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Abstract When an elastomeric material is deformed and subjected to temperatures above some char-
acteristic value Tcr (near 100◦C for natural rubber), its macromolecular structure undergoes time and
temperature-dependent chemical changes. The process continues until the temperature decreases below
Tcr. Compared to the virgin material, the new material system has modified properties (reduced stiffness)
and permanent set on removal of the applied load.

A new constitutive theory is used to study the influence of the changes of macromolecular structure
on the torsion of an initially homogenous elastomeric cylinder. The cylinder is held at its initial length
and given a fixed twist while at a temperature below Tcr. The twist is then held fixed and the temperature
of the outer radial surface is increased above Tcr for a period of time and then returned to its original
value. Assuming radial heat conduction, each material element undergoes a different chemical change.
After enough time has elapsed such that the temperature field is again uniform and at its initial value,
the cylinder properties are now inhomogeneous. Expressions for the time variation of the twisting mo-
ment and axial force are determined, and related to assumptions about material properties. Assuming the
elastomeric networks to act as Mooney-Rivlin materials, expressions are developed for the permanent
twist on release of torque, residual stress, and the new torsional stiffness in terms of the kinetics of the
chemical changes.

Keywords Elasticity · Elastomer · Constitutive theories

1 Introduction

The temperature in an elastomeric structural component, such as a bushing, seal or tire, can increase due
to the environment in which it operates or due to internal dissipation. When the temperature becomes
sufficiently high, the structure of the elastomer can change due to a process consisting of the scission of
macromolecules and their subsequent crosslinking to form new networks with new stress free configura-
tions. This process is time and temperature-dependent and can result in substantial softening of response
and permanent set on removal of applied loads.
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Tobolsky [1] presented results of experiments that provided significant insight into this process. It oc-
curs at elevated temperatures, is faster at higher temperatures, and stops when temperature drops below
some level. If the material is loaded during scission and crosslinking and is then unloaded and cooled,
it develops a permanent set and has a modified stiffness. Tobolsky also proposed a constitutive equation
for uniaxial stretch at constant temperature. An extension of this constitutive equation to arbitrary defor-
mation and temperature histories has been proposed and studied by Wineman and Min [2], Jones [3] and
Shaw, Jones and Wineman [4].

When an elastomeric structure is subjected to simultaneous transient mechanical loads and heat con-
duction, each material element experiences a different temperature and deformation history and, hence,
undergoes a different scission and crosslinking process. As a consequence, the structure develops inho-
mogeneity in its properties, permanent set and residual stresses upon unloading and cooling. The above-
mentioned constitutive equation has been used to study these phenomena in a sheared elastomeric layer
by Wineman and Min [5]. Here, they are studied for torsion of an elastomeric circular cylinder when
there is time-dependent and radially dependent scission and crosslinking. Torsion is chosen for study
because the assumed form of the deformation is possible for any choice of the material properties in
the constitutive equation and for any radial and time dependence of the scission/crosslinking processes
within the cylinder. It provides a convenient setting for studying the interaction between deformation
and the scission/crosslinking process. Relations are developed that connect results obtained in torsion
experiments to deformation and temperature history of the elastomer, its mechanical properties, and the
scission and crosslinking processes.

The constitutive equation is outlined in Sect. 2. The problem of torsion in the presence of transient
radial heat conduction is formulated in Sect. 3. Section 4 treats the time-dependent response during
scission and crosslinking while the cylinder is maintained at a fixed twist. It is shown that the time
variation of the twisting moment is proportional to the time variation of the axial force when the material
properties satisfy certain conditions, a result amenable to experimental study. When the cylinder is cooled
to its original temperature, it has a modified torque-twist response. This is discussed in Sects. 5 and 6.
Section 5 is concerned with twisting while the length is held fixed by application of an axial force. In
Sect. 6, the axial force and length can vary. Residual twist and length are determined when the elastomeric
networks are modeled as Mooney-Rivlin materials.

2 Constitutive equation

Tobolsky [1] discussed experiments on rubber strips at elevated temperatures that led to the conclusion
that the rubber had undergone chemical changes in its macromolecular structure. In these experiments a
natural rubber strip at one temperature, say 20◦C, was subjected to a fixed uniaxial stretch and then held at
a higher fixed temperature in the range 100–150◦C for a specified time interval. The stress was observed
to decrease with time. At the end of the time interval, the specimen was unloaded and returned to its
original temperature. The specimen was observed to have a permanent stretch. Tests were carried out for
different applied stretches, temperatures, and time intervals. It was concluded that the decrease in stress
was due to scission within the macromolecular network. The permanent stretch was attributed to a new
network that formed when the macromolecules crosslinked in the stretched state of the original material.
Tobolsky [1] implied that these events are significant for temperatures greater than a temperature Tcr, the
onset of the ‘chemorheological range’.

In the experimental work discussed by Tobolsky, specimens were generally subjected to fixed uniax-
ial stretch at different constant temperatures. The purpose was to understand the physical and chemical
processes involved in scission and crosslinking. Recently, a program has been underway to develop a
constitutive framework for rubber undergoing scission and crosslinking while subjected to arbitrary ho-
mogeneous deformation and temperature histories. The constitutive equation is based on the two-network
model of Tobolsky [1] and an extension to arbitrary homogeneous deformations by Fong and Zapas [6].
A brief summary of the constitutive framework is presented here. For a detailed discussion, see Wineman
and Min [2], Jones [3] and Shaw, Jones and Wineman [4].

Consider a rubbery material in a stress free reference configuration at a temperature T0. It is assumed
that there is a range of deformations and temperatures in which the material response can be regarded as
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mechanically incompressible at a fixed temperature, isotropic and nonlinearly elastic. For brevity, explicit
notational dependence on the current time t is generally omitted. If x is the position at current time t of
a particle located at X in the reference configuration, the deformation gradient is F = ∂x/∂X. The left
Cauchy-Green tensor is B = FFT and B−1 denotes its inverse. Then the Cauchy stress σ is given by

σ (1) = −p(1)I + 2
∂W (1)

∂ I1
B − 2

∂W (1)

∂ I2
B−1, (1)

where p(1) arises from the constraint that deformations are isochoric, I1, I2 are invariants of B,
W (1)(I1, I2, T ) is the Helmholtz free energy density associated with the original material and T is the
temperature, and the notation (−)(1) denotes a quantity associated with the original material network.

No scission occurs for temperatures T < Tcr. All of the material is in its original state and the
total stress is given by (1). For temperatures T ≥ Tcr, scission of the original microstructural network
is assumed to occur continuously in time. Let b(1) denote the volume fraction of the original network
remaining at time t. b(1) = 1 at t = 0, monotonically decreases with t when T ≥ Tcr and is constant when
T < Tcr. Tobolsky’s experiments indicated that b(1) does not depend on the uniaxial stretch provided that
it is less than 3–4. This was supported by the experimental results of Scanlan and Watson [7] and Jones
[3]. For the sake of simplicity and in consideration of these experimental results, it is assumed that b(1)

depends only on the temperature history and time, i.e., b(1) = b(1)[T (s)|t0, t].
Now consider an intermediate time t̂ ∈ [0, t] and the corresponding deformed configuration of the

original material. Due to the formation of new crosslinks, a network is formed during the interval from
t̂ to t̂ + dt̂ whose reference configuration is the configuration of the original material at time t̂ . As
suggested by Tobolsky [1] and Tobolsky, Prettyman and Dillon [8], this is assumed to be an unstressed
configuration for the newly formed network. During subsequent deformation, the configurations of the
newly formed material network coincide with the configurations of the original material network. Stress
arises in this newly formed material network due to its deformation relative to its unstressed configuration
at time t̂ . At time t > t̂ , the material formed at time t̂ has the relative deformation gradient F̂ = ∂x/∂ x̂,
where x̂ is the position of the particle in the configuration corresponding to time t̂ and x is its position
at time t. For simplicity, the new network is also assumed to be mechanically incompressible at a fixed
temperature, isotropic and nonlinearly elastic. Let the left Cauchy-Green tensor B̂ = F̂F̂

T
be introduced

for deformations of this network. The Cauchy stress σ (2) at time t in the network formed at time t̂ is then
given by

σ (2) = −p(2)I + 2
∂W (2)

∂ Î1
B̂ − 2

∂W (2)

∂ Î2
B̂−1, (2)

where p(2) arises from the constraint that deformations are isochoric and Î1, Î2 are invariants of B̂.
W (2)( Î1, Î2, T ) is the Helmholtz free energy density associated with the newly formed network and can
differ from that associated with the original material.

Let a(t̂) be a scalar-valued function that gives the rate at which crosslink density of new network is
formed at time t̂ . Thus, a(t̂) > 0 and a(t̂) dt̂ is interpreted as the amount of new network that is formed
during the time interval from t̂ to t̂ + dt̂ . Recent experimental results of Jones [3] indicate that the new
network undergoes scission. Let b(2)(t, t̂) denote the volume fraction of the network formed at time t̂
that is remaining at time t. The properties of b(2) are similar to those of b(1): b(2)(t̂, t̂) = 1 and b(2)(t, t̂)
decreases monotonically with t for fixed t̂ when T ≥ Tcr and is unchanged when T < Tcr. It is assumed
that b(2)(t, t̂) is independent of the deformation of the new network and depends on the temperature
history from the time it has formed, i.e., b(2) = b(2)[T (s)|t

t̂
, t]. The crosslink density at time t in the

network that was formed in the interval from t̂ to t̂ + dt̂ is a(t̂)b(2)(t, t̂) dt̂ .
The time-dependent functions a(t̂), b(1)(t), b(2)(t, t̂) describe the kinetics of scission and re-

crosslinking for a particular rubber. They are assumed to be continuous functions of time whose mathe-
matical properties are summarized as follows:

(i) b(1)(0) = 1, b(2)(t̂, t̂) = 1, a(0) = 0,

(i i) When T > Tcr :
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db(1)/dt < 0, a > 0, ∂b(2)(t, t̂)/∂t < 0, (3)

(iii) When T < Tcr,
db(1)/dt = 0, a = 0, ∂b(2)(t, t̂)/∂t = 0.

Specific forms for a(t̂), b(1)(t), b(2)(t, t̂) are not presented here because they are not required for the
development of the results in the subsequent sections.

The total current stress in the macromolecular system is taken as the superposition of the stress in the
remaining portion of the original network and the stresses in the networks that formed during the process
of scission and crosslinking. Then, by (1) and (2),

σ (t) = −p(t)I + 2b(1)(t)

(
∂W (1)

∂ I1
B(t) − ∂W (1)

∂ I2
B(t)−1

)

+2
∫ t

0
a(t̂ )b(2)(t, t̂ )

(
∂W (2)

∂ Î1
B̂(t, t̂ ) − ∂W (2)

∂ Î2
B̂(t, t̂ )−1

)
dt̂

(4)

The term −pI is an isotropic stress that combines contributions from p(1) and p(2).

3 Formulation of the boundary value problem

A solid circular cylinder of radius R0 and length L0 is composed of an elastomeric material that can be
described by the constitutive equation presented in Sect. 2. In the first part of this study the cylinder is
twisted while its length is maintained at L0. Twisting moments and axial forces are applied to its end
surfaces and the cylindrical surface is traction free.

Let (R, �, Z) and (r, θ, z) be the cylindrical coordinates of a material particle of the original network
in the reference and current configurations, respectively. The motion of the original network is assumed
to have the form

r = R, θ = � + ψ(t)Z , z = Z , (5)

where ψ(t) is the angle of twist per unit length at time t. Let (r(t̂), θ(t̂), z(t̂)) be the cylindrical coordi-
nates of a material particle of the network formed at time t̂ in its reference configuration. The motion of
this network is given by

r = r(t̂ ), θ = θ(t̂ ) + (ψ(t) − ψ(t̂ ))z(t̂ ), z = z(t̂ ). (6)

The temperature on the cylindrical surface is uniform and is a prescribed function of time, T (R0, t) =
T̃ (t). The ends of the cylinder are insulated so only radial heat conduction exists. For the present pur-
poses, it is not necessary to consider a specific law of heat conduction. It is sufficient to note that heat
conduction results in a radial and time varying temperature T (R, t). As a result, scission and crosslinking
within the cylinder vary with radial position. The kinetics of scission and crosslinking are now denoted
by the spatially dependent functions a(R, t̂ ), b(1)(R, t), b(2)(R, t, t̂ ).

It has been shown [9] that motion (5) is possible (controllable) in every material described by the
constitutive equation (4) for any variation of the properties with R. That is, the equations of motion
(neglecting inertia) are satisfied. The conditions defined here are thus very useful for a study of the
interaction of scission and crosslinking processes with an inhomogeneous deformation that describes a
common experimental configuration.

The components of the deformation gradient F, with respect to orthonormal basis vectors oriented
along a cylindrical coordinate system, are

F =

 1 0 0

0 1 Rψ(t)

0 0 1


 , (7)
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from which are found

B =



1 0 0

0 1 + (Rψ(t))2 Rψ(t)

0 Rψ(t) 1


 , B−1 =




1 0 0

0 1 −Rψ(t)

0 −Rψ(t) 1 + (Rψ(t))2


 , (8)

and the invariants
I1 = I2 = 3 + (Rψ(t))2. (9)

The deformation gradient F̂ is calculated using the definition

F̂ = ∂x(t)

∂x(t̂)
= ∂x(t)

∂X

(
∂x(t̂)

∂X

)−1

. (10)

F̂ has the same form as F in (7), but with Rψ(t) replaced by R(ψ(t) − ψ(t̂)). Hence, B̂, B̂−1 and their
invariants are given by (8) and (9), respectively, with Rψ(t) replaced by R(ψ(t) − ψ(t̂)).

The stresses are found to be σrθ = σr z = 0,

σθ z(R, t) = 2b(1)(R, t)
[
W (1)

1 + W (1)
2

]
Rψ(t)

+2
∫ t

0
a(R, t̂)b(2)(R, t, t̂)

[
W (2)

1 + W (2)
2

]
(R(ψ(t) − ψ(t̂)))dt̂,

(11)

σrr = −p + Frr , Frr (R, t) = 2b(1)(R, t)
[
W (1)

1 − W (1)
2

] + 2
∫ t

0
a(R, t̂)b(2)(R, t, t̂)

[
W (2)

1 − W (2)
2

]
dt̂,

(12a)

σθθ = −p + Fθθ ,

Fθθ (R, t) = 2b(1)(R, t)
[
W (1)

1 (1 + (Rψ(t))2) − W (1)
2

]
+2

∫ t

0
a(R, t̂)b(2)(R, t, t̂)

[
W (2)

1 (1 + (R(ψ(t) − ψ(t̂)))2) − W (2)
2

]
dt̂,

(12b)

σzz = −p + Fzz,

Fzz(R, t) = 2b(1)(R, t)
[
W (1)

1 − W (1)
2 (1 + (Rψ(t))2)

]
+2

∫ t

0
a(R, t̂)b(2)(R, t, t̂)

[
W (2)

1 − W (2)
2 (1 + (R(ψ(t) − ψ(t̂)))2)

]
dt̂,

(12c)

where the notation W (1)
α = ∂W (1)/∂ Iα and W (2)

α = ∂W (2)/∂ Îα , α = 1, 2 is now used. W (1)
1 , W (1)

2 are

evaluated at I1 = I2 = 3 + (Rψ(t))2 and W (2)
1 , W (2)

2 are evaluated at Î1 = Î2 = 3 + (R(ψ(t) − ψ(t̂)))2.
The equilibrium equations imply that p = p(R, t). An expression for p(R, t) is obtained by substi-

tuting (12a) and (12b) into the radial equilibrium equation,

∂σrr

∂ R
+ σrr − σθθ

R
= 0, 0 ≤ R ≤ R0, (13)

integrating from R to R0 and using the condition that the lateral surface of the cylinder be traction free,

−p(R, t) = −Frr (R, t) +
∫ R0

R

Frr (R̄, t) − Fθθ (R̄, t)

R̄
d R̄. (14)

Then

σzz(R, t) = Fzz(R, t) − Frr (R, t) +
∫ R0

R

Frr (R̄, t) − Fθθ (R̄, t)

R̄
d R̄. (15)
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The resultant twisting moment is

M(t) = 2π

∫ R0

0
σzθ (R, t)R2d R. (16)

The resultant axial force is

N (t) = 2π

∫ R0

0
σzz(R, t)Rd R. (17)

Substituting (15) into (17) and integrating by parts gives

N (t) = 2π

∫ R0

0

[
(Fzz(R, t) − Frr (R, t)) + 1

2
(Frr (R, t) − Fθθ (R, t))

]
Rd R. (18)

From (12a,b,c),

Fzz(R, t)−Frr (R, t) = −2b(1)(R, t)W (1)
2 (Rψ(t))2−2

∫ t

0
a(R, t̂)b(2)(R, t, t̂)W (2)

2 (R(ψ(t) − ψ(t̂)))2dt̂,

(19a)

Frr (R, t)−Fθθ (R, t) = −2b(1)(R, t)W (1)
1 (Rψ(t))2−2

∫ t

0
a(R, t̂)b(2)(R, t, t̂)W (2)

1 (R(ψ(t) − ψ(t̂)))2dt̂ .

(19b)
It is usually assumed that W (β)

α > 0. It is seen from (19a, b) that Fzz(R, t)−Frr (R, t) < 0 and Frr (R, t)−
Fθθ (R, t) < 0 and from (18) that N < 0, i.e., a compressive axial force is required for all twisting and
thermal processes.

4 Response during scission and crosslinking

The cylinder is initially untwisted and at a uniform temperature T0 < Tcr, i.e. ψ(t) = 0 and T (R, t) =
To < Tcr, 0 ≤ R ≤ Ro, t < 0. The twist and surface temperature histories for t ≥ 0, shown in Fig. 1, are:

 t

t1

Ro

R < Ro

t1 t6

t2 t3 t4 t5

ψ

ψ

T

Tcr

To

t2
~

t3
~

ψres

 t
t6

(a)

(b)

t5
~

t5
~

Fig. 1 a Prescribed twist history. b Temperature history
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Surface temperature 0 ≤ t ≤ t1, T (R0, t) = T0,
t1 ≤ t < t2, T (R0, t) increases, T (R0, t2) = Tcr,
t2 ≤ t < t3, T (R0, t) > Tcr, T (R0, t3) = Tcr,
t3 ≤ t < t4, T (R0, t) decreases, T (R0, t4) = T0
t4 ≤ t , T (R0, t) = T0.

Twist 0 ≤ t ≤ t1, ψ(t) increases, ψ(t1) ≡ ψ̄

t1 ≤ t ≤ t̃5, ψ(t) = ψ̄

t̃5 ≤ t , ψ(t) arbitrary
The actual determination of the conduction of heat into the interior of the cylinder would require a

heat conduction law and it could depend on temperature, deformation and scission and crosslinking. For
present purposes, these issues need not be considered. It is sufficient to assume only that heat conduction
into the cylinder occurs and that it is radial. The interior temperature at R < R0 can be expected to vary
as shown in Fig. 1. It starts to increase at a time t̃1 > t1 and exceeds Tcr at a time t̃2 > t2. It may reach
the maximum surface temperature if the surface temperature is held fixed for a sufficiently long time.
The temperature at R begins to decrease after the surface temperature does, decreases below Tcr at a time
t̃3 > t3 and returns to T0 at a time t̃4 > t4. It is assumed that there is a sufficiently large time t5 > t4 such
that when t > t5 the cylinder is again at an essentially uniform temperature, i.e., T (R, t) = T0 < Tcr,
0 ≤ R ≤ R0.

The cylinder is maintained at a fixed twist ψ̄ until the cylinder is again at a uniform temperature. The
twist is allowed to vary after a time t̃5 ≥ t5. The remainder of this section is concerned with the cylinder
preceding and during scission at a fixed ψ̄ , 0 ≤ t < t3. The post-scission response to arbitrary twists,
t̃5 ≤ t , is given in the next section.

Consider the initial time interval 0 ≤ t ≤ t1. Since the surface temperature is T0, there is no conduc-
tion of heat into the interior of the cylinder and T (R, t) = T0, 0 ≤ R ≤ R0. Then, b(1)(R, t) = 1 and
a(R, t) = 0, 0 ≤ R ≤ R0. By (11) and (16)

M(t) = 4π

∫ R0

0

[
W (1)

1 + W (1)
2

]
R3ψ(t)d R (20a)

and by (18) and (19a, b)

N (t) = −4π

∫ R0

0

[
1

2
W (1)

1 + W (1)
2

]
R3ψ2(t)d R, (20b)

where W (1)
α = W (1)

α (3 + (Rψ(t))2, 3 + (Rψ(t))2, T0), α = 1, 2. These are the well-known torque-twist
and axial force-twist relations for an isotropic nonlinear elastic cylinder. The twisting moment and axial
force vary with time due to the twist ψ(t).

Consider the next time interval t1 ≤ t < t2. The surface temperature increases and there is heat
conduction into the cylinder, yet the temperature throughout is below the chemorheological temperature,
T0 ≤ T (R, t) ≤ Tcr, 0 ≤ R ≤ R0. Since b(1)(R, t) = 1, a(R, t) = 0, 0 ≤ R ≤ R0 and ψ(t) = ψ̄ , (11)
and (16) give

M(t) = 4π

∫ R0

0

[
W (1)

1 + W (1)
2

]
R3ψ̄d R (21a)

and (18) and (19a, b) give

N (t) = −4π

∫ R0

0

[
1

2
W (1)

1 + W (1)
2

]
R3ψ̄2d R, (21b)

where now W (1)
α = W (1)

α (3 + (Rψ̄)2, 3 + (Rψ̄)2, T (R, t)), α = 1, 2. The twisting moment and axial
force vary with time due to the dependence of W (1)

α on the temperature.
Consider the third time interval t2 ≤ t < t3. Now T (R0, t) ≥ Tcr, and owing to heat conduction,

T (R, t) ≥ Tcr for some set of radii and times. It follows that b(1)(R, t) decreases with time at these radii.
Since a(R, t̂) = 0 for 0 ≤ t̂ ≤ t1 and ψ(t) − ψ(t̂) = 0 for t1 ≤ t̂ ≤ t , the integrals in (11) and (19a,
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b) vanish. In effect, the new networks are formed in a stress free state and are not sheared. Thus, by (11)
and (16)

M(t) = 4π

∫ R0

0
b(1)(R, t)

[
W (1)

1 + W (1)
2

]
R3ψ̄d R, (22a)

and by (18) and (19a,b)

N (t) = −4π

∫ R0

0
b(1)(R, t)

[
1

2
W (1)

1 + W (1)
2

]
R3ψ̄2d R, (22b)

where W (1)
α = W (1)

α (3 + (Rψ̄)2, 3 + (Rψ̄)2, T (R, t)), α = 1, 2. The twisting moment and axial force
vary with time due to the decrease of b(1)(R, t) with time on some set of radii and the dependence of
W (1)

α on the temperature.
For many models of rubber elasticity proposed in the literature, the response is assumed to be en-

tropic, i.e., W (1)(I1, I2, T ) = n0kT W 0(I1, I2), where n0 is the initial crosslink density, k is the Boltz-
mann constant and W 0(I1, I2) depends on the particular model under consideration. The twisting moment
and axial force in the initial time interval 0 ≤ t ≤ t1, given by (20a, b), become

M(t) = 4πn0kT0

∫ R0

0

[
W 0

1 + W 0
2

]
R3ψd R, (23a)

and

N (t) = −4πn0kT0

∫ R0

0

[
1

2
W 0

1 + W 0
2

]
R3ψ2d R, (23b)

where W 0
α = ∂W 0/∂ Iα and W 0

α = W 0
α(3 + (Rψ)2, 3 + (Rψ)2), α = 1, 2. Note that M/N is independent

of T0.
The twisting moment and axial force in the second time interval t1 ≤ t < t2, given by (21a, b)

become

M(t) = 4πn0k
∫ R0

0

[
W 0

1 + W 0
2

]
T (R, t)R3ψ̄d R (24a)

and

N (t) = −4πn0k
∫ R0

0

[
1

2
W 0

1 + W 0
2

]
T (R, t)R3ψ̄2d R (24b)

Although the twist is fixed, the twisting moment and axial force increase as the temperature increases
due to entropic stiffening at each radius.

The twisting moment and axial force in the third time interval t2 ≤ t < t3, given by (22a, b) become

M(t) = 4πn0k
∫ R0

0
b(1)(R, t)T (R, t)

[
W 0

1 + W 0
2

]
R3ψ̄d R, (25a)

and

N (t) = −4πn0k
∫ R0

0
b(1)(R, t)T (R, t)

[
1

2
W 0

1 + W 0
2

]
R3ψ̄2d R. (25b)

Although the temperature may increase at some radii causing entropic stiffening, when T (R, t) > Tcr
there may be a rapid decrease in b(1)(R, t) due to scission. The net effect is that the twisting moment
and axial force can be expected to increase and then decrease. This effect is similar to that observed in
experiments on rubber strips in fixed uniaxial extension (see Jones [3] and Shaw, Jones and Wineman
[4]). The force required to hold the strip increases with temperature due to entropic stiffening and then,
while T > Tcr, decreases due to scission.

The remainder of this section is concerned with the third time interval t2 ≤ t < t3, when scission and
crosslinking occur. Several results about the relation between M(t) and N (t) can be deduced from (22a,
b) and (25a, b).
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(1) When W (1)
1 �= 0 and W (1)

2 �= 0 and they depend on both invariants, there is no apparent relation
between the time variations of M(t) and N (t).

(2) When W (1) depends only on I1 and T, W (1)
2 = 0, (as in the case of the neo-Hookean, Arruda-Boyce

[10], Gent [11] and general average-stretch full-network model discussed by Beatty [12]), M(t) and
N (t) are related by

N (t)

M(t)
= − ψ̄

2
. (26)

Thus, N (t)/M(t) is independent of time, i.e., the time variations of M(t) and N (t) differ by a scale
factor that depends only on the twist. A plot of N (t)/M(t) vs. ψ̄ would be a straight line with a
slope of −0.5. Relation (26) is independent of the particular dependence of W (1) on I1 and T and
is an extension of a universal relation discovered by Horgan and Saccomandi [13] for generalized
neo-Hookean materials and later discussed by Wineman [14].

(3) When the network materials are of Mooney-Rivlin type, i.e., W (1)
α = T C (1)

α , α = 1, 2, where C (1)
α

are constant. the time variations of M(t) and N (t) again differ by a scale factor

N (t)

M(t)
= − ψ̄

2

C (1)
1 + 2C (1)

2

C (1)
1 + C (1)

2

, (27)

N (t)/M(t) is independent of time, but the plot of N (t)/M(t) vs. ψ̄ would be a straight line with a
slope of that depends on the material properties.

(4) When the material response is entropic and the characteristic time for heat conduction is small com-
pared to the characteristic time for scission processes, the temperature is approximately uniform, that
is, T (R, t) ≈ T (R0, t), and b(1)(R, t) ≈ b(1)(R0, t), R ≤ R0. In this case, (22a, b) give

M(t) = b(1)(R0, t)T (R0, t)4πn0k
∫ R0

0

[
W 0

1 + W 0
2

]
R3ψ̄d R, (28a)

N (t) = −b(1)(R0, t)T (R0, t)4πn0k
∫ R0

0

[
1

2
W 0

1 + W 0
2

]
R3ψ̄2d R. (28b)

Once again, N (t)/M(t) is independent of time, but the plot of N (t)/M(t) vs. ψ̄ need not be a straight
line.

5 Modified elastic response: post-scission twist

Consider times t > t5 after scission has stopped throughout the cylinder. During scission, new networks
were formed at each radius, but were not sheared and did not contribute to the axial force or the twisting
moment. There are now two networks at each radius, the remaining portion of the original network and
the newly formed network. Each responds elastically on further loading. This section presents the post-
scission elastic response for t > t̃5 when the cylinder is subjected to an arbitrary twist ψ while being
kept at its initial length L0, thereby causing each network to undergo simple shear.

Since for t1 ≤ t̂ ≤ t5, ψ(t̂) = ψ̄ , and for t > t5, b(1)(R, t) = b(1)(R, t5), a(R, t) = 0, and
b(2)(R, t, t̂) = b(2)(R, t5, t̂), 0 ≤ R ≤ R0, (11), (19a, b) can be written as

σθ z(R, t) = 2n1(R)
[
W (1)

1 + W (1)
2

]
Rψ + 2n2(R)

[
W (2)

1 + W (2)
2

]
R(ψ − ψ̄), (29)

Fzz(R, t) − Frr (R, t) = −2n1(R)W (1)
2 R2ψ2 − 2n2(R)W (2)

2 R2(ψ − ψ̄)2, (30a)

Frr (R, t) − Fθθ (R, t) = −2n1(R)W (1)
1 R2ψ2 − 2n2(R)W (2)

1 R2(ψ − ψ̄)2. (30b)



486 A. Wineman, J. Shaw

where
n1(R) = b(1)(R, t5) (31a)

n2(R) =
∫ t5

0
a(R, t̂)b(2)(R, t5, t̂)dt̂ . (31b)

n1(R) and n2(R) represent the influence of the radially dependent scission kinetics within the cylinder.
Equations (29) and (30a, b), being independent of time and varying with ψ , represent the post-scission
elastic response.

By use of (16) and (29), the torque-twist relation is found to be

M = 4π

∫ R0

0

{
n1(R)

[
W (1)

1 + W (1)
2

]
ψ + n2(R)

[
W (2)

1 + W (2)
2

]
(ψ − ψ̄)

}
R3d R. (32)

By use of (18) and (30a, b), the axial force is given by

N = −4π

∫ R0

0

{
n1(R)

(
1

2
W (1)

1 + W (1)
2

)
ψ2 + n2(R)

(
1

2
W (2)

1 + W (2)
2

)
(ψ − ψ̄)2

}
R3d R. (33)

Intuition suggests that the pre-scission and post-scission torque-twist relations will be different. It is also
suggests that the cylinder will have a permanent twist if the torque is removed. In principle, these phe-
nomena could be illustrated for any choices of the hyperelastic models W (1) and W (2) for the individual
networks, and in general, this would require the use of numerical examples. Alternatively, we assume that
each network acts as a Mooney-Rivlin material, i.e., W (α)

β = C (α)
β are non-negative constants, in order to

capture the same phenomena qualitatively without excessive complexity. Let the following notation be
introduced

N1 =
∫ R0

0
b(1)(R, t)R3d R, (34a)

N2 =
∫ R0

0
R3

∫ t5

0
a(R, t̂)b(2)(R, t5, t̂)dt̂d R. (34b)

Then
M

4π
= (

C (1)
1 + C (1)

2

)
N1ψ + (

C (2)
1 + C (2)

2

)
N2(ψ − ψ̄) (35)

and
N

4π
= −

(
1

2
C (1)

1 + C (1)
2

)
N1ψ

2 −
(

1

2
C (2)

1 + C (2)
2

)
N2(ψ − ψ̄)2. (36)

When M = 0, there is a residual twist ψres given by

ψres =
(
C (2)

1 + C (2)
2

)
N2(

C (1)
1 + C (1)

2

)
N1 + (

C (2)
1 + C (2)

2

)
N2

ψ̄. (37)

Now letting ψ = 	ψ + ψres, (35) reduces to the M − 	ψ relation

M = 4π
{(

C (1)
1 + C (1)

2

)
N1 + (

C (2)
1 + C (2)

2

)
N2

}
	ψ. (38)

This relation is linear in 	ψ and independent of the twist ψ̄ imposed on the cylinder during scission. An
expression can be derived for the axial force at ψres, but it is lengthy and therefore omitted. It can be seen
from (36) and (37) that the axial force at ψres is compressive and proportional to ψ̄2.

Figure 2 shows the torque-twist response when the networks act as Mooney-Rivlin materials. Figure 3
shows the corresponding axial force-twist response. Note that the axial force need not be zero when the
torque is zero:

OA - the pre-scission response given by (23a, b) during time interval 0 ≤ t ≤ t1,
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ψ

M

ψψres
O

(a)

(b)

(c)A

B

C

D

Fig. 2 Moment-twist response proceeding in sequence from points O, A(t = t1), B, C(t = t̃3), and D: a Initial elastic curve
for T (R, t) = T0. b Elevated temperature elastic curve for T0 < T (R, t) < Tcr (no scission). c Elastic curve after scission
and T (R, t) = T0, showing reduced stiffness and permanent set

ψψres

ψ

-N

O

(a)

(b)

(c)

A

B

C

D

Fig. 3 Compressive normal force response corresponding to Fig. 2

AB - the increase in M(t) and |N (t)| at constant twist ψ̄ due to entropic stiffening at each radius. These
are given by (24a,b) during time interval t1 ≤ t ≤ t2 and by (25a, b) during time interval t2 ≤ t ≤ t3.

BC - the decrease of M(t) and |N (t)| at constant twist ψ̄ due to scission. These are given by (25a, b)
during time interval t2 ≤ t ≤ t̃3.

CD - the post-scission response given by (36) and (38) for times t > t5.
D - the residual twist ψres given by (37).

There is a residual shear stress distribution when M = 0 that is obtained by substituting (37) into
(29),

σθ z,res = 2

{(
C (1)

1 + C (1)
2

)
n1(R) + (

C (2)
1 + C (2)

2

)
n2(R)(

C (1)
1 + C (1)

2

)
N1 + (

C (2)
1 + C (2)

2

)
N2

− n2(R)

N2

}(
C (2)

1 + C (2)
2

)
N2 Rψ̄. (39)

Suppose the networks are of Mooney-Rivlin type, but ψ(t) varies during t2 ≤ t ≤ t̃3. An expression
for ψres and an M − 	ψ relation that are analogous to (37) and (38) could be obtained, but these are
omitted for the sake of brevity of presentation. Suppose W (α)

β depend on the strain invariants. Then
ψres must be determined numerically in general. The M − 	ψ relation will depend on ψ(t) during
t2 ≤ t ≤ t̃3 and will be nonlinear in 	ψ . Since each network could be sheared about a nonzero shear
state, the resultant M − 	ψ relation need not be an odd function of 	ψ .
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6 Modified elastic response: post-scission twist and stretch

Section 5 treated the post-scission elastic twist of a cylinder that was kept at its initial length with an
appropriate axial force being applied to maintain this condition. Now, consider the more general post-
scission elastic response in which there is both stretch and twist.

The current configuration is assumed to be a cylinder with length L̃ and radius r̃0.
The coordinates of a particle of the original network in the current configuration are denoted by

(r̃ , θ̃ , z̃). These are related to its coordinates in the reference configuration by

r̃ = 1√
µ

R, θ̃ = � + φ̃Z , z̃ = µZ , (40)

in which µ = L̃
/

L0 is the axial stretch ratio and φ̃ is the twist per unit initial length. By the assumption

of incompressibility, r̃0
/

R0 = 1
/√

µ.
The deformation gradient and its inverse associated with the remaining portion of the original network

are

F =



1
/√

µ 0 0

0 1/
√

µ r̃ φ̃

0 0 µ


 , F−1 =




√
µ 0 0

0
√

µ −r̃ φ̃/
√

µ

0 0 1/µ


 . (41)

The corresponding left Cauchy-Green tensor and its inverse are

B =




1/µ 0 0

0 1/µ +
(

r̃ φ̃
)2

µr̃ φ̃

0 µr̃ φ̃ µ2


 , B−1 =




µ 0 0

0 µ −r̃ φ̃

0 −r̃ φ̃ 1/µ2 + (r̃ φ̃)2/µ


 . (42)

The deformation gradient associated with the network formed at t̂ is determined using (10). The left
factor in (10), ∂x(t)

/
∂X = ∂ x̃

/
∂X, is given by (41). The right factor, [∂x(t̂)

/
∂X]−1 is determined from

(7) and the fact that ψ(t̂) = ψ̄ during scission. Then

F̂ =



1/
√

µ 0 0

0 1/
√

µ r̃(φ̃ − ψ̄)

0 0 µ


 , F̂−1 =




√
µ 0 0

0
√

µ −r̃(φ̃ − ψ̄)/
√

µ

0 0 1/µ


 . (43)

The corresponding left Cauchy-Green tensor and its inverse are

B̂ =



1/µ 0 0

0 1/µ + r̃2(φ̃ − ψ̄)2 µr̃(φ̃ − ψ̄)

0 µr̃(φ̃ − ψ̄) µ2


 (44a)

and

B̂−1 =



µ 0 0

0 µ −r̃(φ̃ − ψ̄)

0 −r̃(φ̃ − ψ̄) 1/µ2 + r̃2(φ̃ − ψ̄)2/µ


 . (44b)

Since B̂ and B̂−1 are independent of t̂ for t1 ≤ t̂ ≤ t5, and b(1)(R, t) = b(1)(R, t5), a(R, t) = 0,
b(2)(R, t, t̂) = b(2)(R, t5, t̂) for t5 < t , the constitutive equation (4) reduces to

σ = −pI + 2n1(R)
(
W (1)

1 B − W (1)
2 B−1) + 2n2(R)

(
W (2)

1 B̂ − W (2)
2 B̂−1), (45)

where n1(R) and n2(R) were defined in (31a, b).
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Using (42) and (44a, b) in (45) gives the shear stress

σθ z = 2n1(R)
(
µW (1)

1 + W (1)
2

)
r̃ φ̃ + 2n2(R)

(
µW (2)

1 + W (2)
2

)
r̃(φ̃ − ψ̄), (46)

and the normal stresses

σrr = −p + Frr

Frr (R, t) = 2n1(R)

[
1

µ
W (1)

1 − µW (1)
2

]
+ 2n2(R)

[
1

µ
W (2)

1 − µW (2)
2

]
,

(47a)

σθθ = −p + Fθθ

Fθθ (R, t) = 2n1(R)

[
W (1)

1

(
1

µ
+ (r̃ φ̃)2

)
− µW (1)

2

]

+2n2(R)

[
W (2)

1

(
1

µ
+ r̃2(φ̃ − ψ̄)2

)
− µW (2)

2

] (47b)

σzz = −p + Fzz

Fzz(R, t) = 2n1(R)

[
µ2W (1)

1 − W (1)
2

(
1

µ2
+ (r̃ φ̃)2

µ

)]

+2n2(R)

[
µ2W (2)

1 − W (2)
2

(
1

µ2
+ r̃2(φ̃ − ψ̄)2

µ

)]
,

(47c)

The equilibrium equations imply p = p̃(r̃ , t) and

∂σrr

∂ r̃
+ σrr − σθθ

r̃
= 0, 0 ≤ r̃ ≤ r̃0. (48)

Since r̃ = R/
√

µ, p = p̃(r̃ , t) = p(R, t). Let (48) be transformed to the reference configuration. Using
(40) and the condition that the cylindrical surface is traction free, it is again found that p is given by (14)
and hence σzz is given by (15).

The resultant axial force is

N = 2π

∫ r̃0

0
σzzr̃dr̃ . (49)

and, on transforming to the reference configuration, becomes

N = 2π

µ

∫ R0

0
σzz Rd R. (50)

When σzz from (15) is substituted into the integral in (50), the latter reduces to the same integral as in
(18). Next, let expressions for Fzz − Frr and Frr − Fθθ be calculated from (47a, b, c), let r̃ = R/

√
µ and

substitute the results into (18). Then

N

(2π/µ)
=

(
µ2 − 1

µ

) ∫ R0

0

[
2n1(R)

(
W (1)

1 + 1

µ
W (1)

2

)
+ 2n2(R)

[(
W (2)

1 + 1

µ
W (2)

2

)]]
Rd R

−
∫ R0

0

[
2n1(R)

(
1

µ
W (1)

2 + 1

2
W (1)

1

)
φ̃2 + 2n2(R)

(
1

µ
W (2)

2 + 1

2
W (2)

1

)
(φ̃ − ψ̄)2

]
R3

µ
d R (51)

The resultant twisting moment is

M = 2π

∫ r̃0

0
σzθ r̃2dr̃ (52)

which transforms to

M = 2π

µ
√

µ

∫ R0

0
σzθ R2d R. (53)
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By (46)

M = 4π

µ2

∫ R0

0

[
n1(R)

(
µW (1)

1 + W (1)
2

)
φ̃ + n2(R)

(
µW (2)

1 + W (2)
2

)
(φ̃ − ψ̄

)]
R3d R (54)

Suppose that W (α)
β = C (α)

β are constants. (54) reduces to

M = 4π

µ2

{(
µC (1)

1 + C (1)
2

)
φ̃

∫ R0

0
n1(R)R3d R + (

µC (2)
1 + C (2)

2

)
(φ̃ − ψ̄)

∫ R0

0
n2(R)R3d R

}
(55)

By (34a,b), this can be rewritten as

M = 4π

µ2

{[(
µC (1)

1 + C (1)
2

)
N1 + (

µC (2)
1 + C (2)

2

)
N2

]
φ̃ − (

µC (2)
1 + C (2)

2

)
N2ψ̄

}
. (56)

In a similar manner, the expression for the axial force in (51) reduces to

N

(4π/µ)
=

(
µ2 − 1

µ

){(
C (1)

1 + 1

µ
C (1)

2

)∫ R0

0
n1(R)Rd R +

(
C (2)

1 + 1

µ
C (2)

2

)∫ R0

0
n2(R)Rd R

}

−
(

1

µ
C (1)

2 + 1

2
C (1)

1

)
N1

µ
φ̃2 −

(
1

µ
C (2)

2 + 1

2
C (2)

1

)
N2

µ
(φ̃ − ψ̄)2 (57)

Equations (56) and (57) express M and N in terms of φ̃ and µ. Two equations for the residual twist φ̃res
and the residual stretch µres are obtained by letting M = N = 0. An expression for the twist at M = 0
and at any stretch is found from (56)

φ̃M=0 =
(
µC (2)

1 + C (2)
2

)
N2(

µC (1)
1 + C (1)

2

)
N1 + (

µC (2)
1 + C (2)

2

)
N2

ψ̄. (58)

Substituting (58) into (57) and setting N = 0 gives a nonlinear equation for the residual stretch µres. φ̃res
and µres are related by

φ̃res =
(
µresC

(2)
1 + C (2)

2

)
N2(

µresC
(1)
1 + C (1)

2

)
N1 + (

µresC
(2)
1 + C (2)

2

)
N2

ψ̄. (59)

A number of comments can now be made.

(1) (37) is a special case of (58) when µ = 1. A comparison of (58) and (59) shows that the residual twist
when M = 0 and N �= 0 differs, in general, from that when M = N = 0. In any case, the residual
twist is less than ψ̄ .

(2) If C (1)
β = C (2)

β , φ̃ becomes independent of µ when M = 0,

φ̃res = N2

N1 + N2
ψ̄. (60)

(3) Let φ̃ = 	φ̃+ φ̃M=0 in (56) and make use of (58). Then (56) reduces to a linear torque-twist relation,

M = 4π

µ2

{[(
µC (1)

1 + C (1)
2

)
N1 + (

µC (2)
1 + C (2)

2

)
N2

]
	φ̃. (61)
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(4) Let φ̃ = φ̃res and µ = µres. Suppose the cylinder tested by someone who is unaware of its torsional
or thermal history. If the cylinder is kept at the fixed length µresL0, the torque-twist relation that
would be found is given by (61) with µ = µres. The axial force would be given by (57). Since the
axial force was compressive during scission, it is reasonable to assume µres > 1. As the first term in
(57) is positive, while the other terms are negative, the post-scission axial force may or may not be
compressive.

(5) The torque-twist relation for the cylinder in its initial state is

M = 2
(
C (1)

1 + C (1)
2

)π R4
0

2
φ̃ (62)

The ratio of the post-scission torsional stiffness and pre-scission torsional stiffness is

(M/	φ̃)post

(M/φ̃)pre
= 4

µ2
res R4

0

[(
µresC

(1)
1 + C (1)

2

)
N1 + (

µresC
(2)
1 + C (2)

2

)
N2

]
(
C (1)

1 + C (1)
2

) . (63)

7 Concluding remarks

This work is concerned with the thermo-mechanical response of elastomers over a range of temperatures
from below Tcr, when there is no microstructural change, to above Tcr when there are microstructural
changes due to scission and crosslinking. Using a constitutive equation that describes this range of re-
sponse, the consequences of these microstructural changes are studied in the context of the torsion of
a circular elastomeric cylinder when it has a temperature distribution that varies with radius and time.
This deformation is possible in every material represented by the constitutive equation and for any such
temperature distribution. It thus provides a convenient platform for studying torsion when microstruc-
tural changes interact with the deformation and temperature, and it enables results to be obtained that are
expressed in terms of general material properties and kinetics of scission and crosslinking.

The cylinder is first twisted while the cylinder is at a constant temperature below Tcr. The well-known
torque-twist and axial force twist relations from nonlinear elasticity are developed. The cylinder is then
held at a fixed twist and the surface temperature is increased to above Tcr. Because of heat conduction
through the surface, there is radial and time-dependent scission and crosslinking within the cylinder.
Since the newly crosslinked material is not deformed, the torque and axial force depend only on scission.
It is shown that there can be two competing effects resulting from the temperature increase, an initial
increase in torque and axial force due to entropic stiffening in their elastic response and then a subsequent
decrease due to scission based stress relaxation. Even though the torque and axial force vary with time
when the temperature exceeds Tcr, it is shown that their ratio can be independent of time provided the
material properties satisfy certain conditions. This result should be useful in an experimental program.

Finally, the surface temperature is reduced to its initial value T0, the temperature distribution in the
cylinder becomes uniform at T0 and the scission and crosslinking processes have stopped. Because of
scission and crosslinking that occurred when the cylinder was twisted and the temperature exceeded Tcr,
the cylinder now has a modified torque-twist and axial force-twist response. Expressions are developed
for these in terms of general material properties and scission kinetics. When the networks can be de-
scribed by the Mooney-Rivlin strain energy function, explicit expressions are obtained for the modified
torsional stiffness and the permanent set upon removal of torque and axial force.
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