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§1. Introduction 

The nonlinear self-focusing of optical beams is a well-known and abundantly 
documented phenomenon [M, Sh]. The mechanism is simple. If the speed of 
propagation of electromagnetic waves decreases as a function of the intensity, then 
ray tracing suggests that a planar wavefront with intensity which is large at the 
center and decreases away from the center propagates so that the center lags 
behind the edges. This initial curvature translates into focusing after a finite period 
of time. 

Interest in this phenomenon has been recently renewed with the advent of 
ultrashort and ultraintense pulses [Ro]. For ultraintense pulses, self-focusing is 
undesirable as it often leads to the extinction of the beam and to the destruction of 
very costly optical devices. In order to better understand focusing, with one goat 
being avoidance, good models are needed for the regions of space-time where laser 
beams focus. 

The usual analysis of self-focusing uses the nonlinear Schr/Sdinger (NLS) 
equation. This arises from more fundamental field equations by the slowly varying 
envelope approximation. One seeks an approximate solution in the form of 
a slowly varying field envelope times a rapidly oscillating term with linear phase 
function. A medium with an instantaneous cubic nonlinear response yields the 
NLS equation with cubic nonlinearity. This model predicts the instability of plane 
waves to transverse oscillations, and, thereby, the onset of self-focusing. It also lead 
to the prediction that it is possible for the self-focusing effect from the nonlinearity 
to exactly balance the diffusive effects from the Schr6dinger equation leading to 
self-trapping [CGT]. It was soon observed both experimentally and theoretically 
that this trapping is not stable to perturbations in the two transverse dimensions. 
These early successes of the NLS established it and near relatives as the standard 
models for laser beam propagation. 

In spite of this acceptance, this approximation remained little analyzed for 
many years. The slowly-varying-envelope approximation has recently been justi- 
fied by [DR], taking advantage of many analytical advances in the work of JOLY, 
METIVmR, RAUCH and GuEs on nonlinear geometric optics. The approximation is 
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the leading term in an asymptotic expansion valid as the wavelength tends to zero. 
In regions where the solution of the SchrSdinger equation is regular, it gives a good 
approximation. 

In the case of three-dimensional space, solutions of the NLS equation often 
develop singularities in finite time [Tal, K, G]. The standard interpretation is that 
this is symptomatic of catastrophic self-focusing. Our main result asserts that in the 
case of one fundamental model, the Maxwell-Bloch system, solutions remain 
regular for all t > 0. They do not develop singularities in finite time. The singularity 
formation in the SchrSdinger equation is symptomatic of the failure of the approxi- 
mation. Though the approximate solution tends to infinity, the exact solution 
remains perfectly finite. The error in the approximation tends to infinity. 

This is entirely analogous to the singularities in the amplitudes in linear 
geometric optics as one approaches caustics. Solutions of the linear Maxwell 
equations do not develop singularities, but, the asymptotic approximations do. To 
complete the picture for the nonlinear optics, one would need a more accurate 
asymptotic description near singularities of the Schr6dinger equation. This appears 
to us to be a very ditficult problem. 

Near such singular points the behavior of the solution of the nonlinear Maxwell 
equations is not well understood. In fact, different fundamental field equations 
with the same NLS approximation may behave differently near the singular 
points. Thus an understanding of these behaviors can help in selecting correct 
models. 

For extremely high fields, one expects that additional physical effects must be 
included, and that these should remove the singularity. Many attempts to modify 
the NLS model, none with much justification or success, have been suggested with 
this goal in mind. This includes adding to the NLS equation an ad hoc saturation of 
the nonlinear index [DM], multiphoton absorption [DLP], spatial and temporal 
nonparaxial terms [FF, Rot2], or group velocity dispersion [Rotl, MP, L]. Only 
for the saturated nonlinearity is there a rigorous proof that the singularity is 
eliminated. 

In this paper, we study the more fundamental Maxwell equations. The medium 
is modelled as a gas of quantum mechanical systems with a finite number of energy 
levels. Such models, called Maxwell-Bloch (MB) systems, are often used to study 
the phenomena of resonance. We use it to model wave propagation. The electro- 
magnetic field is modelled classically, while the medium is quantum mechanical. 
We prove rigorously that the solutions of this model remain regular provided that 
the initial condition is smooth. 

The MB system produces a focusing or defocusing NLS equation as an 
asymptotic expansion, depending on the details of the finite state quantum system 
[D, BC]. For example, a three-level transition yields a focusing NLS equation 
under classical conditions [D]. Another example is provided by the low-lying 
energy levels for helium which show also that this medium is focusing in the 
low-frequency limit [BL]. 

For simplicity, we develop in this paper the simplest MB equation, that with 
two levels. The results remains valid for a finite number of levels independent of the 
focusing or defocusing behavior of approximating NLS. 
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The unknowns in the MB system include three 3-vector fields; the electric and 
magnetic fields E(t ,x)  and B(t,x), and the polarization P(t ,x)  of the medium. 
A scalar field N(t, x) describes the difference between the number of electrons in the 
excited state and the ground state per unit volume. The number No is the 
equilibrium value of N. In dimensionless notation the system is (see, for example, 
[PP3) 

8,B + curl E = 0, (1.1) 

c3tE - curl B = - 8,P, (1.2) 

82P + 8¢P/Tz + fa2P = clNE,  (1.3) 

0tN + (N -- No)/T~ = - c2@tP, E}.  (1.4) 

The nonnegative scalars cl and c 2 determine the strength of the coupling between 
the equations. The scalars TI and 7"2 are called the inversion population lifetime 
and the homogeneous dephasing time. f2 is a resonant frequency which often 
corresponds to the principal optical spectral line of the medium. 

Taking the divergence of (1.1) and (1.2) implies that 

~t div(E + P) = Ot div(B) = 0. (1.5) 

The physically relevant solutions are those which satisfy 

div(E + P) = div(B) = 0. (1.6) 

Thanks to (1.5), this holds as soon as it holds at t = 0, so (1.6) is only a linear 
constraint on the initial data. 

Let 
g( t , x ) :=  (E( t ,x ) ,B( t ,x ) ,P( t ,x ) ,g tP( t ,x ) ,N( t ,x )  -- No). (1.7) 

Equation (1.3) is written as a system for the pair (P, Q) with Q := 0tP, 

8tP = Q, 8~Q = - Q/T2 - f22p + ct NE. 

The MB system then takes the form of a semilinear symmetric hyperbolic system 
for U: 

OtU= ~ A/~jU + F(U) 
l < j ~ 3  

where 0j :-- ~/Oxj, the Aj are symmetric matrices, and F: R ~ 3 ~ R 13 is a polynomial 
of degree two which vanishes at the origin. The standard local existence theorem 
for semilinear hyperbolic equations yields the following result. 

Local Existence Theorem. l f s  3 > ~ and U(O, .) E HS(R3), then there is a T ,  E ]0, ~ ]  
and a unique U ~ C([0, T,  [: H~(R3)) which satisfies the Maxwell-BIoch system and 
attains these initial values. The solution depends continuously on the initial data in the 
sense that if qo ~ H~(R 3) and T < T,(cp), then there is an HS(R 3) neighborhood C of 
(p such that T,(O) > T for all ~ e C and the map from initial data to solution is 
continuous from C to C([O,T]:H~(R3)). There is a c > 0  such that T , >  
c(s)/(1 + rl U(0)JIH~(R~)). The values of U at (t_,x__) depend only on the values of the 
initial data on the ball of  radius t with center x. 
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Elements of  the proof. For any s ~ R, the operator Zl  _< ~ =< 3 A ¢ ? y  is antiselfadjoint 
on H~(R3). Schauder's lemma shows that for s > ~, the nonlinear term F(U) is 
a locally Lipschitzian function on H~(R3). All the assertions of the lemma then 
follow by straightforward Picard iteration as in [Re, Thm. 1]. [] 

It follows that to prove global solvability for data U(0,. ) belonging to H ~ for 
s > 2 it suffices to prove the following a priori estimate. For any T ~ 30, oo [ and 
any M > 0, there is a constant C(T, M) such that if t ~ ]0, T ] and U is a smooth 
compactly supported solution on [0,t] x R 3 such that 

I! g(0)lhx-'~R~ _-< M, (1.8) 
then 

II g(t,.)tlxx2(R3) < C(T,M) for 0 < t < t. (1.9) 

To prove that (1.9) is sufficient, one must show that if U(0) ~ H2(R 3) and T > 0, 
then T. > T. Choose U,(0)~C~(R 3) converging to U(0) in H2(R3). Let 
M = suplIb~(0)!ln2(R~) and 3 = c(2)/(1 + C(T,M)) where c(s) comes from the 
lower bound on the lifetime in the Local Existence Theorem. Then there are 
solutions U, e C([0, 3] :H2(R3)). By uniqueness this is in C([0,3]:W(R3)) for all 
s > 2 and it follows that U, belongs to C~([0,3] x R3). That the speed is finite 
implies that U,~C~)( [0 ,3]xR3) .  Therefore (1 .9)  implies that the 
C([0,3] :H2(R3)) norm is at most C(T,M). Restarting the process at t = 3 pro- 
duces U, in C(~3~([0, 23] x R 3) with the C([0, 23] :H2(R3)) norm at most C(T, M). 
Continuing this process yields U,  in C~)([0, T ]  x R 3) with the C([0, T ]  :H2(R3)) 
norm at most C(T, M). 

Choosing a weak star convergent subsequence yields a solution U belonging to 
L~([0, T ] : H  2 (R 3)). A simple L 2 uniqueness proof shows that U is the solution and 
therefore belongs to C([0, T ]  :H~(R3)). Thus T.  > r .  

In the next section we prove (1.9) for initial data which satisfy the divergence 
condition (1.6). 

Main Theorem. f f  s > 2 and the initial data U(0,.) ~HS(R 3) satisfy (1.6), then 
T,  = oo. That is, there is a unique global solution belonging to C([0, ~[:H~(R3)). 

The proof proceeds by a sequence of a priori estimates finally leading to the 
construction of the function C(T, M). The estimates derived in §2 through §5 do not 
use the divergence equation (1.6), and depend only on T and 

m:= II U(0)t]U~(R 3) + IIP(O),StP(O),N(O)IIL~(R~). (1.10) 

§2. The Fundamental L 2 Estimate 

The law of energy balance is demonstrated by taking the scalar product of(1.1) 
with NoB, (1.2) with NoE, and (1.3) and ~?tP/cl. Equation (1.4) is multiplied by 
( N -  No)/C2 and the resulting expressions are added. The products of the 
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right-hand sides with the multipliers is 

- OtP'[No]E - clNE'~tP/cl  + c2OtP' E(N - No)/C2 = O. 

This cancellation and a similar one presented in the next step are the keys to the 
existence proof. Using the vector identity B. curl E -- E- curl B = div(E A B) yields 
the dissipation law 

lStP] 2 (N -- No) 2 
Ge + div(NoE A B) = , (2A) T2cl Tic2 

where 
10tP] 2 -4- ~2p2 (N - No) 2 

2e(t,x):= No[El 2 + NolBI 2 -} -~ (2.2) 
Cl  C2 

The consequences of (2.1) are our only estimates which do not grow in time. 
Integrating the dissipation law over the truncated cone I xl < R -  t, 

0 < t < T < R shows that the MB system has speed of propagation at most 1. 
Letting R tend to infinity shows that solutions U which are suitably small at 
infinity satisfy the energy dissipation identity 

f f f  I~tp]2 ( N - N ° ) i d x d t = f e ( O , x ) d x .  ( 2 . 3 )  e(t,x)dx + ~ + (Tlc2) 
R ~ 0 R 3 R a 

In particular, Sll, e(t, x) dx is a decreasing function of time. 

§3. An L ~ estimate for P, 0tP, and N 

The key to proving global solvability and global regularity is to show that 
solutions are bounded on [0, T ] x R 3. In this section we prove such boundedness 
for P, Q : =  •t P, and N. 

Take the scalar product of (1.3) with 2GP/q and multiply (1.4) by 2N/c2. Add 
the resulting expressions. The cubic terms from the right-hand sides cancel exactly. 
This leaves 

( N2) 21c?tPI2 2N2 2NN° G IGPt2 + fa2rPl2 + + - - - -  + . . . . . . .  . (3.1) 
ct c2- cl T2 cz T1 c2 T1 

The right-hand side is less than or equal to 

1 
- -  (2N 2 + Ng/2). 
c2 T1 

The first term is absorbed by last term on the left-hand side of(3.1). The second 
term is independent of time. Integrating the dift~rential inequality shows that for all 
t, x with t > 0, 

[c3tP(t,x)] 2 + f22[p(t,x)] 2 N(t,x) 2 + - -  
Cl C 2 

N(O, x) 2 tN~ < I~te(O'x)t2 + 021p(O'x)]2 + -4 (3.2) 
c~ cz 2Cz Tl" 
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This gives a pointwise bound on P, 8tP and N which grows at most like ,,/7. It is 
worth noting that one could get pointwise bounds for negative time which grow 

like exp(c., /~).  

§4. H 1 Estimates 

The L ~ bounds for N and 8tP control one of the factors in each of the quadratic 
nonlinear terms in the MB system. This together with the same cancellations which 
gave us the L e bounds of §2 suffice to derive H 1 bounds. 

Denote by a,  partial differentiation with respect to t or x~, 1 < j < 3, depending 
on whether # = 0 or 1 </~ < 3. Apply 8~ to each of the equations (1.1)-(1.4). Then 
multiply the differentiated equation by 8u applied to the corresponding multiplier 
from §2. Add the resulting expressions. The cubic terms in the sum are equal to 

a~(NE). 8¢StP - (8.N) ~,(8tP. E). 

The key is that the two terms in this difference with E undifferentiated cancel. 
The other terms have a factor of N or 8tP for which we have an L °~ estimate. For 
t > 0 let 

Y(t) := sup (right-hand side of (3.2)) 1/2. (4.1) 
x~R 3 

Let 

a IO~,OtP[ 2 -t- ~¢~2[~uP12 [Ou(N - t~ro)l 2 
2ei(t ,x):= ~ NolS,,EI 2 + No[SuB[ 2 + + 

# = 0  Cl C2 

(4.2) 

The above computation shows that 

8t R~ j e i ( t ,x)dx < cg(t) R 3S el(t ,x)dx. 

Let Yl(t):= S el(r,x)dx. 
R3 

Then (4.3) implies that for t > 0, 

Y1 (t) < Z(t), 

where Z(0, defined and smooth on [0, oo[, is the solution of 

dZ(t) 
dt - cY(t)Z(t) ,  Z(0) = YI(0). 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

§5. C ~ bound for the divergence-free part of  E 

The Fourier transform of the divergence and curl of E are equal to ~ , / ~ )  and 
A /2 respectively. Thus, decomposing/~(~) into the part parallel and orthogonal 



Global Solvability of the Maxwell-Bloch Equations 297 

to ~ is the L2(R 3) orthogonal projection on the irrotational and divergence-free 
parts. 

Define a smooth projection-valued function on R~ \0 by 

r s ( ~ ) v  = ~ - ~ < ~ , ~ > / < ~ , ~ > .  (5 .1)  

Then II(D) defined by 

II(D)E := ~ -  ~(II(~)(~'E)(~)) (5.2) 

is a convolution operator which is a classical singular integral operator of degree 
zero. FI(D) is the L 2 orthogonal projection onto the divergence-free vector fields 
along the irrotational fields. 

For any vector v and any ¢, 

It follows that 

A (~  A v)  = - I ~ l ~ r / ( ~ ) v .  

curl curl H(D) = H(D)A, curl c u r l ( / -  FI(D)) = 0. (5.3) 

Taking the time derivative of (1.2) and then using (1.1) to eliminate B yields 

E t t -  curl curl E = - P,. (5.4) 

Applying II(D) and using (1.3) yields 

( 0 .  - A ) I ~ ( D ) ~  = - r I ( D )  ( c l N ~  - t ? ~ P  - O ~ P / r ~ ) .  (5.5) 

The estimates of §4 imply that the P and OtP terms on the right are bounded in the 
space of continuous functions with values in H ~. The next result shows that we can 

2 bound N(t)E(t)  in HS(R 3) for any s < ~. 

Lemma. For any s < 2, pointwise multiplication of functions defines a continuous 
bilinear map of (L oo c~ H 1 ) (R 3 ) x H 1 (R 3 ) to H S(R 3). 

Proof. The proof is by two interpolations. Sobolev's Lemma implies that if p > ~, 
then multiplication is continuous from HO(R 3) x H°(R 3) to H°(R3). Schauder's 
Lemma implies continuity from HP(R 3) x HP(R 3) to HP(R3). Interpolation proves 
continuity from HP(R 3) x H~(R 3) to H~(R 3) for all 0 _< a _< p. 

Let X := (L ~ n H  1 ) (R3). Taking o- = 1 shows that multiplication is continuous 
from X x H p to H1. 

Since X c L ~, it follows that multiplication is continuous from X x H°(R 3) to 
H°(R3). 

Interpolating between these two results with interpolation parameter 0 = I/p 
1 3 shows that multiplication is continuous from X x H ( R )  to HI/p(R3). Since this is 

3 valid for all p > ~, the proof is complete. [] 

Given the L~c~H 1 bounds for N and the H 1 bounds for E, it follows that EN 
and therefore H(D)(EN) are bounded in the space of continuous functions of t with 

2 values in HS(R 3) for any s < -g. 
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Applying standard estimates for d'Alembert's wave equation (see, for example, 
IRa, §3.7]) to (5.5) bounds H(D)E as a continuous function with values in 
H ~+ ~(R 3) and GH(D)E as a continuous function with values in H~(R3). 

i Sobolev's lemma shows that H~+t(R 3) c C~-~/2(R 3) for ~ < s < 1. The limit- 
2 C~/6. 1 ing value s = g yields Thus for 0 < e < g, one has a bound 

HH(D)E(t)[Ic~(R~ ) < C(T,m,~)  for 0 =< t <t__< T, (5.6) 

where m is defined in (1.10). 

§6. L ~ estimate for the irrotational part of  E 

To bound the sup norm of the irrotational part (I - H(D))E of E, we use the 
divergence equation (1.6) and second derivatives of U. The second derivatives have 
not yet been estimated. A Gronwall argument in the next section completes the 
demonstration. 

Equation (1.6) implies that 

(~ - n ( D ) ) E  = - ( I  - n ( D ) ) P .  (6.1) 

The right-hand side is an operator of order zero applied to the bounded function P. 
Unfortunately such operators do not map bounded functions to bounded func- 
tions. An observation, dating at least to YUDOVICH [Y], is that a logarithmic 
correction is a partial remedy. Applying the version given in Proposition B.1.A of 
IT] yields 

II(I -- II(D))E(t)HL~(R 3) <= clbP(t)  l]L=(R~) log(2 + [I P(t)lbFZ~(R3)). (6.2) 

Combining this with the estimate of the previous section one has for any solution 
on [0,t] and t < t, 

[I E(t)ILL~(R~) __--< c(m, T )  + (right-hand side of 6.2). (6.3) 

§7. The final H 2 estimate 

In this section the second derivatives of a solution on [0,t] with t < T are 
estimated by an energy argument related to that used for the L 2 and H 1 estimates. 
A subtlety is that the differential inequality which we derive is logarithmically 
superlinear because of (6.2) and (6.3). 

For each /~,v, apply 8,8~ to each of the equations (1.1)-(1.4). Multiply the 
resulting equations by 8u8,. applied to the corresponding multiplier from §2. Add 
the resulting expressions. The contribution of the right-hand sides is equal to 

-- (8M?~OtP). 8;,8~NoE + (8.8,~(NE)). 8u&,StP -- a~8,,(atP, E ) .  8~(~(N -- No). 

There are four terms. The two quadratic terms cancel. 
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Let 

2eu~(t,x):= NolSuS~E(t,x)[ 2 + NotSuS~B(t,x)] 2 

[SuS~ste(t,x)l 2 + f22[c?uS~P(t,x)[ 2 lSuS~(N(t, x ) - No)[ 2 

C 1 C2 

The above computation yields a balance law for second derivatives: 

8t(3~8~e) + div(NoSu8~E /x 8~8~B) + 

Let 

IOuSvO~Pt 2 (8uavN)  2 + - -  
T2 Cl T1 C2 

299 

(7.1) 

Y2(t):= j e(t,x) + el(t,x) + ~ eu~(t,x)dx. (7.3) 
R ~ #,v 

Adding (2.3), (4.4), and the result of integrating (7.2) over R 3 yields 

Y'2(t) < eli U(t) 2 IIH2(R~) "q- E ~ (a# a v ( j E ) ) "  8~8~8tP - (#u#~N)O,a~(atP. E)dx. 
I~,v R 3 

(7.4) 

To estimate the integral on the right in (7.4), note that from the derivatives of 
the products there are two types of terms, those for which there is a factor which is 
not differentiated and those for which two factors are differentiated, one time each. 
Terms of the first type are dominated by 

c l[ (E, N, 8tP)(t)]]L~(R 3) II g(t)1I~2(lV). (7.5) 

Terms of the second type are dominated by 

cI[8(E,N, GP)(t) 2 HL~(R~) ~[ U(t)Iln~(R~). (7.6) 

The interpolation inequality 

[I 8(E, N, 8tP)(t) 2 I[LqR ~) ~ c II (E, N, 3tP)(t)IlL® (R ~) 11 (E, N, 8tP)(t)I[H2 <R 3 ) 

shows that (7.6) is also dominated by (7.5). 
Next, the estimates (3.2) and (6.3) imply that 

II (E, N, 8tP)(t)]]L~(R 3) ~ c(m, T) log(2 + [/U(t)II~/=(R~)). (7.7) 

Using these estimates in (7.4) yields a differential inequality for 0 _< t _< t ___ T: 

r'2(t) < c(m, T)  tT U(t)II2~(R~)10g(2 + 11U(t) IlU~(R~)). (7.8) 

Finally, note that Y2 is larger than a constant times the square of the H 2 n o r m  

of U(t), so one has 

Y'2(t) < c(m, T)  Y2(t) log(2 + Y2(t)). (7.9) 

Thus for 0_< t < t _< T, 

Y2(t) < Z2(t), (7.10) 

= (8uO~(NE)).a~,O~atP - (8uS~N)3~a~(OtP.E). (7.2) 
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where Z2 (t) is the solution of the globally solvable initial-value problem 

Z'2(t) = c(m, T )  log(2 + Z2(t))Z2(t) Z2(O) = Y2(0). (7.11) 

This completes the proof of the estimate 1.9 and therefore the proof of the Main 
Theorem. [] 

The bound for the second derivative grows very rapidly with time, in fact, faster 
than a multiple exponential. We do not know whether the solutions actually grow 
anywhere nearly this fast. 

§8. Global H 1 solutions 

By using the fact that the estimates of §2 and §3 depend only on m defined in 
(1.10), it is not hard to prove the following result about global weak solutions. 

Theorem. For arbitrary' U(O) ~ HI(R 3) such that (N(O),P(O),~?~P(O)) ~ L~(R3), 
there is a unique solution such that for all T >0,  U e L ~ ( [ O , T ] : H I ( R 3 ) )  and 
(N, P, ~?tP) ~ L~([0, T]  x R3). The solution satisfies the energy dissipation identity 
(2.3) and has speed of propagation at most unity. 

Remarks. 1. If U(0) is in L ~, the estimates in §5 suffice to show that H(D)E is 
bounded on [-0, T ] x R 3. A similar argument shows that B is bounded. The only 
part of U for which sup norm bounds are not known is the irrotational part 
(I - H(D))E of E. 
2. Since there is an L 2 dissipation law with a natural physical interpretation, and 
since the nonlinearities are quadratic, it would be natural to seek weak solutions 
with U (0) square integrable. This remains an open problem. 

Proof of Theorem. The solutions are constructed as limits of approximate solu- 
tions U~ whose initial data are equal to J~U(O) where J~ is a standard spatial 
mollifier: 

J~(q0):= ~ j(y)qo(x - ey)dy, wherej ~ C~(R3), ~ j (y )dy  = 1. 
R 3 R 3 

The estimates of §§2-4 show that the approximate solutions are bounded in the 
space of continuous functions with values in H 1 and that (N~, Pc, 0tP~) is bounded in 
L°°([0, T]  xR3). 

Since each of the quadrati c nonlinear terms has one bounded factor, the 
differential equations (1.1)-(1.4) show that the family •t Us is bounded in the space 
of continuous functions of time with values in L2(R3). 

Combining the finite domain of dependence and the local compactness of H 1 in 
L 2 we can apply the Arzel~t-Ascoli theorem to choose a subsequence strongly 
convergent in C([0, ov[:LZ(R3)) to a limit U. 

The strong convergence shows that we can pass to the limit in the nonlinear 
terms of the MB system since they are quadratic. Similarly one can pass to the limit 
in the energy dissipation law. Thus U satisfies the system and the law. 
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T h e  L 2 convergence and L ~° boundedness imply that (N~:, P,, 8tP,) converges 
weak star in L~([0, T ] x R 3 ) .  Similarly, the solution constructed is in 
L~([0, T ]  :HI(R3)). Thus 

U e L~([0, T ]  x R3)r~L~([0, T ]  :HI(R3)). 

This completes the existence proof. 
The proof of uniqueness depends on the cancellations leading to the L 2 estimate 

in §2. Suppose that one had two solutions, indicated by the superscripts 1 and 2. 
Subtract the equations (1.1)-(1.4) for the two solutions. Multiply the equations by 
No(B 1 - B2), No(E  1 - E2), (StP 1 - 8 tP2) /c l ,  and (N  1 - N2)/c2.  The contribution 
of the right-hand sides is 

- (8 ,p  1 - 8 t p 2 ) .  No(E 1 - E 2) 

+ (N1E  1 -- N a E 2 ) . ( S z P  1 -- 8 tP 2) - ( S t P  ~ . E  1 -- 8 tP  2 . E2)(N 1 - N2). (8.1) 

The first product is quadratic. Of the eight cubic terms, the two terms which only 
have superscripts 1 cancel. Similarly the two terms with only superscripts 2 cancel. 

Let 

2 f ( t , x ) : =  g o l E  1 --L'212 At- X o l B  1 - - B 2 1 2  

lc~t(p1 _ p2)]2  q_ ~ 2 1 p 1  _ p212 ( N  1 _ N 2 ) 2  
+ + (8.2) 

c I c2 

Then the quadratic terms in (8.1), are bounded by c f ( t ,  x).  The above cancellation 
leaves four cross terms. Using the divergence identity from §2, one finds a balance 
law 

(? t f ( t , x )  + q ( t , x )  + div(go(E ~ - -  E 2) A (B 1 - B2) )  

< c f ( t , x )  - O t P 1 N g .  E 2 - ~ t P Z N  1 . E  1 -4- N1Qt  P2  . E  2 + N e o t P  * . E  ~, (8.3) 

where 
fStP I - 8 tp2[  2 (N* - -  N 2 )  2 

q ( t , x ) : =  -~ > 0 .  
T 2 C l  T i c 2  

The last four terms in (8.3) simplify to 

(E 1 - E2). ( 8 t p 2 N  I - 8 t p 1 N  2) = (E 1 - E2) .  (Stp2(N 1 - N z) + Nz(c?tP 2 -- 8tp1)). 

(8.4) 

Since OtP 2 and N z are bounded on [0, T ]  x R 3, one finds that for 0 _< t _< T, 

8 , f ( t , x )  + div(No(E 1 - E 2) A (B a -- B2)) < c f ( t , x ) .  (8.5) 

As in the existence part, the differential equation shows that 8t(U 1 - U 2)  is 
bounded with values in L2(R3). Let Y3( t ) :  = ~R 3 f ( t , x ) d x .  Integrate (8.5) over 
( [0 , t ]xR3) .  Integration by parts is justified since U 1 - U  2 belongs to 
H l ( [ 0 , t ] x R 3 ) .  Since U I ( 0 ) =  U2(0), it follows that Y3(0)=0  and the above 
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integrat ion yields 
¢ 

Y3(t) <= c ~ Y3(s)ds. 
0 

Gronwal l ' s  inequali ty implies that  Y3(t) = 0 for all t > 0 proving  uniqueness. [] 
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