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Abstract

In this paper, we study the steady solutions of Euler-Poisson equations in
bounded domains with prescribed angular velocity. This models a rotating
Newtonian star consisting of a compressible perfect fluid with given equation of
state P = eSργ . When the domain is a ball and the angular velocity is constant, we
obtain both existence and non-existence theorems, depending on the adiabatic gas
constant γ . In addition we obtain some interesting properties of the solutions; e.g.,
monotonicity of the radius of the star with both angular velocity and central density.
We also prove that the radius of a rotating spherically symmetric star, with given
constant angular velocity and constant entropy, is uniformly bounded independent
of the central density. This is physically striking and in sharp contrast to the case
of the non-rotating star. For general domains and variable angular velocities, both
an existence result for the isentropic equations of state and non-existence result for
the non-isentropic equation of state are also obtained.

1. Introduction

The purpose of this paper is to understand the structure of a rotating star. In the
theory of General Relativity, for a non-rotating star consisting of a perfect fluid, the
exterior and interior solutions are very well understood. The exterior solution of the
star, that is, the gravitational field (space time metric) outside the star, is given by the
well-known Schwarzschild solution, and the interior solution, which matches the
exterior Schwarzschild solution on the boundary of the star, is obtained by solving
the Tolman-Oppenheimer-Volkoff equations [18]. For a rotating star, the exterior
solution of the gravitational field is the celebrated Kerr solution [1]. However, no
corresponding interior solution of Einstein’s equation is known which matches the
Kerr solution at the boundary of the rotating star. Actually, even in the Newtonian
case, unlike the case of the non-rotating star which has been extensively studied
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by Ritter, Lane, Emden, Kelvin and Chandrasekhar; (see [5]; and also [8] and [13]
for more recent results in the case of a non-rotating star), there have been very
few results on the rotating star if the star consists of a compressible perfect fluid.
This paper is devoted to the investigation of the steady solutions of a compressible
perfect fluid rotating star in the Newtonian case with prescribed angular velocity,
in a bounded domain, and with zero density on the boundary chosen to match the
exterior of the star.

The motion of the compressible perfect fluid with self-gravitation is modelled
by the following Euler-Poisson equations; cf. [5],

ρt + divx(ρv) = 0,

ρvt + (ρv · ∇)v + ∇P + ρ∇� = 0,

St + v · ∇S = 0,

�� = 4πGρ, (1.1)

where ρ, v, P , S and � denote the density, velocity, pressure, entropy and gravi-
tational potential, respectively. Here (t, x) ∈ R+ × R3 denotes the time and space
variables and x = (x1, x2, x3). For simplicity, we assume the pressure satisfies the
following equation of state:

P = P(ρ, S) = eSργ , (1.2)

where γ > 1 is the adiabatic exponent.
Suppose the star rotates about the x3-axis; we are interested in finding an axi-

symmetric solution (ρ, v, S, �)(x, t) = (ρ, v, S, �)(η(x), x3, t) of (1.1) with
prescribed time-independent angular velocity �(η), where

η = η(x) =
√

x2
1 + x2

2 .

In this case the velocity field is given by v = (−x2�(η), x1�(η), 0), and thus
divx(ρv) = 0 and v · ∇S = 0. By (1.1)1 and (1.1)3, ρt = 0 and St = 0. Thus,
the solution (ρ, v, S, �) of (1.1) is time-independent and satisfies the following
system of equations:

∇P(ρ, S) + ρ∇� − ρ∇J (η) = 0,

�� = 4πGρ, (1.3)

where

J (η) =
∫ η

0
s�2(s)ds, (1.4)

and the entropy S is a given bounded C1 function.
In [2], for an isentropic fluid, i.e., the entropy S = constant (without loss of

generality, S is assumed to be zero in this case), Auchmuty & Beals considered
system (1.3) in all of R3, with prescribed total mass M , and gravitational potential
� given by

�(x) = −G

∫

R3

ρ(y)

|x − y|dy =: −Bρ(x).
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The problem then reduces to finding the solution of the equation

∇
(

γργ−1

γ − 1
− Bρ − J (η)

)
(x) = 0, (1.5)

where ρ > 0. They formulated this as a variational problem; namely, minimize

E(ρ) =
∫

R3

(
ργ

γ − 1
− 1

2
ρ · Bρ − ρJ (η)

)
(x)dx (1.6)

in the class

WM =
{
ρ ≥ 0 :

∫

R3
ρ(x)dx = M

}
. (1.7)

By assuming that the angular velocity � satisfies the decay properties

J (+∞) < +∞, J ∈ C1[0, +∞),

η(J (+∞) − J (η)) → 0 as η → +∞, (1.8)

and that the adiabatic exponent γ satisfies

γ > 4/3, (1.9)

Auchmuty and Beals proved the existence of a minimizer of the functional E(ρ)

in the class of functions (1.7). Moreover, this minimizer has compact support and
satisfies equation (1.5) wherever it is positive. The shape of the free boundary
which separates the vacuum and fluid was investigated in [3] for the Auchmuty-
Beals solutions. The case of an isentropic uniformly rotating star, (i.e., the angular
velocity � is constant), was discussed by Li in ([11]); he proved the existence of a
minimizer of the functional (1.6) in the class WM , under the assumption γ > 4/3.
The diameter of the support of the density ρ was studied in [6] for the solution
obtained in [11]. In the proof of the above results, the prescribed total mass serves
as a constraint on these variational problems, and without this constraint, it is not
clear that the minimizer of E(ρ) exists. In [2], the angular velocity is prescribed
in the entire space R3 (even in the vacuum region), and is assumed to satisfy the
decay property (1.8). In [2] and [11], γ is required to be greater than 4/3, so a
natural question to ask is: What happens when 1 < γ ≤ 4/3? Another issue is
that all of the above-mentioned results are for isentropic fluids, so we can also ask:
What happens if the fluid is non-isentropic? The purpose of this paper is to address
these, and other issues.

2. Statement of results

We are interested in the solution of (1.3) in a bounded domain D in R3, where
ρ(x) > 0 for x ∈ D and ρ(x) = 0 if x ∈ ∂D. From the first equation in system
(1.3), we have

1

ρ
∇P = ∇(J − �) (2.1)
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for x ∈ D. Thus, by the second equation of (1.3), we obtain

div

(
1

ρ
∇P

)
= �(J − �) = �J − 4πGρ (2.2)

for x ∈ D. Set

w = γ

γ − 1
(eS/γ ρ)γ−1. (2.3)

Then it is easy to verify, using (1.2), that

1

ρ
∇P = eS/γ ∇w. (2.4)

Substituting this in (2.2), we obtain the elliptic equation

div(eαS∇w) + Ke−αSwq − 2�(η)(�(η) + η�′(η)) = 0, (2.5)

where

q = 1

γ − 1
, α = 1

γ
, (2.6)

K = 4πG
(

γ−1
γ

) 1
γ−1

, and for simplicity, we can normalize K to make K = 1.

We seek solutions of (2.5) satisfying

ρ(x) > 0, x ∈ D, ρ(x) = 0, x ∈ ∂D, (2.7)

or equivalently

w(x) > 0, x ∈ D, w(x) = 0, x ∈ ∂D. (2.8)

In this paper, we only consider the case when

1 < γ < 2,

because when γ > 2, 0 < q < 1, and equation (2.5) becomes sublinear, and
this situation was studied completely in [17]. Moreover, equation (2.5) is linear if
γ = 2, and there is a complete theory for linear elliptic equations (cf. [10]).

We first consider the case when the angular velocity �(η) = � = constant, the

entropyS(x) is spherically symmetric (i.e.,S(x)=S(r), r =|x|=
√

x2
1 + x2

2 + x2
3 ),

and the domain D is a ball BR(0). In this case, we look for the spherically symmetric

solutions of problem (2.5) and (2.8), i.e, w(x) = w(r), r = |x| =
√

x2
1 + x2

2 + x2
3 .

Then w(r) satisfies the equation

w′′(r) +
(

2

r
+ αS′(r)

)
w′(r) + e−αS(r)(e−αS(r)wq − σ) = 0, (2.9)

and boundary conditions

w′(0) = 0, w(R) = 0, (2.10)
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where we have set

σ = 2�2. (2.11)

We want to use the “time-map” method used by Smoller& Wasserman(cf. [17]).
For this purpose, we consider the problem (2.9) with initial data

w(0) = p > 0, w′(0) = 0, (2.12)

where p is a free parameter, and let w(r, p, σ ) be the solution of this problem. We
define the ” time-map” p → R(p, σ), by

R(p, σ) = inf{R| R > 0, w(r, p, σ ) > 0 if 0 ≤ r < R, and w(R, p, σ ) = 0},
(2.13)

so R(p, σ) is the first “time” at which w is 0 (we will write R(p, σ) = ∞ if
w(r, p, σ ) > 0 for all r ≥ 0). Thus R(p, σ) is the radius of a rotating star with
given central density (cf. (2.3))

ρ(0) =
(

γ − 1

γ
p

) 1
γ−1

e−S(0)/γ .

and angular velocity
� = √

σ/2.

In order to state our first theorem, we introduce the following notation. We set

S̄ = sup
r≥0

S(r), S = inf
r≥0

S(r). (2.14)

We assume

−∞ < S ≤ S̄ < ∞. (2.15)

We define the constant b by

b = (10 + 22q)e
− αS̄

q σ
q−1
q

(1 + 2eαS̄)[10(1 + q)] 1
q (5 − q)

1− 1
q

. (2.16)

Obviously b > 0 if 1 < q < 5. Our first result is the following theorem.

Theorem 2.1. Assume that D is a ball in R3 and that � is a nonzero constant.

(1) If 1 < γ ≤ 6/5 and S′(r) ≥ 0 for r ≥ 0, then

w(r, p, σ ) > 0,

for every r ≥ 0 and p > 0 .
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(2) If 4/3 < γ < 2, then

R(p, σ) < +∞, (2.17)

for sufficiently large p, provided the entropy satisfies the following conditions:

αS′(r)eαSz′ > −b

2
z, (2.18)

for 0 < r < π/
√

b, where

z(r) = sin(
√

br)√
br

, (2.19)

and sup0≤r<1+ π√
b

|S′(r)| is sufficiently small.

(3) If 6/5 < γ < 2, assume that the conditions in (2) hold, and assume too that
the entropy satisfies the following condition:

S′(r) ≤ 0 for 0 ≤ r ≤ π√
b
, (2.20)

where b is given by (2.16). Then

R(p, σ) < +∞, (2.21)

for sufficiently large p.
(4) For the solutions w(r, p, σ ) =: w(r) in (2) and (3), we have the follow-

ing estimates on the mass M(r) = ∫ r

0 4πτ 2ρ(τ)dτ, and the average density

ρ̄(r) = 1
V olBr (0)

M(r) in the ball Br(0) (here ρ =
[

γ−1
γ

w
]1/(γ−1)

is the density

(cf. (2.3)) and V ol Br(0) = 4πr3/3):

M(r) ≥ 2r3�2

3G
, (2.22)

ρ̄(r) ≥ �2

2πG
, (2.23)

for r ≤ R(p, σ), where G is the Newtonian gravitational constant.

Remark 1. The conditions imposed on the entropy S(r) in Theorem 2.1 are auto-
matically satisfied in the isentropic case, i.e., S(r) = constant.

Remark 2. The existence of positive solutions for the equation of an isentropic
non-rotating star is well known (cf. [5], [12] and [15]). In [8], for the case of a non-
rotating star (� = 0), the authors first consider non-isentropic equations of state,
and an existence theorem is proved for a bounded domain D, under the assumption
that the entropy function S satisfies, for some constant a > 0,∫

D

|∇φ|2e−S/γ dx + 1

γ

∫

D

�Sφ2e−S/γ dx ≥ a

∫

D

φ2e−S/γ dx

for all test functions φ ∈ H 1
0 (D). Our condition (2.18) is an explicit condition on

S and does not involve the second derivative of S, for the case when domain D is
a ball.
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The proof this theorem, as well as the other theorems stated in this section will be
given in Sections 3-5.

In the case of isentropic fluids (i.e., S = constant), we can obtain further results
on the qualitative properties of the solutions if the angular velocity �(η) = � =
constant and the domain D is a ball. Without loss of generality, we may assume

S = 0. (2.24)

In this case, it follows from the celebrated Gidas, Ni & Nirenberg result [9]
that positive solutions to (2.5) and (2.7) must be spherically symmetric. Substituting
S = 0 in (2.9), we obtain the following equation:

w′′(r) + 2

r
w′(r) + wq − σ = 0. (2.25)

We consider the problem (2.25) with initial data

w(0) = p > 0, w′(0) = 0. (2.26)

We will again use w(r, p, σ ) to denote the solution of the above problem. The fol-
lowing theorem gives some physically interesting properties of R(p, σ), the radius
of the star with central density (cf. (2.3) with S = 0)

ρ(0) =
(

γ − 1

γ
p

) 1
γ−1

.

Theorem 2.2. Assume that D is a ball in R3 , � is a nonzero constant and the
entropy S is constant (set S = 0 for convenience). Then the following statements
hold:

(1) If 6/5 < γ < 2, there exists a constant p0 > 0 depending only on γ and σ

such that

R(p, σ) < +∞ if and only if p ≥ p0. (2.27)

Moreover, p0 can be estimated from below:

p0 ≥
[

5σ(q + 1)

5 − q

]1/q

=
[

10γ�2

5γ − 6

]γ−1

. (2.28)

(2) If 6/5 < γ < 2 ,

R(p, σ1) ≥ R(p, σ2), (2.29)

provided σ1 > σ2 > 0, and

R(p1, σ ) ≥ R(p2, σ ) (2.30)

if p2 > p1 ≥ p0.

As a corollary of this result, we have the following theorem, in which p0 is the
positive constant given in Theorem 2.2.
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Theorem 2.3. Assume that D is a ball in R3, � is a nonzero constant and the
entropy S is constant (set S = 0 for convenience). If 6/5 < γ < 2, then there
exists a positive constant C depending only on p0 and � such that

R(p, σ) ≤ Cp
γ−2
γ−1 ≤ Cp

γ−2
γ−1
0 (2.31)

for p ≥ p0. In particular, this implies

R(p, σ) → 0 as p → ∞. (2.32)

We now discuss the physical meaning of the above two theorems.

Physical meaning of Theorem 2.2
Part (1) means, for 6/5 < γ < 2 and σ = 2�2 > 0 , there exits a critical

central density, determined by p0, depending only on γ and the angular velocity
�, such that the radius of the star is finite if the central density is greater than or
equal to this critical central density; otherwise the radius of the star is infinite. This
is in sharp contrast to a non-rotating star, for which, in this range of γ , the radius
is finite no matter how small the central density is (cf. [5]). The reason for this
is that for the rotating star, the central density must be large enough to provide
sufficient gravitational attraction to balance the centrifugal force due to rotation.
The physical meaning of part (2) is that, for a compressible fluid, the radius of the
star increases with increasing angular velocity for fixed central density, while the
radius of the star decreases with increasing central density for the fixed angular
velocity.

Physical meaning of Theorem 2.3
If 6/5 < γ < 2, in order for the radius of the rotating star R(p, σ) to be finite, p

has to be greater than or equal to p0, and the constant p0 is completely determined
by γ and the angular velocity �, as stated in Theorem 1.2. Thus, (2.31) in Theorem
2.3 shows that there exists a (finite) upper bound on the radius of a rotating star,
which is determined only by γ and �, and is independent of central density, for
the radius of the rotating star to be finite. This is physically striking and completely
different from the non-rotating star, for which the radius can be arbitrarily large.
Actually, for the non-rotating star, the central density can also be arbitrarily small
(cf. [5]). Moreover, as we will show later, the radius of a non-rotating star is propor-

tional to (ρ(0))
γ−2

2 , where ρ(0) is the central density. Since γ < 2, the radius of a
non-rotating star can be very large if the central density is very small. However, for
the rotating star, the central density cannot be arbitrarily small, as indicated in part
(1) of Theorem 2.2; cf. (2.27). Moreover, (2.32) shows that the radius of a rotating
star tends to zero if the central density tends to infinity.

We now turn to the case of general bounded domain D ⊂ R3 and variable
angular velocity �(η). Without loss of generality, we may assume that 0 ∈ D. For
the existence of positive solutions to the boundary-value problem (2.5) and (2.7),
we assume that the angular velocity �(η) is C1 as a function of η and satisfies the
following condition:
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Condition A: Let BR1(0) = {x| |x| < R1} be the largest ball contained in D which
is centered at origin. For x ∈ D − BR1(0), assume

�(η)[η�(η)]′ ≤ 0, (2.33)

and is not identically zero; here, as before, η = η(x) =
√

x2
1 + x2

2 , and “prime”

denotes d
dη

.

Remark 3. Notice that (2.33) is only required for x ∈ D − BR1(0). Therefore the
angular velocity �(η) can be any C1 function when D is a ball.

The following theorem is an existence theorem for a general domain D and
variable angular velocity.

Theorem 2.4. Assume 6/5 < γ < 2, the entropy S is constant (set S = 0 for
convenience), �(η(x)) ∈ C1+δ(D) ∩ C(D̄) for some δ, 0 < δ < 1 with ∂D

smooth. Then there exists a constant R2 > 0 depending only on � and γ such that
if D ⊂ BR2(0) and condition A holds, there exists a positive solution to (2.5) and
(2.7). Moreover, for this solution , the central density satisfies

ρ(0) ≥
(

γ − 1

γ

)1/(γ−1)

· 5γ

5γ − 6
· β, (2.34)

where β = maxx∈D̄ |2�(η)(�(η) + η�′(η)|.
Notice that as in Theorem 2.3, the size of the domain D is uniformly bounded,

where the bound depends only on γ and �.
Let w(x) be the positive solution given in Theorem 2.4. Notice that since S = 0,

(2.3) implies ρ = (
γ−1
γ

w)
1

γ−1 . We can obtain the potential function by virtue of
(1.10) and (1.13).Actually, when S = 0, (1.10) and (1.13) imply ∇(w+�−J ) = 0.
So we set �(x) = (C + w + J (η))(x) for x ∈ D, where C is any constant. Then
(ρ, �)(x) is a positive solution to the system (1.3) in the domain D. System (1.3)
is derived by assuming that ρ is axi-symmetric. In fact, we have the following self
consistency result.

Theorem 2.5. Suppose the conditions in Theorem 2.4 hold. If the domain D is
axi-symmetric about the x3-axis, then the solution w(x) in Theorem 2.4 is also
axi-symmetric about the x3-axis.

Our final result is the following non-existence theorem; here ν(x) denotes the

unit outer normal vector on the boundary, and η = η(x) =
√

x2
1 + x2

2 ;
Theorem 2.6. Suppose ∂D ∈ C1 and the domain D is bounded and star-shaped,
i.e., x · ν(x) ≥ 0 for x ∈ ∂D, and the entropy S satisfies the condition

x · ∇S(x) ≥ 0 f or x ∈ D. (2.35)

If γ ≤ 6/5 (or γ < 6/5) and

ηA′(η) + 5A(η)

2
> 0 (resp. ≥ 0) (2.36)

for x ∈ D, where A(η) = 2�(η)(η�(η))′, then there is no positive solution to
(2.5) and (2.7).
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Remark 4. Condition (2.36) is trivially satisfied when � is a constant.

Remark 5. In [8], for the case of a non-rotating star (� = 0), the authors prove
a non-existence theorem for 1 < γ < 6/5, under the assumption that the entropy
S(x) satisfies the following three conditions, for all x ∈ D:

x · ∇S ≥ 0, �S ≥ 0 and∇(�S) · x ≥ 0.

In Theorem 2.6, we only require x · ∇S ≥ 0 for all x ∈ D.

We now make some remarks about the above theorems and their proofs. In the
theory of second-order elliptic equations, the existence of a positive solution to the
boundary-value problem

�w + f (x, w) = 0, x ∈ D,

w|∂D = 0, (2.37)

where D ∈ Rn is a bounded open set, has been extensively studied either by the
Min-Max method of the Mountain Pass Lemma of Rabinowitz [15] or the Topo-
logical Degree Method (Leray-Schauder degree) by Lions [12], both under the
condition f (x, 0) ≥ 0. If f (x, 0) < 0, the difficulty in solving the boundary-value
problem (2.37) is that the Harnack inequality is not applicable, and thus the above
variational methods (Mountain Pass Lemma) and the Topological Degree Method
do not work in this case. The first existence result of a positive solution for the case
f (x, 0) < 0 was given in [17] by using the time-map method when D is a ball
and f (x, w) = f (w) (i.e., f does not depend on x explicitly); this corresponds
to the case when both the entropy S and the angular velocity � are constant in
equation (2.5). For this type of equation, further analysis was given in [4]. The
existence result of a spherically symmetric solution to (2.5) and (2.8) generalizes
the above-mentioned results to the non-isentropic case.

If D is a general domain, [17] contains some existence results for the case
f (x, w) = f (w) and f is sublinear in w. To the best of our knowledge, Theorem
2.4 is the first result of existence of positive solutions for the case where f (x, w)

is superlinear in w and the domain D is different from a ball.
The rest of this paper is organized as follows. In Section 3, we prove Theorem

2.1. Theorems 2.2 and 2.3 are proved in Section 4. Theorems 2.4–2.6 are proved in
Section 5. Further discussions are given in Section 6.

3. Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1. We define

f (r, w) =
{

e−αS(r)wq − σ if w ≥ 0,

−σ if w < 0,
(3.1)

and

F(r, w) =
∫ w

0
f (r, z)dz. (3.2)
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As in Section 2, we use the notation w(r, p, σ ) to denote the solution of the
problem

w′′(r) +
(

2

r
+ αS′(r)

)
w′(r) + e−αSf (r, w) = 0 (3.3)

and

w′(0) = 0, w(0) = p > 0. (3.4)

Let R(p, σ) be as in (2.13); i.e., R(p, σ) the first point at which w is 0.
Motivated by the celebrated Pohozaev identity [14], we define the function

G(r) by

G(r) = r3

(
eαS(r) w

′2

2
+ F(r, w)

)
+ 1

2
r2eαSww′(r)

+α

2

∫ r

0
t3eαSS′w′2dt, r ≥ 0. (3.5)

It is easy to verify that

G′(r) = 3r2
(

F(r, w) − f (r, w)w

6

)
+ r3g(r, w), (3.6)

where

g(r, w) =
∫ w

0

∂f (r, z)

∂r
dz =

{
−αS′(r)e−αSwq+1

q+1 , w ≥ 0,

0, w < 0; (3.7)

thus

G(r) =
∫ r

0

{
3t2

[
F(t, w) − f (t, w)w

6

]
+ t3g(t, w)

}
dt, r ≥ 0. (3.8)

We now prove that

If 1 < γ ≤ 6/5 ( q ≥ 5) and S′(r) ≥ 0 for r ≥ 0, then

R(p, σ) = +∞ (3.9)

for any p > 0 and σ > 0.

The proof is by contradiction. Suppose R(p, σ) < +∞, and let R̄ = R(p, σ)).
Thus

w(R̄) = 0, w(r) > 0 for 0 ≤ r < R̄. (3.10)

By the definition of G(r) (2.5), we have

G(R̄) = R̄3eαS(R̄)(w′(R̄))2

2
+ α

2

∫ R̄

0
r3eαSS′(r)w′2dr.
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Applying this to (2.6), we obtain, by virtue of (3.1) and (3.2),

R̄3eαS(R̄)(w′(R̄))2

2
+ α

2

∫ R̄

0
r3eαSS′(r)w′2dr

=
∫ R̄

0
3r2

{[(
1

q + 1
− 1

6

)
e−αSwq+1 − 5

6
σw

]
− r3 α

q + 1
S′(r)e−αSwq+1

}
dr.

(3.11)

Since 1
q+1 − 1

6 ≤ 0 for q ≥ 5 and S′(r) ≥ 0, (3.11) gives a contradiction. Thus
(3.9) holds so part (1) in Theorem 2.1 is proved.

Next, we give the proof of parts (2) and (3) of Theorem 2.1. First, it follows
from (3.3) that

(r2eαSw′)′ + r2f (r, w) = 0. (3.12)

Thus from (3.12) and (2.4), we obtain

w′(r) = −e−αS(r)

r2

∫ r

0
t2f (t, w(t))dt, r ≥ 0. (3.13)

For fixed p > 0, since w(0) = p, by (3.1), (3.2) and (3.13), we have w′(r) < 0
for small r , r > 0, if p is sufficiently large. We define r1 to be the point such that

w(r1) = 2p/3, w(r) > 2p/3 for 0 < r < r1. (3.14)

Then we have the following lemma which estimates r1 and G(r1) in terms of p.

Lemma 3.1. For sufficiently large p, if 1 < q < 5 (6/5 < γ < 2), then there are
positive constants c1, c2 and c3 independent of p such that

c1p
−(q−1)/2 ≤ r1 ≤ c2p

−(q−1)/2, (3.15)

and

G(r1) ≥ c3p
(5−q)/2, (3.16)

provided sup0≤r≤r1
|S′(r)| is sufficiently small.

Proof. By the definition of r1 (cf. (3.14)), we have

2p/3 ≤ w(r) ≤ p, 0 ≤ r ≤ r1. (3.17)

Thus, from (3.1), (3.13) and (3.17),

2p/3 = w(r1) = p −
∫ r1

0

e−αS(r)

r2

∫ r

0
t2(e−αS(t)wq(t) − σ)dtdr

≥ p −
∫ r1

0

e−αS

r2

∫ r

0
t2(e−αSpq − σ)dtdr

= p − r2
1

6
(e−2αSpq − e−αSσ ) (3.18)
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if p is sufficiently large, where S = inf0≤r<+∞ S(r), and by (2.15) S > −∞.
From (3.18), we get

r2
1

2
(e−2αSpq − e−αSσ ) ≥ p. (3.19)

This implies
r1 ≥ c1p

−(q−1)/2

for some positive constant c1, if p is sufficiently large. Similar to the argument in
(3.18), we can obtain,

2p/3 ≤ p − r2
1

6
(e−2αS̄(2p/3)q − e−αS̄σ ), (3.20)

where S̄ = sup0≤r<+∞ S(r), and S̄ < ∞. So from (3.20),

r1 ≤ c2p
−(q−1)/2

for some positive constant c2, if p is sufficiently large. This proves (3.15). To prove
(3.16), we have, in view of (3.8),

G(r1) =
∫ r1

0
3r2

{[
1

q + 1
− 1

6
− α

3(q + 1)
rS′(r)

]
e−αSwq+1 − 5

6
σw

}
dr.

(3.21)

Since 1 < q < 5 (q + 1 < 6), we have

1

q + 1
− 1

6
− α

3(q + 1)
rS′(r) > c3, 0 ≤ r ≤ r1, (3.22)

if sup0≤r<r1
|S′(r)| is sufficiently small, where c3 is some positive constant inde-

pendent of p. By virtue of (3.14), (3.21) and (3.22), we have,

G(r1) ≥ r3
1

(
c3e

−αS̄(w(r1))
q+1 − 5

6
σp

)

= r3
1

(
c3e

−αS̄((2p/3)q+1 − 5

6
σp

)
. (3.23)

Therefore, if p is sufficiently large, (3.23) implies (3.16). This proves Lemma 3.2.
��

By (3.1), we have

f (r, w) > 0 for w >
[
eαS̄σ

]1/q

. (3.24)

Therefore, in view of (3.13), we have w′(r) < 0 for small r if p is sufficiently large,
so w(r) decreases for small r . Using (3.13) and (3.24), we can see that w′(r) < 0
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and thus w(r) decreases as long as w > [eαS̄σ ]1/q . Because of this, we can define
T =: T (p) as the point such that

w(T ) =
[

10(q + 1)eαS̄σ

(5 − q)

]1/q

=: A, w(r) > A for 0 ≤ r < T , (3.25)

since

w(T ) = A > [eαS̄σ ]1/q, (3.26)

because 1 < q < 5. So by (3.1) and (3.25), we have

f (r, w(r)) > 0, 0 ≤ r ≤ T ,

and thus

w′(r) < 0 for 0 < r ≤ T . (3.27)

Remark 6. The existence of such a T follows here by an argument similar to that
in [17].

The next lemma gives an upper bound for T , where the constant b is given by
(2.16).

Lemma 3.2. Assume that 1 < q < 5 (6/5 < γ < 2) and

αS′(r)eαSz′ > −b

2
z (3.28)

for 0 < r < π/
√

b, where

z(r) = sin(
√

br)√
br

. (3.29)

Then

T ≤ π/
√

b. (3.30)

Proof. It is easy to verify that z(r) defined in (3.29) is the solution of the following
initial-value problem of second-order linear equation:

z′′ + 2

r
z′ + bz = 0, z(0) = 1, z′(0) = 0, (3.31)

By (3.12) and (3.31), we have

[r2eαS(r)(z′w − w′z)]′ = r2[f (r, w)z − bzeαSw + αS′(r)eαSz′w]. (3.32)

We prove (3.30) by contradiction. Suppose T > π/
√

b, then in view of (3.1), (3.26)
and (3.27), we have

f (r, w(r))

w(r)
− beαS(r) ≥ e−αS̄(w(T ))q−1 − σ

w(T )
− beαS̄ = b

2
. (3.33)
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Integrating (3.32) over the interval [0, π/
√

b], noticing the fact z(π/
√

b) = 0, we
obtain

r2eαS(r)z′w|r=π/
√

b =
∫ π/

√
b

0
r2wz

{
f (r, w)

w
− beαS + αS′(r)eαSz′

z

}
dr.

(3.34)

In view of (3.27), we have w( π√
b
) > w(T ) > 0 if T > π√

b
. Moreover from (3.29)

z′( π√
b
) < 0. Thus the left-hand side of (3.34) is negative. On the other hand, by

(3.28) and (3.33), we can see that the right-hand side of (3.34) is positive. This is
a contradiction, and thus (3.30) is proved. ��
In order to prove parts (2) and (3) in Theorem 2.1, we need a few lemmas. First, in
view of (3.1) and (3.2), there exists a positive constant B such that

|e−αS(r)F (r, w)| ≤ B for 0 ≤ w ≤ A, (3.35)

e−αS(r)|g(r, w) − αS′(r)F (r, w)| ≤ B for 0 ≤ w ≤ A, (3.36)

where A = w(T ) is defined in (3.25), g(r, w) is defined in (3.7). In the following,
we denote

Q := Q(T ) = w′(T ), (3.37)

where T = T (p) is defined in (3.25). By (3.27), we have

Q < 0. (3.38)

Lemma 3.3. If the entropy S satisfies the hypothesis in Lemma 2.2, and

4B

Q2

(
1 + A

|Q|
)

+ 12A

|Q|T
(

1 + 4B

Q2 + 4AB

|Q|3
)

<
1

2
, (3.39)

and

0 ≤ w(r) ≤ A = w(T ) for T ≤ r ≤ T + L, (3.40)

for any L satisfying

0 ≤ L ≤ min{ 2A

|Q| , 1}, (3.41)

then

w′(r) ≤ −|Q|√
2

for T ≤ r ≤ T + L, (3.42)

provided sup0≤r<1+ π√
b

|S′(r)| is sufficiently small.
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Proof. First, by (3.3), we have
(

w
′2

2
+ e−αSF (r, w)

)′

= −2 + αrS′(r)
r

w
′2 + e−αS(r)[g(r, w) − αS′(r)F (r, w)], (3.43)

where g(r, w) is given by (3.7). Notice that T is bounded by π/
√

b (cf. (2.30)),
where b is given by (2.16), so

[T , T + 1] ⊂
[

0,
π√
b

+ 1

]
. (3.44)

This, together with (3.41), implies

[T , T + L] ⊂
[

0,
π√
b

+ 1

]
. (3.45)

Therefore, if sup0≤r<1+ π√
b

|S′(r)| is sufficiently small, then |rS′(r)| is also

small for T ≤ r ≤ T + L. Thus

0 < 2 + αrS′(r) < 3 (3.46)

for T ≤ r ≤ T + L. It follows from (3.43) and (3.46) that

w
′2

2
+ e−αSF (r, w) ≤ Q2

2
+ e−αS(T )F (T , w(T ))

+
∫ r

T

[e−αS(t)(g(t, w) − αS′(t)F (t, w)]dt (3.47)

for T ≤ r ≤ T + L. Using (3.35), (3.36) and (3.47), we obtain

w
′2

2
≤ Q2

2
+ 2B + BL ≤ Q2

2
+ 2B + 2BA

|Q| (3.48)

for T ≤ r ≤ T + L. On the other hand, we have, from (3.36) and (3.43),

w
′2

2
+ e−αS(r)F (r, w) ≥ Q2

2
+ e−αS(T )F (T , w(T ))

−
∫ r

T

2 + αtS′(t)
t

(w′(t)2dt − BL (3.49)

for T ≤ r ≤ T + L. By (3.35), (3.46) and (3.49), we obtain

w
′2

2
≥ Q2

2
− 2B − BL −

∫ T +L

T

3

t
(w′(t)2dt

≥ Q2

2
− 2B(1 + L

2
) −

∫ T +L

T

3

T
(w′(t))2dt (3.50)
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for T ≤ r ≤ T + L. So, if L satisfies (3.41), by virtue of (3.48), we have

w
′2

2
≥ Q2

2
− 2B(1 + A

|Q| ) −
∫ T + 2A

|Q|

T

3

T
(w′(t)2dt ( by (3.41))

≥ Q2

2
− 2B(1 + A

|Q| ) −
∫ T + 2A

|Q|

T

3

T

(
Q2 + 4B + 4BA

|Q|
)

dt ( by (3.48))

= Q2

2
− 2B(1 + A

|Q| ) − 6A

T |Q| (Q
2 + 4B + 4BA

|Q| ) (3.51)

for T ≤ r ≤ T + L. Hence

w
′2

Q2 ≥ 1 − 4B

Q2

(
1 + A

|Q|
)

− 12A

T |Q|
(

1 + 4B

Q2 + 4BA

|Q|3
)

(3.52)

for T ≤ r ≤ T + L. Therefore, if (3.39) holds, then we have

(w′(r))2 ≥ Q2

2
(3.53)

for T ≤ r ≤ T + L. This implies w′(r) does not change sign for T ≤ r ≤ T + L.
Since Q = w′(T ) < 0 (cf. (3.27)),

w′(r) ≤ −|Q|√
2

(3.54)

for T ≤ r ≤ T + L. ��
Next, we have the following lemma.

Lemma 3.4. If w(r) > 0 for r ∈ [T , T + L] where L satisfies (3.41), then

0 < w(r) < A f or T < r ≤ L. (3.55)

Proof. Since w(T ) = A and w′(T ) = Q < 0 as we showed before, then w′(r) <

0, and thus w(r) < A for r > T , (r − T ) small. We prove (3.55) by contradiction.
If (3.55) were false, then there would exist r2 ∈ (T , T + L] such that

w(r) < A for r ∈ (T , r2), w(r2) = A. (3.56)

Since w(T ) = w(r2) = A and r2 > T , by Rolle’s Theorem, we have

w′(τ ) = 0 (3.57)

for some τ ∈ (T , r2). This contradicts (3.54). The proof of the lemma is complete.
��
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The following lemma is a generalization of a result in [17].

Lemma 3.5. Assume the entropy S satisfies the hypothesis in Lemma 3.2 . Let
T (p) = T be the point defined in (3.25). If

w′(T )T → −∞ as p → +∞, (3.58)

then R(p, σ) < +∞ if p is sufficiently large and sup0≤r≤1+ π√
b

|S′(r)| is sufficiently

small.

Proof. First, in view of (3.30), (3.58) implies

Q(T ) = w′(T ) → −∞ as p → +∞. (3.59)

Hence, there exists p0 > 0 such that (3.39) holds for every p ≥ p0. Now, for any
fixed p ∈ [p0, +∞), we show that there exists r∗ ∈ [T , T + 2A

|Q| ] such that

w(r∗) ≤ 0, (3.60)

and this implies R(p, σ) < +∞. We prove (3.60) by contradiction. Suppose

w(r) > 0 for r ∈
[
T , T + 2A

|Q|
]

. (3.61)

Then by Lemma 3.4, we have

0 < w(r) < A for r ∈
[
T , T + 2A

|Q|
]

. (3.62)

Thus, we can apply Lemma 3.3 with L = T + 2A
|Q| to obtain

w′(r) ≤ −|Q|√
2

for T ≤ r ≤ T + 2A

|Q| . (3.63)

Therefore, since w(T ) = A, we have

w

(
T + 2A

|Q|
)

= A +
∫ T + 2A

|Q|

T

w′(r)dr ≤ A − |Q|√
2

· 2A

|Q| < 0. (3.64)

This contradicts (3.61). The proof of the lemma is complete. ��
For the case 1 < q < 3 (4/3 < γ < 2), we have the following result. This is

the same as part (2) in Theorem 2.1.

Proposition 3.6. Assume 1 < q < 3(4/3 < γ < 2) and σ > 0. If the entropy S(r)

satisfies condition (3.28) in Lemma 3.2, then

R(p, σ) < +∞ (3.65)

for sufficiently large p, provided sup0≤r<1+ π√
b

|S′(r)| is sufficiently small.
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Proof. To prove this proposition, it suffices to verify (3.58) in Lemma 3.5. This
follows by the following argument. Set

w′(T ) = Q.

By (3.13), we have

−eαS(T )T 2Q =
∫ T

0
r2f (r, w(r))dr. (3.66)

We estimate QT 2 as follows. For 0 ≤ r ≤ T , by (3.27), we have

w(r) ≥ w(T ). (3.67)

Therefore, by (3.1) and (3.25), we obtain

f (r, w(r)) = e−αS(r)wq(r) − σ

≥ e−αS̄wq(r) − σ

≥ e−αS̄wq(T ) − σ

≥ (5 + 11q)σ

5 − q
> 0 (3.68)

for 0 ≤ r ≤ T , since 1 < q < 3. On the other hand, for r1 defined in (3.14), since
2p/3 > A = w(T ) if p is sufficiently large, then (3.25) and (3.27) imply

T > r1 (3.69)

for p large. Hence, it follows from (3.66)–(3.69) that

−eαS(T )T 2Q ≥
∫ r1

0
r2f (r, w(r))dr. (3.70)

By (3.14), we have

w(r) ≥ w(r1) ≥ 2p/3 for 0 ≤ r ≤ r1. (3.71)

Thus, by (3.1),

f (r, w(r)) ≥ eαS̄(3p/2)q − σ ≥ const · pq for 0 ≤ r ≤ r1, (3.72)

if p is sufficiently large. Therefore, we obtain, by (3.15), (3.70) and (3.72),

−eαS(T )T 2Q ≥ const · pqr3
1 =≥ const · p

3−q
2 . (3.73)

This implies T 2Q → −∞ as p → +∞ if q < 3. Condition (3.58) is thus verified
in view of (3.30) in Lemma 3.2. ��

For the case where 1 < q < 5 (6/5 < γ < 2), we have the following result.
This is the same as part (3) in Theorem 2.1.
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Proposition 3.7. Assume 1 < q < 5(6/5 < γ < 2) and σ > 0. If the entropy S(r)

satisfies the hypothesis in Proposition 3.6 and

S′(r) ≤ 0 for 0 ≤ r ≤ π√
b
, (3.74)

where b is given by (2.16) , then

R(p, σ) < +∞, (3.75)

for sufficiently large p, provided sup0≤r≤1+ π√
b

|S′(r)| is sufficiently small.

Proof. First, in view of (3.14) and (3.25), we have

w(r1) > w(T ) (3.76)

if p is sufficiently large. This, together with (3.27), implies

r1 > T. (3.77)

Once again, by (3.25), we obtain

w(r) ≥ w(T ) (3.78)

for r1 ≤ r ≤ T . It follows from (3.6) that

G(T ) = G(r1) +
∫ T

r1

3r2
(

F(r, w) − 1

6
f (r, w)w + 1

3
rg(r, w)

)
dr. (3.79)

By (3.1), (3.2), (3.7), we have

F(r, w) − 1

6
f (r, w)w + 1

3
rg(r, w)

=
{[

1

q + 1
− 1

6
− αrS′(r)

3(q + 1)

]
e−αS(w(r))q − 5

6
σ

}
w(r) (3.80)

for r1 ≤ r ≤ T . If sup0≤r≤1+ π√
b

|S′(r)| is small, in view of (3.30), we have

1

q + 1
− 1

6
− αrS′(r)

3(q + 1)
>

1

2

(
1

q + 1
− 1

6

)
> 0 (3.81)

for r ≤ T and 1 < q < 5. Moreover, by (3.25), (3.79), (3.78) and (3.81), we obtain

F(r, w) − 1

6
f (r, w)w + 1

3
rg(r, w)

=
{

1

2

[
1

q + 1
− 1

6

]
e−αS(w(T ))q − 5

6
σ

}
w(r) ≥ 0 (3.82)

for r1 ≤ r ≤ T . This, together with (3.16) and (3.79), implies

G(T ) ≥ G(r1) ≥ c3p
(5−q)/2. (3.83)
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By (2.5) and (3.83), we have

eαS(T )T

2
([T Q]2 + (T )3F(T , w(T )) + T AeαS(T )

2
[T Q]

+ α

2

∫ T

0
r3eαS(r)S′(r)(w′(r))2dr ≥ c3p

(5−q)/2, (3.84)

where Q = w′(T ). So, if S′(r) ≤ 0 for 0 ≤ r ≤ π√
b
, we have, in view of (3.30),

eαS(T )T

2
[T Q]2 + (T )3F(T , w(T )) + T AeαS(T )

2
[T Q] ≥ c3p

(5−q)/2, (3.85)

Since T ≤ π√
b

and 1 < q < 5, we have

T Q → −∞, as p → +∞. (3.86)

By virtue of Lemma 3.5, Proposition 3.7 is proved. ��
Now we prove part (4) of Theorem 2.1. For the solutions w(r, p, σ ) =: w(r) in

(2) and (3) of Theorem 2.1, let ρ =
[

γ−1
γ

w
]1/(γ−1)

; ρ is the density function (cf.

(2.3)). Set

M(r) =
∫ r

0
4πτ 2ρ(τ)dτ,

the mass in the ball Br(0). We calculate each term in (2.5) as follows, by virtue
of the fact that w and S are spherically symmetric and � is a constant. First, for

r =
√

x2
1 + x2

2 + x2
3 , we have

∇w = wr(x1/r, x2/r, x3/r), ∇S = Sr(x1/r, x2/r, x3/r), (3.87)

and thus

div(eαS∇w) = ∇(eαS) · ∇w + eαS�w

= αeαSwrSr + eαS

(
wrr + 2

r
wr

)

= eαSwrr + eαS

(
2

r
+ αS′(r)

)
wr. (3.88)

By (2.3) and (2.6), we have

Ke−αSwq = 4πGρ. (3.89)

Substituting (3.88) and (3.89) into (2.5), and noticing � is a constant, we obtain

eαSwrr + eαS

(
2

r
+ αS′(r)

)
wr + 4πGρ − 2�2 = 0. (3.90)

Thus

(r2eαSw′(r))′ + r2(4πGρ − 2�2) = 0, (3.91)
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where G is the Newtonian gravitational constant. Therefore

r2eαSw′(r) = 2r3�2

3
− GM(r) (3.92)

for r ≤ R(p, σ). By the proofs of part (2) and (3) of Theorem 2.1, we have
w′(r) ≤ 0 for r ≤ R(p, σ). Thus M(r) ≥ 2r3�2

3G
for r ≤ R(p, σ). The estimate

(2.23) follows immediately from (2.22).

4. Proofs of Theorems 2.2 and 2.3

In this section, we consider the isentropic case S = constant. Theorem 2.1 can
be applied in this case because the conditions imposed on the entropy S in Theo-
rem 2.1 are automatically satisfied when S is constant. Without loss of generality,
throughout this section, we assume

S = 0 (4.1)

for convenience. We prove Theorems 2.2 and 2.3 as follows. First, we define

f (w) = wq − σ, w ≥ 0, (4.2)

and

F(w) = wq+1

q + 1
− σw, w ≥ 0. (4.3)

We still use w(r, p, σ ) to denote the solution of the problem

w′′(r) + 2

r
w′(r) + f (w) = 0, (4.4)

and

w′(0) = 0, w(0) = p > 0. (4.5)

Let R(p, σ) be defined as in (2.13); R(p, σ) is the first point at which w is 0.
Then we have the following proposition.

Proposition 4.1. If σ > 0 and 1 < q < 5 (6/5 < γ < 2), then

R(p, σ) = +∞, if 0 ≤ p < p, (4.6)

where

p =
(

5σ(1 + q)

5 − q

)1/q

=
(

10γ�2

5γ − 6

)γ−1

. (4.7)
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Proof. It is easy to verify that (
5σ(1+q)

5−q
)1/q is the unique positive zero of F(w) −

f (w)w
6 . If R(p, σ) < +∞, we let R(p, σ) = R > 0. Then G(R) ≥ 0, where the

function G is defined as in (2.5) with S = 0. On the other hand, 0 ≤ w(r) ≤ p for
0 ≤ r ≤ R. If p < p = (

5σ(1+q)
5−q

)1/q , then (F (w)− f (w)w
6 )(r) < 0 for 0 ≤ r ≤ R.

Hence, (3.8) implies G(R) < 0. This is a contradiction. ��
First we prove part (1) of Theorem 2.2. For fixed σ > 0, let

p0 = inf{p : R(p, σ) < +∞}. (4.8)

By part (3) of Theorem 2.1 and Proposition 4.1, we know that

p ≤ p0 < +∞,

where p is given by (4.7). If we can show

R(p0, σ ) < ∞, (4.9)

then part (1) in Theorem 2.2 will be proved. Now (4.9) can be shown by the fol-
lowing argument. Write (4.4) as a first-order system

w′ = v, v′ = −2

r
v + σ − wq, (4.10)

with initial condition

w(0) = p0 > 0, v(0) = 0. (4.11)

Define the Hamiltonian H(w, v) by

H(w, v) = v2

2
+ wq+1

q + 1
− σw. (4.12)

Then H ′ = − 2
r
v2, so that H decreases on orbits of (4.10). This implies that the

solution of (4.10), (4.11) must have v bounded from below in the region S ={w ≥ 0,

v ≤ 0}. This solution also cannot exit S via w = 0 at some v < 0 for some R > 0;
otherwise, since v′(R) = − 2

R
v(R) + σ > 0, the solution crosses the line w = 0

transversally, so by continuity, there would be a neighborhood N of p0 on the w-
axis, such that for p ∈ N, the orbit of (4.10) satisfying w(0) = p, v(0) = 0, would
also exit S at a point near w = 0, v(R) < 0. This would contradict the definition of
p0. Similarly the p0 orbit cannot exit S via some point (w, 0), with 0 < w < p0.

Thus the p0 orbit exits S via w = 0, v = 0, so (2.31) holds, and this proves part
(1) of Theorem 2.2.

Remark 7. It is not hard to show that every solution of (4.10) satisfying w(0) = p,

v(0) = 0, tends to the rest point (w = σ 1/q, v = 0) as r → ∞.
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Now we prove part (2) of Theorem 2.2. First, we show that the radius of the star
increases with the increasing angular velocity. We use wi(r) (i = 1, 2) to denote
the solution to the initial-value problem

w′′
i (r) + 2

r
w′

i (r) + w
q
i − σi = 0, r > 0,

wi(0) = p, w′
i (0) = 0.

(4.13)

We assume

σ1 > σ2 > 0, (4.14)

and we want to show that

R(p, σ1) ≥ R(p, σ2). (4.15)

(Note that each of these are finite, by what we have already shown in part (1) of the
theorem).

From (4.13), we have

w′
i (r) = 1

r2

∫ r

0
s2 (σi − w

q
i (s)

)
ds, i = 1, 2, (4.16)

It is easy to verify, using L’Hospital’s rule, that

lim
r→0+

2

r
w′

i (r) = 2

3
(σi − pq). (4.17)

It follows from (4.13) and (4.17) that

lim
r→0+ wi

′′(r) = −(pq − σi)/3. (4.18)

Since σ1 > σ2, (4.18) implies

w′′
1(0+) > w′′

2(0+). (4.19)

This, together with the fact w1(0) = w2(0) = p and w′(0) = w′
2(0) = 0, leads to

w1(r) > w2(r) for small r > 0. (4.20)

We shall show (4.15) by contradiction. If (4.15) were false, then there would exist
an r0 0 < r0 < R(p, σ1) < R(p, σ2) such that

w1(r) > w2(r) for 0 < r < r0, and w1(r0) = w2(r0). (4.21)

Let
y(r) = w1(r) − w2(r).

We then have, from (4.13),

y′′(r) + 2

r
y′(r) + yB(r) − (σ1 − σ2) = 0. (4.22)
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Here

B(r) = q

∫ 1

0
(λw1 + (1 − λ)w2)

q−1 (r)dλ. (4.23)

From (4.16) and (4.21), we have

y(0) = y′(0) = 0, y(r) > 0 for 0 < r < r0, and y(r0) = 0. (4.24)

Multiplying (4.22) by y′ and integrating the resulting equation over the interval
[0, r0], we get, since y′(0) = 0,

(y′(r0))
2

2
+
∫ r0

0

2

r
(y′(r))2dr

+
∫ r0

0
B(r)yy′(r)dr −

∫ r0

0
(σ1 − σ2)y

′(r)dr = 0. (4.25)

With the help of (4.24) and integration by parts, we get
∫ r0

0
B(r)yy′(r)dr =

∫ r0

0
B(r)

(
y2

2

)′
dr = −1

2

∫ r0

0
B ′(r)y2(r)dr (4.26)

and ∫ r0

0
(σ1 − σ2)y

′(r)dr = 0. (4.27)

Substituting (4.26) and (4.27) into (4.25), we have

(y′(r0))
2

2
+
∫ r0

0

2

r
(y′(r))2dr + 1

2

∫ r0

0
(−B ′(r))y2(r)dr = 0. (4.28)

By the definition of B(r) (see (4.23)), we have

B ′(r) = q(q − 1)

∫ 1

0
(λw1 + (1 − λ)w2)

q−2(λw′
1(r) + (1 − λ)w′

2(r))dλ.

(4.29)

Since w′
i (r) < 0 for 0 < r < R(p, σi) (i = 1, 2) (see [9]), we thus have

B ′(r) < 0 for 0 < r ≤ r0, (4.30)

when γ < 2, i.e., q > 1. Hence, each term in (4.28) must be zero. This contradicts
(4.24), and proves (4.15). Now we show that the radius of the star decreases with
the increasing central density, i.e.,

R(p1, σ ) ≥ R(p2, σ ) (4.31)

if p0 ≤ p1 < p2 and σ > 0. For this purpose, let w(r, p, σ ) be the solution of the
following initial-value problem:

w′′(r) + 2

r
w′(r) + wq − σ = 0,

w(0) = p, w′(0) = 0,
(4.32)
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for p ≥ p0. We use the rescaling

λ = r(q−1)/2, θ(λ) = u/p ; (4.33)

then θ(λ) is the solution of the initial-value problem

θλλ + 2

λ
θλ + θq − σ

pq
= 0, λ > 0,

θ(0) = 1, θ ′(0) = 0.

The first zero of θ depends only on the parameter σ
pq . We use λ( σ

pq ) to denote this
first zero. Then by (4.33), we have

R(p, σ) = p(1−q)/2λ

(
σ

pq

)
(4.34)

for p ≥ p0. Similar to the argument in the proof of (4.15), we can show that
λ( σ

pq ) increases with the parameter σ
pq . Thus, for the fixed σ , it decreases with p

for p ≥ p0. This, together with (4.34) and the fact q > 1, implies (4.31). This
completes the proof of part (2) of Theorem 2.2.

Remark 8. The above scaling argument also works for a non-rotating star, i.e., the
case when σ = 0. For the non-rotating star, the radius of the star, R(p, 0), is always
finite for p > 0 if 6/5 < γ < 2 (see [5]). For the non-rotating star, (4.34) becomes

R(p, 0) = λ0p
(1−q)/2, q = 1

γ − 1
, (4.35)

where λ0 is the first zero of the function θ(λ), which is the solution of the following
initial-value problem:

θλλ + 2

λ
θλ + θq = 0, λ > 0,

θ(0) = 1, θ ′(0) = 0.

From (4.35) we see that the radius of a non-rotating star is proportional to p(1−q)/2.

We now turn to the proof of Theorem 2.3. In (4.34), since λ( σ
pq ) increases with

the parameter σ
pq , as we have already shown, we have

λ

(
σ

pq

)
≤ λ

(
σ

p
q
0

)
, (4.36)

for p ≥ p0. We apply (4.34) to the case of p = p0 and obtain

R(p0, σ ) = p
(1−q)/2
0 λ

(
σ

p
q
0

)
. (4.37)

Now R(p0, σ ) < +∞, from part (2) of Theorem 2.1, and p0 is a positive constant
determined completely by γ and σ . Thus λ( σ

p
q
0
) is a positive constant determined

also only by γ and σ . We set this positive constant as C in (4.36), then (2.31)
follows. Since γ < 2, (2.31) implies (2.32). The proof of Theorem 2.3 is complete.
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The following lemma will be useful in proving Theorem 2.4.

Lemma 4.2. For any σ > 0, there exists R0 > 0 such that (2.25) with the data
w′(0) = 0 and w(R) = 0 has a positive solution in the ball BR(0) for all R ≤ R0,
if 1 < q < 5 (6/5 < γ < 2).

Proof. Fix σ > 0, and write R(p, σ) = R(p). By Theorem 2.2 Part (2), there
exists p0 > 0 such that R(p) < +∞ for any p ≥ p0. Let R0 = R(p0). For any
0 < R < R0, it follows from (2.32) that there exits p1 > p0 such that R(p1) < R.
Now R(p0) > R > R(p1), and R(p) is a continuous function of p (actually, it
is differentiable; cf. [17]). Thus, by the intermediate-value theorem, there exists
p ∈ (p0, p1) such that R(p) = R. ��

5. Proofs of Theorems 2.4, 2.5 and 2.6

In this section, we consider the case for the general domains and variable angular
velocity. In Theorems 2.4 and 2.5, we assume the entropy function S(x) is constant.
We set S = 0 for convenience. Substituting this in (2.5), we get

�w + wq − 2�(η)(�(η) + η�′(η)) = 0. (5.1)

We look for the solution of (5.1) satisfying the condition

w(x) > 0, x ∈ D, w(x) = 0, x ∈ ∂D. (5.2)

In order to prove Theorem 2.4, we need a comparison lemma, which can be found in
[7] or [16] . Before we state this lemma, we give the following definitions of weak
sub- and supersolutions of the problem (5.1) and (5.2). For notational convenience,
we define the function f (x, w) by

f (x, w) = wq − 2�(η(x))[�(η(x)) + η(x)�′(η(x)].

Definition. (a) A function w̄ ∈ H 1(D) is called a weak supersolution of problem
(5.1) and (5.2) if

∫

D

∇w̄ · ∇vdx ≥
∫

D

f (x, w̄)vdx (5.3)

for each v ∈ C1
0(D), v ≥ 0 a.e., where the subscript zero denotes v = 0 on ∂D.

(b) Similarly w ∈ H 1(D) is called a weak subsolution of problem (5.1) and
(5.2) if

∫

D

∇w · ∇vdx ≤
∫

D

f (x, w)vdx (5.4)

for each v ∈ C1
0(D), v ≥ 0
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The following lemma is well known; cf. [7] or [16].

Lemma 5.1. Assume there exists a weak supersolution w̄ and a weak subsolution
w of (5.1) and (5.2) satisfying

w ≤ 0, w̄ ≥ 0 on ∂D in the trace sense, and w ≤ w̄ a.e. in D. (5.5)

Then there exists a weak solution w ∈ H 1
0 (D) of (5.1) and (5.2), such that

w ≤ w ≤ w̄ a.e. in D. (5.6)

Remark 9. By the smoothness assumptions of ∂D and �(η), the usual regularity
arguments (see [10]) show that a weak positive solution of (5.1) and (5.2) must be
a classical solution.

Let D be a bounded domain with smooth boundary, and assume �(η) ∈
C1+δ(D) ∩ C(D̄) for some δ, 0 < δ < 1. Define β by

β =: max
x∈D̄

|2�(η)(�(η) + η�′(η)|, (5.7)

where η = η(x) is as defined in Section 1. Let BR1(0) be the biggest ball contained
in D. Consider the positive solution of the equation

u′′(r) + 2

r
u′(r) + uq − β = 0, (5.8)

with data

u′(0) = 0, u(r) > 0 for 0 < r < R1, u(R1) = 0. (5.9)

By Lemma 4.2, if 6/5 < γ < 2, then there exists a positive constant R2 depending
only on β and q such that (5.8) and (5.9) has a solution if 0 < R1 ≤ R2. We require

D ⊂ BR2(0). (5.10)

This implies that (5.8) and (5.9) has a positive solution. We denote this solution
by u(x) = u(|x|) (x ∈ BR1(0)). A subsolution to (5.1) and (5.2) can now be
constructed. First define w(x) by

w(x) =
{

u(|x|) for x ∈ BR1(0),

0 for x ∈ D − BR1(0).
(5.11)

Lemma 5.2. If Condition A in Section 1 holds, then w(x) defined by (5.11) is a
weak subsolution to (5.1) and (5.2).

Proof. First, by the definition of w , we have
∫

D

(∇w · ∇v − f (x, w)v
)
dx

=
∫

BR1 (0)

(∇u · ∇v − f (x, u)v)dx

+
∫

D−BR1 (0)

2�(η(x))[�(η(x)) + η(x)�′(η(x)]v(x)dx (5.12)
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for each v ∈ C1
0(D), v ≥ 0. By Condition A in Section 1, we have

�(η(x))[�(η(x)) + η(x)�′(η(x)] ≤ 0 (5.13)

for x ∈ D − BR1(0). On the other hand, since u satisfies (5.8) in the ball BR1(0),
we have by the divergence theorem,

∫

BR1 (0)

∇u · ∇vdx = −
∫

BR1 (0)

�uvdx +
∫

∂BR1 (0)

∂u

∂ν
vdS

≤
∫

BR1 (0)

f (x, u)vdx +
∫

∂BR1 (0)

∂u

∂ν
vdS, (5.14)

where ν is the unit outer normal vector. Since u′(R) ≤ 0, we have ∂u
∂ν

≤ 0 on
∂BR1(0), and since u(x) = w(x) for x ∈ BR1(0), (5.13) implies

∫

BR1 (0)

∇u · ∇vdx ≤
∫

BR1 (0)

f (x, w) · vdx, (5.15)

so that ∫

D

(∇w · ∇v − f (x, w)v
)
dx ≤ 0, (5.16)

and this proves Lemma 5.2. ��
We next construct a supersolution to (5.1) and (5.2). Let R2 be the positive

number as in (5.10) such that D ⊂ BR2(0) and p̄ be any positive number such that

p̄ > max
x∈D̄

w(x), (5.17)

where w is the subsolution which we have already constructed. We consider the
following boundary-value problem:

�w̄ + w̄q + β = 0 for x ∈ BR2(0), (5.18)

and

w̄|∂BR2 (0) = p̄. (5.19)

By a result in [12], there exists a unique positive solution w̃(x) to problem (5.18)
and (5.19). Furthermore, by the maximum principle, we have

w̄(x) ≥ p̄ for x ∈ BR2(0). (5.20)

Therefore, by the choice of p̄ (see (5.17)), we have

w̄(x) ≥ w(x) for x ∈ D̄. (5.21)

It is easy to verify that w̄ satisfies (5.3), i.e., w̄(x) is a supersolution of (5.1) and (5.2).
Then (5.5) follows from (5.21) and the properties of w and w̄. Hence, by Lemma
4.1, problem (5.1) and (5.2) has a solution w satisfying w(x) ≤ w(x) ≤ w̄(x) for
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x ∈ D. Inequality (2.34) can be proved as (2.28). Now we prove w(x) > 0 for
x ∈ D. Since w(x) ≥ w(x) for x ∈ D, and w(x) > 0 if x ∈ BR1(0), it suffices to
show w(x) > 0 as x ∈ D − BR1(0). This can be proved by the strong maximum
principle (see [10]), using Condition A in Section 1. This completes the proof of
Theorem 2.4.

We now prove Theorem 2.5. For this, we recall that the solution w(x) of (5.1) and
(5.2) is constructed by the following iteration (cf. [7] or [16]). Set w0(x) = w(x),
and then define wk (k = 0, 1, 2, . . . ) inductively to be the unique weak solution
of the linear boundary-value problem

−�wk+1 + Cwk+1 = f (wk) + Cwk in D,

wk+1 = 0 on ∂D,

where C = maxx∈D̄ |f ′(w̄)|(x). Then it can be shown (cf. [16])

w = w0 ≤ w1 ≤ · · · ≤ wk ≤ · · · ≤ w̄, a.e. in D.

Set w(x) = limk→∞ wk(x); then w(x) is the desired solution. Since w and w̄

are axi-symmetric, if D is an axi-symmetric domain, it is not hard to show each
wk (k = 0, 1, 2, . . . ) is axi-symmetric; i.e., depends only on η and z. Indeed, if

η =
√

x2
1 + x2

2 , and z = x3, then the Laplacian transforms to

∂ηη + 1

η
∂η + ∂zz.

So w1 satisfies the equation

−
(

∂ηηw1 + 1

η
∂ηw1 + ∂zzw1

)
+ Cw1 = f (w) + Cw, (5.22)

together with the boundary condition w1 = 0 on ∂D. Since the right-hand side
of (5.22) depends only on η and z, and since this Dirichlet problem, being linear,
has a unique solution, it follows that w1 is axi-symmetric. Similarly, each wk is
axi-symmetric. Thus w(x) is axi-symmetric. This completes the proof of Theorem
2.5.

We finally prove Theorem 2.6; the proof makes use of the celebrated Pohozaev

identity (see [14]).
Multiply (2.5) by x · ∇w and w respectively, and integrate the resulting equa-

tions over D. After some manipulation (details can be found in [14]), we obtain the
following “Pohozaev-like” identity
∫

D

K

(
1

2
− 3

q + 1

)
wq+1dx +

∫

D

[
1

2
eαS |∇w|2 + αKe−αS

q + 1
wq+1

]
(x · ∇S)dx

+
∫

D

(
ηA′(η) + 5A(η)

2

)
wdx +

∫

∂D

1

2
eαS |∇w|2(x · ν)dS = 0, (5.23)

where A(η) = 2�(η)�(η) + η�′(η), and ν is the unit outer normal vector. If
γ ≤ 6/5 (or γ < 6/5), then q ≥ 5 (or q < 5) and thus 1

2 − 3
q+1 ≥ 0 (resp.
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1
2 − 3

q+1 > 0) . Thus, if ηA′(η) + 5A(η)
2 > 0 (or ηA′(η) + 5A(η)

2 ≥ 0), x · ν ≥ 0
and x · ∇S ≥ 0, (5.23) implies w(x) = 0 for x ∈ D. This completes the proof of
Theorem 2.6.

6. Further discussion

In this section, we give further discussions on the difference between our for-
mulation of the problem and that in [2] and [11]. As mentioned in Section 1, for
the isentropic case, i.e., S = constant, system (1.3) is considered in [2] and [11] in
all of R3 space, with the prescribed total mass M. In [2] and [11], the function �

is given by

�(x) = −G

∫

R3

ρ(y)

|x − y|dy. (6.1)

This choice is natural when we consider the equation �� = 4πGρ in all of R3,
because any bounded solution of � for this equation in R3 differs from (6.1) only
by a constant.

In our formulation, we consider system (1.3) in a bounded domain D, the
domain of a star. The boundary condition in our formulation is ρ = 0, to match
the exterior vacuum continuously. In this formulation, the function �(x) could be
different from the formula

�(x) = −G

∫

D

ρ(y)

|x − y|dy, (6.2)

due to the boundary effects. We illustrate this by considering the isentropic case,
i.e., S = constant (without loss of generality, S is assumed to be zero). In this case,
the first equation in (1.3) reduces to

∇(w + � − J ) = 0, (6.3)

where w is given by (2.3) (with S = 0) J is given by (1.4). From ( 6.3), we have

w + � − J = C, (6.4)

where C is a constant. On the boundary ∂D, since γ > 1, the boundary condition
ρ = 0 implies w = 0 on the boundary ∂D. This, together with (6.4), implies that

�(x) = C + J for x ∈ ∂D. (6.5)

The solution of the problem �� = 4πGρ with the boundary condition (6.5) could
be different from formula (6.2). The difference is a harmonic function which counts
the boundary effects.

When the domain D is a ball and the entropy S is a constant, we give the
existence results and study some physical properties of the solutions. Historically,
incompressible-fluid models of rotating stars are studied extensively. For the incom-
pressible-fluid model, density is a positive constant inside a star and zero outside the
star, so there is a discontinuity of density across the boundary of a star. The problem
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for the incompressible-fluid model of Newtonian rotating stars is to determine the
boundaries of stars with the prescribed angular velocity (or angular momentum)
and total mass. For such problems, explicit solutions are found (e.g. Maclaurin
spheroids and Jacobi ellipsoids). Those spheroids and ellipsoids are close to balls
if the angular velocities are small. For the compressible-fluid model, the problem
is quite different since the distribution of density must be determined. For the com-
pressible-fluid model of a rotating star, if the domain D is not a ball, it seems very
difficult to obtain any interesting properties of solutions like those we obtain in
Theorems 2.1–2.3 for the case when D is a ball. When D slightly differs from a
ball, for example, an ellipsoid with eccentricity close to one, it is reasonable to
expect the solutions obtained in this paper, for the case when D is a ball, to give
good approximations.

Some non-existence results are proved in [11] for large angular velocity � for
the problem formulated in [2]. This means, in order to ensure existence of solutions
for the problem formulated in [2], that the angular velocity cannot exceed a critical
value. This critical value is given in term of total mass M , which is prescribed in
the formulation of the problem in [2] and [11]. Our existence theorem, Theorem
2.1, is valid for any angular velocity �. This difference is due to the different for-
mulations of problems mentioned above. In our formulation, we do not prescribe
the total mass, instead we prescribe the domain. The total mass thus depends on
the angular velocity and the domain. We also give a lower bound of the total mass
(cf. (2.22)) in terms of angular velocity.
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