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On constitutive equations for electrorheological 
materials 

Alan S. Wineman and K. R. Rajagopal 

Constitutive equations for electrorheological (ER) fluids have been based on 
experimental results for steady shearing flows and constant electric fields. 
The fluids have been modeled as being rigid until a yield stress is reached. 
Additional stress is then proportional to the shear rate. Recent experimental 
results indicate that ER materials have a regime of solid-like response when 
deformed from a rest state. They behave in a viscoelastic-like manner un- 
der sinusoidal shearing and exhibit time-dependent response under sudden 
changes in shear rate or electric field. In this work, a constitutive theory 
for ER materials is presented which accounts for these recent experimental 
observations. The stress is given by a functional of the deformation gradient 
history and the electric field vector. Using the methods of continuum mechan- 
ics, a general three-dimensional constitutive equation is obtained. A sample 
constitutive equation is introduced which is then used to determine the re- 
sponse of an ER material for different shear histories. The calculated shear 
response is shown to be qualitatively similar to that observed experimentally. 

1 Introduction 

Much of the research and development work on electrorheological (ER) ma- 
terials has been concerned with one-dimensional shearing deformations in the 
presence of an electric field. Even though an ER material is a suspension of elec- 
trically non-conducting particles in a non-conducting liquid, the response of an 
ER material in such deformations is usually described in terms of an equivalent 
single - constituent material. Thus, in steady one-dimensional shearing flows, 
which has been the subject of most studies, an ER material is generally regarded 
as a Bingham fluid whose yield stress and viscosity depend on the strength of 
the electric field. In this manner, yield stress and viscosity have become charac- 
teristic material properties of ER materials and much emphasis has been placed 
on their measurement. 
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The constitutive equations which have been proposed for ER fluids have 
been based on results for steady shearing flows, in which the constitutive equa- 
tion takes the form of the scalar shear stress-shear rate relation for a Bingham 
fluid. For three dimensional flows, Atkin, Shi and Bullough [1] assumed the 
constitutive equation to be that for a Bingham fluid. This model is essentially 
obtained from the one - dimensional case by generalizing the scalar shear stress 
and shear rate to the stress and stretching tensors, respectively, and the yield 
stress to a stress dependent yield condition. Rajagopal and Wineman [2] adopted 
a completely different approach in the development of a constitutive equation 
for three dimensional flows. They assumed that the stress tensor depends on 
the electric field vector and stretching tensor, all at the same instant. Utilizing 
the methods of continuum mechanics, they developed a general form for this 
dependence. In the case of a simple shear flow, the constitutive equation gives 
the shear stress in terms of the shear rate and electric field. One particular choice 
of this relation can be that for a Bingham fluid. It also predicts the presence of 
normal stresses due to the electric field vector and the interaction between the 
electric field vector and the shear field. 

Recent research has been concerned with the response of ER materials when 
sinusoidal shearing deformations have been imposed (see for example, Brooks 
et al [3], Vinogradov et al [4], Thurston and Gaertner [5], Xu and Liang [6], Yen 
and Achorn [7], Gamota and Filisko [8], [9], Jordan and Shaw [10]). According 
to the experimental results, when the strain amplitudes are sufficiently small, 
the shear stress is also sinusoidal and is out of phase with the strain. The stress 
is expressed in a manner analogous to that in linear viscoelasticity, that is, in 
terms of an elastic storage modulus (real part) and a loss modulus (imaginary 
part) of a complex modulus. These moduli appear to depend weakly on fre- 
quency and strongly on the electric field. Gamota and Filisko [8] have studied 
the effect of increasing the strain amplitude. They showed that the response 
becomes nonlinear in the sense that the stress response becomes non-sinusoidal, 
but remains periodic. Yen and Achorn [7] and Jordan and Shaw [10] report 
similar observations. Gamota and Filisko [8] also showed that nonlinearities 
arise in the stress response as the electric field increases. Gamota et al [11], in 
a Fourier decomposition of the stress response, showed that the nonlinearities 
can be attributed to the superposition on the small strain response of sinusoidal 
oscillations whose frequencies are odd multiples of the fundamental frequency. 
The third 'overtone' appears when the electric field becomes sufficiently strong. 
Increasing the electric field introduces the fifth 'overtone', etc. 

In linear viscoelasticity, the complex modulus which characterizes the re- 
sponse to sinusoidal strains can be related to time dependent phenomena asso- 
ciated with creep and stress relaxation. It is natural to inquire whether the same 
is true for ER materials. The first study of this possibility appears to be that of 
Xu and Liang [6]. In a study of start-up flows under constant shear strain rate, 
they showed that the shear stress grows rapidly and continuously to the steady 
state value that would occur under steady shear flow. The details of the stress 
growth history depend on the electric field. The stress growth is similar in form 
to that which would be found for viscoelastic fluids. Other authors have also 
presented evidence of transients in the stress response of ER materials, although 
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this has appeared in the context of studies of other phenomena. Thurston and 
Gaertner [5] showed the response to a step change on and off for a dc electric 
field. Conrad et al [12] and Jordan et al [10] showed results for start up flows 
under constant shear rate. Their results are similar to those of Xu and Liang [6]. 

The results of the sinusoidal strain and constant strain rate experiments are 
not accounted for by the constitutive equations discussed above. The purpose of 
the present work is to discuss possible forms for constitutive equations which 
overcome this deficiency. In section 2 we introduce constitutive assumptions 
which are motivated by these experiments. A constitutive theory is presented in 
which the current stress depends on the history of deformation and the current 
electric field vector. A specific example of a constitutive equation is introduced 
in Section 3, while the general representation of the constitutive equation in 
terms of kinematic tensofial quantities and the electric field vector is presented 
in the Appendix. General simple shear histories are introduced in Section 4. Ex- 
pressions are then developed for the shear and normal stress components based 
on the constitutive equation of Section 3. Section 5 contains a study of the re- 
sponse under start-up flow at a constant shear rate. Sinusoidal shear is discussed 
in Section 6. It is shown that the results based on the sample constitutive equa- 
tion can represent the gross features of the experimental observations discussed 
above. This implies that the constitutive equation for a specific ER material can 
be developed using the constitutive frame work presented here. 

2 Constitutive assumptions 

We begin this section with a discussion of a number of aspects of the response 
of ER materials. 

(a) Consider an ER material which is contained between two parallel plates. 
Let the material initially be at rest in an unstressed state, and let there be no 
electric field. If a shear stress is applied, the material will undergo shear flow, 
acting as a fluid. Next let the ER material be placed in an electric field and 
then let a shear stress be applied. If the shear stress is small enough, the ER 
material develops sufficient stiffness and strength so that the ER material can 
resist flow and respond as a solid. The ER material appears to have solidified 
by the application of the electric field. That is, the ER material is in a state in 
which it can support a constant shear stress when it has undergone a constant 
shear strain from the state at which it solidified. The shear stress will depend 
on the shear strain and the strength of the electric field. 

Under a sufficiently large shear stress, the ER material loses its ability to act 
as a solid. The material will undergo shear flow and thereby respond as a fluid. 
The shear stress will become independent of the shear strain and become depen- 
dent instead on a kinematical quantity which is appropriate to the description of 
its response as a fluid, as well as the strength of the electric field. In other terms, 
distortions from the configuration at solidification have decreasing influence on 
the stress, and hence the material 'loses memory '  of that configuration. The 
manner in which the ER material undergoes the transition from a solid-like to 
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fluid-like response is currently the subject of research activity and will not be 
speculated on here. The approach here only makes use of the observation that 
when the shear stress reaches some value, there appears to be such a transition. 

(b) The preceding discussion describes the response as the shear stress is 
increased from a value below that at transition to a value above. Now consider 
the reverse situation in which the shear stress is reduced from a value above 
that at transition to a smaller one. There do not appear to be any studies of  this 
process in the literature which can be used to guide a constitutive assumption 
for the subsequent response. In order to provide the starting point for such 
a study, the response of the material is assumed to be as follows. When the 
shear stress has decreased to the transition value, the ER material begins to 
act as a solid. This means that the stress becomes dependent on the strain from 
some configuration. The configuration of the material at the time when the shear 
stress equals the transition stress becomes the reference configuration from which 
strains are measured. Although the strains are zero at the moment of transition, 
the stresses are not. It is assumed that the stress is continuous at transition. 

(c) Consider steady shear flow in which the electric field vector is normal to 
the fluid velocity. For such conditions, the constitutive equations discussed in 
the Introduction give relations of the form 

a(t) = f ( y ( t ) ) ,  E(t)) ,  (2.1) 

where or(t), E(t)  and V(t) denote, respectively, the values at time t of the shear 
stress, electric field strength and shear rate. Now consider deformation con- 
trol experiments in which the shearing deformation is sinusoidal, i. e. y(t) = 
V0 sin cot. If the material is modeled as a Bingham material, equation (2.1) ap- 
plies only if a yield stress is exceeded. It is then unclear how deformation control 
experiments are to be described. In the approach of Rajagopal and Wineman [2], 
(2.1) is a general form which can apply under all flow conditions. According to 
this constitutive equation, the shear stress is in phase with the shear rate under 
sinusoidal deformations. The shear stress will be sinusoidal if the amplitude 
of the shear rate, Y0, is sufficiently small. As Y0 increases, the stress response 
becomes non-sinusoidal. 

In order that it be able to describe a phase difference between the stress and 
strain, (2.1) must be modified. Constitutive equations for linear viscoelasticity, 
which are known to account for phase differences between stress and strains 
during sinusoidal oscillations, suggest appropriate mathematical modifications. 
The constitutive equation for ER materials will depend on some aspect of the 
deformation history, such as on a time derivative of the strain or strain rate or 
on an integral over the strain history. 

(d) The response of ER materials to changes in the electric field is almost 
instantaneous. Thus, while the stress depends on the history of the deformation, 
it also depends on the instantaneous value of the electric field. 

The preceding discussion is now incorporated into a constitutive theory for 
ER materials. The ER material is modeled as a single constituent material. As a 
prelude to stating the constitutive equation for three dimensional response, it is 
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useful to consider one-dimensional homogeneous shear deformations in which 
the electric field vector is normal to the direction in which the material displaces, 
or flows. The notation introduced for (2.1) is retained here. Let o-0(E) denote 
the shear stress corresponding to electric field E when the material undergoes 
the transition from solid-like to fluid-like response, as discussed in (a). Possible 
time variations are shown in figure 1, of the electric field E(t), the shear stress 
o-o(E(t)) required for transition, and the actual shear stress in the material or(t). 
The constitutive equation is defined in a piece-wise manner, in which its form 
depends on whether the response is solid-like or fluid-like. 

Now consider the three dimensional formulation and let o-(t) and E(t) denote 
the stress tensor and electric field vector, respectively, at time t. It is assumed that 
the regimes of solid and fluid response of the ER material can be characterized by 
means of a transition function, A(~(t),  E(t)) which has the following properties: 

transition between solid and fluid 
solid regime 
fluid regime 

A(o-(t), E(t))  = 0, (a) 
A(o-(t), E(t))  < 0, (b) 
A(o-(t), E(t))  > 0. (c) (2.2) 

If the only non-zero stress component is o-12 = or, and the only component of 
the electric field vector is E2 = E, as in Figure 1, (2.2a) reduces to the condition 
o-(t) = cro(E(t)), provided A has the right properties. It is also possible that A 
is itself a functional. However, here we shall assume that A is a function. It 
would be appropriate at this juncture to tie up the above modeling ideas with 
approaches that have been employed previously. The modeling outlined in this 
paper can be cast within the framework of the ideas espoused by Rajagopal and 
Wineman [13] in their work on constitutive theories and branching of response 
based on the notion of selectivity, the selection criterion being the transition 
function A. The recent papers by Wineman and Rajagopal [14] and Rajagopal 
and Wineman [15] on inelastic response of materials also bear a close relation, 
as far as the seminal ideas are concerned, and here we have to associate the 
activation criterion used in those papers with the transition function A. 

Let [to, tl] denote the initial time interval when the response is solid-like, so 
that condition (2.2b) is met. It is assumed that the stress depends on the electric 
field at time t and the history of the deformation from the configuration when 
the material solidifies. This is taken as the configuration at time to = 0, which 
acts as a reference configuration for the newly formed solid material. The stress 
is given by 

O-(t) ~ (I)soli d [~=~0(t0, s); E(t)], (2.3) 

in which F(t0, s) denotes the deformation gradient of the configuration at time 
s with respect to the configuration at time to. It is assumed that the ER material 
acts as an isotropic solid. This constitutive relation must meet the restrictions 
imposed by material frame indifference and material isotropy. It can be shown 
by standard arguments in continuum mechanics, that (2.3) can be written in the 
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form 

o-(t) = ~so~id [B(t0, t), s=,0 ~ ( t ' s);E(t)  l ' (2.4) 

where B(to, t) = F(t0, 0F(t0,  t) r and C(t, s) = F(t, s)rF(t ,  s). Although the 
functionals in (2.3) and (2.4) are different, they are denoted by the same symbol 
for the purpose of simplicity of  notation. It can also be shown that ~solid is an 
isotropic function of its arguments. 

Let [tl, t2] denote the next time interval, in which the material acts as a 
fluid, so that (2.2c) is satisfied. Since the particulate structure of the ER material 
has lost its ability to act as a solid, it is assumed that deformations from the 
configuration at solidification no longer affect the stress. As in the theory of 
simple fluids, the stress is now determined by the history of the deformation 
relative to the current configuration and the electric field, 

O - ( t )  = ( I ) f l u i d  (t, S); tl; E(t  . 
s i 

(2.5) 

It is a consequence of material frame indifference that (2.5) becomes 

or(t) = qbnuid [Cs=t~ (t, s); tl; E( t ) ] ,  (2.6) 

and is an isotropic functional of its arguments. Again, the same notation for the 
functional has been used in (2.5) and (2.6) for the sake of  simplicity. 

Note the explicit dependence on time t~ when there is transition from solid- 
like to fluid-like response. This is included so as to ensure continuity of stress at 
the transition. Thus, if the response functionals in (2.4) and (2.6) are evaluated 
at t = ¢1 and then equated, the following statement of continuity of the stress at 
tl is obtained: 

~solid B(t0, tl), C0( t l ,  s); E(t l)  • (I)fluid s l(tl '  s); tl; E (h )  • (2.7) 

Let [tsi, tsj] be any time interval in which (2.2b) is satisfied. It is assumed 
that the material solidifies at time tsi, and its configuration at this time acts as a 
reference configuration. The stress is given by 
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Let [tfi, tfj] be any time interval in which (2.2c) is satisfied. It is assumed that 
the material again becomes fluid-like with the stress given by 

c* = °°~uid [ Cs,(t's); tf'; E(t) ] (2.9) 

The dependence on tsi in (2.8) and on tfi in (2.9) is included to ensure continuity 
of the stress at transition, so that relations such as (2.7) are satisfied. 

The transition function A(~, E) in (2.2) is also subject to the restrictions of 
material frame indifference and material symmetry. The focus in this paper is 
on the response functionals (I)soli d in (2.4) and (I)fluid in (2.6). Consequently, the 
restrictions on A(~, E) will not be pursued here. 

The general forms of the response functionals I~soli d in (2.4) and (])fluid in 
(2.6), as restricted by isotropy, can be determined by the methods presented in 
the article by Spencer [16]. This is discussed further in the Appendix. 

We conclude this section with several comments. In a general three-dimen- 
sional formulation, we could define the stress through 

oo 
o- = q) [F(t - s); E(t - s)] (2.10) 

s = 0  

where F(t - s) is the history of the deformation gradient and E(t - s) is the 
history of the electric field. In the absence of the electric field, the constitutive 
relation reduces to that for a simple material. Depending on the histories of the 
deformation gradient and the electric field, it is possible that the functional dO 
could represent fluid or solid response at a material point in the body. Here, 
for the purpose of simplicity of exposition, the solid and fluid like behavior in 
the different regimes of response is made explicit from the outset. When the 
response is that of a solid, then oO depends on the history of the strain tensor 
referred to the reference configuration, and when the response is fluid-like (I) 
depends on the history of the strain tensor referred to the current configuration. 

The above formulation defines an explicit transition of the ER material from 
apparent solid-like to fluid-like response. It is possible that as the transition func- 
tion A changes from negative to positive, (I)soli d in (2.4) becomes independent of 
B(0, t) in a continuous, but rapid manner. The rapid but continuous transition of 
the ER material from solid-like to fluid response then corresponds to a similar 
transition from (I)soli d in (2.4) to ~fluid in (2.6). 

3 Constitutive example 

The representations of (I)soli d in (2.4) and (])fluid in (2.6) presented in the Ap- 
pendix, are expressed in terms of general functionals of matrix polynomials of 
the kinematic tensors B(0, t) and C(t, s) and the electric field vector E(t). It is 
useful to present an example of a constitutive equation which illustrates possi- 
ble forms for the functionals. This example constitutive equation will also be 
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used, in section 4, in the calculation of stresses in shear flows. Its purpose is to 
show the contribution to the stress components of the interaction between the 
kinematic tensors B(0, t) and C(t, s) and the electric field vector E(t). 

It is to be emphasized that the following constitutive example is presented 
only for the purpose of illustrating the general model. It is not proposed as one 
for any particular ER material, as that would have to be determined on the basis 
of an extensive experimental program. The results in section 4 based on this 
example, may provide some useful ideas to be employed in the development of 
an appropriate constitutive equation for a specific material. 

Attention is restricted to incompressible ER materials. For times t E [to, tl], 
when the response is solid-like, the response functional in (2.4) is assumed to 
have the form 

q)soIia + pl  = 

= filE ® E + fi21] + r3 ~2 Jr- fl4D 

+ fi5 (lIE ® E + E ® fiE) + fl6(B2E ® E + E ® ]~2E) 

+ r7 (DE ® E + E ® DE) 

+£' 
+£' 

+io 
+io' 
+io' 

L1 (t - s)C(t ,  s)ds 

fot L 2 ( t -  Sl, t - s e ) [ C ( t ,  Sl)l~(t, s 2 ) +  C(t, $2)(~(/, Sl)]dslds2 

L3(t - s)[(~(t, s)E ® E + E ® (~(t, s)E]ds 

fotL4(t - Sl, t - s2)[l~(t, sl)(~(t, s2)E ® E -g- E ® C(t, Sl)(~(t, s2)E]dSl ds2 

L s ( t  - s)[~(t ,  s) + ~(t, s)l~]ds 

L6(t - s)[l~C(t, s)E ® E -4- E ® l~C(t, s)Elds. (3.1) 

For times t > tl, when the response is fluid-like, the response functional in (2.6) 
is assumed to have the form. 

@~uid + p~ = ,i,(tl) + D1E ® E + k20 + i,i Ml(t  - s)~(t, s)d~ 

+ f,i/;i + 

+ f,i M~(t - ~)[~(t, s)E ® E + E ® ~(t, ~)E]~ 

+ .ftl .[tl M 4 ( t -  si, t -  s2)[(~(t, sl)(~(t, s2)E ® E 

+ E ® C(t, sl)C(t ,  sz)E]dsl ds2. (3.2) 
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In (3.1) and (3.2), E = E(t), I~ = B(t0, t ) - I  and £2(t,s) = C ( t , s ) - I .  
The stretching tensor D arises when response functionals A depend on (~(t, s) 
through the operation D = (OC(t, s)/Os)s=t . When the response functional in 
(3.1) contains the term in D, the solid-like response has qualities of a Kelvin 
solid, e.g. no instantaneous elasticity. Scalars/31,/32 . . . . .  /37,/31,/32 are constants. 
Functions LI, L2 . . . . .  L6, M1 . . . . .  M4 depend only on the arguments shown. It 
is further assumed that (a) these are continuous functions, (b) ILil and IMil 
monotonically decrease, (c) there is an x0 > 0 such that if x > x0, Xl > x0, 
x2 > x0, then Li(x) = O, Mi(x)  = O, Li(Xl,X2) = 0, M i ( x l , x 2 )  = 0, for 
appropriate choices of the index i. 

Each term in (3.1) has a specific purpose, each has the ability to capture a 
certain physical response observed in these materials. The terms fiE ® E and 
I~2E ® E both reflect the contributions of the electric field to the shear stress, the 
former depending linearly on the shear strain and the latter nonlinearly. Thus, 
if experiments suggest a nonlinear dependence of the shear stress on the shear 
strain, then the term fiE ® E would not suffice. The term DE ® E is included to 
model rate effects. Of course, if the rate effects are of higher order, we would 
need additional terms like D2E ® E. The term E ® E represents a contribution 
to the stress purely due to the electric field. This models the normal stress 
induced due to the formation of particulate like chains in the direction of the 
electric field. The integral terms are selected to account for stress relaxation and 
transient response associated with start up flows and the frequency dependence 
of the response associated with steady state sinusoidal shearing. They also allow 
for the inclusion of the nonlinearities arising with variations in the electric 
field strength and the amplitude of the shear oscillations. The model can also 
incorporate transient response of the electrorheological materials when subjected 
to step changes in the electric field. The double integral terms allow for overtones 
in the stress response due to sinusoidal shear, which the single integral terms 
cannot. The integrands (~(t, s)E ® E and I~(t, Sl)C(t, s2)E ® E serve the same 
purpose for the transient response as do fiE ® E and ]~2E ® E for the steady 
state response. 

4 Shear of ER materials 

Consider an ER material which is undergoing homogeneous simple shearing 
motion in the presence of an electric field. The motion will be described in a 
Cartesian coordinate system in which Xi denote the coordinates of a particle in 
its initial state and xi(t) denote its coordinates at time t. The motion is described 
by the relations 

xl (t) = X1 + K( t )X2,  

x2(t) = X2, x3(t) = X3. (4.1) 
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The variation of the shear K(t)  with time is arbitrary. The electric field vector 
is normal to the direction of particle motion and is given by 

E1 = E 3  = 0 ,  E a ( t ) = E ( t ) ,  (4.2) 

where E(t)  is assumed to be arbitrary. 
The following descriptions of the shear motion are needed in order to calcu- 

late the matrix arguments in (3.1) and (3.2): 
Particle position at time s < t in terms of the particle position at time t 

Xl(S) = xl (t) + [K(s) -K( t ) ]x2( t ) ,  (4.3) 

X 2 (S) = X 2 ( t ) ,  X 3 (s) = x3 ( t ) ,  

velocity field 

Vl(t) = £(t)X2(l) ,  v2(/) = V3(t) = O, (4.4) 

where the superposed dot denotes differentiation with respect to time. 
For notational convenience, let F = F(0, t), B = B(0, t), K = K(t) ,  E = E(t )  

and K(t ,  s) = K(s)  - K(t) .  Then, from (4.1) 

F ( 0 ,  t)  = F = 1 . 

0 
(4.5) 

The relative deformation gradient F(t, s) is obtained from (4.3), 

F(t, s) = 1 , 
0 

(4.6) 

and from (4.4), the velocity gradient L is 

L =  0 . 
0 

(4.7) 

Since l~ = B - I = FF r - I, 

~ =  K 0 , 

0 0 0 

K2 + K4 K3 i ]  
~ 2  ~.  K 3 K 2 . 

0 0 
(4.8) 
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By (4.7), 

D = ~ (  + L r ) = ~  R 0 . 
0 0 

(4.9) 

By (4.6), (~(t, s) = C(t, s) - I = F(t, s)rF(t ,  s) - I is given by 

i o !t C(t,s) = K(t,s) K2(t,s) , 
0 0 

(~(t, Sl)l~(t, $2) = K 2 K1K2 + K1K 2 , 
0 

(4.10) 

in which K1 = K(t, sl), K2 = K(t, s2). The matrices which appear in (3.1) and 
(3.2) are given by (4 .8) -  (4.10) and the following: 

By (4.2) 

E Q E  = E 2 
0 

(4.11) 

I~EQE = i] [! o] 0 0 , ]~2E ® E = K2E 2 , 
0 0 0 0 

(4.12) 

Ii '-2 ] ~KE 0 
D E ® E  = 0 0 , 

0 0 
(4.13) 

C(t, s)E ® E = K2(t, s)E 2 , 
0 

(4.14) 

C(t, sl)C(t, s 2 ) E @ E =  [i  
K1K2E2 i] 

( K 1 K  2 q- K 2 K 2 ) E  2 , 

0 
(4.15) 
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[KK(t, s) K2K(t, s) + KK2(t, s) t 
B(2(t,s) = [  ~ KK(t,S)o 00' (4.16) 

[! (K2K(t 's)+KK2(t 's))E2 i l  
I]C(t, s)E ® E = KK(t, s)E z . (4.17) 

0 

By (3.1) and (4.8)-(4.17),  the stress components are, for t _< tl 

0-1~ + p  = ( &  + ~3)K 2 + fi3K 4 + 2 fo'/o' L2(t - sl,  t - s2)K(t,  Sl)K(t ,  ~2)a~1 ,~2 

+ 2K/o t L5(t - s)K(t, s)ds, (4.18) 

0-22 -[-P = fll E2 + (f13 -1- 2f16E2) K2 + fo[L1 (t - s) -1- 2E2L3 (t - s)]KZ(t, s)ds 

+ 2fo' fot[L2(t - sl, t - s2) + EZL4(t - Sl, t - s2)][K(t, Sl)K(t, s2) 

-k KZ (t, sl)KZ(t, s2)]dsl ds2 

÷ 2K f0 t [L5 (t - s) + E eL 6 (t - s)]K(t, s) ds, (4.1 9) 

1 
0-12 = (f12 -]- E2fl5)K + (f13 + E2fl6)K 3 + ~(f14 + EZf17)/~ 

+ fot[Ll(t - s) + E2L3(t - s)]K(t, s)ds 

+ fot[Ls(t - s) + E2L6(t - s)][KZK(t, s) + KKZ(t, s)]ds 

+ fo  fo  [L2( t  - ~1, t - ~2) + e 2 L 4 ( t  - s~, t - s~)l[x(t, sl)X2(t, ~2) 

+ KZ(t, sl)K(t, s2)]dsi ds2 (4.20) 

By (3.2), (4.9)-(4.11) and (4.13)-(4.15),  the stress components for t > tl are 

a22 + p  = Cbz2(tl) + ~E 2 + ,{i[ml(t- s) + 2Ezm3(t- s)]KZ(t, s)ds 

+ K2(t, sl)K2(t, s2)]dsl ds2, (4.22) 
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0"12 =l~)12(tl)-~ ~/~2/~ @ ftti[Ml(t-S) -t- E2M3(l-s)]g(t,s)ds 

Jr-,/il ftl [ M 2 ( / -  s1, t - s2 )@E2M4( t -S l ,  t-s2)][K(t, s1)K2(t, s2) 

+ K2(t, sl)K(t, s2)]ds1 ds2. 

13 

(4.23) 

In addition, it is found that 0"33 ÷ P = 0"13 = 0-23 = 0 for all times t. 

5 Constant  shear  rate start  up motion 

Consider the motion in (4.1) in which the ER material starts from a state of rest 
at a constant shear rate, 

K(t)=O, t < 0 ,  (5.1) 

= Vot, t > O. 

Then 

K(t ,  s) = yo(s - t), /~(t) = y0. (5.2) 

Initially when the material is solid-like, the shear stress is given by (4.20). Upon 
substituting (5.1) and (5.2) into (4.20), and an appropriate change in variables 
in the integrals, the expression for the shear stress becomes 

0"12 = yore  (E2(t) ,  t) + ~o~2(E2( t ) ,  t), (5.3) 

in which 

1 
¢Zl(E 2, t) = (f12 d- E2fls)t + ~(f14 4- EZf17) - fo[Ll(X) + EZL3(x)]xdx, (5.4) 

/z2(E 2, t) = (f13 4- E2 fl6)t 3 4- fo [Ls(x) + E2 L6(x) ](-t2x + tx2)dx 

__ .lOt ./o[L2(Xl, x2) -t- E2L4(xl, x2)]XlX2(Xl -}- x2)dXl dx2. (5.5) 

The normal stress differences are given by 

0-11 -- 0"33 = ~Nll ( t )  + v4N12(t), (5.6) 
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where 

Nll( t )=(f i2+fi3) t2-2t foLs(x)xdx 

-t-2/o./oL2(Xl, x2)xlXgdxldN2, 
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(5.7) 

N12(/) = fl3t 4, 

and 

0-22 __ 0-33 = fli E2 .qt_ ~oN21 (E 2, f) _}_ },4N22(E2 ' f), 

where 

N21 (E 2, t) = (f13 + 2E2 f16) t2 + for[L1 (x) + 2E2 L3(x) ]x2 dx 

- 2t for[L5 (x) + E2L6(x)]xdx 

q- 2 j£t fo[L2(Xl, X2) ~- E2L4(Xl, X2)]XlY2dgl dx2, 

(5.8) 

(5.9) 

(5.10) 

N22(E 2, t) = 2 fo Jo t[L2(xl' x2) -4- EZ L4(x~, x2) ]x~xZ dxi dx2. (5.11) 

It is assumed that the stresses in the ER material grow with time and at some time 
tl, the transition condition (2.2a) is satisfied• The stress components are then 
given by (4•21)-  (4.23). Let us consider the shear stress first• Upon substituting 
(5•2) into (4.23) and introducing a change of variables in the integrals, it is 
found that 

0-12 = }tO/~] (EZ(t), t, ta) -4- ~/22(E2(t), t, tl), (5.12) 

where 

t, tl) = / z i ( E  2, tl) + 1/~2 - f o - t I [ M l ( X )  -k E2M3(x)]xdr, (5.13) /~I(E 2, 

[,-,i [,-,~ 
/z2(E 2, t, tl) = ~2(E 2, tl) - .10 Jo [M2(Xl, x2) q- E2M4(Xl, X2)]" 

• xlx2(x~ + x2)dxl dx> (5.14) 

As time increases, the properties of mi, i = 1, 2, 3, 4 are such that the integrals 
reach fixed values at t = tl + x0. The shear stress becomes independent of time 



Electrorheological materials 15 

t and is given by 

O"12 ~- /-g(~0, E2)F0, (5.15) 

where 

/~(~0, U 2) =/~l(E2, t l )q-  1/~ 2 --./£X°[al(x ) -}- EZM3(x)]xdx 

-t- ~oo[#2(E 2, tl) -./oXO £xo [M2(xl, x2) + E2M4(xl, X2)]" 

• xlx2(xl + x2)dxl dx2]. (5.16) 

/~(~00, E2) represents a viscosity which depends on the shear rate V0 and electric 
field E. 

Expressions for the normal stress differences can also be calculated. As with 
the shear stress, the normal stress differences become independent of time and 
are given as 

0-1, - 0-33 = g [ N l l ( E  2, tl) + 2fo x° fo x° a2(xlxg)xlxadXl dy2] q- ~N12(E 2, t) 

= Nl(~o, E 2, tl), (5.17) 

0-22 - 0-33 = (ill + /~I)E 2 + ~[Nzl(E2(t), t) + fo~°[Ml(X) + 2EeM3(x)]x2dx 

+ 2/0 x° ./oXO [Mz(xl, x2) + EZM4(xl, x2)]xlxzdXl dx2] 

q- ?'~[N22(E2(t), t~) -+- 2fo x° ./oX°[M2(x1, x2) -}- E2M4(x1, x2)]" 

• x2x2dxl due] 

= N2(~OO, E 2, tl). (5.18) 

Recall that the general constitutive equation given by (2.4) and (2.6) depends 
on the instantaneous value of the electric field. Thus the relations derived in this 
section are independent of time variation of the electric field. In order to study 
the influence of E(t) in this model, note that the viscosity, by (5.4), (5.5) and 
(5.16) can be written in the form 

/~(~0, E2) =/~1o q- E2/~ll -]- ~0(~20 -{- E2/'21), (5.19) 

where 

1 • 1 ^  
I~10 = fi2t~ + ~fi4 - /0" L1 (x)xdx + ~fi: -/oXO MI (x)xdx, (5.20) 



16 A.S. Wineman, K. R. Rajagopal 

1 rt  x0 
=/35tl + ~fi7 -./o 1 L3(x)xdx - f o  M3(x)xdx, (5.21) ILl1 Z 

1"2o =/33t~ + fo ~ Ls(x)(-t~x + tlx2)dx 

--./£tl ./Otl L2(x1, x2)xlxe(x1-}-xe)dxldX 2 

-.fo xO foxO M2(xl, x2)xlX2(Xl -}-xe)dXldx2, (5.22) 

/ / '21 m_ fl6t~ -b ,lOt1 L6(x)(-t~x -b tlx2)dx 

--./; tt ./; tx L4(Xl, x2)xlx2(xl -t-x2)dx, d.Ic2 

_ _  foXO ./;xo M4(X,, x2)xlx2(x1 ~_ x2)dXl dx2. (5.23) 

When E(t) = 0, the viscosity becomes ~10 -t- ~00/L20. Suppose that the material 
response is Newtonian. This is possible if/32 = /33 = 0, L1 (x) = M1 (x) = 
Ls(x) =-- O, L2(xl, x2) = M2(xl, x2) -- 0. T h e n / ~ ( ~ ,  0) = ½(/34 + fi2). 

Now let E(t) = E0, a constant. Consider a sequence of shear flows at the 
same shear rate Y0, but for increasing E0. As E0 increases, the terms in #11 
and /L21 begin to contribute to the viscosity. Referring to (3.1) and (3.2), as 
E increases, the shear stress develops a dependence on strain tensor B through 
constant/35 thereby introducing solid-like behavior. The stress also develops a 
dependence on the integrals, which introduce transient response. These terms 
could represent the growth of the shear stress to a constant value as shown by 
Xu and Liang [6]. Finally, the term involving ]L21 increases, and the viscosity 
develops a dependence on shear rate. Analogous comments can be made about 
the normal stress differences. These will be omitted for the purpose of brevity. 

Suppose steady-shear flow occurs in the presence of an oscillatory electric 
field, E(t) = Eo sin0)t. By (5.19) 

2 1 - cos 20)t 
~(~00, E(t)  2) =/J,10 "-~ ~00~20 -~ E0- 2 (#11 ÷ ~0/~21). (5.24) 

The viscosity and hence the shear stress required to support the steady shear 
flow oscillate about a mean value with frequency 20). As seen from (5.18), the 
normal stress differences also oscillate about a mean value with frequency 20). 
This has implications for devices involving shear flow of ER materials. If the 
electric field vector is not constant, the fluid could exert time dependent normal 
stresses on the wails of the device, which could result in damage to the device 
and possibly undesirable acoustic effects. 
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6 Sinusoidally oscillating shear 

Consider the motion in (4.1) in which the ER material starts from a rest state 
and undergoes sinusoidally oscillating shear, 

K( t )  = 0 ,  t < 0 ,  

K ( t )  = Ko sin cot, t > O. (6.1) 

Let the shear amplitude be infinitesimal, IK01 << l, so that terms of order K30 
can be neglected in the expressions for 0-12. It will be assumed, for brevity of 
presentation, that the transition function satisfies (2.2b), e.g. the response of the 
ER material is in the solid-like regime. 

On substitution of (6.1) into (4.20) neglecting terms of order K3o, and making 
the appropriate change of variable in the integrals, the shear stress 0-12 is found 
to be given by 

o-12 = Ko[al  (co, E 2, t) sin cot + G2 (co, E 2, t) cos cot], (6.2) 

where 

d 1 (09, E 2, t) =/32 + ./0~ L1 (s) (cos cos - 1) ds 

+ E2[/~5 + .~ L3(s)(coscos - 1)ds], (6.3) 

1 t 
G2(co, E 2, t) = ~fl4co - £  Ll ( s )  sin cosds 

2 1 t 
+ E [~/~7co - , £  L3(s) sin cosds]. (6.4) 

Recalling the properties of L1 (s), L3 (s), it is seen that the integrals in (6.3) 
and (6.4) become independent of time for t > xo. The stress in (6.2) becomes 

o-12 = K0[G1 (co, E 2) sin cot + G2(co, E 2) cos cot), (6.5) 

where 

Gc~(co, E 2) = G~(co, E 2, xo), ot ---- 1, 2. (6.6) 

This result shows that the stress oscillates sinusoidally with frequency co. G1 
and G2 correspond to the storage and loss moduli, respectively, o f  linear vis- 
coelasticity, but depend on E. Note that 

tan 3(00, E 2) -- Ge(co, E 2) 
G1 (co, Ee) ' (6.7) 
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which shows that the phase angle also depends on frequency w and electric field 
E. 

As K0 and/or E increase, the terms of order K03 in (4.20) become significant. 
It is straightforward, but tedious, to show that for t > x0, the shear stress will 
consist of the terms in (6.5) plus an expression of the form 

K~[G1 (w, E 2) sin 3oot ÷ a2(o), E 2) cos 3cot), (6.8) 

where G1 and Ga are of the form 

Ga = Gao(O9) + E2Gc~I (o9), oe = 1, 2. (6.9) 

Thus, higher harmonics of frequency 3o3 appear in the shear stress response. 
According to (6.8), these can arise as K0 increases. Note that if G~0 = 0, 
ot = 1, 2, these terms are negligible if E is small, but become significant as 
E increases. This phenomenon has been shown in the experimental results of 
Gamota et al [ 11 ]. 

For each fixed electric field E, as K0 increases, the stresses may increase 
so that the transition condition (2.2a) is met. It is then necessary to extend the 
discussion to account for (4.23). This adds to the complexity of the analysis, 
but the results will be analogous to that contained in (6.8). There will be higher 
harmonics in the shear stress, whose significance increases as E increases. 

7 Concluding remarks 

Starting within the context of a very general frame work in which the stress 
in an electrorheological material exhibits solid-like and fluid-like behavior that 
depends on the history of the deformation gradient and the applied electric 
field, we have shown that complex non-linear effects are possible due to the 
interaction between the various kinematical tensors such as B, D, C(t, s) and E. 
Using a more specific constitutive equation as an example, we are able to predict 
phenomena which correlate well with the observed response of electrorheological 
materials. Nonlinear phenomena like normal stress differences have been shown 
to be possible in the flow of electrorheological materials and the electrical field 
can affect the material properties in a non-linear fashion. 

8 Appendix 

The results of applying the representation method in [16] are presented first for 
(I) fluid : 

N 
(I)l~uid = ~qI + oeaE ® E + Z A(m)[j(m); I], (8.1) 

m = l  
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where A (m) notes a functional which depends on the history of a symmetric ma- 
trix polynomial j(m), and on a set of invariants I. cz~ and o~2 are scalar functionals 
which also depend on these invariants. The functional A (m) depends, as follows, 
on its matrix polynomial argument j(m); if a component j~m) can be written in 

the form, I !!') = ~o~f4- qo2J , w h e r e  ~ol and (/)2 are constants and J, J depend on v U 
time, then 

A(m)[q) lJ  4- qo2J; I ]  = qOlA(m)[J; I ]  4- qo2A(m)(J; I ) .  (8.2) 

The matrix polynominals are defined by 

j ( m ) =  

where the P fall into several groupings. The first depends on C(s, t), and its 
elements are 

Q(m) ~_ C(s1 ' t )C( s2  ' t ) . . .  C(Sm, t) ,  m = 1, 2 . . . . .  5. (8.4) 

In the next group, each polynomial P depends on both C(s, t) and E(t) = E 
through: 

Q(q)E @ Q(r)E, q,r  = 0, 1, 2, 3, 4, (8.5) 

q 4- r < 4, (8.5) 

with Q(0) = I. 
The set of invariants I consists of the trace of each polynomial P just defined. 

The polynomials P defined in (8.5) do not form the smallest possible set. Some 
may be expressible both in terms of others and some of the invariants of the set 
I. The polynomials are presented in this manner for convenience and brevity. A 
minimal set can be constructed using the method outlined in Spencer's article 
[16]. However, the purpose here is to present the general form of the response 
functional. 

Each functional A (m) depends on all values of its matrix and invariant argu- 
ments as time variables si vary in the interval [tl, t]. 

It is instructive to consider the following example which illustrates the oper- 
ation defined in (8.2), and also emphasizes both the dependence on the history 
of C(s, t) and the dependence on the current value of E(t). For some functional 
A(P), 

[ 1 ] 
A(P) [~(C(s, t)E(t) ® E(t) + E(t) ® C(s, t)E(t)); I] 

1 1 A(p) = -A(P)[C(s, t); I]E(t) ® E(t) 4- ~E(t)  ® [C(s, t); I]E. (8.6) 
2 Z 
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In component form 

[ 1 
A(~) [~ (Cip(S, t)Ep(t)Ej(t) 

= 1 {A(p ) [Cip (s,/'); I]Ep(t)Ej (t) + Ei(t)A (P) [Cjp (s, t); I]Ep (t) } 
2 

+ Ei(t)Cjp(s, t)Ep(t)); I] 

The response functional ~solid in (2.4) has the form 

~solid = 81I + ~2 E @ E -'~ &3B + &4B 2 

+ &5(BE ® E + E ® BE) + &6(B2E @ E + E ® BZE) 

+ E k(") [J(") ; I ] ,  
rn:l 

(8.7) 

(8.8) 

where ~(m) notes a functional which depends linearly on its matrix polyno- 
mial argument j(m) and on a new set of invariants [. 81, 82 . . . . .  86 are scalar 
functionals of the invariants [ .  

The matrix polynomials have the form (8.3), and can be organized into 
several groups. The first group depends only on C(s, t) and consists of those 
given as (8.4). Each polynomial in the second group depends on C(s, t) and 
E(t) and has the form in (8.5). The polynomials in the third group dependent 
on C(s, t) and B and have the form 

P(m)Bp(n), m, n = 0, 1, 2, 3, 4 (8.9) 

m + n ~ 4 ,  

or 

P(m)B2p(n), m, n = 0, 1, 2, 3 (8.10) 

m + n < 3 ,  

or 

B2C(sl, 0BC(s2, t), 

C(sl, t)B2C(s2, t)B. (8.11) 

The last group depends on C(s, t), B and E(t) and has the form 

P(A)E ® P(B)E, (8.12) 

where p(A), p(B) depend on C(s, t) and B. The total degree of p(A) and p(B) must 
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be less than or equal to 4. Examples of  such a matrix polynominal are 

BC(s l ,  t)C(s2, t)C(s3, t )E ® E, (8.13) 

BC(s l ,  t)C(s2, t)E ® C(s3, t)E. 

E(t) 

r 

o'(t) 

SOLID t I FLUID ~ SOLID t3 FLUID 

o'o(E(t)) 

Fig. 1. Determination of time intervals for solid-like and fluid-like response for an electric 
field history E(t), shear stress history ~(t), and transition shear stress history c~o(t ) 
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