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w 1. Introduction 

Consider the Dirichlet problem 

A u(x) + f (u(x))  ---- O, x E O"n 
(1.1) 

u(x) --- O, x E ~l~g. 

H e r e f i s  a smooth function, and/~R (n >-- 2) is the open ball of radius R in R n, 
centered at the origin. In an interesting paper GIDAS, NI, & NmENBERG [GNN] 
proved that positive solutions of (1.1) must be spherically symmetric; i.e., u must 
be a radial function, u = u(r), r = I x I- Thus u(r) satisfies the ordinary differential 
equation 

n - - 1  
u" + u' + f(u) = O, O < r < R 

r 
(1.2) 

u'(O) = o = u(R) .  

Recently, SMOLLER & WASSERMAN [SW1, 2] considered the bifurcation problem 
for positive radial solutions. Specifically, they investigated the ways in which a 
symmetric solution can bifurcate into an asymmetric solution. Of course, the 
results of [GNN] imply that these asymmetric solutions cannot be positive func- 
tions. 

It is natural to allow the function f t o  depend on both u and Ix [, and to con- 
sider the Dirichlet problem 

Au(x) + f ( u ( x ) ,  Ix[) = O, xE O] ,  
(1.3) 

u(x) = O, x c OD~. 

It was shown in [GNN], that if fi(u, r) <= 0 on the relevant range of u and r, 
then positive solutions of (1.3) again must be radial functions. It is thus quite 
interesting to investigate the bifurcation problem for positive solutions of (1.3). 
We remark however that the general problem (1.3) is quite difficult to study, 
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even for the  existence of  radial solutions. We shall therefore only consider small 
perturbations of (1.1), i.e., we study the problem 

A u(x) -k f(u(x)) -F eh(u(x), Ix I)) = O, x E D~ 
(1.4) 

u(x) = 0, x E ~D,~, 

Here f and h are smooth functions of their arguments, e is a small parameter, 
and we shall assume that f satisfies the same conditions as in [SW2]; see w 2. 

In w 3 we shall prove the existence of positive radial solutions of (1.4) for 
small si-Furthermb~e, in preparatiol~ for: our bifurcatio11 results, w e  shall prove 
the existence of  "degenerate" radial solutions;i.e.,  solutions having the property 
that zero lies in the spectrum.of their linearizations. We consider the symmetry- 
breaking problem in w 4. We also sfiow there that if h, > 0, then there exist 
positive asymmetric solutions of (1.4); thus the result in [GNN] is sharp. Finally, 
in w 5 we shall discuss a special application of our results to a weakly coupled 
system of equations. 

w 2. Background Results 

We consider the following ;initial-value problem for positive radial solutions 
Of (1.1): 

n - - 1  
u"(r) + u'(r) + f(u(r)) = 0 . . . .  

r 

u(0) ~ p >  0, u'(0) = :0 .  (2.1) 

We denote by u(r, p) the unique solution of (2.1); as in [SW1, 2], p will be con- 
sidered a parameter. It was shown in [SW2], that if f satisfies the conditions 

f(O) < O, (f(u)/u)'> O, f"(u) <= O, (2.2) 

then for generic f ,  there exists a ~ > 0 and a function T: [fi, oo) --> 1% such that 
for p > ~, u(r, p) satisfies the following: 

u(r, p)3> 0 if 0 <= r < T(p), u(T(p), p) ---- O, 
: (2.3) 

u'(r; p) ,<  0 if 0 < r <= T(p). 

Moreover, u(r,/5) satisfies 

u(r, ~ ) >  0 

u'(r, p-') < o 

if 0 =< r < T(~), 

if 0 < r < T(~), 

up(T(~), ~) < o. 

~(T(F),F) = o, 

u'(T(p), F) o, (2.4) 

Thus, if we consider the equation 

u(R, p) = O, (2.5) 

then we can solvefor p-as a function of  R ]n.a neighborhood of  the point (T(~),~). 
Le~ /~ = T(,~); then p(R)isdefined in an interval [R1, R2] containing/~. From 
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(2.5), we have, on this interval 

u'(R,,p(R)) q- up(R, p(R)) p'(R) = 0, (2.6) 
and 

u"(R, p(R)) -k 2up(R, p(R)) p'(R) + up(R, p(R)) p"(R) -k upp(R, p(R)) (p'(R)) 2 ----- 0. 

(2.7) 

At R = R,  (2,.6) gives up(R~ p(R)) p'(R) = 0 ,  and  since up(R, p(/~)) < 0, we 

p i ( ~ )  = o .  

u ' ' ( ~ } p (R))  + Up( k , P(R)) p"(R) : O1 [ 

get 

Thus from (2.7), 

Now from (2.1), 

n -- 1 u'(R, p(R)) -- fu(R, p(tO) ~"(~, p(k))  - _k 

(2.8) 

thus  

Furthermore, for 

u(r, p(R)) > O, 

u'(r, p(R)) < O, 

For R-----/~, u(r, p(R)) satisfies. 

u(r, p( f f ) )  > o,  o -<_ r < k, 

u'(r, p( f f ) )  < o, o < r < ~, 

Finally, for /~ < R ~ R2, u(r, p(T)) satisfies 

= --f(0); 

p"(~) = f(O)/up(~, p(k)) > o. 

R1 <= R < R, u(R, p(R)) satisfies 

0 ~ r < R, u(R, p(R)) -- 0, 

0 :~  r ~  R. 

u( ~,  p( ~)) = o,  

u'(g, p(R)) = O. 

u(r, p(R)) > O, 0 <= r < R(R), u(R(R);p(R)) = O, 

u(r, p(R)) <5 0:, R(R) < r < R, u(R, p(R)) ----- 0, 

u'(r, p(R)), 7< 0,: 0 < r < R(R), u'(R(R), p(R)) ---- O, 

u'(r, p(R)) > O, R(R) < r ~ R, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where R(r) and R(R) > R(R) are two smooth functions of R. 
We say that a solution u of  (1,1) is non,degenerate provided t h a t  v ~ 0 is 

the only solution of  the linearized equations 

A v(x) -}- f'(u(x)) v(x) ---- 0, x E D~, 
(2.13) 

v(x) ,=  0, x E ~D~. 
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Thus u is non-degenerate if and only if zero is not in the spectrum of the as- 
sociated linearized operator; otherwise u is called degenerate. The following 
theorem was proved in [SW1]; we shall sketch the proof  for the convenience of  
the reader, since the techniques in the proof  will be used below. 

Theorem 2.1. A. Assume R1 <: R < R, and let u(', p(R)) be the corresponding 
radial solution of  (1.1). Then u is non-degenerate. 

B. The solution u(r, p(R)) is degenerate and the function v(r, O) = u'(r, p(R)) 
~b~(O) solves (2.13); q~l lies in the first eigenspace of  the Laplaeian on S n-l, cor- 
responding to the eigenvalue 21 : - - ( n -  1). 

Proof. Every solution of  (2.13) for u = u(.,p(R)) can be written in its 
spherical harmonic decomposition 

v(r, O) : s aN(r) ~N(O), 0 E S n-l, 0 ~ r ~ R, 
N=0 

where r N belongs to the N th eigenspace of the Laplacian on S n-l, corresponding 
to the eigenvalue AN : - -N(N + n -- 2), N = 0, 1, 2 . . . . .  Using this represen- 
tation in (2.13), we have, for N ~ 0, that aN satisfies the differential equation 

,, ~ n - - 1 ,  (2.~ '(u))a~r O, (2.14) air + r aN + -}-f : -  

and if N ~ 1, aN satisfies the boundary conditions 

au(R) = o = a~(O), 
while for N = O, 

a'o(O) = 0 : ao(R) .  

We begin by proving ao(r)~ O. First, ao(r) satisfies 

n - - 1  r  t 
ao + - -  ao q- f'(u) ao = 0. (2.15) 

r 

Also w(r)-~ up(r,p(R)) satisfies 

Comparing (2.15) 

w" + n - -  l w' +f'(u)w----- 0, 
r 

w'(0) = o, w(O) = 1, w(R) < o. 

and (2.16) gives ao(r)= ao(0)w(r), so that 
ao(0) w(R) implies 
if N ~  1. If  we let 

(2.16) 

0 = ao(R) = 
ao(0) = 0 and thus ao(r) ~ O. Next we show aN(r) ~ 0 

z(r) = u'(r,p(R)), then z satisfies 

Z" + 2(~._s '(u)) = 0, O < r < ~ R  n - - l z ' +  + f  z 
r 

z(O) = O, z(r) ~ O, 0 < r ~ R. 
(2.17) 
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Then multiplying (2.14) by r"-Iz  and (2.17) by r"-lau gives 

d n - - 1  P 
--drr [r (aNz -- auz')] = rn -3 (21  - -  2 N )  a N Z .  (2.18) 

Now assume that N ~ 2, aN(r) ~ O, and that /~ ~ R is the first positive zero 
t ^ 

of aN; then aN(r) < 0 for 0 < r < _R, aN(/~) = 0 and aN(R) ~ O. Integrating 

(2.18) from 0 to R gives the contradiction 

0 ~ _R"-~a~(/~) z(R) = f r"-3(2~ -- 2N) aNz dr > O. (2.19) 
0 

Thus aN(r) ~ 0 if N ~ 2. For N = 1, we integrate (2.18) from 0 to R to get 
R"-la'~(R) z(R) = 0 so that a]~(R) = 0. Thus al ~ 0, and this completes the 
proof of (A). 

In order to prove (B), we observe that in part (A). if v(r, O) = ~ aN(r) ~N(O), 
N ~ 0  

then the same arguments yield ao(r) ~--- O, and aN(r) ~ 0 if N > 1. Moreover, 

it is easy to see tha t  al(r) = u'(r,p(R)) solves (2.14) and a~(R)= al(O ) = O. 
Thus (B) holds and the proof is complete. [ ]  

Our next result deals with the solutions u(r, p(R)) in the range R < R < R2. 

Theorem 2.2. Let R < R < R 2 , then the solution u(r, p(R)) is non-degenerate 
provided that (R2 --/~) is sufficient small. 

Proof. For u =  u(r,p(R)), / ~ <  R <  R2, we use the expansion v = 

~] aN(r)~N(O), as in the previous theorem. For (R2 --/~) small, we again 
N > 0  
have up(R, p(R)) < 0 so that the same arguments as in the proof of the last 
theorem (Part A) apply to give ao(r) ~ O. Moreover, as u'(R, p(R)) > 0 (by 
(2.12)), we conclude, as in the proof of Part A o f  the last theorem, that al(r) ~ O. 

Now for N ~ 2, we have, as before 

d [rn_l(a~ z aNZ')]  r , , _3 (~ .  1 2N) aNz 
dr 

(2.20) 

where z(r ) -7- u'(r,p(R)). Again assume that aN(r ) z~ 0 and that .R ~ R is the 

first positive zero of aN. We may assume that aN(r) < 0 if 0 < r < / ~ .  Then 

if R ~< R (cf  (2.13)), we integrate (2.20) from 0 to /~ to get 

= f dr > O. 
0 
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! ^ 

But as aN(R)>: 0 a n d  z ( / ~ ) ~  0, we obtain  a contradiction. It follows that 

/~ > R(R). If  we now integrate (2.20) from 0 to R, we have 

Rn-laN(R) z(R)=('~I--~U) rn -3aNzdr+  f r"-3aN z . (2.21) 

Now for small (R 2 - -  R )  (of. Figure 1), we clearly have both z(_R) : O(R 2 R) 
and 

f rn- 'auz  dr = O(R2 -- R). 
R(R) 

On the other hand 

~(R) 
f r " - 3 a N Z d r ~  0 
o 

is not O(R2 -- R). Thus, for sufficiently small (R2 -- R), (2.21) gives a contra- 

diction. It follows that aN(r )~  0 for N ~ 2 if (R~  R) is sufficiently small. 
This completes the proof  of Theorem 2.2. [ ]  

R 

R2 
R 

m,  

o 
a b 

Fig. 1 a and b 

u t 

" ~  ,~(R} /~ R 

w 3. The Existence of Degenerate Radial Solutions 
for the Perturbed Equation 

W e  consider first the existence problem for radial solutions of  (1,4). Such 
solutions solve the problem 

n - - 1  
u" + - -  u' -~ f(u) + eh(u, r) :- O, 0 < r < R ,  

F 

u'(O) = o = u ( R ) .  
(3.1) 
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We assume in this section that f satisfies conditions (2.2), so that the results of 
Theorems 2.1, and 2.2 are valid. 

We denote by u~(r, p) the solution of the initial value problem 

n - - 1  
u'~' + u', + f(u,) + eh(u,, r) = 0 

r (3.2) 

u;(O) = p > o, u;(O) = 0 

Associated with this fi we have the function p(R) defined in Section 2. For p = 
p(R~), we have (from (2.10)), u'(R1, p(R~)) < 0 and u(R~, p(R~)) = 0. Thus 
there is an ~ />  0 such that u(Rt + ~t,p(R~)) < 0. Now for lel sufficiently 
small, solutions of (3.2) are close to solutions of (2.1) on 0 <-- r =< R~ + 2fl, 
Hence for l e ] small, we have u,(R~ + r 1, p(R!) ) < 0 and u'~(R~ -k rl, p(Rt)) < O. 
It follows tha t  for such e there exists a continuous function Ra(e) satisfying 
RI(0) ~- R, and 

u,(R~(e), p(Ra)) = 0, u;(R~(e), p(R~)) .< O, 
(3.3) 

u6(r, p(R~) > 0 for 0 --_ rt < Rx(e); 

(cf Figure 2a). Similarly, for p = p(Rz), we have a continuous function Rz(e), 
defined for I~1 sufficiently small, satisfying R2(0) = R2, a n d  continuous func- 

tions /}(R), R(R) satisfying (c f ,  Figure 2b) 

u~(Rz(e), p(R2)) = 0, 

u~(r, p(Rz)) > 0 

..(r, p(R2)) < 0 

u:(r, p(Rz)) < 0 

u:(r, p(R2)) > 0 

u;(R2(e), p(R2)) > 0, 

for 0 ~ r < R(Rz(e)), u~(R(Rz (e ) )  , p(R2) ) = 0 

fo r  ~ (R2(0 )  < r < R=(,), 

for 0 < r ~ R(R2(e)), 

for R(R2(e)) < r =< R2(e). 

(3.4) 

Now since f satisfies (2.2), f has a smallest positive root, say uf. For e small, 
and R~ <_r <-- R2,f(u) + eh(u, r) has a root u~near u I. F o r p  near u~the solution 
u(r, p) does not meet u = 0, while for large p it meets this line transversally, 

" •  7 ~  #(R2te)): Rzte} 

m, ( e ) #(R,(ellk,,,,~. . ~ L . ~  "r 
a 

Fig. 2a and b 
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It follows that there is a continuous function /-~(e), ,~(0) -~/~, and a point ~, 
near ,~ (recall p ( R ) =  ~), such that 

u,(r, ~ )  > 0 for 0 =< r < R(e), ue(R(e), ~,) = 0 
(3.5) 

u:(r, p~) > 0 for 0 < r < R(e), ' - - u,( R(e), p,) -~ O . 

This follows from (3.3) and (3.4) since the functions Rx and R2 are continuous. 

Now if le[ is sufficiently small, then since up(R,~) < 0 (cfi (2.4)), we have 

-~p u~(R(e), p,) < O. (3.6) 

This allows us to solve the equation ue(R, p) = 0 for p as a function of R, say 
p = p,(R), R~(e) <_ R <~ R2(e); (we are using the same notation as before -- this 
should not cause any confusion). This implies that the solution u,(r, pc(R)) of 
(3.2) is also a solution of (3.1) if R~(e) <~ R <_ R2(e). Thus u~(r, p~(R)) also solves 
(1.4) on this range of R. Now as (2.8) and (2.9) followed from (2.4), we have 
similarly 

p'(R(e)) = 0, and p'j(/~-(e)) > 0. (3.7) 

It is also easy to verify that on the range R,(e) < R < R(e), u,(r, p,(R)) enjoys 
the same properties as u(r,p(R)), Rt < R < R ;  see (2.11). Similarly, for /~-(e) < 

R ~ R2(e), u,(r, p,(R)) satisfies the same properties as  u(r, p(R)) on R < R ~ R2 
(of. (2.12)). 

We can now state the following theorem. 

Theorem 3.1. I f  ]e I is sufficiently small the following hold: 
A) ue(r, pe(R)) solves (1.4), Rl(e) <~ R <~ R2(e) 

B) There exists a unique continuous function f~(e) near R(e) such that 
u,(r, ps(R(e))) is a degenerate solution of  (1.4), and u,(r, p~(R)), R ~= ~R(e), Rl(e) <= 
R ~ R2(e) is a non-degenerate solution of  (1.4). 

C) /~(e) > /~(e)  /f  eh~(u, r) < O, and R(e) < R(e-') i f  ehr(u, r) > O. 

Proof. Part A) has already been proved. Now let v be a solution of the prob- 
lem 

A v + be(u) + ehu(u, r)] v = 0, x ~ D~ 
(3.6/ 

v(x)  = o, Ix] = R ,  

where u = u,(r, pc(R)). We expand v in spherical harmonics: 

v =  ~ au(r) q~s(O), OES "-l ,  O<_r<~R, (3.7) 
N=-0 

and we find that ao(r) satisfies 

n- -~ l  
a'o" + 4 + [f'(u) + ehu] ao = O, 0 < r < R 

r 

ao(O) = o,  no(R)  = o ,  (3.8)  
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and for N ~ 1, as(r) satisfies 

If r, n --  1 , '(u) + ehu 0, 0 < r < R, aN -t- r aN + + aN = 

a (O) = o = aN(R),  

where 2N = - - N ( N  + n -- 2), and u = u,(r, p,(R)). 
Now let 

then w satisfies 

W rt A I_ 

0 @.,( p (R))- w = r, ~ , 

(3.9) 

n - - 1  
w' + [f'(u) -}- ehu] w = 0, 0 < r < R, 

r (3.10) 

w'(0) = 0, w(0) = 1, w(R) < O. 

Comparing (3.8) and (3.10) gives ao(r) = ao(O)w(r) so that 0 = a o ( R ) =  
ao(0) w(R) implies ao(0) = 0, and thus ao(r) =- O. Next, for Rl(e) <~ R ~ R2(t), 
let 

gR(r) = u'~(r, p~(R)). 

Then gR satisfies the equation 

,, n - - 1  , _ _  [ 2 ]  
gR + r gR + f ' (u )  + eh u +  gR + eh, = O 

(3.11) 
gR(0) = 0, gR(0) = U'~'(0, p~(R)) < O, 

where u(r) = u,(r, p~(R)). For N => 2, the same arguments as in the proofs of 
Theorems 2.1, and 2.2 apply and we obtain aN(r) ~ 0 for n >-- 2. 

Thus the degeneracy of u~(.;p~(R)) depends on at. Let at(r,p~(R)) be the 
solution of the problem 

n - - 1  [ ~ ]  
al + f ' (u )  + eh u + 2t " ' as = O, O <  r < R ,  

al + r (3.12) 

at(0) = 0, at(0) = u','(0, p,(R)) .  

Then for R ----- _R(e), we have g~(o(r) < 0 for 0 < r </~(e),  and ggt,)(R(e)) = O. 

Now on 0 --< r _< R, as solutions of (3.11) are close to solutions of  (3.12), for 
sufficiently small [e ], we conclude that for 0 --< r _< R 

at(r, p,(R)) --  gl~(r) ---- O(e). (3.13) 

Now by definition 
u~(g, p~(R)) = O, 

so that 
Ou, Ou. 
~r (R, p~(R)) + -~p (R, p~(R)) p~(R) = O. 
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Then differentiating with respect to R gives 

d ~U~(R,p~(R))q_~u~ d [ ~  )] 
dR Or -~p (R, p~(R)) p"(R) + ~ (R, p,(R) p',(R) = O. 

Thus at R =/~(e), (3.6) and (3.7) imply 

d ~u~ (R, p~(R))IR='~(,) -- 
dR Or Op (R, p~(R)) p"(R) > O. 

Thus if Rl(e) and R2(e) are near R(e), then 

J-~(gR(R)) = d 8u~ "-~ ~ (R, p , (R))> 0 for Rt(e) ~< R _< R2(e). 

Now if e is sufficiently small, we have 

d 
~-~al(R,p,(R)) > 0 ,  R~(e) ~ R <= R2(e), (3.14) 

From (3.13), we have, for small e 

al(Rl(e), p~(Rl(e))) = gR~(,)(Rl(e)) -k O(e) 

= a--r u~(R2(e), p.(Rl(e))) + O(e) (3.15) 

in view of (3.3). Similarly (3.13) and (3.4) give 

al(R2(e), p,(R2(e))) = gR~(~)(R2(e)) q- O(e) 

= 8---~ u,(R2(e), p,(R2(e))) -]- O(e) (3.16) 

> 0 ,  

Now from (3.14)-(3.16), we see that there exists a unique/~(e), Rl(e) </~(e) < 
R2(e) for which ai(/~(e), p,(R(e))) & 0. Thus  u,(r, p,(R(e)))isa degenerate solu, 
tion of (3.1), and for Rl(e) ~= R ~ R2(e), R ~ -R(e), al(r) ~ O. Thus statement 
B) in Theorem 3.1 is proved. 

We now consider part C). Thus assum e that ehr(u, r) < O. We shall prove 
that R(e)>  R(e). In view of What We have already shown, this is equivalent 
to proving that ai(R(e),p~(R(e)))S: O,  If: ai(/~(e), p~(R(e)))~ 0, then let ro be 
the first positive zero of ai(r, p,(R(e))). Using the same sort of arguments as be- 
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fore, we find, from (3.11) and (3.12), 

d [r~_l(g,Ral a~gi~)] --rn-leh~al �9 
dr 

integrating this from r = 0 to r = ro gives 

ro 

--r~-lgl~(ro) a'l(ro) = -- f r n-1 e hr(u, r) al(r) dr < O. 
0 

But as g~(ro) < 0 and a'j(ro) ~ O, we arrive at a contradiction. Thus /~(e) > 

/~(e) if eh,(u, r) < 0. Similarly, we can show that /~(e) </~(e)  i f  ehr(u, r) > O. 
This completes the proof of Theorem 3.1. [ ]  

w 4. Symmetry Breaking for Solutions o f  Equation (1.4) 

We continue to assume that f satisfies hypotheses (2.2). This implies that the 
results of w and w are valid. In particular Theorem 3.1 is valid, so that 

us(t, p~(R(e))) is degenerate solution of (1.4). Our goal is to prove that the symmetry 
actually breaks on this solution. To this end let I = [Rl(e), R2(e)], and define 
the operator 

M: {u E C2(D~): u = 0 on ~DT}• C~ 
by 

M(z, R) (x) = Ax(z(x) + u~(tx I R, p~(R))) + n2[f(z(x) + u~(lx I R, p,(R))) 

~- eh(z(x) + u~(Ix I R,p~(R)), Ix] RD]. 

From Theorem 321 A), we know that M(0, ' R) = 0  for all R E I. Further- 
more, as was shown in Theorem 3.1, the linearized operator about the degenerate 

solution us(r, p~(R(e)) has kernel spanned by at(r, p~(l~(e))) ~1(0), where ~1(0) 
lies in the eigenspace of the Laplacian on S~-! corresponding to the eigenvalue 
21 = --(n -- 1). Hence the equation 

0 = Mz(O, l~(e)) v = Av +/~2[f'(u) + ehu(u , r)] v, (4.1) 

where u(r) = u~(rR, p,(R(e))), has an n-dimensional solution set spanned by the 
functions 

x! a,(rR, p~(R(e))), i = i, 2 . . . .  , n; 
r 

(eft [SWI, 2]). Now as there are no (non-zero) purely radial elements in the 

kernel, if bifurcation occurs on u~(r, p~(R(e))), then the symmetry breaks. 
In order to prove that the symmetry breaks on this solution, we have only to 

verify the transversality condition (see [SW2]) 

f MzR(O, .R) v2(x) dx :~= 0 ~, 
o7 
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for any solution v of (4.1). Now a computation gives 

MzR(0,  ^ , ,, [ r e ^ 
= 2Rill (u, r)] + R [f~ (u, r)] -~- -~r u(rR, p~(k)) 

, ~ ^ ^ ] / ~  d 
-I- p,(R) Ul,(rR , p,(R))j q-- e - ~  (hu) 

where 

f '(u, r) : f ' ( u )  -]- ehu(u, r), and f"(u,  r) = f " ( u )  + ehuu(U, r). 

As in the appendix of  [SW3], we need only prove that 

(4.3) 

We can now compute the integral in (4.4). 

p~(l~(e)) = 0 and /~ is near R, p'((R(e)) --- O(e), 
1 

n w l  
a " + n - - l a ' + R 2 [ f ' ( u , r ) ] a  r-----2--a:O, O < r < l ,  

r 

For notational convenience, we set u(r) ~ u~(r_R, p,(R)), and a(r) = aa (rR, p,(k)). 
Then a(r) satisfies 

a(0)-----0= a(1). 

where 

But 

A -~ f M~R(0, R) a2(r) r "-1 dr 
0 

---- 2Rf'~(u,r) + R"f~ (u,r) -~u~(r_~,p~(R)) a2(r)r"-l  dr + O(e), f ^ t ^2 1r 

0 

1 

f . . . .  : ~ J~ l u, r) p~(R) Up(rR, p,(t~)) aZ(r) r n-1 dr 
0 

1 d 
+ f / ~  e TK (hu) a2(r) r " -  1 dr. 

0 

^ ,  ^ , ,  ~ } d ^ 2 ,  ^ d 
2Rf'~(u, r) -J- Rf'~ (u, r) r--~r U r = ~ [Rr "f'~(u, r)] -- Rr2e--~r hu, 

so that from (4.5) 
1 

f d " 2 '  A "~r [Rr "f'~(u, r)] a2(r) r n 2 dr + O(e) 
0 

1 

2 t r = -- f Rr f'~(u, r)--~r (a2(r)r  n-l) dr q- O(e). 
0 

(4.5) 

To this end note that since 

so from (4.3), 

1 

A ~ f M~R(O, R) a,(rk, p,(R)) 2 r"-'  dr :t: O. (4.4) 
0 
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Using the differential equation in (4.5), we have 

j l [  n--,o, .--,] 
A = ~ -  a" -~- r r2 a [2a'r" + (n - -  2) r"- la]  dr + O(e) 

1 

= ( l ^ { 2 r n a " a ' +  (n - -  2 ) r n - ' a a " +  2(n - -  1) r n - l ( a ' )  2 
d R  
+ (n -- 1) (n -- 2) r"-2aa ' - -  2(n -- 1) rn-Za'a - -  (n --  1) (n -- 2) r"-Sa 2} dr 

+ o(0 
1 I 

= ~ f  {d(r"(a')2) 

1 
= ~ [a'0)Y + o(e). 

R 

But (cfi (3.10 or (3.11)), 

Therefore for small ]e [, 

d n l , d n 2  
+ (n -- 2) -~r (r - aa ) --  (n --  1) -~r (r - a2)t dr + 0(~) 

a'(1) ^ ' ^ = Ral(R(~),  p, (~(~)))  

^ t t  ^ ^ 

= Ru~ ( R ( 0 ,  p~(R(~))) + o (~)  

=/~( - - f (0 )  -- sh(O, R)) + O(e). 

A = kf(O)~ + 0(~)  > O, 

since f(0) < 0. This proves the transversality condition, and thus the symmetry 

breaks on u,(r,p,(/~(e))). We have thus proved the following theorem. 

Theorem 4.1. Let  f satisfy (2.2), and for  small le[ let u~(r,p~(R(e))) denote 
the degenerate solution o f  (1.4). Then the symmetry breaks on this solution. 

We close with the following remark. Suppose that ehr(u, r) > 0; then as we 

have seen in Theorem 3.1 C), /~(e) </~(e) .  Thus from (2.10) we see that for 
small e, u'~(R(e), p,(R(e))) < O. It follows that for R near /~(e), the non-radial 

solution bifurcating from u,(r,/~(e)) is positive in D~. In [GNN], it was shown 
that if eh,(u, r) ~= O, then positive solutions must be radial; thus their result is 
(in a certain sense) the best possible. 

w 5. An Application to Certain Systems 

We show here how our results can be used to prove the existence of  sym- 
metry-breaking solutions for some special systems. 



96 K.-S. CtqENG & J. A. SMOLLER 

Consider the system 

u(x) + g(u(x)) = o, 
(5.1) 

A v(x) ~-f(v(x)) -k eh(v(x), u(x)) O, x E D~, 

together with Dirichlet boundary conditions 

u(x) = 0 = v(x), x E ~D~R. (5.2) 

We assume that f satisfies hypotheses (2.2) and that le] is sufficiently small. We 
further assume that the problem 

Au(x) + g(u(x)) = o, x E D"R 
(5.3) 

u(x) = O, x E ~D~, 

admits a radial solution for a range R E [R1, R2]. In this case the results of w 4 
can be applied to (5.1), (5.2). To see this, we let u(r, R) denote a radial solution 
of (5.3). Then if we use this in the second equation in (5.1), we find that v satis- 
fies 

Av(x) +f(u(x))  + eh(v(x), u([x], R)) = O, xE D] ,  
(5.4) 

v(x) = O, x E OD]. 

This equation is now of the form (1A), and  as the hypotheses of Theorem 4.1 
are valid, we see that for sufficiently small ]e [, (5.4) admits a positive degenerate 

solution v~(r, p~(R(e))) on which the symmetry breaks. Thus there is symmetry 

breaking for the system (5.1)on the solution [u(r, _R(e)), v~(r, p~(_R(e)))]. 
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