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Abstract 

It is well-known that rarefaction shocks are urtstable solutions of nonlinear 
hyperbolic conservation laws. Indeed, for scalar equations rarefaction shocks are 
unstable in the class of smooth solutions, but for systems one can only say in 
general that rarefaction shocks are unstable in the larger class of weak solutions. 
(Here unstable refers to a lack of continuous dependence upon perturbations of 
the initial data.) Since stability in the class of weak solutions is not well under- 
stood, ([T, TE]), "entropy" considerations have played a leading role in ruling 
out shocks that violate the laws of physics. However, for non-strictly hyperbolic 
systems the analogy with the equations of gas dynamics breaks down, and general 
entropy or admissibility criteria for the variety of shocks which appear, (see, 
e.g., [IMPT]), are not known. In this paper we address the question of when the 
instability of a shock can be demonstrated within the class of smooth solutions 
alone. We show by elementary constructions that this occurs whenever there 
exists an alternative solution to the Riemann problem with the same shock data 
which consists entirely of rarefaction waves and contact discontinuities with at 
least one non-zero rarefaction wave. We show that for 2 • 2 strictly hyperbolic, 
genuinely nonlinear systems the condition is both necessary and sufficient. We 
show too that for the full 3 • 3 (Euler) equations of gas dynamics with polytropic 
equations of state, rarefaction shocks of "moderate" strength are unstable in the 
class of smooth solutions if and only if the adiabatic gas constant 7 satisfies 
1 < )J < ~ (see Theorem 8). More precisely, there is a constant y , ,  0 < y ,  < 1, 
depending only on ~,, such that if Y, Pt <= Pr <= Pl for 1-shocks, and if y,pr <= 
Pl ~ Pr for 3-shocks (where pr and Pt denote the pressures on both sides of the 

5 rarefaction shock), then the shock is unstable if and only if 1 < ~ < -3-- Thus for 
such shocks, the theory of the Riemann problem for polytropic gases in the range 
1 < y < ~ can be rigorously developed with a knowledge of the smooth solutions 
alone by using stability under smoothing as an admissibility criterion, rather than 
by using the classical entropy inequalities. 
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w 1. Introduction 

It is well known (see [C, S]), that rarefaction shocks, i.e., shocks which violate 
the Lax entropy condition, in strictly hyperbolic, genuinely nonlinear systems 
(see [S]) are unstable solutions of nonlinear hyperbolic systems of conservation 
laws. In this paper we clarify the precise sense in which such solutions are unstable 
for systems of equations. 

We say that a shock wave is unstable in the class of smooth solutions if there 

exists a sequence of C2-solutions, defined uniformly for x E R, 0 ~ t ~< 7 for 

some T >  0, that converges in every LP-class (p ~ 1) to the given discontinuous 
data at t = 0, but does not converge to the given shock-wave solution for any t, 

0 < t =< 7. For  scalar conservation laws, it is easy to show that rarefaction shocks 
are unstable in the class of smooth solutions. For  systems of equations, the situa- 
tion is more complicated, since, generally speaking, the condition that the family 
of smooth solutions converges to the discontinuous data at t = 0 implies that 

such smooth solutions cannot be constructed uniformly on R •  [0, 7] for any 

7 >  0. In this paper we shall show by means of elementary constructions that any 
shock wave solution of a general system of conservation laws is unstable in the 
class of smooth solutions, whenever there exists another solution to the Riemann 
problem having the same data that consists entirely of constant states separated 
only by rarefaction waves and contact discontinuities, where at least one of the 
rarefaction waves is of  non-zero strength. (By a shock wave, we mean any solution 
consisting of two constant states separated by a jump discontinuity that satisfies 
the Rankine-Hugoniot jump relation (see [S]).) For  2 • 2 systems of strictly hyper- 
bolic, genuinely nonlinear systems, we show that this condition is both necessary 
and sufficient. We also prove that for the full 3 • 3 Euler equations of gas dynamics 
having a polytropic equation of state, rarefaction shocks of "moderate" strength 
(see Theorem 8) are unstable in the class of smooth solutions if and only if the 
adiabatic gas constant 7 satisfies 1 < y < ~. Thus for this range of 7, the theory 
of the Riemann problem for Euler's equations can be rigorously developed (for 
moderate shocks, but we conjecture for all shocks), by using stability with respect 
to smoothing as a criterion for admissibility, instead of the classical entropy in- 
equalities. We thus see that gas dynamics is special because for general systems, 
the instability of rarefaction shocks can only be seen within a class of solutions 
which is larger than the class of smooth solutions, and hence for such equations, 
an "entropy condition" must be provided in order to observe instability. We hope 
that this observation might clarify the idea of using stability as a criterion for 
admissibility in non-strictly hyperbolic systems where general entropy conditions 
are still unknown. The example of gas dynamics demonstrates that this can be 
done for important systems. 

In the final section of this paper, we show how our study of rarefaction shocks 
leads to a seemingly paradoxical situation, whereby it appears that a Riemann 
problem admits two distinct admissible solutions. Our example demonstrates that 
some care must be taken when one solves Riemann problems in the (u, p)-plane, 
cf. [CF, S]. 

Throughout this paper we assume that the reader is familiar with the standard 
"shock-wave" notation and terminology as discussed in [S], for example. 
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w 2. The Instability Theorem 

We consider n • n systems of  nonl inear  hyperbol ic  conservat ion laws in one 
space dimension 

ut + f (u )~  = 0, (1) 

where u = ( u ~  . . . . .  u,), x C R ,  t > 0  and f E C 3 ( D ) ,  where 12 is a domain  
in R ". Except  where noted, we assume that  the system is strictly hyperbol ic  and 
either genuinely nonl inear  or  linearly degenerate  in each characteristic field (see 
[S]). In this case, let 2~ < . . .  < 2, denote  the eigenvalues ofdf ,  (the first derivat ive 
of  the vector  funct ion f ) ,  with corresponding eigenvectors rx . . . . .  r,. Fo r  UL E s 
let N~(uL) denote  the integral curve of  the i th eigenvector field th rough  uL and let 
~9~ denote the i th Hugonio t  locus of  uL (i.e., uR E 5P~(UL)/~ 12 corresponds 
to a discontinuity, say of  speed s, determined by the i th characteristic field). We 
consider piecewise constant  initial da ta  

{ uL, x ~ 0 ,  
Uo(X) = (2) 

uR, x ~ 0. 

The first result applies to an arbi t rary  system of  conservat ion laws of  the fo rm (1). 
Let  u(x, t) denote a (weak) solution of  the Riemann  prob lem (1), (2), which is a 
shock of  speed s, and let [uL, uR] (x, t )  denote a second solution of  this same 
Riemann  problem.  

Theorem 1. I f  there exists a second solution [uL, uR] which consists o f  m- 
waves, each o f  which is either a rarefaction wave or a contact discontinuity, and i f  at 
least one o f  the rarefaction waves is nonzero, then there exists a one-parameter 

family  u~(x, t) o f  C2-solutions o f  (1) satisfying 

lira Flu~(', 0 )  - Uo(')rlL~ = 0 ,  
~-+0 

l lim ![us(', t) --  u(', t)]iLp > 0 
e-+0 

for  all p > O and all t > O. 

Proof .  Assume that  [UL, UR] (X, t) is a solution of  (1), (2) consisting of  m- 
waves, each of  which is either a rarefact ion wave or a contact  discontinuity. Then 
there exist states u L = u ~ u a . . . . .  u . . . .  u R such that  u iC~i (u  ~--l) and such 
that  the i th w a v e s  take u i 1 to u i. Let ~ ( i ) ,  0 _< i ~< 1 denote  a smoo th  para-  
metr izat ion of  N,-(u ~- 1) between d -  1 and u; satisfying Ni(0) = u i -  ~, N,-(1) = u i, 
i -  1 . . . .  , m. Let  a(x) denote an increasing C~-funct ion,  i :  [0, e l - +  [0, 1], 
satisfying 

[0 ,  x < 0, 
if(X) = j (3) 

1, x ~ s .  

Fo r  each e > 0, define initial data  by 

4 ( x ,  o )  = ~ i ( i ( x  - ( i  - 1) ~)). (4) 



66 J .A.  SMOLLER, J. B. TEMPLE t~; Z. P. X~N 

The solution u~(x, t) of  (1), (4) is a C2-function consisting of  an i-simple wave 
in which a state u = ~i(e)  propagates with speed 

dx/dt = 2i(Ni(c0), 0 < cr < 1. (5) 
Thus f rom (3), 

u i-1, x < 2i(u i-1) t + ( i - -  1) e, 
u~(x, t) = 

u i, x >= 2i(u;) t -k (i - -  1) e + e = 2t(u i) t + ie. 

Therefore in t > 0, we can construct  a C2-solution u~(x, t) consisting o f  m non-  
interacting simple waves by taking (of. Figure 1), 

l 
ug(x, t), if x ~ ;h(u 1) t § e, 

u ~ ( x , t ) =  u~(x,t), i f2 i_ l (u~- l )  t @ ( i - - 1 ) e ~ x < 2 i ( u i ) t + i e ,  

u?(x, t), if  2m(U m) t -k me <= x .  

Note  that  u~ is a C2-function since f is C a. 

Ur = Urn 

X 
E 2E 5E (m-I)E m~ 

Fig. 1 

I t  is clear that  
UL, if X ~< 21(UL) t, 

u~(x, t) = { 
t ui~, if x > ;t,n(Ue) t -b me 

so that  for any p > O, 

lim Jlu,(', O) - -  Uo(')J]Lp = O. 
e-+O 

i tends to the rarefaction wave or the contact  discontinuity Furthermore,  since u~ 
connecting u i ~ to u i and since at least one of  the rarefaction waves is expansive, 
it follows at once that  for  any t > O, 

lira [] u~(-, t) - -  u(-, t)]ILp > O. 
e-*-O 

This completes the p roo f  of  the theorem. [ ]  
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We shall now derive a consequence of our result. First, note that in the case 
of  the 2 • 2 Johnson-Smoller systems [JS], which include the equations of isen- 
tropic gas dynamics, the interaction of two shocks of the same family produces 
a shock of  that family, together with a rarefaction wave of the opposite family. 
This implies that for both characteristic families, the rarefaction shock curves 
~i(uL), i : 1 or 2, break into the concave side of the integral curve through uL, 
and as was shown in [CS], they do not leave that region. Hence, if uR E ~i(uL), 
then the solution of the Riemann problem (1), (2) consists of two rarefaction 
waves (see Figure 2). Thus Theorem 1 implies the following result which was first 
proved in [CS]. 

Corollary2. For the 2 •  Johnson-Smoller systems, (see [JS]), rarefaction 
shocks are unstable in the class of smooth solutions. 

Fig. 2 

~__tl  

w 3. Applications to Gas Dynamics 

We consider in this section the full 3 • 3 gas dynamics (Euler) equations with 
an ideal, polytropic equation of state [S]; we shall show that Theorem 1 applies 
to shocks of "moderate"  strength, provided that 1 < V < ~, where ~, denotes 
the adiabatic gas constant. The meaning of the term "moderate" will be made pre- 
cise below (see Theorem 8). Our technique is to study the projections of the shock 
and rarefaction wave curves in the (u, p)-plane (see [CF, S]). There we shall show 

5 do the rarefaction shock curves break into the "quad- that only for l < v < ~ -  
rant"  determined by the backward and forward rarefaction wave curves (see 
Figure 3). But somewhat surprisingly, these curves must eventually leave this 
quadrant. Thus for weak rarefaction shocks, Theorem 1 applies and shows that 
they are unstable in the class of smooth solutions if and only if 1 < 7 < ~-. 
On the other hand, we can (uniformly) estimate when these curves leave the 
"rarefaction wave quadrant",  and this enables us to assert the same instability 
result for rarefaction shocks of "moderate" strength. We proceed with the details. 
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JR, 

I 
P 

I 

Fig. 3 
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In  the (u, p)-plane,  for  ideal po ly t rop i c  gases, the shock  and  rarefac t ion  wave 
curves s tar t ing at  the state (uL, PL, OL) on the left have the fo l lowing fo rm (see 
[S, Ch.18, w 

S~(uC, pC,~L): 1-shock wave:  u - -  Ur, = --~bL(p), u <  UL, 

Sa(uL, PL, ~c) : 3-shock wave :  u - -  uL = ~bL(p), u < UL, 

P > P L ,  

PC > P, 

(6) 

P L O P ,  

P > P c  

Rl(uc, PL, ~L): l - r a re fac t ion  wave:  u - -  uz = --~0c(p), u > uz, 

R3(uL, PL, ~c): 3- rarefac t ion  wave:  u - -  Uz = ~0L(p), u > UL, 

where (u, p,  0) is connected  to (UL, Pc, 0L) on the right.  Here  

~ / ~  -- /s /)L 
gOL(P) = (P -- PC) -k #ZpL ' (7) 

~oc(p) t/1 _ / ~ 4  _ 1 ~,__1 ~__j 
#2 ]/vcp2~(p 2~ _ pZ7 ), (8) 

and  #z = (7 - -  1) (~ + 1) -1,  v = 0 -1,  where 0 is the density,  p is the pressure,  
and  u is the velocity. The  rarefac t ion  shock curves take  the  fo rm 

BI :  1-rarefact ion shocks:  u - -  u c  = - - 4 L ( P ) ,  

B3 : 3-rarefact ion-shocks  : u - -  u c = the(p), 

u > u L ,  P L > P ,  
(9) 

u > uL, P > PL. 

In o rde r  to prove these assert ions,  we must  first show tha t  the curves B1 and  
B3 b reak  into the R1 - - R 3  region.  

Lemma 3. For (u,p)C B~ k/ B3 and ]u -- ULI + [P --PL[ sufficiently small, 
(u,p) lies in the R ~ - - R 3  region if  and only (f 1 ~ ~ < ~-. I f  v and 
(u,p) CB3, then (u,p) lies in the R~ -- R3 region, while i f  (u,p) EB1, then 
(u, p) does not lie in this region. 
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Proof .  We compute  

4'2(p) = p + (2/* 2 + 1)pL 
2(p +/.2pL)3/2 [(1 --  /*2) VL]I/2 > O, 

4'~(p) = _ p + (4/* 2 + 3)PL 
4(p +/*2pL ) [(1 - - / ,2 )  VL]T/2, 

4'~,,(p) = -~ p + (6/* 2 + 5)pz- 
( p  +/*2pL) [(1 - / * 2 )  v31/~, 

- -  2)' #2  PL , 

~o~'(p) --  )I --  1 [1 + )'~ - ( ~ ) [ ( 1  --/*4)VLl,/2 Z 
27 \ 27 ]P  /*2 P~', 

- -  l1 + 3)'~ -(-'57--r ) [(1 --/*4) vz-]i/ZpF" WL"(P) --  )' 1 [1  + 7 ]  ,+~v • 
2)' I C 5 7 - r  ! p /*2 

From these expressions, one easily checks that 
r t t 4'z-(pO = w z - ( p 3 ,  4 ' e ( p O  = " v , L ( p ~ ) ,  

. . . . . .  9 [(1 --/*2) VL]I/2 ()'2 __ 1) (1 q- 3)')pL5/2 [(1 --  /Z4) VL]J/2 
4'L (PZ-) --  VJZ- (PL) = a [(/*2 + 1)pL] 5/2 8)' 3 /*2 

= ~ [(1 --/*2) vA,/2 [ (/*2 + 1)a ( ) ' 2  i ) ( 1  + 3)'!] 
[( /*2 @ 1)pL]5/2 1 8 -  ) '3 /*2  

[(1 - - /*2 )  vz]~/2 2 
- -  1 

--  ~ [(#2 + 1)pL] 5/2 ) '  - -  1 ( 5  - -  3)'). 

tt! tit 
Thus 4'~"(p/.) --  Wz- (PL) > 0 if 1 < 7 < -}, and 4'z- (PD -- W"'(PD < 0 if 

N o w  let p < PL, with p near pz-, and let (ua,p) ff BI, (ue, p) C Rl ; 5 
Y > T .  
then 

u2  - . ~  - -  ( u 2  - u O  - ( <  - uz-) = - ~ , z - ( p )  - ( - 4 , z . ( p ) )  = , / u  - v ,z- (p)  

(P --  PL) 3 
= 3-------(~. " ( # / ' ( p D  - V"I'(PL)) + 0 4 ( I P  - -  PL I),  

5 so that  u z < u l  if 1 < ) ' < ~ ,  and u z >  ul if ) ' > T .  Thus the B~ curve 
breaks into the R1 --  R3 region if 1 < )' < -~-, and breaks out  of  this region if  

5 Similarly, we can check that if )' > ~,  the B3 curve breaks out  of  the ) ' > y .  
R~ --  R3 region, while if 1 < )' < ~-, the B2 curve breaks into this region. More-  
over, a calculation gives 

.... 15P + (8# 2 + 7)PL 
4'L ( P )  = - -  16 [p @_ /*2pL]9/2 [(1 - -  ~ 2 )  VL]I /2 ,  

(1+7y~ 1 ~o~'"(p) (1 -? )'2) (1 + 3)') (1 + 5),) p - \ - 7 7 - /  [(1 --  #4) vL]l/2 _ 
= 16)'4 /*2 p2V 
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so that  

4'i"(P~) -- ~'/"(P~) 

[(1 -- #2) vL],/2 [ (1 -k #2)4 ()'2 _ 1) (1 -k 3),) (1 -k 5),)] 
= [(#2 -t- 1)pL] 7/2 t.-- ~ ~- ~2 167"''''"5-- 

,,dl 

[(1 - -  ,u 2) vL] ~/2 (15y 2 _ 14)' _ 13). 
= �89 [(#2 _~ 1)pL] 7/2 

But at ), = -35-, 15), 2 - -  14), - -  13 = �89 (125 - -  70 - -  39) > 0. Thus, if (Ux, p) E B~, 
(u2, p) E R~, and p is near PL, we have 

u ~  - u ,  = ( u ~  - u ~ )  - ( u ~  - u ~ )  = - v ' ~ ( p )  - ( - 4 , ~ ( p ) )  

(p - p ~ :  
= 4'r~(p) - -  ~L(P) 4[ (4'~"'(Pr) - -  ~o'"'(pz)) + 05 

> 0 ,  

5 On the other so that  the B1 curve breaks out  o f  the R~ - -  R3 region if  )' = T. 
hand  if (u~, p) E B3 and (u2, p) E R3, then at )' = ~,  u2 - -  u~ = ~Pz(P) - -  4~2(P) 
< 0, so that  the Ba curve breaks into the R1 - -  R3 region. This completes the 
proof.  [ ]  

R e m a r k .  The apparent  lack o f  symmetry between B1 and Ba implied by the 
last result is only illusory. In  fact the symmetry is regained if one s tar ts  with 
states U,; in this context, the roles o f  B1 and B3 are reversed. 

The next lemma shows that  the rarefact ion-shock curves must  eventually 
leave the R~ - -  R3 region. In  order to state the precise result, we consider a 

given state (u,, p,, ~ )  on the right,  and denote by Ri, Si, Bi, (i = 1, or 3), the corres- 
ponding rarefaction waves, shock waves and rarefaction shocks, respectively, 
which can be connected to (u~, pr, Or) on the left by the given wave (cf. Figure 4). 
More  precisely, we have 

s3f..,p., 

el(/'/,, Pr, ~r): (10) 
k3(~,, p,, 0,): 

Bl(Hr, Pr, ~r): (l 1) 

Here the functions 4~r(P) and ~o,(p) are defined by (7) and (8), respectively, where 
we replace the subscript L by r. 

The  following result shows that  the statement in the last lemma does not  hold 
in the large; c f  (6), (9), (10), (11). 

~r): l -shock wave:  u - -  Ur = --chr(p), p ,  > p,  u >  u, ,  

~ ) :  3-shock wave:  u - - u , =  ~ (p ) ,  p > p ~ ,  u > u ~ ,  

1-rarefaction wave:  u - -  u, = --~pr(p), p > p~, u~ > u, 

3-rarefaction wave:  u - -  u, = ~p,(p), p~ > p, u > u~, 

1-rarefaction-shock: u - -  u~ = --qbr(p), Pr > P, U~ > U, 

3-rarefaction-shock: u - -  u~ = %(p),  p~ > p, u, > u. 
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Lemma4.  Let  l < y < -~ ; then 

(a) The B1 curve, ( u - -  uL = --$L(P), PL > P, U >  UL) must  eventually 
leave the R1 --  R3 region. More  precisely, there is a ~ < PL such that i f  p < ~, 
any point (u ,p )E  B~ lies in the RI  - -  Sa quadrant o f  (uL, pL); Cf Figure3.  

(b) The B3 curve, ( u -  u~ = 4~(p), p~ > p, u~ > u) must  eventually leave the 

R~ --  R3 region. More  precisely, there is a ~ < p~ such that i f  p < ~, any point 

(u, p) E B3 lies in the $1 - -  R3 quadrant o f  (u~, p~) ; c f  Figure 4. 

Proof. We only prove (a) since the proof of (b) is similar. For this we show 
thah the B1 curve, starting at (u b PL), crosses the R t curve, starting at (UL, p~;). 

Thus from (6)-(9), we have 

B x : u -  UL = @L(P)= ( P L -  P) ]/(lp 7_7, 
#2) V_______C 

~- #2pc , P < PL, 

R1 : u - -  uL = --~PL(P) 1/1 - -  #4 ]/vLP~(~P 1 / v-~ v 1 ) _ -77- ~2 - -  PL / ,  P < PC" 

Also, for p near PL, Lemma 3 implies that 

4)r(P) > ~oL(P). (12) 
Furthermore, 

1/I  - t* '  1 / 7  _ 
--  ~PL(O) --  (PLVL) ':2 - -  " ]/vLPL 4 Ao) 

t~ y # 4  

- -  V 7 -  1 1 - -  < O, 

as ~, > 1. This together with (12) gives our result. [ ]  

The next lemma shows that the opposite is true for the B3 and B1 curves 
(cf. the remark following the proof of Lemma 3). 
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Lemma5. L e t  1 < 7  < 5 = --~- .  

(a) The 0 3 c u r v e  (u - -  UL = cbL(p), u > uL, p > PL) never leaves the R1 - -  Ra 
region. 

(b) The l?t curve ( u - -  u, = - -$ , (p) ,  p > p, ,  u, > u) never leaves the 

RI  - -  R3 region. 

Proof .  Again  we shall only prove  (a). In  order  to do this, we use the para-  
metr iza t ion of  the R3 and B3 curves given in [S, p. 354]. Thus the u-components  
of  these curves are given by 

7 - - 1  
R3 : - -  (U - -  UL) = e ~x - l ~ h ( x ) ,  x >= O , 

2cL 

7 - -  1 e X - - 1  
Ba : ~ c L  (u --  uL) = ~/~- ~/1 + fie x ~- g(x), x >= O, 

where v ---- (7 - -  1)/27 and fl = (7 + 1)/(7 - -  1). Let  

f ( x )  = h(x) - -  g(x), x >~ O. (13) 

We have 

f ( O ) = O ,  f ( x ) > O  for  x near  0, x > 0 .  (14) 

We shall show that  f ( x )  > 0 for  all x > 0. To  do this it suffices to show: 

if x > 0 and f ( x )  = O, then f ' ( x )  > O. (15) 

Thus at such a point,  we compute  

- 2 t / a + f l e  x - - 1 + f i e  x ~ e x - z w ( l + f l e 0 - 2 ~ ( e x -  1) 
(16) 

- -  2 l / l ~  (1 + 2 v ) + ( 1 - - Z z ' ) e  x +  l + f l e  ---------~ 2l/v(1 + f i e  x ) . 

I f  we write 

~b(x) = [(1 + 2v) + (1 - -  e x -  1 2 l/v(1 + fleX)] (17) 
27) e x + 1 + fie - - - - - - -~  

then to prove  (15) it is enough to show that  

r > o 
N o w  (h(0)=  0 and 

~b'(x) = e x [(1 - -  2v) + - -  

if  x > 0. (18) 

I f  we set ~o(x) = r  e -x ,  

1 fl(1 - e x) f l ,  ] 

1 + fie x @ (1 -/fleX) 2 ]/~(1 @ fleX) . " 

then it suffices to show that  

~(x) > 0 if x > 0. (19) 
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Now as 
1 

1 + / 3 e  ~ 

we may write 

m +  /3(1 -- e x) 1 + / 3  

(1 + /3eO ~ (1 + / 3 e ~ y  
and (1 - - 2 v ) =  l / y ,  

1 
v(x) = - -  + 

Y 

(1 +/3)  /3 r 
(1 -5/3e0 2 ]/I +/3e x 

Thus (19) will hold if 

1 2 1 (1 +/3)2 /32 r 
y2 + 7 (1 +/3)  (1 +/3e~) z ' (1 +/3eX) 4 (1 +/3eO > 0 for x > 0. (20) 

The left-hand side of (20) can be rewritten as 

(I + fleX) 4 + 2y(1 +/3) (1 + fleO 2 4- (1 4- fl)272 - -  fl2vy2(1 4-/3eO a 
y2(1 +/3eO 4 

(21) 

Set 
y =  1 + /3 ex ( y ~  1 + f l ) ;  (22) 

then the numerator in (21) takes the form 

A ( y )  = y'~ - -  f iZwZya + 2y(1 + fl)Zy2 + (1 + fl)272. 

Now A(0) > 0, A ( y )  -~  o~ as y ~ cx~, and A has at most two positive roots. 
But using the relations 

/32T)]2 Y(Y @ 1) 2 27(1 + fl) 4y3 4y 4 
- -  2 ( y - -  1) ' y - -  1 '  y2(1 + f l ) 2 - ( y -  1) / , 

one easily checks that A(1 + fl) = 0 and 

A'(1 +/3) = A'(2y/(1 + y)) 

2y 3 
- -  (y  _ 1) 3 [5 + y ( 2 - -  3y ) ] .  

5 5 Thus if y < 7 , t h e n  A ' ( 1 - ?  /3) > O, while A'(1  + / 3 ) = 0  if V = T .  It follows 
that A has exactly two positive roots, with 1 -?/3 being the larger one. Thus 
A ( y ) > O  if y >  1 +/3, so from (22) we see that (20) holds and the proof of 
Lemma 5 is complete. [ ]  

In view of the last two lemmas, we see that for 1 < 7 < 5, the geometry in 
the (u, p)-plane can be depicted as in Figure 5. 

We now estimate the strength of the shocks corresponding to points on Bt 

(or/~a) inside the R1 -- R3 (or R3 --/~1) region. Note that Lemma 4 assures 

us that the curve B1 (or B3) crosses R1 (or R3) in an odd number of points in the 
region p < pL (or p < Pr). We next show that this crossing number is always 
equal to 1. To this end, we again consider the parametrization of the Tt and Ba 
curves given in [S; p. 354]. The u-components of these curves at their points of 
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R3 

B3 

(uL, PL) 

B1 

a 

R1 

b " 

(Ur,pr) 

Fig. 5 

in te r sec t ion  (~, ~)  m u s t  sat isfy the  e q u a t i o n  

}/~-(1 - -  e - ~ )  
(1 + fie-X) 1/2 -- 1 -- e ~x, x >= O, e-:' ----- }/PL. 

I f  we set  y = e -x ,  then  we a re  to  f ind all r oo t s  o f  the  e q u a t i o n  

1/~'(1 - -  y )  = (1 - -  j )  (1 -}- fly),/2 0 < y ~ 1. 

Clea r ly  y = 1 is a roo t .  W e  n o w  p r o v e  

(23) 

(24) 

L e m m a  6. Let  1 < y < 5;  then the equation (24) has exactly one root in 
O < y < 1. I f  y = 5 ,  (24) has no root in O <= y < 1; c f  Figure 6. 

Proo f .  Def ine  ~b(y) a n d  ~o(y) b y  

~b(y) = (1 -- y~) J/i + fly, W(y) = 1/~-(1 - -  y), 0 ~ y ~ 1; 

then  (23) can  be  wr i t t en  as W(Y) = <h(y). N o t i c e  t ha t  s ince 1 < 7 < 5 = ~-, it fo l lows  
t h a t  r = (7 - -  1)/27 G ~ ,  so t ha t  ~o(0) > ,h(0); m o r e o v e r ,  4,(1) = ~0(1). W e  
c o m p u t e  

cb'(y) = - r S  11/1 + f l y +  fi ( 1 - y ~ )  
2 r ' 

y r - 2  

qS"(y) - -  4(1 + fly)Y/~ Q(Y)' 
w h e r e  

T h u s  

A n  easy  c o m p u t a t i o n  gives (since /3 ~ 4) 

O(0) = 4r(1 - r )  > 0, O ' (0)  = 4zfl(1 - 2"r) > 0,  

O(1) = 0, Q ' (1)  = - 4 v f l  + zfl2 > 0 i f  fl > 4 

Q ' ( t )  = 0 i f / 3  = 4 (7 -5) z 3 �9 

Q(y) = 4v(1 -}- fly) [1 - r(1 -?  fly)] - f12y2-~ _[_ fi2y2. 

Q'(y) = 4rfl[1 - 2v(1 + fly)] - -  (2 - -  ~) fi2yl-~ + 2f12y. 

5 (1 < y <  y ) ,  
(25) 
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Note  also that  

4 ' ( 1 )  = = - 1 / ; ,  w " ( 0 )  = = 0 ,  

Q'(1) 
~0"'(1) = ;4(1 § fi)3/~ > 0 = @'"(1). 

Thus ~p(y) is the tangent  line o f  (b(y) at y = 1. 

5/3) 

~ y  

Fig. 6 

N o w  suppose that  1 < 7 <-35-; then since Q ' ( 1 ) >  0 we see that  qS(y) is 
concave and lies below the ~(y) on a small ne ighborhood,  1 - -  e < y < 1 (see 
Figure 6). It  follows that  @(y) cannot  cross ~0(y) on the open interval (1 - -  e, 1). 
On  the other  hand, since Q'(0) > 0, we see that  @(y) is convex on an interval o f  
the form 0 _< y < e. Thus, in order to show that  q)(y) crosses ~v(y) exactly once in 
(0, 1), it suffices to show that  4, changes f rom being convex to being concave only 
once on 0 < y < 1. Showing this in turn is equivalent to showing that  Q(y) has 
only one zero on 0 < y < 1. N o w  in view of  (25), it suffices to show that  Q'(y) 
is a convex function on 0 < y < 1 ; cf. Figure 7. In order to do this we compute  

a"(y )  = 8"b'2fl 2 -~ 2fl 2 - -  (2 - -  "c) (1 -- v) fl2y-~, 

Q"'(y) - -  "r(2 - z) (l - ~ ) y - ( l + o .  

1 i f  1 < 7 <  5 Thus Q'"(y) > 0 on 0 < y < 1 since 0 < T ~ T - -  3-. This completes 
5 the p r o o f  in the case 1 < 7 < ~ - .  

a 

( 1 < "~ < 5 / 3 )  

~ y  

Fig. 7 

~ Q'(y) 
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5 (~, : ~-) 

~y 
I 

Fig. 8 

b 

~ y  

51 Q, Assume now that ~, = T. Then as is convex, Q'(0) > 0, Q'(1) = 0, and 
Q"(1) > 0, it follows that Q' has exactly one root in 0 < y < 1 (see Figure 8), 
so that ~ " > 0  in 0 < y <  1. But as @ is tangent to ~0 at y =  1, @must l ie  
above ~0 on 0 _<_ y < 1. This completes the proof  in this case. [ ]  

This last lemma implies that the B1 (or /~3) and Rt (or /~a) curves meet in 
s Using this exactly one point in the region p < PL (or p < Pr) if  1 < ~' < -3" 

lemma, for 1 < ~ < -~, we define the number y ,  to be the unique root of (24) 
in 0 < y <  1, i.e., 

l/g(1 -- y , )  = (1 -- y~,) (1 + fly,)l/2, 0 < y ,  < 1; (26) 

fl y +  1 y -- 1 y - -  1 '  v 2~ Note that y ,  depends only o n 7 ,  l < y < ~ ,  and 

y ,  = exp ( - - x , )  for some x ,  > 0. If  we recall from (23) that exp ( - - x , )  = P/PL, 
then the p-coordinate of the point of intersection of BI and R~ satisfies 

= PLY,.  (27) 

It follows that if (u, p) E Bl(uc, PL) and p < PLY,,  then the solution of the Rie- 
mann problem with data (uL, PL, OL) on the left and (u, p, 0) on the right is solv- 
able by a 1-rarefaction wave, a contact discontinuity and a 3-shock wave; cf. 
Figure 9. Hence for sufficiently strong rarefaction shocks, Theorem 1 does not 
apply. 

Q 
t 

/ 
/ 

/ 

Iii/t ~ 
2 

(UL, PL,PL) (u,p,p) 

Fig. 9 
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Fig. 10 

We shall now clarify precisely those rarefaction shocks for which Theorem 1 
is valid. To this end let Uo = (Uo, Po, 90), and denote by R~(Uo) and BI(Uo) 
those states which can be connected to Uo on the right by a 1-rarefaction wave and 

a 1-rarefaction shock respectively. Similarly, let /~3(Uo), and/}3(Uo) denote the 
states which can be connected to Uo on the left by a 3-rarefaction wave and a 
3-rarefaction shock, respectively; cf. Figure 10. The (unique) crossing points of 
rarefaction shock curves are denoted by (cf  Figure 10) P(Uo) = (Ux ,PO, Pl = Y,Po, 

and P(Uo) ---- (u2, Pz), P2 = Y,Po. Observe that 

BI(Uo) (p) ~ Ra(Uo) (p) ~ if Y,Po ~= P < 
Po. (28) 

B (Uo) (p) =< ,%(Uo) (p) 

We can now state the main lemma. 

Lemma 7. Let 1 ~ 7 < 0 and let y .  be the unique solution of  (26). Suppose 
that U~ = (ur, Pr, 9r) can be connected to UI = (ut, Pt, 9l) on the right by a rare- 
faction shock. I f  

[ (1 - y , )  p ,  for < pt, 

[ P r - - P , i = < t  1 (29) 
[ ~ , ( l -  y*)p, ,  Jor p~ < p,, 

it follows that Ur can also be connected to Ut on the right by two rarefaction waves 
and (possibly) a contact discontinuity. 

Proof. There are two possibilities, depending on whether Pr < Pt or pr > Pt 
(cf  Figure 7). Suppose first that Pr ~ &. Then (Jr is connected to U by a 1-rare- 
faction shock, and (29) gives Y,Pl ~ Pr ~ Pt" It follows from (28) that the Rie- 
mann problem (Ul, (Jr) is resolved by connecting Ut to Ur by a unique 1-rarefaction 
wave, a contact discontinuity, and a 3-rarefaction wave. 

Now suppose that Pr > &; then (Jr is connected to U t by a 3-rarefaction 

shock. Now through U r we draw the curves B3(Ur) and Ra(Ur); then Ba(Ur) must 
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R+ (Ut) 
/~ /~ 

/ / / /  B3(Ut) 

~ z 

,, .R1(UL ) p  
U 

p -  

Fig. 11 

go through Ul, since UrE Ba(UI); ef. Figure 11. Thus in this case, (29) implies 
that Y,Pr <: Pl < Pr, so that from (28), Ur can be connected to Ul on the right 
by a 1-rarefaction wave, a contact discontinuity, and a 3-rarefaction wave. 
This completes the proof  of the lemma. [ ]  

As an immediate corollary of Theorem 1 and Lemmas 5 and 7 we have the 
following theorem. 

5 Theorem 8. Let 1 ~ y ~ T and let y ,  be the unique solution of (26). Suppose 
that U r = (Ur, Pr, 9r) c a n  be connected to Ut = (ut, Pl, ~t) on the right by a rare- 

faction shock. Then i f  (29) holds, this refraction shock is unstable in the class of  
smooth solutions. 

We shall discuss in w 6 some further implications of the above results, but first 
we consider a converse to Theorem 1, in the case of two equations. 

w 4. A Stability Theorem for Pairs of Conservation Laws 

In this section we consider systems of two strictly hyperbolic genuinely non- 
linear conservation laws. We shall show that if the admissible solution of the Rie- 
mann problem for a given rarefaction shock contains a compressible shock wave, 
then the rarefaction shock (having the same data) is not unstable in the class of 
smooth solutions. More precisely, we have the following converse of Theorem 1 
for pairs of conservation laws. 

Theorem 9. Consider a strictly hyperbolic, genuinely nonlinear system of two 
conservation laws. Assume that [uL, UR], the admissible solution of the Riemann 
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problem (2) contains at least one shock wave. Then there does not exist a t > 0 
and a family o f  smooth solutions in [0, t] whose data tends to the initial data (2) 
in some Lv(R), p > O. 

Proof. We refer to the well-known paper  of  LAX [L]. Since we are considering 
pairs of  conservation laws, we know that there exists a coordinate system z, w, 
consisting of Riemann invariants (see [S]). We may suppose that z is constant on 
integral curves 0f0~1 and that w is constant along the N2 integral curves. We may 
also assume that z increases with 2z on g~2, and that w increases with 21 along N~. 
Lax's theorem states that a shock will form in a solution having initial data 
(Zo(W), Wo(X)) if 

dzofY) dwo(~) ~ < 0 ,  or ~ < 0 ,  

for some Y E R, and that the time t that the shock forms is of  the order 

- I. _ d w o 1 - 1  . dzo -1 
t =- I n [ ~  or t =  l n f ~  . 

Since [uL, uR] contains an (admissible) shock wave of one family, then by 
definition, 

either z(uR) < z(uL), or w(uR) < W(UL). 

Thus, if u~(x, 0) are smooth functions converging to Uo(X) in L p for some p > O, 
then either 

inf [dz;t 
x e a t d x J  -+ - - o ~  as e-~'-0, 

o r  

inf [dw~ 
:~s~J [ dx J ---> -- ~ as e--->0. 

Therefore the time of blow-up of u~(x, t) tends pointwise to zero as u~(x, 0) --> Uo(X). 
That  is, no sequence of approximating smooth solutions can be defined uniformly 
on any t > 0, and thus the instability of the rarefaction shock cannot be observed 
within the class of  smooth solutions alone. This completes the proof. [ ]  

w 5. Concluding Remarks 

Our results in w 4 show that if one considers the full gas dynamics (Euler) 
equations with a polytropic equation of state, in the range 1 < ~, < 4,  then 
rarefaction shocks (ul, Pt, Or), (ur, p~, ~ )  which satisfy 

Y.Pt ~ Pr < Pl for 1-shocks, 
o r  

Y.P~ <~ Pt < Pr for 3-shocks, 

are unstable relative to smoothing; this is a consequence of Theorem 8. We 
conjecture that the same result holds for rarefaction shocks of arbitrary strength. 
As we have seen, this statement does not follow from Theorem 1. 
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Next, we want to point out that some care must be taken in solving Riemann 
problems in the (u, p)-plane. Indeed, sometimes the solution does not even have 
the expected form. We shall illustrate this by an example. Thus, assume that 
U1 = (ul, Pt, 9l) is a given state and that Ur ---- (ur, pr, 9r) lies on BI(UI), the 1- 
rarefaction wave curve through U l. Suppose further that Pr < Y.Pt, where y ,  
is defined by (26). This geometry is depicted in Figure 12 a. Note that the unique 
admissible solution of the Riemann problem with data (U1, Ur) consists of a 
l-rarefaction wave, a contact discontinuity and a 3-shock wave; cf  the discussion 
preceding Figure 6. Now let us consider U~ as a given state on the right, and 

consider the/~1 and/~3 curves, starting at (u~, pr), in the (u, p)-plane; cf  Figure 9 b. 

According to Lemma 5b, the point (ul, pt) lies in the Rl(u~ ,pr ) -  Ra(u~,p~) 
region; i.e., it lies in the region where one "expects" to solve Riemann problems, 
by rarefaction waves and contact discontinuities. However, this is misleading. 

Indeed, even though (ut, Pl) lies in the/}l(u~, Pr) - - /~a(u,  p~) region, the Riemann 
problem (UI, U,) is not solvable by rarefaction waves and contact discontinuities, 
because the R~(ut, Pl) curve lies above (u~, pr). Thus it is impossible to connect 

3(u[ 'pI'I (U[ , ~ ) ~ ~  (ur'pr) 

g l {ur ,Pr )~  
I(u[,Pi ) " ~ ( u r , P r )  

$3 (ul,Pt) X,~.~ 

~,,,,,.R1 (ui, pl ) / 'R'3 (ur,Pr) l p 
a (Ur~Pr) I ~ b 

Fig, 12 

(ut ,P~[~~'R1 (u r,Pr ) 

~ u i , P l  ) 

=. X~ \ ""~(Ur,pr) 
RI(Ul, P l ) ' '~  / 

S ul , Pl ) 

~ Ra(u r ,P r )  

Fig, 13 
U 
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any point P on R3(ur, Pr) to (ul, Pt) by an/~I(P)  curve; here we are using the fact 

that if (u~, pr, ~r) lies on Rl(U l, Pl, ol), then the curves Rl(ut, Pl, Ol) and Rl(u~, Pr, Qr) 
coincide (cf. [S, p. 363]). Thus the geometry in Figure 12b is depicted with greater 

precision in Figure 13, and the dashed/71 curve connecting (u~, Pl)  is not the cor- 
rect Rl(ul, Pt) curve; it lies ort a different density level. Indeed, the apparent fallacy 
is traceable to the fact that one loses important  information upon projecting the 
three-dimensional shock and rarefaction wave curves onto the (u,p)-plane. 

Finally, we remark that in view of the recent results of Z. P. XIN [X] 
for two equations, any rarefaction shock is unstable in still another sense: I f  one 
considers the associated parabolic system (now modified by the addition of 
"viscosity" terms) and takes initial data close to the data for the Riemann problem 
for the rarefaction shock, then as t--> 0% the corresponding solution tends not 
to the rarefaction shock, but rather to the solution of the Riemann problem for 
the hyperbolic system consisting of two rarefaction waves. 
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