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1. Introduct ion 

In t897 Lord RAYLEIGH [16] considered the relationship between potential 
problems (boundary value problems for the Laplace equation) and scattering 
problems (boundary value problems for the Helmholtz equation). In a typically 
virtuoso performance, RAYLEIGH considered two dimensional as well as three 
dimensional problems in the electromagnetic (vector) as well as acoustic (scalar) 
case. In particular, he showed that  the potential of an obstacle in a uniform 
field not only was the near field limit of the solution of the corresponding scat- 
tering problem but  also could yield the first term of an expansion of the far 
field. He gave explicit results for a general ellipsoidal scatterer including many 
limiting cases of interest such as the sphere, spheroid and disc. 

Since that  time considerable effort has been spent in deriving higher order 
terms in the expansion for these as well as other shapes. Long sought in this 
work is the development of a systematic procedure which will generate the solution 
of the Helmholtz equation, satisfying a particular boundary condition, from the 
solution of Laplace's equation which satisfies the same boundary condition. I t  
is toward the achievement of this goal that  the present work is directed. 

The major drawback in most of the methods proposed heretofore is their 
intrinsic dependence on a particular geometry. That  is, the techniques result 
from the (often adroit) exploitation of the geometric properties of the surface 
on which the boundary conditions are specified. Thus, restricting attention to 
three dimensional scalar problems, we find a variety of methods for obtaining 
the low frequency expansion for a disc (and an aperture in a plane screen); see 
BOUWKAMP [4] and NOBLE [15] for an extensive bibliography to which we may 
add HEINS [71, DE HOOP [9], SENIOR [18], and WILLIAMS [28]. However, success 
in generalizing these techniques has been limited to a class of axially symmetric 
problems (CoLLIXS [6], HEINS [8], and WILLIAMS [29]), and explicit results have 
been obtained only for a spherical cap (COLLINS [g] and THOMAS [231). For 
those shapes where the Helmholtz equation is separable, of course, the low 
frequency expansion may always be obtained from the series solution provided 
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sufficient knowledge of the special functions involved is available. A method 
for obtaining low frequency expansions for bodies which are intersections of such 
"separable" shapes has been proposed by DARLING [6J though as yet has been 
applied only to a spherically capped cone (SENIOR & DARLING [19]). 

Most low frequency techniques, however, have as their starting point the 
formulation of scattering problems as integral equations using the Helmholtz 
representation of the solution in terms of its properties on the boundary and the 
free space Green's function, e.g. BAKER & COPSON [2]. This formulation is also 
vital to the proof of the existence of solutions for a general boundary given 
by WEYL [25J and M[)LLER [14J as well as that  of WERNER [24]. NOBLE [15] 
shows how this integral formulation may be used to obtain a representation 
of the solution of a scattering problem for a general boundary as a perturbation 
of the solution of the corresponding potential problem. Each term in the low 
frequency expansion is the solution of an integral equation which differs only 
in its inhomogeneous part from term to term. However, this formulation does 
not yield an explicit representation for successive terms in general except as 
the formal inverse of an operator. 

The present work describes a method whereby the solution of the general 
Dirichlet problem for the three dimensional Helmholtz equation is explicitly 
expressed in terms of the Green's function for the corresponding potential problem. 
A new integral equation for the scattered field is derived whose kernel is the 
potential Green's function for the surface instead of the free space Green's 
function for the Helmholtz equation. Despite the fact that  the integral operates 
over all space, rather than just the scattering surface, and is really an integro 
differential operator, it is still possible to solve the equation iteratively in a 
standard Neumann expansion which has a nonzero radius of convergence and 
may be interpreted as a partial summation of the low frequency expansion. 
The results are valid for complex as well as real values of wave number, k, with 
no restriction on the sign of the imaginary part  provided k is sufficiently small 
in absolute value. The present work also provides a constructive proof of the 
existence and uniqueness of solutions of the Dirichlet problem for the Helmholtz 
equation based on the existence and uniqueness of the potential Green's function. 

The results stem from an integral representation of functions which are 
regular at infinity in the sense of KELLOGG [10]. This representation, which is 
a direct consequence of Green's theorem, is derived in Section 2. Wave func- 
tions, i.e. solutions of the Helmholtz equation which satisfy a radiation condition, 
are not regular. However, it is possible, using an expansion theorem (WILCOX 
[26]), to modify them so that  the representation theorem applies. This is done 
in Section 3 where a new integral equation for the Green's function for the 
Helmholtz equation is derived. In Section 4 it is shown that this equation may 
be solved iteratively as a Neumann series and that  the series converges for small 
enough values of the wave number. The relation between this series and the 
Rayleigh expansion is given in Section 5. As an illustration and a check, the 
methods are applied to the classic problem of scattering by a sphere in Section 6. 
This example serves not only to corroborate the analysis but  also provides further 
insight into the manner in which the truncated Neumann series, i.e. the N th 

iterate, approximates the solution. 
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2. A Representat ion Theorem 
In this section we first adopt notation and record some definitions, then 

state and prove an important  representation theorem. 
Let B be the boundary of a smooth, closed, bounded surface in E 8 {or the 

union of a finite number of such surfaces provided they are disjoint), and let 
V be the volume exterior to B. Erect a spherical polar coordinate system with 
origin interior to B, and denote by  p a point (r, 0, q0) in V and PB a point (rB, 0B, q0B) 
on B. The distance between any two points p, p l E V =  V,.~B will be denoted 
by R (p, pl). Explicitly 

R(p,p~)~Vr~q-r~--2rrtVcos~gcosO~+sinOsin~9~cos(cp-~l)l .  (2A) 

The assumption that  B is bounded z j?p(r,o,~) 
means that  r/~ has a finite maximum | " / / I  
value, c, thus ~ 0 - ~  

c ~ m a x r = m a x r  B. (2.2) V."" ] ? IR~,pe) 
I .  \ I pEB t r  \ [ 

The entire surface B may therefore [ /~  b'-':: I /  ~8] 
t \ \  i / be enclosed in a sphere of radius c*. t,X"X / ~ q ~ " ,  / I / 

Furthermore, adopting the conven- ' ~ \ / /  i / ' 
tion that  the normal to B at any / /  "\ / "  ~'-~ I /  

/ __ point is inward (directed out of V), "_-_:=:-_=~_ . . . . . . .  - _ Z : ~ _  . . . . . .  L ~  

the smoothness requirements on B are x 
such as to ensure the existence of a Fig. t 
unique normal at each point on B. The geometry is illustrated in Fig. t. 

Following KELLOGG [10, p. 2t7] a real valued function, ]: V-+Reals, is 
defined to be regular at infinity if 

~ / ( rp  ) O ~ O ~ : z  l i m i r / ( p ) l < o o  and lim r 2 < o o ,  0 ~ 9 ~ 2 0 z .  (2.3) 
~----~ OO r ----> O0 

Implicit in this definition of regularity is the fact that  /(p) must be differentiable 
for r sufficiently large. A complex valued function will be regular at infinity 
if both real and imaginary parts are regular. 

Next we define the static or potential Green's function of the first kind 
(Dirichlet boundary condition) for the surface B to be a function G o (p, P0) of 
two points such that  

a) V 2 G O (p, P0) = 6 [R (p, Po)], P, Po ~ V, 

b) e o(pB, P0) = 0 ,  (2.4) 

c) Go(P, Po) is regular at infinity, i.e., satisfies (2.3). 

The existence and uniqueness of Go( p, Po) for any surface B as restricted 
above is proven by  KELLOGG. The normalization of ~ (R) is such that  the free 

space Green's function (when B is the null surface) is t Thus Go 
4 ~z R (p, po) �9 

admits of the following decomposition into "singular" and "regular" parts: 
1 

Go(P'Po)= 4~R(p, po) +uo(P, Po) (2.5) 

�9 Since the center is required to be interior to B for many concave surfaces, c 
will be larger than the radius of the smallest sphere entirely enclosing B. 
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where Uo is a solution of the homogeneous Laplace equation, i.e., U o has no 
singularities in F, and is regular at infinity. (The notation G O is consistent with the 
subsequent use of G k to denote the Green's function for the Helmholtz equation). 

With these definitions and conventions established we may state and prove 
the following representation theorem. 

Theorem 2.1. Any  /unction co(p), defined /or all pEV,  which is twice di/- 
[erentiable, eoEc~(V), and regular at infinity satisfies the integral equation 

f l" o G (.O(p) = . I  G~ (P'Pl) V$(D (Pl) d v +  . ] O ) ( p B ) ~  O(P, PB) d~  (2.6) 
V B 

where dv is the volume element and V ~ the Laplacian expressed in coordinates 
(rl, 01, q)l) ; da is the sur/ace element and alan the inward normal derivative (out 
o/ V) expressed in coordinates (rB, OB, 9B)" 

Proof. We state Green's second identity in the following form: if V' is the 
volume exterior to B and interior to a large sphere, Bx, entirely enclosing B, then 

f [c~ V2Go(P, Px) -- Go(p, pl ) dv 

v" 0 (2.7) 
-- f o,(p.)] 

BTB1 

With (2.4a) we see that 

o~ (p) = f eo (t)1) V2Go (P, Px) dr. (2.8) 
V" 

Note that this result may be obtained without using the sifting property of the 
&function by excluding from V' a smaU sphere around the point p, explicitly 
evaluating the resulting additional surface integral, and then letting the radius 
go to zero. 

Using this result, together with the boundary condition (2.4b) satisfied by 
Go(p, ps  ), we put (2.7) into the form 

/- f 0 
o(P) = .]  Go(P, Pl) V=co(Pl) d r +  .]o(Ps) Tffn Go(P' P') rig + 

v' B (2.9) 
+ co (p~) ~ -  Go (P, P~) - Go (P, PB,) ~-~ (P~) d~. 

B, 

Since both o~ and G O are regular, the last term on the right in (2.9) vanishes 
as rn, --> ~o. Explicitly, 

lira [f[o~ OG~ G O~~ 
,~--,oo J t on - -  o ~ ]  

B~ 

< lim f d~VB, f d0B~r~sinOB,• ~[e0 ~Go 1+ Go 0~o } 
= , n ~  oo t l  OrB, I 

o o ( 2 . 1 0 )  
2,= 

=< lim d~B  ~ d~qB, sup r~ sinzgB,• 09 ~ B  ' + 0 ~rBl- 1 
rBt-'~~ " OBt, ~Bt 0 0 

lim sup 2=9"{]~o] r '  0Go r ~ , ~ [ } .  ..,--.ooo.,,.,,, ", o~g, +[Go[ oo, 
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Rewriting (2.t0) in the following way, 

lim ] f[o~ ego - -G eO~]d~ 

=< lim sup ~-s~ ~l n~ ] a ~  +lr ,Col e~ 

makes it clear that  the bracketed quantity on the right is bounded since both 
,~ and G o satisfy (2.3); thus it follows that  

,~-~lim B2 lf[~o ego _ G  So l  ,I e ~  o-~n-] da = 0 .  (2A2) 

Furthermore, in this limit V'-+V. Thus by letting rB--~ oo in equation (2.9), 
Theorem 2A is established. 

3. Representation of Wave Functions 
In this section we define the Green's function of the first kind for the Helm- 

holtz equation and show how it may be written using the representation theorem 
of the previous section. 

First we define the Green's function of the first kind for the surface B (re- 
stricted as before) to be a function Gk( p, Po) of two points such that 

a) (V2+k~)Gk(p, po)=~[R(P, po)~, p, PoEV, 

b) Gk(ps,po)=O, (3.t) 

(eGk -- ikGk)=0, uniformly in 0, 9. c) lilnoo r \ - ~ -  r 

The ~-function normalization and radiation condition are such that  the free 

eikR(P' P') Thus G k admits of a decomposition space Green's function is 4 ~r R (p, Po) " 

into singular (incident) and regular (scattered) parts 
e il~R (P, P,) 

Gk(p'P~ 4~R(p, po) +uk(p'P~ (3.2) 

where Uk( p, Po) is a solution of the homogeneous Helmholtz equation, i.e., U k 
has no singularities in V and is in fact twice differentiable, and satisfies the 
radiation condition (3Ac) at infinity. 

If the Helmholtz equation is considered as derived from the wave equation, 
reduced by assuming a harmonic time dependence, which is then suppressed, 
then the present case corresponds to a multiplicative time factor e -i~ The 
comparable expressions for a time dependence e i~ are found by replacing k 
by -- k throughout. 

The radiation condition is given in the form suggested by SOMMERFELD I201. 
This statement is stronger than necessary (c/. RELLICH [17~, WILCOX [26]), but 
is sufficient for our purpose and, in fact, has been shown to be equivalent to 
the weaker statements (WILCOX [271). 

The uniqueness of the Green's function was proven by SOMMERFELD [20] 
with additional assumptions which were subsequently removed by MAGNUS [11, 
12], RELLICH E17], ATKINSOI~ ~ Eli and WILCOX E26]. The more difficult question 
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of existence was resolved only recently by  WEYL [;~31 and M/3LLER [14]. The 
present work offers an alternate proof of existence and uniqueness of the Green's 
function Gk(p, po ), predicated on the existence and uniqueness of the static 
Green's function G o (p, Po) which is hesitantly termed a simplification. Whether 
it is indeed a simplification is a minor matter,  however, since the major new 
result of the present work is the explicit representation of the Green's function 
G~ (p, Po) in terms of the static Green's function. Existence of G k (/5, P0) is an 
extra dividend, proven by the rather compelling argument of actually pro- 
ducing it. 

I t  is our intent to represent the regular part  of the Green's function, which 
we henceforth refer to as the scattered field, using the theorem of the previous 
section. However, as it stands this function, U~(p, Po), does not satisfy the 
requirements of the theorem since it is not regular at infinity in the proper 
sense, although it does satisfy the radiation condition. The behavior is evident 
from an expansion theorem which also provides an obvious means of modify- 
ing the scattered field so as to satisfy the requirements of Theorem 2.t. The 
expansion theorem, given in its most general form by WILCOX [26] was first 
proven in a more restrictive case by  ATKINSON [1] and later extended by  BARRAR 
& KAY [8] (see also SOMMERFELD [21, p. 1911). I t  may be stated for our present 
purposes as follows: 

Theorem 3.1 (ATKINSO~, BARRAR & KAY, WILCOX). The field scattered 
/tom the sur]ace B, restricted as be]ore, may be written in the/orm 

e i k  r oo 

uk(p'P~ = ~ -  ~o= ln(O,r, q~) ' (3.3) 

where the series converges absolutely and uni]ormly ]or r >  c + e, e> 0 and c defined 
in (2.2). Furthermore the series may be differentiated term by term with respect 
to r, zg, or 9 any number o] times and the resulting series all converge absolutely 
and uni]ormly. The ]unctions ]~ (~9, 9) are understood to depend on the parameters k 
and r o, z9 o, 9o, the coordinates o] Po. 

Note that  outside the sphere of radius ro, the entire Green's function has 
a convergent expansion of the form (3.3) and also that  the theorem provides 
an equally valid representation of the scattered field for plane wave, as well 
as point source, incidence. 

ei~, ]0(zg, ~0) and while I t  is evident from this expansion that  for large r, U k ,-~ ~ -  

l imJ r U~ t = ,~m I]01 < oo, (3.4) 

the other requirement for regularity at infinity fails to hold, i.e. 

lim r* a~V~l= lim ]kr]o [ (3.5) 
T ----> OO ~ [  ~---> Do  

and this limit does not exist. However, also evident from this expansion is 
the following 

Corollary: If Uk(P, Po) is the field scattered from the surface B, then 
e-ik'uk(P, P0) is regular at infinity. 
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(b) 

and 

(c) 

We introduce the notation u(p, Po) with the defining equation 

u(P, Po)= e-ik'Uk (P, Po), (3.6) 

and, clearly, in addition to being regular at infinity, U(p, Po) is twice differentiable 

in V since UI, (p, Po) has this property. Therefore U(p, P0) satisfies the require- 
ments of Theorem 2.1 and may be written 

O(p, Po)= f Go(P,P,)F  (Pl,Po)dv+ f (37) 
V B 

I t  is a simple task to establish the following 

Lemma 3.1. I /  a) U=e-ih'U~ and b) (V~ +k~)Uk=O, then 

v ~ -  2ik ~ (r~).  (3.8) 
r 8 r  

Incorporating this result in (3.7) yields 

U(P, Po) = -- 2ik f Go(p, p~) 
�9 r l  ~r  1 Jr1 U ( P l ,  P0)] d v + 

v (3.9) 
+ fu(p~,Po) a Go(p,p~)da. 

�9 

B 

The boundary values, U(pB, Po), are found from (3.1 b), (3.2) and (3.6) to be 

U(P~,  P0) - e -~k '~  + ~ R  cp~, p.) 
4 ~ R (PB, Po) (3.10) 

We may summarize the results of the present section in the following: 

Theorem 3.2�9 I /  
(a) V is the volume exterior to B, the union o/a finite number o/smooth, closed, 

bounded, disjoint sur]aces, 
t 

Go (P, Po) -- 4 z~ R (p, Po) + U~ (p' Po) is the potential Green's ]unction o/the 

first kind/or this sur]ace (G O (PB, Po)= 0), 

eik R (p, po) 
4nR(p, Po) + Uk (p' Po) is the Green's/unction/or the Helm- G~ (p, Po) ---- 

holtz equation, also satis]ying a Dirichlet condition on B, 
then the scattered field U k (p, Po) satisfies the integral equation 

uk(p, po) ___ 2ikeik, f Go(P, Pl) rl ~rl [rle-i~"uk(pl'P~ 
V 

(3.11) 
eik, [ e--ik'B+ikRCPB, P0) 0 Go(p, pB) da 

+ 4n J R(pB,Po) On 
B 

where dv is a volume element in coordinates Pl and da is a surJace element and 
a/On the normal derivative directed out o] V expressed in coordinates PB. 

In addition, there is a comparable representation for the scattered field 
when the incident field is a plane wave or a superposition of point sources 
and]or plane waves. Specifically 
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a) 

b) 

c) 

d) 

then 

Theorem 3.3. 1/ V is the exterior o/ a sur/ace B restricted as be/ore and 

U(p) = U~(p)  + U~C~t(p), pEV,  

(V~+k  ~) U~t  = 0, p c  V, 

u(p~) = o, 
lim r (  aU~eat ) ,-,oo \ 0r i k U  ~ t  = 0 ,  

U~t(p)=_2ike~k, f Go(p, Pl) ~ " rx arx Erle-*~r'USCat(pl)]dv-- 
V 

o 
- e ~ " ' f  e -~k" g ~~ (P~) ~ Go (P, p~) d~. 

B 

(3.12) 

4. A Neumann Series for the Green's Funct ion 

In this section we find an explicit representation of the Green's function 
for the Helmholtz equation in terms of an iterative solution of the integral 
equation derived in the previous section. 

The iteration scheme is clearly indicated by  rewriting equation (3.9) in more 
suggestive form, namely: 

= K o U + U (~ (4.t) 
where 

= u(p) is the function we seek, 

K = -- 2 ik  f dv Go(p, Px) ~[r, is an integro-differential operator, 
~'I ~ ~'I 

V 
and 

U(~ UC~ is a known function (3.t0). 

The dependence on the point Po is understood and not explicitly shown. The 
form of (4.t) suggests that  the solution may be found using the Liouville-Neumann 
series of Fredholm theory. That  is, we rewrite (4.t) as 

U =  ( I - -  K) -1 o U (~ (4.2) 

and formally expand the inverse, obtaining 
oo 

= y Kno U~0~. (4.3) 
n = 0  

Denote by  U IN) the partial sums 
N 

U Cm = ~. K~o U (~ (4.4) 
n = 0  

With this definition it follows immediately that  for N >  t,  U (m also satisfies 
the recursive relation 

U ~N) = Ko  U IN-x) + U C~ (4.5) 

The solution, U, is given by  
= lira U oN) (4.6) 

N---r 

where either (4.4) or (4.5) may be taken as defining U (N). 
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Thus far these results are purely formal. We must show that  they are 
meaningful in a rigorous sense. In particular, we must demonstrate that  the 
Neumann series, (4.3), converges and establish the sense in which it converges. 
Also we must show that  it converges to the solution we seek. The remainder 
of this section is devoted to this necessary but  tedious analysis. What  we shall 

do is show that  U C~ U, and all the iterates U INI are elements of a normed 
vector space which is mapped into itself by  the operator K. Further we shall 
show that  for k sufficiently small, this operator has norm less than unity. The 
convergence of the Neumann series, in this norm, then follows as does the 
uniqueness of the solution. 

First we record some properties of spherical harmonics and known expan- 
sions of the static Green's function which will prove useful. 

Denote by Y, (v q, 9) an n th order spherical harmonic 

Y. (zg, 9) = ~ A m ~ Pff (cos zg) e i~* (4.7) 
ttt~ --n 

and by  Y~ (v a, 9;  01, 91) a symmetric n th order spherical harmonic 

Y,, (tg, 9 ; ?)ql, 91)  - -  A m n Pn m ( c o s  0 )  ~ r a  ( c o s  01) c o s  m ( 9  - -  91)"  (4.8) 
m =0  

These functions enjoy the orthogonality property 

~t 2~ 
f d~gf dgsin~gY.,(O, 9)Y,,(0,9;~91,gi)=O, m 4 : n  

o 0 ( 4 . 9 )  
= Y~ (~1, 91), m = n. 

Here it must be kept in mind that  Y,(v ~, 9) and Y,(v~l, 91) occurring in (4.9) 
are not necessarily the same function but  are elements of the same equivalence 
class. That  is, they both may be written in the form (4.7) but  the constant 
coefficients Am, may differ. In what follows, it is often unnecessary to distin- 
guish between spherical harmonics of the same order; thus we denote them all 
with the same symbol. This should not be overlooked in any specific calculation 
of the coefficients where a more precise specification is required. 

I t  is well known (e.g. KELLOGG [10, p. t43]) that  potential functions may be 
expanded in spherical harmonics. In particular the static Green's function for 
the surface B may be written 

t 
Go(p, pl ) = 4 ~ R ( # , p l  ~ + 

t 

4 n R (p, px) + 

t = + 
r = R (p, p~) 

~ Yn (O, 9) r > a, (4.t 0) 
r n + l  , = 

n=O 

~ y , ( o ~ ,  , i )  rl  > a,  (4.1 I)  
n = 0  r~ +1 ' 

~ Y.(0,9;01,~1) r, rl>= a (4A2) 
I t = 0  ( ? r l ) n + l  ' 

where the series are uniformly and absolutely convergent and may be differen- 
tiated or integrated any number of times with respect to r, #, or 9;  a =  c + e, 
~> 0; and c, equation (2.2), is the radius of the sphere enclosing B. The reciprocity 
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relation is explicitly exhibited. I t  is useful "to note that  the source term may 
also be expanded in spherical harmonics 

o o  n 

! --  n ~ = 0 r ~  Pn ECOS t9 cos z91 + sin~9 sin 01 cos(~0 -- 91)] (4A3) 
R (p, Pl) 

where 
r> = m a x ( r ,  rl), r< = min (r, rl). 

Note that  the expansion has the same convergence properties as the series in 
(4.10)--(4.12) provided r ~:r 1. 

In addition to the orthogonality of spherical harmonics, it will be useful 
to define a related property. 

Definition. A function /(v q, q~) will be called a "pseudo spherical harmonic 
of order n"  if 

r  2 ~  

f dzg f dq~sin~9](9, q~)Y,,(zg, 9;91, q~1)=O, m < n  (4.t4) 
0 0 

= Ym (~91,91), m >= n. 

With the understanding that  zero may be considered a spherical harmonic of 
any order (all coefficients in (4.7) are zero) it follows that  any spherical harmonic 
of order n is also a pseudo spherical harmonic of order n. 

Now we are in a position to define a particular function space in which we 
will establish the convergence of the iterations. Recalling that  V is the volume 
exterior to the surface B and a is the radius of a sphere entirely containing B 
in its interior, we define sg as follows" 

a) U~c~(V), 

b) U =  r i  ~=u -~=/~(O,r ~ 9) , r>--_ a and the series is uniformly and 

~ U absolutely convergent, term by term differentiable, with (4.t5) 
respect to r, ~9, or 9 and the resulting series are uniformly 
and absolutely convergent, 

c) ],(zg, 9) are pseudo spherical harmonics, i.e., satisfy (4A4). 

Further we specify the following norm, implied both by  the pointwise con- 
vergence of the series, (4.15b), and the fact that  elements of q/ are twice dif- 
ferentiable everywhere in V, 

llu]l = max I u(p)l. (4.t6) 
p E V  

I t  is clear that  much more could be said of q / t h an  that  it is a linear normed 
vector space; however, rather than investigate this space in general, we confine 
our attention to those properties necessary for our present purpose. These are 
established in the following lemmas, which are then used to prove the main 
result of the paper. 

Lemma 4.1. U(0)Eo//. 

Proof. Referring to equations (3.9) and (3.10), we see that  

f e-i~rn+i~RIpn'p~ Go(p,p~) (4A7) 
U(~ = U(~ (P) = 4 rt i2 (PB, Po) On 

da. 
B 
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Since the integrand in (4.t7) is infinitely differentiable for P0, pCB and B is 
not infinite, it follows that  Ur176 and in fact is infinitely differentiable 
as long as p and Po are not on the boundary. Actually KELLOGG [10, p. 172] 
established that  the potential due to a double layer, with twice differentiable 
moment, of which (4.t7) is an example, is also continuously differentiable for 
p on B, i.e. U(~ Furthermore when r>a,  we utilize (4A0) and (4A3) 
to obtain 

co n 
1 E rB Go (P, PB) - -  4 ~ ,--~4f x 

n = O  (4.t8) ~, ~(o, ~0) •176 + sin O sin OB cos (9 -- fB)~ + r,.+l ' 
n=O 

or, since P. is an n th order spherical harmonic, 

~, t ~ A,.~(pB)P.m(cosO)e imp. (4A9) Go (P, PB) = r"+ 1 
n = 0  ~ =  - - i t  

This series converges uniformly, as does the derived series; therefore, we 
may rewrite (4.17) as 

u,o) _ 2 , 2 f : , . - , . . , -  ,., o :,+x P." (cos 0) e 'm* 
- -  4z*R(pB,Po) ~n Am'(pn)da' (4.20) 

n = 0  m =  --n B 

which is again of the form 

U(O) = ~, Y~(0, ~p) (4.2t) 
n = 0  

Hence conditions (4ASb, c) are satisfied as well as (4.t5a), and the lemma is 
proven. 

L e m m a  4.2. I /  UEql, then KoUCql. 
Proof.  With the definition of K, equation (4.t), we write 

KoU=--2ik f dv Go(P, Px) 0 rx Or x [r 1 U(Pl) ] . (4.22) 
v 

We separate the volume over which the integration is performed into an infinite 
volume, V~, where rl>:a and the expansion Theorem3A holds, and a finite 
volume, Vi, where it does not. Vii thus is the volume interior to the sphere of 
radius a and exterior the surface B. Thus we define two functions 

uo(p)=--2ikfdv Go(p,p,) o rx 0 r  x It1 U ( j b l ) ]  �9 ( 4 . 2 3 )  
Ire 

1 

Clearly Ue(P)+Ui (p )=KoU,  and if we can demonstrate that  Ue and Ui are 
elements of ~ ,  then, since the space is linear, it follows that  Ko U is also in q/. 

Consider first the finite volume. Ui (p) is the potential of a volume distri- 
bution which KELLOGG has shown to be twice differentiable, for finite volumes, 
provided the density is piecewise continuous [10, p. t 56]. This is certainly satis- 

fied in the present case since Urad which implies that  the density~x ~ r [ 1 V ( P l ) ]  

Arch. Rational Mech. Anal., VoL 18 16 
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is continuously differentiable. Therefore, Ui (p) E c * (V). When r >--_ a, the expansion 
of the Green's function (4.19) is valid, with Pl replacing PB, since r1<a.  The 
uniform convergence of the expansion and the fact that  the integration is carried 
out over finite limits permits interchange of order, yielding 

f f 1 Pnm(COStg) e im~ d v ( - - 2 i k )  Arnn(Pl) 0 
Ui(P) = rn+X r 1 Or, [rt U(pl)]' (4.24) 

n = 0  • =  --t$ *-- 
v, r>=a, 

which is of the form 

2 Y.(~9, r > a. (4.25) 9) 
Ui(p) = rn+l , = 

f t=0 

Hence 
U~ (p) Eq/. (4.26) 

Turning now to Ue (p), we see that  if V~ is replaced by  any large but  finite 
volume then the fact that  UeCc~(V) again follows from KELLOGG'S work. I t  is 
only necessary to show that  Ue remains well defined when ~ becomes infinite. 
Explicitly 

U e ( p ) = l i m _ _ 2 i  k fdrlfd~olfdO~r~sin~l G 0 ( p ,  px ) 0 o-,oo . rx Orx It1 U(Pl)]' (4.27) 
a o o 

and it is sufficient to show that  the integrand is O(t/r~) for large rl. Since 
U(Px)Eq/, it follows that  

2 /,,('~,, 9,) (4.28) u ( p , )  = ~ + ~  , rl  >-_a, 

and therefore that  

~,,n 1. (O,, 90 0 [rt u(p,)] = -- (4.29) 
Orx v~+l 

Thus for large rx, ~ [r 1 u(pl) ] = 0 (lira). Furthermore, the expansions of G o (p, Pl) 

given in (4.tl) and~'X(4A3) show that  for r 1 sufficiently large, G0(p, p~) -----O(t/r~). 
rl 

Hence, despite the factor rl 2 in the volume element, the integrand is indeed 
0 (t/rZl) and it makes sense to let the rl integration extend to oo. This calcu- 
lation may be pursued more carefully to show that  in addition, Ue (P) satisfies 
the expansion properties required of elements of q/. Thus we rewrite (4.27) 
for r, r 1~ a as 

OO 2~ 7t 

Ue(p)= f ar, f f aol,,sinOl x 
o o (4.30) 
{ ' ~ "~m(1~',9;~191'}2 1 1~"-('~1,91) 

X 4 = R ( p ,  pl) + (rrl)m+l " rl ~ + ~  ' In=0 

where we have absorbed the factor 2 ikn  in the functions t~ (~91, 91). Now con- 
sider separately the integrals involving the regular and singular parts of the 
static Green's function, treating the regular part, Ud ~, first. In this case both 
series are uniformly convergent, and the integral has been shown to exist; thus 
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we may interchange order of integration and summation and perform the inte- 
gration using the pseudo orthogonality condition (4.14) to obtain 

UU(p)= f drl f d~1f dOlsinO1 ~, ~, Y.(O,~;Ol,~I)/.(O,,~I) 
m=0 n= l  ~,m+l ~,m+n+l 

. o o ( 4 , 3 t )  

= 2 ~,, Y~(O, ~) 
n = l  m=n (m- t -n )am+nr  m+l " 

Absorbing the constants factors in the spherical harmonics and renaming the 
second summation index yields 

(4.32) ~,m+n+l 
n= l  m=O 

Using Canchy's formula to rearrange terms, which is allowed since the convergence 
is absolute, we obtain 

UZ~(P) = ~, 2 Y.+I(~, ~o) (4-33) ~,n+2 
s=O m=O 

While the coefficients in Y.+I(O, q)) may depend on m, the summation over m 
is still a spherical harmonic of order n + t hence (4-33) is of the form 

~, Y.+I(~, ~) (4,34) u:~g (P) = r"+ * 
n~O 

The analysis involving the singular part of the Green's function is slightly more 
involved since the expansion of t[R,  (4.13), is not uniformly convergent at r = r 1. 
From (4.30) we see that 

00 Sr~ 

f f f sin v~l 1"( 1'(j01) (4"35) 1 dr1 dq91 dr91 R (p, Px) r7 U~i'~ (P ) - -  4 
�9 n=l  a 0 0 

Since the series occurring in (4.35) is uniformly convergent and the infinite 
integral has been shown to exist, we may interchange order of summation and 

( 1 ) i n t o  / . ,  obtaining integration, and absorb the factor -- 

eO 2~ 

2 f  f f sin O1 /.(al,91) (4-36) U~ ~ (p) = dr~ d91  dtgl R (p, Pl) r~ 
n = l ~  d 0 

Now we employ the expansion (4.t3) to obtain 

" 1 /  f "  ; s i n ' l ,  "" ~176 m Using (p) = E d~' 1 d.(pl dO1 ~ - - / .  (9.~1, ~01) Z ~ Yra (0, (jo, O1, q)l) -~- 
n = l  ~a 0 0 ra=0 

(4.37) 
+ �9 . ( ~ .  91) ~. r~ / , o o ,n=o ~ Y" (0 ,  % Z~l, ~91) . 

Although the inner summation is singular at r = r l ,  0 = 0 1 ,  9 =  9x, it is a straight- 
forward matter  to exclude a small neighborhood of (r, tg, ~0) from the integral 
in which case the interchange of summation and integration is legitimate and 

t6" 
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then show that  the integral over the excluded neighborhood may be made as 
small as we wish by making the neighborhood sufficiently small. Thus we find, 
again using the pseudo orthogonality property (4.14)*, 

~=1 r a = n -  r r a + l  ( m - - n +  I )  + �9 (4.38) v e  ( n + m ) r n  j 

Again absorbing the constants in the spherical harmonics, we obtain 

V: ~* (p) = Y~ (0, 9) + r~+x 
n = l  ~ = n  

The second sum in (4.39) is of precisely the same form as (4.32). Hence the 
same argument allows us to write 

oo t 

and, with (4.34), we find that  Ue(p) is also of this form, i.e., 

= = n = O  

or by a trivial change of notation 

2 2 2 1 Ym (0, 9) + (4.42) (P) = ~ .§  ~.§ 
n=0  m = n + i  n = l  

This is precisely the form required for Ue(p) to be in q/, i.e., 

Ue(p) = ~ [,(0,9) r>a  (4.43) 
~.n+l ' - -  

n ~ 0  

where 
oo 

/o = E Ym (0, 9), 
, = t  (4.44) 

oo 

/ . =  Y Y,.(o, q)), n >~ l . 
m = n  

Since Ue (p) has been shown to satisfy (4.15 b), it remains only to demonstrate 
that  [,(0, ~0) defined in (4.44) are pseudo spherical harmonics. This follows 
immediately from the orthogonality of spherical harmonics, (4.9), since 

~t 2 ~  

fdOfdP/ , (O,  9) Y~(O, ~0; 0,,  ~t)s in0 
o 0 

=fdOfd~ .Ym(O,  9) Yz(O,T;Ot,~ox)sinO=O, l<n;  (4.45) 
0 0 m ~ n  

= Y l ( O 1 ,  ~l) ,  l >_- n.  

Therefore we may conclude that  
Uo (p)6a//, (4.46) 

which, with (4.26), proves the lemma. 

�9 The justification for requiring this apparently artificial restriction on the space ad 
is found here since without this property, terms involving log r would occur. 
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This proof made no use of the factor k in the definition of K. In fact by  
explicitly exhibiting the k-dependence 

K=kO,  O = - - 2 i  f do v . ( , . , . }  o r, at, ['1 (4.47) 
v 

where 0 is independent of k, the same proof suffices to establish 

L e m m a  4.3. I1 UE~g, then OoUE~g. 
L e m m a  4.4. O is bounded, i.e., 3 M <  c~ ~][OI[=<M. 

Proof :*  Since I]O]l is defined as  s u p  l[OoUl__J_l, it is sufficient to show that  for 
any UE~/ ve~ flUff 

IIOo uu _-< M IIUll. 
To accomplish this, it is necessary to establish the following estimate: 

I U(p) &(~9) l<2a* U =  r' , p E v  (4.48) 

where ]0 is the first coefficient in the expansion 

U rn+t , r ~ a .  (4A 5b) 
n = 0  

Again it is convenient to separate V into two parts, V~ (r>=a) and V i ( r<a) .  
Recall that  

IIuII = max IUI; 
pEV 

hence 

max I uI _-< IIuII, max I UI -<- M .  (4.49) /,EV. pE~ 
Consider first the volume V,. Since U is analytic in d/r for r>_ a, the maximum 

modulus theorem states that  the maximum of the absolute value is achieved 
when r----a. Thus 

IUI = -;- ~ =1 a ~ o ' ~ " l =  p~". 

With (4.49) it follows that  

_<- alluII. (4.So) 

Similarly r U  is analytic in 1Jr for r>=a', thus 

I , u l =  ~ = z , -"  

Letting r ->  oo and making use of (4.50) establishes that  

Itol <allUII. (4.s~) 
Furthermore, f~--1 r~-I is also analytic /or r ~  a; hence 

1 oo In ] <  I ~ & . (4.52) 

* The author is indebted to Professor F. URSELL for pointing out an error in an 
earlier proof of this lemma and to Mr. E. AR for helping eliminate it. 
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On the other hand 

~ , n + l  [ - -  r ' - -  

W i t h  (4.49), (4.51), and the fact that  a/r <= t, it follows that  

~1 i" <21lUll, , > a .  ~ n + l  = 

In particular, at r=a 

D1 t" <- 2a~UUll. (4.57,) 
a n - -  1 - -  

Substituting (4.53) in (4.52) establishes the desired estimate for pcV~. For 
p E V~ the task is much simpler. Again 

v-~-  --<lUl+ I)1, 
and (4.51) is still valid; hence 

I lieu+-: u ll. 
But a]r>= t, thus the inequality is strengthened by writing 

2 a  2 
v -  @ =< ~-Ilgll; 

hence the estimate (4.48) is valid for all pcV. 
Proceeding now to the task of bounding Oo U, note that  [o (01, 91), the first 

coefficient in the series expansion of U(Pl) is independent of r t, therefore 

O o V = - -  2i f dv Go(p,p,I ~ [flU(Pl)_/o(ziql,~Ol)]" (4.54) 
r 1 ~ r 1 

V 

Integrating once by parts with respect to r 1 yields 

0 OoV = 2 i f  ( u -  ~:) ~ (,1 Go) dr. (4.55) 
v 

The integrated terms vanish at the lower limit (Pl~ B) since Go(P, Ps):0, and 
vanish at the upper limit (r 1-~ oo) since (r 1 U --/o) rl Go = O (t/r1) ((4.t 5 b) shows 
that  rlU--/o=O(l/rl) and (2.4c) states that  rig o remains bounded). Thus 

lOoVl :2 / (u -~)  ~ (rlGo) dV o I �9 r 1 ~r~ (riG~ dv. (4.56) 

Making use of the estimate (4.48), where now the variables are r 1, ~91, 91, it 
follows that  

lOoUl-<_ 4<,"ll~Sll.f ~,-I~ (,1 co) dr. (4.57) 
v 
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At the singularity of the Green's function the integrand behaves as the inverse 
of the square of the distance, 

I I e Go) = r~ ~ (,,1 O(IIR') as R - + 0 ,  

and is therefore integrable over a finite volume containing the singularity (KEL- 
LOGG [10], p. t48). In addition, with (4.11) and (4.t3) it follows that  

'k L r~ ~ (rl Go) = 0 (t/r~) as rl--> oo 

hence the integral over the infinite volume exists as well, i.e., 

v 
Thus (4.5 7) becomes 

IOoVl _-< 4a~zllVll. (4.59) 

This inequality is established for all values of [Oo U[ including its maximum. 
Therefore, setting M=4a2I,  we have 

max ]0o U[ = I10o UII----< M IIUII, (4.60) 

and the lemma is established. 

Lemma 4.5. IIKII is bounaea with norm less than unity/or k sufficiently small 
i.e., 

3m>ocilKll<a i/ o< lk l<~ .  
Proof. Since K =  kO, (4.47), and since both K and O are linear, it follows that  

IIKII-- I kl I1011, (4.61) 
With Lemma 4.4 we obtain 

IIKII =< I kl M. (4.62) 

Therefore by choosing l kl <I/M or, equivalently, letting ~=I/M,  we prove 
the lemma. 

Lemma 4.6. u(p)ra//. 

Proof. The definition of U in terms of Uk (3.6) together with the fact that  

U k~ c ~(V) imply that LTC c 2(V). Furthermore, the expansion in Theorem 3.1 
guarantees that  we may write 

~(p) = ~, /.(0,~) r>--a. (4.63) 
r n +  l , _ _  

~t=O 

It  remains only to demonstrate that  these / ,  (9% 9) are "pseudo spherical har- 
monics". To accomplish this, we employ the well known expansion of wave 
functions in spherical harmonics, e.g., SOMMERFELD [21, p.  t431 , 

o~  

Uk(P) = ~, h.(kr) Yn(~9, 9), r>=a, (4.64) 
n=O 

where h.(kr) are spherical Hankel functions of the first kind, 

h.(kr)--eikr i -n- l  ~ (n+m)! ( - - t ) m  
r (n--m) ! m! 2--qWr-r " (4.65) 

Iqt =ID 
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With this expression together with (4.64) we find that  

~(p)=e_ ik ,  u~(p)~_ ~. ~, Yn(O,~o) i-n-~(n+m)! t (4.66) 
n=0  m=O rm+l(n--m)!m! (2ik)~ ' 

or, upon rearranging terms and absorbing the multiplicative factors in the 
spherical harmonics, 

0(p) = ~+x (4.67) 

This can be rewritten, with the obvious changes in notation so as to correspond 
to (4.63), as 

(p) = ~ 1, (0, 9) 
/ ,  r n + l  

n=0  

where 

1,(~9, 9 ) =  ~ Y,+, (~9, ~0). (4.68) 

The functions ], (,9, 9) thus obviously satisfy the pseudo orthogonality condition, 
(4.t4), and the lemma is proven. Note that  this proof essentially duplicates 
SOMMEm~ELD'S derivation of the expansion theorem but that,  as is clear from 
the above, his statement [21, p. t91] that  the/,(tg, 9) are ]inite sums of spherical 
harmonics is in error. 

We now, at last, are in a position to prove that  the Neumann series (4.3) 
converges to the solution we seek. We state this in the form of a theorem. 

T h e o r e m  4.1. There exists ~> 0 such that when [k[ < ~, the Green's/unction 
/or the Helmholtz equation, ([7* +k*)Gk=8, which vanishes on the smooth closed 
bounded sur/ace B in E 8, exists uniquely in V, the exterior to B, and is given 
explicitly by 

elkR(p,P,) + e ~k" ~, K'~o U(O) 
Gk (P, P0) = 4 n R (p, Po) ,=0 

where 
Ko UC~ f dv Go(P, Pl) 0 �9 . rl eYl [rl U(~  

V 
f e ikva+ikR(pB'p') 0 

U(~ = UC~176 = 4~R(pB, Po) an G~ 
n 

Go (Pl, Pn) is the static Green's/unction which vanishes on B, the normal is taken 
out o/ V, and the volume integration is over p~, the sur/ace integration over p~. 

Proof. With Theorem 3.2, it is sufficient to prove that  ~ K"oU C~ is the 
unique solution of the integral equation (4.t). ,=o 

First we show that  the series converges to the solution; that  is, for any 
e > 0  

3N o ~[IU-- uIN)II < e if N > N  o. 

Lemmas 4.], 4.2 and 4.6 establish that  ~r, UtO), and all the iterates U (N) 
are in the space q/. Hence it makes sense to write ]]U-- uIN)[] for any N. With 
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equations (4.t) and (4.5) it follows that  

--  U (~ = K o U, 

- -  U (1) = ~_I - -  K o U to) - -  U (~ ---- K o ( 8  - -  U (~ = K 2 o U, 

- -  U (2) = 8 - -  K o U ix) - -  U (~ = K o ( U  - -  U (1)) = K a o U ,  

223 

5 - -  V (N) ~--- KN+lo  i f ;  

hence 

]15 -- U(N)]] ~ ][K[[ N+I 1] 5 [I. (4.69) 

But  Lemma4.5 states that []K[[<I if [k[ < ~  and ][8[] is bounded since UCq/ 
(Lemma 4.6); hence it is always possible to find N large enough so that 

IIKil ~+1115tl < ~- (4.7o) 

Specifically, since log IlK[I<0, we find that  (4.70) is satisfied if 

E 

log iltTii (4.71) 
N + t > logllKl~" 

We have thus established that for any e > 0 ,  115-u~)ll<~ if N>NO and 
[ l~ e ] 

] k] < ~ where N o is the greatest integer in - -  IlU-I[ t and ~t exists by  Lemma 4.5. 
[ log IIKII 

To prove uniqueness we assume the existence of two solutions of (4A), U1 
and Us, such that U I = K o  U1 + U C~ and flU1-u~ll +o. Then 

2 2 

UI - -  U2 = K o Ut - -  K o Uv  (4.72) 

Taking the norms, we obtain 

IIu1- u~ll _-< IIKII flU1-- Ud. (4.73) 

By assumption, IIU1-ud ~: o hence we may divide, obtaining 

1 < IIKII, ( 4 . 74 )  
which violates Lemma 4.5. 

5 .  A L o w  F r e q u e n c y  E x p a n s i o n  

In this section, the relation between the Neumann series and the low fre- 
quency expansion is derived, and it is shown how the Neumann series may be 
interpreted as a partial summation of the low frequency expansion. 

In the previous section we proved that the solution of the integral equation 
(4A) was given by  equation (4.3) or, in the notation introduced in (4.47), 

oo 

5 = Z knO ~o V(O) (5.~) 
n = O  

where the operator 0 is independent of k. This has the appearance of a power 
series in k; however, the function U (~ regardless of whether the incident field 
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is a plane wave or point source, is not independent of k. I t  is true, nevertheless, 
that  in either case U C~ is an entire function of k, e.g. equations (3.11) and (3A2), 
and hence has an absolutely convergent power series representation 

U (~ = ~ a m km. (5.2) 
m = 0  

Substituting (5.2) in (5.1) and employing Cauchy's form for the product of two 
series, which is valid since they both converge absolutely, we obtain 

m 

g = X k m X o no  m-n, (5.3) 
ra~O ~.~0 

o r  

where 

(3o 

= ~, Um k '~, (5.4) 
r a = O  

U,. = ~,  o n o  a , ._~ .  (5.5) 
n = O  

It  is easily seen from this definition of U m that  

Uo=ao, 
urn= a~  + 0  o urn-1. (5.6) 

Equations (5.4) and (5.5) thus represent a low frequency expansion of U. The 
functions Um in (5.5) are precisely what we should have obtained had we as- 
sumed the expansion (5.4), substituted it, together with (5.2) in the equation 

U=kOoU + U C~ and equated coefficients of k. The corresponding expansion 
of the wave function Uk simply involves another Cauchy product, viz, 

U k : e i k , O :  ~ (ikr) '~ ~ U,~kr,, 
n[ 

,~=o ~=o (5.7) 

~=o ~ _ _ o =  = (n--m)! 

For many purposes, certainly any involving far field calculations, it is more 

convenient to leave out the phase factor e i*' and work with the function U. 
Note that  the radius of convergence of these expansions is limited to the circle 
of convergence of the series (5A), c]. Theorem 4.1. 

There is of course a relation between the N th iterate of the Neumann series 
(4.4) and the first N terms of the series (5.4). Specifically 

N N oo 

u (~) = E K~ o U(0) = E k ~ o n o E a.,  k m (5.8) 
n = 0  n ~ O  m ~ O  

which upon rearranging terms is found to be 

N ~ ,  oo N m n o 
U(N)=Z k"On~ X X k  0 a,n--n. (5.9) 

m = 0  n ~ 0  r e = N + 1  n = 0  
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With  (5.5) we see t h a t  the first sum on the r ight  represents  the  first N te rms  
of the  series (5.4). Thus  the N tu i tera te  is seen to contain t e rms  of all order  
in k, the first  N of which correspond exac t ly  to the  first N te rms  of the low 
f requency expansion.  

6. An Example: Scattering of a Plane Wave by a Sphere 
To i l lustrate the methods  der ived in the  previous sections, this section is 

devo ted  to considerat ion of a specific example ,  scat ter ing of a plane wave  b y  
a sphere. In  this case the exact  result  is well known,  and  b y  calculat ing the  
first  few i terates  of the N e u m a n n  series we are able to show not  only  how the 
techniques are to be employed  bu t  also the sense in which the N th in tera te  
app rox ima tes  the  exac t  result. 

The  surface B is now a sphere of radius a, whose center  is t aken  as the origin 
of the coordinate  system. The  s tat ic  Green 's  funct ion for the  sphere is (STRATTON 
[ez, p. 201]) 

Go(P, pl) = _ t + 1 (6.1) 
4.n.V~-rl-2rrlCOSy 4.~Va2+(rrl/a)~'-2rrlcosy 

where cos y = cos 0 cos 01 + sin 0 sin 01 cos (9 - -  91). 

This m a y  be expanded  (c/. (4A2), (4.t3)) as 

t oo a,~n+l , 

G0(# 'Pl )  = ~-n~_O(_ ~.~+1~'~:~ + ( ~ 1 ~ 1 )  Pn(COS') " (6.2) 

The  incident  field is a plane wave  which, wi thout  loss of general i ty  is chosen 
as p ropaga t ing  down the z-axis, i.e. 

Ume= e - ik ,  = e-ik,~os o. (6.3) 

The  scat tered field then  satisfies the equat ion (c/. (3A2)) 

f Oo(#.#l) o [ r l~ (p l ) ]dv_  rl Or1 
v (6.4) 

0 - r e - ' * "  uinc(pB) TnGo(p, pB) da. 
B 

The volume V is now the exter ior  of the sphere r =  a, B is the  surface of 

this sphere, 0 = _ 0 G o is given b y  (6.t) or (6.2) and U ine is given in (6.3). 
On OrB ' 

With  (6.2) we find t h a t  

OGo(p, p B ) _  OGo(p, pB) t ~ (2n+i)a n-1 
On Or ,n=a- -  4n  ~-" ,n+l P , ( cosy ) .  (6.5) 

n=0 
The explicit forms of the i terates  (4.5) are in this case 

' fd,,  ( 2 " + 1 )  a"--1Pn(cos~])g -ika-ikacOsO',  V(~ (P) - -  47g ~,n+i 
B n=O 

d a  = a 2 sin 01 d01 d91, (6.6) 

ik f o U(N)(P)= 2-~ dv + �9 ?~+1 (; ~,1)n+1"] ~'1 OYl Ira u ( N - 1 ) ( p l ) ] '  
v = 

dv -= r~ sin ,91 dr 1 dz91 dq) t. 
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By use of the orthogonality of spherical harmonics together with the plane 
wave expansion, 

e -ik~c~176 -- (-- i)*" (2m + t ) j . , (ka)  P~ (cosOx), (6.7) 

the first few iterates are found to be 

U(O (p) = -- e -ik" ~ (2 n + t) (--  i) ~ (a/r)"+lj. (k a) P~ (cos ~) - -  e - ik  ~Jo (k a) air, 

Ua) (p) = - e -ik~ ~ (2n + t) ( -  i) ~ (alr)"+~j. (k a) P. (cos v~) [1 --  i k (r --  a)] --  

- -  e - ~  jo (k a) a]r, (6.8) 
o o  

U (~) (p) = --  e -~ka ~, (2 n + 1) (--  i) n (alr)"+lj. (k a) P,, (cos z$) [t -- i k (r -- a) + 
n = l  

+ k,t( 

The exact expression of uscat(p) is (e.g. MORSE & FESHBACH [13, p. 1483] ) 

v ~ t  = - ~,  ( -  i) ~ (2 n + 1) L (k a) P~ (cos 0) h. (k ~) 
h. (k a) " 

n = O  

(6.9) 

With the definition of the spherical Hankel function (4.56) it is easily verified that  

~. (--n)m ( - -2ikr)  ra 

hn(kr) __ eik{,-a)(a/r)n+l ~=o (--2n)mm! , 
hn(ka) ~.  (_n)ra(_2ika)ra 

ra=0 (--2n)raml 

(6.1o) 

hence the exact expression for e -ik" U scat may be written as 

~ (p) = - e-~k~jo (k a ) a/r - -  (-n) ,~ ( - 2 i k r ) "  
m=o/'' (--2n)mmt 

_ e-lk a ~, ( _  i)" (2 n + t) (a]r)~+tjn (k a) P~ (cos ~9) 
,=x ( -n)~ ( - 2 i  k a) ~ 

~--o ( -2n)~m! 

(6.tt) 

Here we employ the notation (x) ,=  x (x + t) ... (x + n - -  t). If 

m=~ (--n)m (--2ika)  m 
(--2n)m mX < t ,  (6.12) 

then the sum in the denominator in (6AI) may be expanded as a geometric 
series, and (6.tt) becomes 

~7(p) = - e- '~aj0 (k a) a/r - -  
(6.t3) co 

- -  e - i k a F  (--  i)" (2n + t) (a]r)n+xjn(ka) Pn (cos v~) S ( k r ,  ka)  
n = l  
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where 

m=O l = O  / = 1  

Clearly S is a power series in k, and if we denote by S~r the partial sums 

N 

s N =  Y, ~q(r, a) k q, 
q = 0  

then with (6.t4) we find that  

So=  1, 

S l = t + i k ( a - r ) ,  

S ~ = l + i k ( a - - r )  + k ~  ( n - t )  } ( 2 n - I  (a*--r*) + a ( r - - a )  , 
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(6.14) 

(6.15) 

Comparison of (6.t5) with (6.8) enables us to induce that  the N th iterate is 

U CN) (p) = -- e-ikajo (k a) air -- 
oo (6.16) 

-- e-ika ~. (-- i)" (2n + 1)(a/r)"+xj,(ka)P, (cos 0) SN. 
n = l  

Each term of the N t~ iterate approximates the exact result precisely as the 
first N terms of a power series expansion of a quotient of two polynomials 
(6.10) approximates the quotient. A rough estimate of the radius of conver- 
gence is obtained from (6.t2) by noting that  

( - 2 n ) .  - 

Thus 
m=~ (--n)m (--2ika) '~ ~ ~. (--n)rn [2kalm 

(--2n)m m! -- (--2n)m ml 
m = X  

(6.t8) 

- -  m! <elka[-- 1' 
m = ]  

and a condition sufficient to guarantee that e lkal-  t__<1 is ]ka] ~log  2. 

If we expand the factor e-lkaj,,(ka) in (6.16) in a power series in k (con- 
vergent everywhere since it is entire in k) and retain only the first N powers 
of k in the product on this expansion with SN, then we have the first N terms 
of the low frequency series (5.4). These are in precise agreement, for N=O,  t, 2 
with the terms of the low frequency expansion derived from (5.6) with the known 
functions a ,  defined in the present case as 

n 2 ~  
m 

a,, = -- (--ia)m (dO1 (d91 sinOx(l + cos0x)" ~, (2n+  t)l(alr)"+lPn(cosy). (6.t9) 
4 ~ r m !  J J n = 0  

0 0 

Although this calculation was carried out independently as a check, it is clear 
that  to this order agreement with the exact result is implied by the agreement 
between the Neumann series and the exact result, and we shall spare the reader 
the agonizing details. 
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