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Technical Papers 

Analysis and design of trussed structures made of 
elastic/stiffening materials 

J .E .  T a y l o r  a n d  P.D.  W a s h a b a u g h  

University of Michigan, Department of Aerospace Engineering, Ann Arbor, Michigan 48109-2118, USA 

A b s t r a c t  An extremum problem formulation for the equilib- 
rium analysis of general structures made of stiffening material is 
applied to the analysis of trussed structures. The nonlinear ma- 
terial is modelled in a way to simulate an arbitrary, polygonal 
stress-strain relation; material properties may vary over the truss. 
The form of this convex nonlinear programming problem state- 
ment is convenient for the prediction of the evolution (over the 
truss system) of local member stiffening under increasing propor- 
tional load. Computational solutions are obtained directly on the 
basis of the extremum problem statement, using commercial mini- 
mizer software. The formulation for analysis is extended to model 
a design problem for the prediction of the optimal modification 
of certain material properties, namely the bounds that reflect the 
onset of stiffening in the material. Computational results for this 
optimal material design problem are also provided. 

1 I n t r o d u c t i o n  

The goal of this paper is to demonstrate the utility of a re- 
cently developed extremum principle (Taylor 1992) in the 
context of the analysis and design of structures that include 
nonlinear-stiffening materials. Briefly, the formulation treats 
total strain in the nonlinear problem as a superposition of 
an arbitrary number of independent constituent fields. The 
problem is expressed in "mixed form" and it has the struc- 
ture of a convex, constrained, nonlinear extremum problem 
statement. This additive decomposition of a nonlinear ma- 
terial response is distinct and offers certain advantages over 
typical formulations (e.g. ttlavaeek el al. 1992; Simo et aI. 
1989; Corni el al. 1991). The model is general for materi- 
Ms of stiffening type; i.e. with the proper identification of 
a set of parameters, it is possible to simulate any stiffening 
material. Also, the parameters that  are used to define the 
material properties (here the moduli of each constituent field 
and bounds on the constituent response) appear explicitly 
in the problem formulation, and this facilitates an extension 
of the formulation to treat certain aspects of the design of 
material properties. 

The first aspect of the paper specializes the general princi- 
ple for its application to the analysis of truss structures made 
of stiffening materials. The problem formulation is stated and 
interpreted for general trussed structures. Using a commer- 
cially available optimizer package, numerical solutions of two 
nonlinear trusses are provided as examples of the feasibil- 
ity and utility of this approach. In the second phase of this 
study, a convex extremum problem statement is presented 
for the optimal design of material parameters related to the 

onset of stiffening. This second problem allows the nonlinear 
aspects of the structural response to be fashioned within a 
resource constraint. A numerical example of this material 
design problem is also provided. 

2 A m i n i m u m  p r i n c i p l e  for  e q u i l i b r i u m  ana lys i s  

The minimum principle described by Taylor (1992) for gen- 
eral continuum structures is specialized here for arbitrary 
two- or three-dimensional trusses. Our approach is to first 
describe the structure of the model for the nonlinear stiffen- 
ing material itself, and then to present the extremum problem 
statement covering global equilibrium analysis for the truss 
made of such material. Computational results showing the 
evolution of hardening over the truss system under increasing 
load are presented in this section as well. 

2.1 Model description 

Total strain ETi of the nonlinear stiffening material is repre- 
sented (for the i-th truss member) in terms of independent 

measures ~i and e/fl(/3 = 1 ,2 , . . .  ,Ni) as 

N~ 
tri e/fl = + . ( 1 )  

/~=1 

This superposition corresponds in form to the representation 
of kinematics for a system in which mechanical elements, each 
associated with the separate measures in (1), are connected 
in series; Ei represents a specified constant which can be in- 
terpreted as the modulus of the ~r i constituent. Suppose now 

that the quantities e~, which are referred to as conslituent 
strains, have the following form: 

when ( - #  < < # ) ,  else 

g/~ when ) 

Here~ values E~ c_/~, and g~ are specified and can be inter- 
preted as the modulus, lower bound, and upper bound of 
the ~P constituent, respectively. This stress-strain relation 
describes what has been labelled an elastic/locking material 
(see Fig. 1); the model was first presented by Prager (1957). 

With this definition of constituent strains c~, the total strain 
of (1) has the form shown in Fig. 2. Given that  the values 

specified for parameters ETi, E l ,  _g~, g/~, and Ni, are arbi- 
trary, the polygonal form defined by (1) and (2) is regarded 



to be the general representation of constitutive properties for 
the stiffening material considered in this paper (we do not ad- 
dress here the identification problem, essentially one of curve- 
fitting, of matching the present model to data for a specific 
material). 
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Fig. 1. Plot of the locking and enduring constituent stress strain 
behaviour of a truss member 
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Fig. 2. Plot of the totM stress strain behayiour of a truss member 

• . i  • The formulation for global eqmhbrmm analysis is de- 
scribed next. It is distinguished from,' certain known mixed 
models for the analysis problem (see e.$. Washizu 1982; Oden 
and Reddy 1976; Arthurs 1980; Sewell1987) by the features 
that it has the form of an extremum problem, and it pro- 
vides in its structure for specificationl of material properties 
(for the general polygonal material) i{n terms of a set of pa- 
rameters. We note also that in the present formulation the 
model for our nonlinear material is in6orporated quite simply 
(in implicit form) within the variatiq~al problem statement, 
and consequently it becomes unnecessary ever to deal directly 
with the mathematically cumbersom~ forms of (1) and (2). 

The variational problem statement described here can be 
identified as a generalization of the classical minimum poten- 
tial energy formulation for equilibrlum analysis of systems 
with linear materials (indeed, the conventional form is recov- 
ered as a special case within our formulation) (Taylor 1992). 
Expressed in words the problem is stated: "minimize a load 
factor within constraints that bound the value of a gener- 
alized potential energy, that reflect limits on the magnitude 
of the strain constituents introduced in (1) above, and that 

enforce strain-displacement relations". In the context of the 
variational problem, the load vector c~, stresses #i, strain con- 

stituents Qfl, and nodal displacements u 7 are independent. 
The problem formulation may be expressed in the following 
form: 

rain a 

1 
| 

/ -4/< 0 

I <_ o, Vi;V  (C21 
N N~ 

t L~=I \ , /7=1 / j 
Additional symbols appearing here are A i and l i for mem- 

ber area and length, P'r and u~, for system loads and displace- 
ment fields, Di. ~ for the compatibility matrix; M represents 
the number of truss members in the system, N identifies the 
number of independent nodal displacements u.y, and N i is 
the count of independent constituents in the i-th member. 

Formulation [P] describes a convex, constrained nonlin- 
ear programming problem. Thus the "necessary conditions" 
for the problem suffice to determine a unique solution, and 
it may be verified that the equilibrium state of the truss is 
given by this solution. Towards a verification of this, the 
Kurash-Kuhn-Tucker conditions for the problem are to be 

interpreted. With multipliers A, #/P, v~ and ~i associated 
with constraints (C1-3), respectively, stationarity with re- 

spect to load parameter a, and fields ~i, ¢/fl, and u 7 are (in 
order and after simplification) 

1 -  A pTu.r = O ,  (3) 

% =A~k,  Vk, (4) 

A44 
M 

-Aap~ + E A i n i D i ~  = O, V6. (6) 
i=1 

Equation (3) simply provides for the evaluation of A. Substi- 
tution of ni = A#i from (4) into (6) produces a statement of 
the system equilibrium equations in terms of stresses #i, i.e. 
M 
E AicriDi~ - ap~ = 0, V6. (7) 
i=1 
With the elimination of ni from (5), the constituent strains 
are expressed as 

For convenience #5//7 = #2 /A  and 5/B = v~ /A  are introduced. 
The solution to problem [P] is required to satisfy the follow- 
ing additional necessary (KKT) conditions: 

+ "  so,  
i=1 /3 7=1 



A > O, (9) 

0, d -> 0, 

Aig i f~# i ( -g# i -e_# i )=O,  fo#i >_0 , Vi;g/3, (10) 

t~iA i D iTu  7 - -t- ~ gi = O. (11) 

To complete the interpretation of this system, note from 
(4) and (11) that ~i ¢ 0 implies satisfaction for the re- 
spective truss member of the strain-displacement constraint 
(C3). This property together with (7) assures that fields (~i 

and s/# in combination satisfy the system equilibrium and 
compatibility relations. We note that these results apply in- 
dependently of the degree of material stiffening associated 
with the particular solution. This latter condition is inter- 

preted uniquely for each constituent field E~ as follows. If 

0 < c/# < g/fl or0  < -Qfl <_~ ,  from (1O)/5~ = 0  and 15/~ = 0, 
whereby (5) provides (for the/3-th constituent) 

e/# ~ri 
= 7 ]  (12) 

In other words, the constituents for which this relation holds 
follow their respective linear stress-strain behaviour. Other- 

wise, for fi/# > O or (©i5 > 0), from (10)c/# - ~/# = 0 (or 

- c {  -_.~{ = 0), i.e. the constituent is in the locked state. 

Accordingly, multipliers/~/# and ©/#. may be evaluated from 
(5) as 

~/# -= ~ i -  E/#g/# , Vi;V/3, (13) 

~/5 = _~r i _ E/#e__/#. (14) 

One or the other of these conditions necessarily applies to 
every constituent, i.e. for each value of/3 and over all truss 
elements. It may be verified from the necessary conditions 
that for every element i, each constituent/3 within the set 

B i = {fl] (fl = 1, 2 , . . . ,  Ni)  } belongs either to 

-Si = 1/3 e Bil(e#i = g/#)} ,or 

S_ i = {/3 e Bil(-vfli =Q#)}, and B i = S i U-S i U S i . 

In this way it is clear that the constituent fields e~ fully a r e  

determined via the necessary conditions listed, and this to- 
gether with the already indicated solution ai provides that 
the unique solution to the global equilibrium analysis prob- 
lem [P] is complete. 

In summary, the means has been described by which 
the equilibrium analysis problem for arbitrary trusses, hav- 
ing members whose constitutive properties correspond to a 
parameter-specified polygonal form of stiffening material, is 
represented in the form of the convex problem [P]. It may 
be of interest to note that this model is dual in concept to a 
formulation presented earlier by Taylor (1993) for softening 
materials. 

2.2 Computat ional  examples 

The following examples demonstrate the feasibility and util- 
ity of using the model [P] for equilibrium analysis to pre- 
dict eomputationally the evolution of response of truss struc- 
tures composed of nonlinear materials. The model was im- 
plemented using a commercially available constrained opti- 
mizer program incorporated in MATLAB (1992), running on 
a Hewlett-Packard computer. This program is based on a 
sequential quadratic programming algorithm (Schittkowski 
1985). The model was interpreted directly into the program, 
with no special provisions made to improve the efficiency of 
the solution procedure. For instance, the gradients were cal- 
culated numerically rather than provided in analytic form. 
For all the models discussed here, each solution required on 
the order of 103 seconds on the computer. 

The numerical implementation was checked by comparing 
simple one- and two-dimensional trusses with a typical anal- 
ysis pieced together manually. However a special feature of 
this model is that equilibrium is not explicitly specified, i.e. 
equilibrium is a consequence of the minimization. Thus verifi- 
cation that the end result truly satisfies equilibrium provides 
a check on the numerical implementation of the minimiza- 
tion. 

2.2.1 Pentagonal  truss 

The first model demonstrates the application of this method 
of analysis to a typical truss geometry. This geometry con- 
sists of five nodes and nine bar elements as shown in Fig. 
3. The truss is loaded at node number 1 by a load inclined 
at an angle of 7r/5 from the horizontal. Nodes 4 and 5 are 
constrained not to move. Each truss member has the same 
material and sectional properties. The material consists of a 
strictly linear constituent and two symmetric stiffening con- 
stituents. That is, ~:i = 128, E 1 = 256, E 2 = 64,-1 gi --= 5~ ---- 
0.003, g~ = g_2 = 0.006, and A i -- 0.1 for {i E 1 ,2 , . . . ,9} .  

The analysis for given values of energy bound (H), and 
load and material data proceeds by iteration within the pro- 
gram on the load factor (c~), displacement (ui)  , and con- 

stituent (a), (Qh) variables until the load factor is sufficiently 
converged toward a minimum. The loads at each specified 
energy resulting from this minimization are shown in Fig. 4. 
The energy parameter is approximately quadratically related 
to the load factor. The energy load relationship is not truly 
quadratic because of the nonlinear constitutive response; it 
is in fact piecewise quadratic in each region where the active 
constraints are the same. (This piecewise behaviour is not 
evident on the scale of this figure.) 

The displacement of the unconstrained nodes (1, 2 and 3) 
as a function of the load are given in Fig. 5. Here the non- 
linear behaviour inherent in the model is clearly evident. At 
small loads each truss element has an effective modulus, El, 
given by (15), which is indicative of the series construction 
of the constituents. 

1 1 ~ 1 
Ei - ~ ;  + )---" ' (15) 

#--1 E/fl 

As the allowable energy H is increased, and with the re- 
maining data held fixed, certain constituents reach their con- 
straint values. A constituent that has an active constraint 
is "locked" in the sense that the constituent can no longer 
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deform. In effect, the modulus of the constituent becomes 
infinite and its inverse becomes zero in (15), thereby increas- 
ing the effective modulus of the element. When all the con- 
stituents for an element become locked, the tangential mod- 
ulus of the subsequent response becomes the modulus of the 
linear constituent, i.e. E i = Ei" 

The stress distribution amongst the truss elements, with 
the specified energy as a parameter, is displayed in Fig. 6. At 
this scale, the effect of the nonlinear behaviour is not overtly 
evident. The nonlinear behaviour is shown clearly, however, 
in a plot of the stress or strain as a function of the load. The 
strain of the first constituent for each member, depicted as a 
function of the load is given in Fig. 7. 

At sufficiently small energies (and loads) the system be- 
haves linearly. However, as soon as one of the constituents 
"locks", nonlinear behaviour ensues. The evolution of the 
first hardening constituent, e~, is representative of the be- 
haviour of all the constituents for the remaining elements 
(i.e. cri, and e~), except note that the linear constituent, cri, 
is not limited. This type of nonlinear behaviour is exceptional 
in the sense that the usual ingrained notions of proportional 
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2.2.2 Pyramidal lruss 

The preceding example demonstrates that this technique can 
be employed to analyse a typical truss geometry with an atyp- 
ical nonlinear hardening constitutive law. However, in many 
respects the example is cumbersome in that the evolution 
of behaviour in the constituents is not immediately obvious. 
Part of this stems from a geometry with elements that are 
intertwined at disparate angles. Interpreting these results 



requires a ponderous process of piecing together aspects of 
several of the figures. To simplify matters,  especially for the 
subsequent example design problem, a simpler geometry was 
explored. 

The second example problem demonstrates the applica- 
tion of this method of analysis to a simpler truss geometry, 
one for which the nonlinear evolution is easier to follow. This 
geometry consists of twelve nodes and eleven bar elements as 
shown in Fig. 8. The truss is loaded at node number 1 by a 
horizontal load a.  All nodes except the first are constrained 
not to move, i.e. representing a fixed support. Paralleling the 
previous example, each element has the same unbounded lin- 
ear constituent modulus, the same cross-sectional area and is 
composed of two symmetrically stiffening constituents. That  

-'! 2 0.016, and A i = is, /~i = 64, -lgi : -¢ i l  : 0.008, ¢' : -¢i ---- 
0.1 for {i 6 1 , 2 , . . . ,  11}. However, here the moduli for the 
hardening constituents vary over the truss. This distribution 
is shown in Fig. 9. The moduli have been chosen such that  

-E 1 + E  2 : 160, so that  for small energies where the system is 
linear, the geometry, material properties and loading are all 
symmetric. However, here the locking of a constituent will 
not only cause the system to become nonlinear, but to lose 
symmetry as we]l. 
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Fig. 8. Pyramidal truss geometry and symmetric loading 

Thus, as shown in Fig. 10, the deformation of the vertex 
of the truss in the y-direction (uy) is initially zero, owing 
to the symmetry of the problem. As the material evolves, 
the symmetry is lost and there is a nonzero (Uy) deforma- 
tion. At  higher energies and loads, all the constituents lock, 
and the material response again becomes symmetric and the 
deformation in the y-direction approaches zero. 

The evolution of the linear constituents (~i) is shown in 
Fig. 11. Evolutions of the two locking constituents (¢1 and 

¢2) are shown in Figs. 12 and 13, respectively. 
These figures reinforce the statements concerning the 

load-displacement behaviour of the system. At small energies 
and loads, the system remains linearly elastic. At higher en- 
ergies, the locking constituents reach their constraints. This 
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causes the nonlinearity in the load-displacement behaviour. 
This is evident in the enduring constituent (c~i) as a slight 
asymmetry in the stress distribution. At higher energies, 
when almost all of the members have "locked", the stress 
distribution has nearly recovered its symmetry. 

3 Des ign  o f  m a t e r i a l  p r o p e r t i e s  for  t h e  o p t i m u m  
t r u s s  

A formulation is presented in this section that  relates to the 
prediction of optimal material properties in the context of a 
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global structural design problem. Specifically, the purpose is 
to determine the distribution of adjustments to the material 
properties identified with locking limits, for all or a part of the 
set of constituents, so that a lower bound on the overall struc- 
tural "energy" is maximized. This is equivalent to minimizing 
an equilibrium state for which the total energy is no less than 
a specified value. (The two formulations are alternate state- 
ments of equivalent, isoperimetric problems.) Stated differ- 
ently, the optimal adjustments are those for which stiffening 
of the structure is deferred as much as possible. The optimal 
design problem presented here is a convex problem stated in 
isoperimetric form. An interpretation is given for the "nec- 
essary condition" of this problem and the optimal quality of 
the solution to the system is verified. 

3.1 Design problem formulation 
Modifications to the locking limits are symbolized by vec- 

tors ¢ f  and t P ,  which represent, respectively, the changes 
in value of the upper and lower bounds on constituent 
strains. Components of these vectors are restricted to be 
non-negative, and the overall modification to structural ma- 
terial is limited by the isoperimetric constraint 

E + C)- <_o 

Bound R appearing in this constraint is a measure of total 
resource for material modification and is a new element of 

data. The design problem is described formally relative to 
the analysis problem [P], in terms of an outer "p in"  with 

respect to the design parameters ¢~ and ¢/Z. In other words, 
the sets of design parameters are to be determined according 
to 

p in  [ p in  a] 
~,~ o:,o%e,u 

subject to : 

½ Aig i " +/3=~ 1E~(¢/~)2 _ 

o~ ̂ ~  pTu7 + / / <  0, (C 1) 

- = 0 ,  ( c a )  Ai 
kT=l \ ' fl=l ] J 

-¢/~Aig i < 0, (C4.1) 

o, vi;V , (C42) 
Ni M 

~=1i=1 

The order of the "min"s is interchangeable [see e.g. Jog 
et al. (1993) and Bends0e et el. (1992) for a justification], 
and so it is justifiable to consider separately the necessary 
conditions associated with the design part of the problem 

[M]. With the introduction of r/~, ¢~, and F as multipliers 
associated with the last three amongst the constraints listed, 

i.e. the constraints associated with design variables tP  and 

¢~, these conditions are 

-#/~-r]/~+r=O, Vi;Vp, (17) 

It may be verified that so long as R > 0 in problem [M], 
the multiplier F satisfies F > 0. An immediate consequence 
of (17) is that in order for a modification of the locking limit 
to occur, it is necessary that the respective strain constituent 
should have become locked in the original, i.e. unmodified sys- 
tem. This result may be verified via the following argument. 
Suppose that constraint (C2.1) of problem [M] is met by in- 

equality; then the associated multiplier p~ has value zero, 
and so from (17) 

r//~ = £ ,  Vi;Vfl. (19) 

Thus in view of the (Kurash-Kuhn-Tucker) requirement 

~/Z¢~ = 0 Vi;/3, it follows that, for components governed by 
(19), satisfaction of constraint (C2.1) by inequality implies 

¢~ = 0, i.e. the associated locking constraint bound value is 
not modified. Similar argument leads to the counterpart of 
this result for the constraint bounding strain on the negative 
side, and completes the proof. 

To continue the interpretation, note that for #~ > 0, from 

constraint (C2.1) of problem [M], ~/~ - (g/~ + ¢/~) = 0. It 

follows from (C2.2) that in this case v/~ = 0. Given the sim- 

ilar argument as it applies in reverse, i.e. v/~ > 0 implies 



R {4 

p7 = o, we have that the multipliers #7 and v [  are orthog- 

onal; p/~vl/ = 0 for all i and /9. The alternative possible 
consequences of the necessary conditions (17) and (18) are 

considered next. As noted from (C2.1) in the case #~ > 0 

{or from (C2.2) for v~ > 0} that 

- + : 0 ,  (20) 

{or - c ~  -(¢_~ 4-¢~):0}. (21) 

If also > 0 or { or > 0}, then there is no modifica- 

to the strain bound ie : 0{ or : 0}, and so tion 
the value of the associated strain constituent is just equal to 

the original locking strain bound, c~ = g/~{or - s /~  = _c~}. 

generally one expects to find ¢~ > 0 in conjunction More 

with #~ > 0 {or ¢~ > 0 with v/~ > 0}, and then the associ- 
ated (optimal) modifications are evaluated directly from (20) 
and (21). Referring to expressions for stress/strain relations 

obtained in Section 2, and with the substitution of #~ = E 

or v/~ = F from the resuRs above, the stresses evaluated 
according to the solution for the optimally modified locking 
constraint values are given by 

 i-J(?i i = r / A  w h e r e  

-~i - Efli (v-fli + ¢fli ) : F / A  where v/~ > 0. 

According to these results the difference between total stress 
~i and the values of stress at with locking occurs ("locking 
stress") has constant value. This remarkable result holds for 

all constituent strains e/~ (over the structural system) which 
have become locked at the respective loads. Also, as a side- 
light, it may be observed from this property of the results 
that the solution for design problem [M] minimizes the max- 
imum measure of the cited difference in stress values (again, 
over the entire structure). 

3.2 Computational ezamples 

The above design problem was applied to the same pyramidal 
truss that was treated in Section 2.2.2 as the second example 
of analysis. As noted in the problem description given above, 
the evolution of local stiffening in a structure made of stiff- 
ening material may be determined from the results of a set 
of solutions to the original analysis problem. The end result 
of a series of such solutions is summarized in Fig. 14 with the 
details of one of the locking constituents shown in Fig. 15. 
The overall effect of the design is, as expected, to minimize 
the structural stiffness of the truss. Here this minimization 
predicts a modification of stiffening limits that has structural 
response tend toward that of the linear structure. 

At small energies, there is no modification to the load dis- 
tribution in the problem. As the specified energy is increased, 
the locking constraints are modified to allow the system to 
remain linear elastic (i.e. not locked). The distribution of the 
locking parameter varies as a function of energy. Consider- 
ing that the extension of the modelling for this problem to 
accommodate the present purpose, i.e. the prediction of op- 
timal relaxation of the locking bounds, it is understandable 
that the solution to the design problem varies with load (or 
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Fig. 14. Load versus displacement for increasing values of resource 
of the locking constraint 

energy) level. This is characteristic of problems in optimal 
design in the presence of a constitutive nonlinearity. 
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Fig. 15. Effect of available resource on the strain distribution, 
and limits for the first strain constituent. The grey lines indicate 
the improved design, the black lines indicate the original design 
(i.e. Fig. 12) 
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It may be established as well from the results for the 
design problem described in this section, that there exists 
an upper limit say R, such that the problem admits sensi- 
ble interpretation for values of modification resource R lying 



p 

within the range 0 < R < /~ .  The upper bound value, which 
varies with overall load on the structure, is the value such 
that in the structure with optimally modified material, all 

constituent strains e~ will at most have just reached their 
respective locking limits in the fully loaded system. In other 
words, the solution associated with R = / ~  provides that no 
locking occurs as the loads are applied. As a consequence, the 
structural response is simply linear. Note that  in this case 
the conventional measure of compliance is minimized for the 
optimal structure. This behaviour is demonstrated in Fig. 
16. 

4 C o n c l u d i n g  r e m a r k s  

The analysis of a truss system composed of a nonlinear ma- 
terial has been demonstrated using a mixed form equilibrium 
principle. This principle was extended to incorporate the 
design of parameters identified with the constituent locking 
limits of the stiffening material. Perhaps the most signifi- 
cant conceptual steps are in the formulation of the original 
principle described in the analysis problem [P]. Here a set 
of constituents is assembled to provide an overall nonlinear 
material response. This formulation leaves normal conserva- 
tion statements (e.g. energy, compatibility, and constituent 
limits) in their simple form as constraints on the response of 
the system. For instance, although the overall response of the 
system is generally nonlinear, the mathematics is remarkably 
tidy. This form of the analysis problem allows the straight- 
forward insertion of the parameters, and simplifies extension 
of the extremum problem statement to cover the design of 
the material properties. One can speculate that other as- 
pects of [P] (e.g. the infinitesimal of the strain-displacement 
equations) might also be directly extended (e.g. finite strain- 
displacement equations). 
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