeed, the higher the required fi-
nal accuracy in target matching, the larger the reduction
is. The best results were obtained using the alternating
direction method of multipliers. I1l-conditioning of the prob-
lem is avoided with the augmented Lagrangian relaxation,
and with the alternating direction method, coordination ef-
fort for the inner loop can be reduced further. Although test-
ing is limited to the examples presented, the consistency of
observed improvement offers high expectation for generality.

The article also presents a fresh view of ATC as a de-
composition method that uses penalty relaxations to define
feasible subproblems. The view links ATC to the many other
existing penalty relaxation methods, among which is the aug-
mented Lagrangian function method used here. Available
knowledge on penalty function methods may be now applied
to ATC or perhaps other MDO methods using penalty func-
tions for further insights and improvements.

Appendix: Notational modifications

In this appendix, we show how the subproblem formulation of (9) can
be obtained from the subproblem notation following earlier work on
ATC by Michalek and Papalambros (2005b).

The formulation of a general subproblem P;; for element j at level
i following Michalek and Papalambros (2005a,b) is:

) , -
_min | who R —Ri7 I3
XijsY(i+1)j
, S
+ 18w oSy —vin I3
“wh . i i+1 2
T2 Wi o Ry = R0 11

keGij
y i i+1 2
+er0 I Skw(i_H)j o (Skyl(i+1)j - Y'(,»H)k) 5 (28)
€Cij
subject to g;; (X;;) <0,
h;;(x;;) =0,

where R;] =T (iij)s
= el vi R i
Xij = [X;;: ¥ij Ry o R(i-é—l)kgii]’
where the bottom index ij indicates that the variable is relevant to el-

ement j at level i, and the top index i refers to the level at which
computation is performed. Furthermore, x; ; is the vector of local vari-

ables associated exclusively with element j at level i; yf j is the vector
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Fig. 11 Information flow for ATC subproblem (28)

of linking responses of element j at level i; y§71 is the parent level
vector of linking targets set at level i — 1 for element j and its siblings
atlevel i; S; is the selection matrix indicating which components of the

parent linking variable target vector yf;l are associated to the linking
variable response vector yf J of child element j at level i ( y§;1 and yiﬁ j
may differ in dimensions for parents with more than two children); R§ !

is the vector of responses of element j at level i; R;fl is the vector
of response targets of element j at level i that are set at level i — 1;
r;; is the vector of response analysis functions of element j at level
i; gij is the vector of local inequality constraints of element j at level
i; h;; is the vector of equality constraints of element j at level i; w%
is the vector of response deviation weighting coefficients of element j
at level i; w{i 1) is the vector of linking variable deviation weighting
coefficients of element j at level i associated with linking of its children
%ij at level i; 6;; denotes the set of ¢;; children of element j at level
i labeled ki through k;;. Figure 11 depicts the flows in and out of an
intermediate-level element j at level .

To reformulate (28) to (9), we introduce the following notational
modifications.

Response functions Michalek and Papalambros (2005b) discussed that
either the response functions r;; should be used as an embedded de-
finition identified by the “where” statement in (28) or the response

variable Rf i should be added to the set of decision variables and the
response function expression would then be added to the set of con-
straints, i.e., included in the “subject to” part of (28). In this article,
the constraint inclusion will be used and the response functions r will
be called analysis equations, labeled a. This means that the statement
“where Rfj =r;;(X;;j)” is replaced by “subject to Rfj —a;;(X;;) =07,
and R;: i is added to the set of optimization variables X;; of element j at
level i.

Local objectives In the Michalek and Papalambros (2005b) formula-
tion, only the single top-level element is allowed to have alocal objective
Il R}l — R(l)1 |I% expressed as deviations of system responses Rh with
respect to fixed overall system targets R(l)l. In the present work, the
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expanded use of local objectives f;;(X;;) in all ATC subproblems is
employed. With convex local objectives, the convergence proof for the
inner loop ATC coordination schemes of Michelena et al. (2003) is also
valid.?

Elimination of linking variables Explicit notation for the linking vari-
ables is eliminated in (9). Linking variables are treated as special re-
sponse variable targets by introducing appropriate linking target copies
and linking constraints at the parent level. For this purpose, separate

master copies y’('l- 41y for the linking variable targets for each' child
k € 6;; are introduced instead of one vector of master targets y(; , |, i

These separate target copies are used in the linking variable deviation
terms of the objective, omitting the use of selection matrices Sy. Simi-
larly, we introduce separate weighting vectors Wivi Dk instead of a single

y
one w(i+l)j'

To maintain consistency of linking targets at the parent level, linear
linking constraints are introduced to force associated linking targets to
match:

Y Livire =0
ké(gij

(29)

where Ly denotes the linking matrix of child k. (29) assures that chil-
dren that share linking variables receive identical targets. To illustrate,
consider a parent element j = 1 with three children %, = {2, 3, 4}.
Assume children 2 and 3 are linked through y; and y,, and children
3 and 4 are linked through y; and y3. For these linking variables, we
have linking target vectors y%z = [y1, yz]T, y%3 = [y1, y2, y3]T, and
y54 = [y, y3]T. Linking targets for yj, y2, ¥3 sent to each child have
to be consistent, therefore:

-1

0 —
L3 = 0
0

which gives:

LZY%Q + L3Y%3 + L4Y%4 =0,

Using these notational modifications, the general subproblem P;;
is reformulated as:

o o
min f;; &)+ | who R =R I3
Xij

Y i i—1
+lwlotl =y H I3 S
R i i+
+k§g Wik © Ry = Rl 112
i
y ; i1 2
+k2<:€ Witk © Orne = Yarw) 112
€6
subject to g;; (X;;) < 0,
h;;(Xij) =0,
R}, —a;;j(xij) =0,
D ke, kal(i.+1)k. =0, )
where X;; = [Xf:j, Rfj, Y§j_» Rl(i+1)k1 ’ yl(i+1)k| ’
i i
e R(i+l)k(-[‘/. Y+ Dk .

(30)

and linking variable targets yii Ak yii 41y, are added to the set
<ij

of optimization variables X;;.
The similarities between response targets and linking targets can be
observed easily from (30). Both types of targets are grouped into general

> In their convergence proof, Michelena et al. (2003) require convex-
ity of the objective and constraint functions as well as separability of
constraints. Convex local objectives still meet these requirements and
can therefore be included in the convergence proof.

targets t;;; similarly, we group general responses r;; and general weights
Wi, as follows:

tj = Ry
rij = [R};.y;;]

A R Y
wij = [w;, w;;]

Since targets and associated responses are represented by different sym-
bols, the top-right index (denoting the level of computation) can be
omitted.

After adding the linking constraints (29) and response analysis
function constraints r;; — a;;(X;;) = 0 to the set of local constraints
h;;, the ATC subproblem of (9) is obtained:

min fi; (X;;)+ || wij o (t; — 1) |13
Xij

+ 3 Wtk © (ba1k — T+ I3

k€<tapij
subject to g;;(X;;) <0,
hij (iij) =0,

where X;; = [X;j, Tij, tit1)kys - - » t(i+1)k(,»,-j]-
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