
Existence in the Large of Periodic Solutions 
of Hyperbolic Partial Differential Equations 

LAMBERTO CESARI 

The problem of existence of solutions tp (x, y) periodic in x and in y of period 
T for a hyperbolic partial differential system of the form 

u:,y=f(x, y, u, ux, ur), (1) 

where u = (u 1 . . . .  , u.), and f =  (fl  . . . . .  f . )  is periodic in x and y of period T, presents 
a number of difficulties when no damping of any sort is assumed. In this paper 
we analyze this difficult problem in the line of our previous work on ordinary 
and partial differential equations. We conclude with criteria of existence for 
solutions to the problem above. These criteria can then be used for the analogous 
problem for the equation 

uxx-u,y=g(x, y, u, ux, u~,). (2) 

1. The Modified Problem 

1. Modified Problem. We shall first associate with (1) the following analogous 
weaker problem or modified problem: 

Given two periodic functions Uo(X), vo(y) of class C I in ( - 0 %  +oo) and of 
period T, 

Uo(X + T)=uo(x), Vo(X + T)=vo(X), 

determine a function b(x, y) continuous with its partial derivatives bx, by, bxy, 
two functions m(y) and n(x) both continuous, and a constant p, such that 

b(x+T,y)=b(x,y)=b(x,y+T),  m(x+T)=m(x), n(y+T)=n(y), 
T T 

~m(y)dy=O, [. n(x)dx=O, (3) 
0 0 

and 
bxy=f (x, y, b, bx, by)-m(y)-n(x)--p. (4) 

For this modified problem we shall prove theorems of existence, uniqueness, 
and continuous dependence on the boundary values and parameters. In (4) we 
assume 

f (x+ T,y,z,p,q)=f(x,y,z,p,q)=f(x,y+ T,z,p,q). 

Then the function b is a periodic solution of the original problem (1) if and only 
if we can determine Uo(X), Vo(y) in such a way that 

p = O, m (y)-- O, n(x) = O. 

Criteria for this occurrence are given in Sections 12--19. 
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2. Theorem I (existence theorem for the modified problem). I f  T>0,  and 
N, N1, N2,L,  bl, b2, MI, M2, M3>O are constants, if ,4 and R are the sets 

,4=[O<_x< T, O< y<= T],  

R = [ O < x < T ,  O<y<T,  [z l<M, ,  Ip l<M2,  Iq l<M3] ,  
if 

M I > N + ( N ~ + N 2 ) T / 2 + 3 L T  2, M2>N~+3LT,  M3>N2+3LT,  (5) 
if 

Uo(X ), O<x< T, vo(y), O<y< T, 

are vector functions which are continuous with U'o (x), V'o (y), if 

f ( x ,  y, z, p, q), (x, y, z, p, q) ~ R,  

is continuous in R, and 

uo(T)=uo(0),  vo(T)=vo(O)=O, u~(T)= u~(0), V'o(T)=v'o(O), (6) 

iUo(0)l~N, [Uo(Xl)-Uo(Xz)l<=Nl [ x l - x 2 l ,  [vo(yx)-vo(y2)l~N2lyl-y2l ,  (7) 

f(T, y, z, p, q) =f(0, y, z, p, q), f (x ,  T, z, p, q) =f(x,  0, z, p, q), (8) 

If(x, y, z, p, q)l<=L, (9) 

If(x, y, z, Pl, q l ) - f ( x ,  y, z, P2, q2)[ --< bl I Pl --P2 [ + b2 I qt - q2 l; 

then for 
2 T b l < l ,  2 T b 2 < l ,  (10) 

there exist a vector function go(x,y), (x ,y)ed,  continuous in ,4 together with 
go., goy, goxy, continuous vector functions re(y), O < y < T ,  n(x), O<_x<_T, and a 
constant #, such that 

go(x, O)=go(x, T)=uo(x), ~py(x, O)=goy(x, T), (11) 

rp(O, y)=go(T, y)=uo(O)+vo(y), gox(O, y)=gox(T, y), (12) 

m(O)=m(T), n(O)=n(T), (13) 

go~ y (x, y) = f  (x, y, go (x, y), go~ (x, y), goy (x, y ) ) -  m (y) - n (x) - /z ,  (14) 

T T 

I m(r/l dr/=0, I n ( ~ l d 4 = 0 ,  (15/ 
O O 

T T  

/~-- T-2 1 If(4,/I, go(4, r/l, go~(4, r/), go,(4, r/l) d4 dr/, (16/ 
0 0  

T 

m (y)= T-X If(4, Y, go (~, Y), gox (4, Y), go, (4, Y)) d ~ - / l ,  (17) 
O 

T 

n (x) = T -1 i f ( x  ' r/, go (x, r/), go~ (x, r/), go, (x, r/)) d r / -  p, (18/ 
0 
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for  all O<x<T,  O<y<T.  Thus, by extending all functions ~o(x,y), re(y), n(x), 
f ( x ,  y, z, p, q) for  all - o o < x , y < + o v ,  Izl < M~, IPl<M2, I q l < n a ,  by means 
of the periodicity of period T in x and y, equation (14) is satisfied in the whole 
x y-plane. 

3. Prom of Theorem 1. First let us note that relations (11), (12), (14), (15), 
imply (16), (17), (18). Indeed, by integration of (14) on A, we deduce (16). Then, 
by integration of (14) again on O<x<T,  or on O<y<T,  we deduce (17) and (18), 
respectively. Note that (8), (11), (12), (17), (18) imply (13), and that (16), (17), 
(18) imply (15). 

Let us first prove that every vector function q~(x,y), ( x , y )eA ,  satisfying 

tp(x, 0)= tp(x, T)=uo(x) ,  cp(O,y)=q~(T,y)=uo(O)+vo(y), 
(19) 

[ (p(Xl, yl)--tP(X1, Y2)--(p(X2, Yl)+ tP(X2, Y2)I<6LIxt  -x21 lYl -Y2I,  

also satisfies the relations 

where 

Iq~(x,y)I<=M1, ItP(xl, y)--q~(x2,Y)I<=M2 Ixx--X2[, 

I ~0(X, yO--q~(x, y2)<Ma lYl -Y21. 

Indeed, we have, for O<_x<T, O<y<T,  

[q~(x 1, y)-- tp(X 2 , y)--tp(xl,  0)+ r < 6 L I x  1 --x2l Y, 

(20) 

I q~(xl, 0)-~o(x2 , 0) l = l uo (x O - u o  (x2)16Nl Ix l -x21,  
and hence 

[ ~o(xi, y)-~o(x2,  y) [ <(N1 +6Ly)  ]xl -x21.  

Analogously, we have 

I ~o(xl, y)-q~(x2,  Y)I <(N, + 6 L ( T - y ) ) I x l  - x21 .  

Since either 0 < y < T/2 or 0 < T -  y < 7"[2, we have 

[ ~0(Xl, y)-- ~0(X2, y) ] <(N 1 + 3LT) [xi --X2 [ ~ m 2  ]Xl --x2[. 

Analogously, we prove that 

I tp(x, y O-~o(x, y2)l <(N2 + 3 LT)  l y: - YE l < Ma l y t -  Y21. 

Finally, for 0 <= x, y < T/2, 

I ~;o(x, y) l < l ~o(O, O) l + l q~(O, y)-q~(O, O) l + l';o(x, y)-q~(O, y) [ 

< N + N2 y +(N~ +6Ly) x< N +(N~ +N2) T/2+ 3 L T  2 <=Mx. 

Analogous reasoning holds for (x, y) in the remaining quadrants of A. Thus 
I~p(x,y)l<__M1, (x,y)eA. We have proved that relations (19) imply (20). Also, 
the vector functions tp(x, y) satisfying (20) are all Lipschitzian in A, and hence 
have partial derivatives tpx, ~oy a.e. in A satisfying I ~ox I < ME, [ r ~ Ma a.e. in A. 
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The vector function f ( x ,  y, z, p, q) is continuous in R. Hence, there are con- 
tinuous monotone functions 0)1(00, 0)2(fl), 0)a(7) in [0, +oo) such that 0)1(0)= 
0) 2 (0 )  = 0)3 (0 )  = 0,  and 

If(x1, y, z, p, q ) - f ( x 2 ,  y, z, p, q)[ < 0)1(l x l - x 2  [), 

i f(x,  Yl, .:, P, q ) - f ( x ,  Y2, z, p, q)I <_-0)2(l Yt -Y2 ]), (21) 

If(x, y, zl, p, q ) - f ( x ,  y, z2 , p, q)I <0)a(I zt - z2 I), 
for all 

O<=x, xl ,  x2 ,y ,  yt ,  Y2<=T, Izl, lzll, lz2l<M1, [p[=<M2, [ q l < M 3 .  

The vector functions do(X), do(y) are continuous in [0, T]. Hence, there are 
continuous monotone functions w,(e),  0)5 (fl), 0 <  e, fl < + 0% with 0),(0)= 0)s (0) 
= 0, such that 

lu'o(XO-U'o(x~)l<=0),(Ix~-x~l), Ido(yt)-do(y2)l<0)s(lyt-y2l). (22) 
Let 

r/l(fl) = (1 - 2 Tb2)- t [o95 (fl) + 2 T0) 2 (fl) + 2 T0) 3 (M 3 fl) + 12 L T b  1 fl], (23) 

q2 (c t )= (1 -2Tb l )  -1 [o),(~)+ 2T0)t(~)+ 2T0)s(M 2 ct)+ 12LTb2 ~]. (24) 

Both ql(fl) and r/2(~ ), 0<~,  fl< +0% are continuous monotone functions with 
7 1 ( 0 )  = ~/2 (0 )  = 0 .  

Let E be the linear space of all vector functions tO(x, y), (x, y )eA,  continuous 
in A together with their partial derivatives tOx, tOy with norm 11 tOll = max l 0 I+ 
max [ tOx I + max [ tOy[, where max is taken in A. 

Let K be the subset of E made up of all vector functions tO(x, y ) e E  satisfying 
relations (19) and in addition 

tO.(0, y) = to.(T, y),  tO,(x, 0) = to,(x, T). 

I to~(xD y ) -  to~(x2, Y) l <q2(I xl - x 2  I), I to~(x, Yt)-tox(X, Y2)] <6L[  Yl -Y2 I, (25) 

I toy(xt, Y) - tOy(x2, Y) I =< 6 LI Yx - Y2[, [tOy(x, Y t ) -  tOy(x, Y2)] =< t/1 ([ YI - -  Y2 [)" 

Then the vector functions tO e K satisfy relations (20), and then [ tO [ <_- M1, I tO~ [ < M 2 ,  
I tOyl=<M a everywhere in A. As a consequence the vector function 

F(x, y )=f (x ,  y, tO(x, y), tOx(x, y), tOy(x, y)), (x, y) e A, (26) 

is defined everywhere in A and is continuous in A. 

For tOeK the vector functions re(y) and n(x) defined by (17) and (18) are 
continuous in [0, T]. Wi th / l  defined by (16), the vector function 

x y  

~,(x, y)=uo(x)+vo(y)+ S [. [F(~, q ) - m ( q ) - n ( ~ ) - # ]  d~ dq (27) 
oo 

is continuous in A together with its partial derivatives 
Y 

~'x (x, y) = u • (x) + I IF (x, r/) - m (q) - n (x) - /~] d q, (28) 
0 
x 

~by(x, y) = v; (y) + S [F(~, y ) -  m (y) - n ( 0 -  ~u] d ~. (29) 
0 
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Thus, relations (16), (17), (18), (26), and (27) define a map Y ' :~  = Y" r or ~ : K ~ E .  
Let us prove that actually ~:K-- ,K.  

Since Ifl--<L, by (16), (17), (18) we deduce 

I/.tl =<L, Im(y)l, ln(x)l<=2Z. 

On the other hand, by (6), (8), (19), (25), (26), (27), (28), (29), we have with 
the usual conventions 

F(0, y )=F(T ,  y), F(x, 0)=F(T,  0), 

T T 

Im(tl)drl=O, I n ( ~ ) d 4 = O .  
0 0 

m(O)=m(T) ,  n(O)=n(T),  

(30) 

0(x, 0)=0(x, T)=Uo(X), 0y(x, 0)=0,(x, T), 
@(0, y )=0 (T ,  y)=uo(O)+vo(Y), @x(0, y)=~'x(T, y), 

(31) 

[~b (x l, Yl) - ~b (xx, Y2) - ~b (x2, Yl) 4- ~b (x2, Y2)[ 
X2 .P2 =~- 

= ~ I[F(4,  t l)--m(tl)--n(O--Iz]d~dtl 6 L l x , - x 2 [  l Y , - Y 2 [ .  
t Y t  

(32) 

In other words ~ =  oj-cp for r satisfies relations (19) and, hence, relations 
(20) as proved above. Also, we have 

r2 [ 
I~'x(x, Yx)-d/x(x, Y2) l = ~ [F(x, q ) - m ( t l ) - n ( x ) - g  ] dt I , 

Ir (x x, Y) - ~r (x 2 ,  Y) [ = Xx~t2 IF (4, Y) -- m (y) -- n (4) -- It] d ~ , 

and hence 

I~k~(x, yO-~kx(x,  y2) l<:6Lly t -Y21,  [~by(xDy)-~ky(x2,Y)l<:6L[xl-x21. (33) 

Further, from (17) we have 

T -  T 
[m(y l ) -m(y2 ) [=  l ~o[f(~,yx, tP(~,yl),q~x(~,yl),tPr(4, yx) ) 

- f ( 4 ,  Y2, tp(~, Y2), ~Px(4, Y2), tp,(~, Y2))'] d~ I 
T 

< T - I  S [092 (I Y l - Y2 l) 4- CO 3 (I (P (4, YX)-- tp (~, Y2)l) + 
0 

4- btltPx(4, Yl) - tPx(4, Y2) 1 4- b21 ~oy(4, Yx) - tpy(4, Y2)1] d 

--< 092 (I Y t - Y2 l) 4- 093 (M3 lYl - Y2 I) 4- 6 Lbx [Yl - Y21 4- 

+b2 ql(I Yl -Ya I), 
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and analogously 

]n(xx)-n(x2)l<~l(lXx-X2l)+Coa(M2]Xl-X2l)+bl rl2(lxx-x2l)+6Lb2[xt-x2]. 

We have now from (29) and (23) 

I ~b, (x, y~) - 0 ,  (x, Y2) [ = I v~ (y t) - v~ (y2) + 
X 

+ S ['f(~, Yt, (P(~, Yt), tpx(~, Yl), tp~(~, Yi ) ) -m(y l ) -  
0 

--f(~, Y2, q)(~, Y2), q)x(~, Y2), (Py(~, Y2))+ m (Y2)] d i t  
T 

--< c~ (I Yt -Y2 ])+ S [0~2 (I Yx- Y2 ]) + o (34) 

+a~3( [ ~o(~, y~)-tp (~, Y2)I)+bl ) ~0~(~, Y~)-q~x(~, Y2)I+ 

+ b2 ] q)y(~, Yt) -q~y(~, Y2)I+Im(yx)- re(y2)I] d~ 

< co5 ( lYl-Y2 [)+2T(o2 (]Yl-Y2 I) +2Tcoa (Ma lYx-Y2 [)+ 

+ 12LTbl [Yt - y 2  ] +2  Tb2 ~/x(] Yt -Y2 D 

= ( 1 -  2 Tb2) r/t(I Y~ - Y2 D +2  Tb2 r/l(] Yl -Y2 D 

= r/l(I Yl -Y2 D. 
Analogously, we have 

] ~bx(Xl, Y ) -  ~x (x2, Y)] _-< r/2 (] Xl - x2 D. (35) 

Relations (31), (32), (33), (34) show that ~b=J~p for tpeK satisfies all relations 
(19) and (25). Thus ~,~K, and ~a-:K-~K. 

The transformation ~':K--,K, KcE,  is continuous in K with respect to the 
norm IN tp I I of E. Indeed, for two vector functions ~oy e K, j =  1, 2, we have Sy = ~- tpy, 
Fy=F~,y, rny=m~,~(y), ny=n,~(x), #j=/~,j ,  j =  1, 2, and from (16) 

[Pt -/~2 [ = T-21  I[ /(~,  r/, tpl(~ , r/), tp1~(~, r/), tpl,(~, r/))- 
0 0  

I 

- f ( ~ ,  r/, tp2 (#, r/), (P2 ~(~, r/), cP2,(#, ~/))] d~ dr/[ 
m 

~.~ [0)3 ([I ~1 --(P2 i]) "1- b l [] q~t-q~2 II + b2 ]l (/71 -~~  Ill" 

Then from (17) we have 

Iml(y)-m2(Y)]= r -1 If(x,  y, ~01(x, y), q71,(x, y), ~01,(x, y ) ) -  

- f (x ,  y, cp2 (x, y), ~P2x(X, y), (P2,(x, y))] dx -I~1 "at-~2 

< 2 [~03 (11 ~x - ~2 II) + bl  II q't --  ~2 [I + b2 [] cPl - -  tP2 II], 

and analogously from (18) 

I nx(x)-n2(x)l <2  [~oa (11 q~l--(~211) + b~ II ~x--~2 II-l-b2 II q~x-~2 II1. 
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From (27) we deduce 

]~t(  x, Y ) -  ~2 ( x, Y) I 

I~Y dr/ = ~ ~ ~ [F1(4, r/) - m l(r/)- n l (0  - g l  - F2(4, r/)+ m2 (r/) + n2(O +#2"1 d4 

< 6 T  2 [c03 (11 qh-~p2 II)+ (bx +b2)II qh -q~2 ll]. 
Analogously, from (28) and (29), 

101 x(x, y ) - 0 2  x(x, y) l < 6 T[r ([I (/)1 --(/02 II)+(bl + b2)[I (Pl -r II], 

101 y( x, Y)--02y( x, Y) I < 6 T[o)3 (11 tpx--r [I) + (bl + b2)l[ q~x -q~2 II]. 

Thus 110x-0211~0 as IIcp,-~P211~0 uniformly in K. Finally, the set K is ob- 
viously convex, closed and compact with respect to the norm I1~11 of E. By 
SCHAUDER'S fixed point theorem we conclude that there is at least an element 
tp (x, y) e K such that q~ = ~ q~, or 

r (x, y) = u o (x) + Vo (y) + 
xy  

+ .~ S [f(~, r/, tp (4, r/), cpx(4 , r/), tp,(4, ~/))--m (r/)- n (4)- #-I d ~ d r/, 
OO 

T 

m(y)=  T -1 Sf(i ,  Y, tp(4, y), (Px(4, Y), tp,(~, y ) ) d ~ - # ,  
0 
T 

n(x) = T -  1 Sf (x, r/, r t/), r (x, t/), ~%(x, r/)) d r / - / t ,  
0 

T T  

/a = T-2  ~ ~f(~, r/, r (4, r/), ~Px (4, t/), r r/))d ~ d r/, 
O0 

for all O<=x, y<T.  Obviously r r r exist everywhere in A, are continuous 
in A, and, everywhere in A, we have 

r (x, y, q), (p~,, % , ) - m ( y ) - n ( x ) - # .  

Theorem I is thereby proved. 

4. Remark 1. I f f  is Lipschitzian with respect to all variables x, y, z, p, q in R, 
and if U'o(X), V'o(y) also are Lipschitzian, then m(y), n(x), as well as r ~p~, tpy, r 
are Lipschitzian. Indeed, if ~ol(e)=kla,  al2(f l)=k 2 fl, r , c%(00=k 4 ~, 
r (fl) = ks fl, then 

tll (fl)=( l -  2 Tb2)-l (ks + 2 Tk2 + 2 Tbo.Ma +12L Tb~) fl=k6fl , 

r/2 (00= ( 1 - 2 T b l )  -1 (k4+2Tkl  +2TboM2 + 12LTb2) 0~=k7 ~, 
and then 

]m(Yl)-m(y2)l <(k2 + boMa +6 Lbt + b2 k6) l y l -  y2 ]=ks  [Yl --Y21, 

[ n(xl)-n(x2)[ <(kl + bo M2 + bl k7 + 6Lb2) [ xl - x 2  ] =k9 [ Xl - x 2  1. 

Formulas (33), (34), (35) show that r tpy are also uniformly Lipschitzian and 
so is tp, y = f - m - n - l ~ .  
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5. Remark 2. The conditions of Theorem I do not assure uniqueness, as the 
following example shows. Take T =  I, uo (x) = 0, Vo (y) = 0 , f =  [ z 1~ sin 2 n x sin 2 n y, 
for O < x , y < l ,  and all y, z ,p ,  q. Then the equation 

uxr=l u l�89 sin 2rr x sin 2n y , (36) 

besides the trivial solution ~p l(x, y ) =  0, has also the solution r (x, y ) =  (16 n 4) -1 x 
sin4n x sin 4 n y, 0 < x ,  y <  1, and both satisfy the boundary conditions. Here we 
have ml(y)=m2(y)=O,  nl(x)=n2(x)=O. Note that we may take N = N  1 = N 2 = 0  , 
L =  1, MI = 1, M2=  M 3 =2,  bl =bz =0. All conditions of Theorem I are satisfied. 

6. The Lipsehitzian Case. We shall assume now that o93 (V)= bol~ I, so that f is 
now Lipschitzian in z, p, q with constants bo, b~, b2. In this situation, for given 
boundary values Uo(X), Vo(X) and different functions ~p:, ~P2 e K we have 

1/~1 - /~2  [ --< (bo + bl + b2) H tPl - tP2 II, 

I m l ( y ) - m 2 ( y ) l ,  In l (x) -n2(x) l<=2(bo+bl  +b2)lltpl-q~2[I, 

I ~b :(x, y ) -  42 (x, y) [ < 6 T 2 (bo + bl + b2) II tpl - r II, 

[ ~ ( x , y ) - ~ ' 2 x ( x , y ) [ ,  [~ l r ( x , y ) -~2 y (x , y ) l<6T(bo+b~+b2) [ l t p l - tP 2[ I .  

Thus 

II r  II = II 3"~p~ - 3 -  ~o2 I1 < 6 T ( T + 2 ) ( b o +  b~ + b2) I[ tp~ -tP21[. 

If we assume now that 

6 T(T+2)(bo + b 1 + b2)< 1, (37) 

then ~7":K-~K is a contraction into. This remark yields 

7. Theorem II (uniqueness). Under the same hypotheses of Theorem 1, if 
o93 (7) = bo 1? ], and (37) holds, then J-  : K ~ K is a contraction, and problem (11) - (18) 
has one and only one solution. 

The boundary values are represented by the pair of functions w = (u o (x), v o (y)) 
of class C ~ and satisfying (6) and (7). Therefore, they form a subset & of the linear 
space of all w of class C 1 satisfying (6) only, and we take in this linear space the 
norm 

I Iw[l=maxluo(x) l+maxlu 'o(x) l+maxlvo(y) l+maxlv 'o(y)[ .  (38) 

The solution of the problem (11)-(18)  is actually the system W= [~p (x, y), m (y), 
n(x),/~]. These quadruples also can be thought of as imbedded in a linear space 
on which we take the norm 

l[ Wll=maxlq~[+max]~px[+max]~pr[+maxlml+max[n[+ll l l .  (39) 

We shall prove that the solution, or system W, is a continuous function ~- of 
the boundary values, or system w, and we write 

W = ~ w ,  w E ~ .  
We shall need the numbers 

A = ( l - 6 T b l ) ( 1 - 6 T b 2 ) - 3 6 T 2 b l  b2, k = 6 T 2 b o + 7 2 T a A - l b o ( b l + b 2 ) .  (40) 
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8. Theorem HI (continuous dependence upon the boundary values). Under  the 
conditions of Theorem II, if in addition A > 0, and 0 < k < 1, then the solution W= 
(97, m, n, I~) of problem (11) - (18)  is a continuous function ~ of the boundary 
values w = ( u  o, V o ) ~  in the topologies determined by the norms (38) and (39). 

9. Proof of TheoremIII. Let w~=[Uol(X), rot(y)], w2=[Uo2(X), V02(Y)] be a 
pair of boundary  values as in Theorems I and II, and let W1=[971, ml, nt,/zl], 
I4:2= [972, m2, n2,/z2] be the corresponding solutions. Let 

= I[ wl - w2 II = max I Uo t ( x ) -  Uo 2 (x) l + max [u~ t ( x ) -  u~ 2 (x) l + 

+ max I vo t (Y) -  Vo 2 (Y) I + max I v~ I (Y) -  v~ 2 (Y) l, 

= max 1 97 l(X, y) - 972 (x, y) l, fl = max [ 97 ix (x, y) - 972 x (x, y) l, 

~=max1971,(x,y)-972y(x,y)l, 6=maxlml(y)-m2(Y)l ,  

6' =max lnt(x)-n2(x)l ,  ~"=l~ t -~2 [ .  

We shall denote by  F 1 and F 2 the functions F relative to 971 and 972. Then we have 

I TT I ~"=[]'/1--]'/2[ = T-2  S J [Fx(x, Y)-F2(x, Y)] d x d y  <bo~+blfl+b2?, 
0 0  

I-- T I Iml(y)-m2(y) T-1I[Fl(x,y)--F2(x,y)]dx--l~x+#2 <bo~+blfl+b2?+tS", 
0 

I n l (x) -  n2 (x) i -= l T-  l f [Fl(x, y ) -  F2 (x, y)] d y -  lzl + ls bo o~-l- bl fl + b2 ,-t-6" . 

Hence 
6"<=boc~+btfl+b2)p, 6,6'<boct+blfl+b2?+6 ''. (41) 

Analogously, 
! 

1 97 x(x, y) - 972 (x, y) I = [ Uo ~(x) + Uo t ( y ) -  u o 2 ( x ) -  Vo 2 (y) + 
! 

i' I + I[Fl(x ,y)--mt(y)--nl(x)-#t--F2(x,y)+m2(y)+n2(x)+#2]dxdy 
0 O  

<e+ T2(boa+blfl+b2~+6+6' +6"), 

and hence 

1 971x(X, y)--972x(X, y)[--<_e+ T(boa+b: fl d- b2 )~ q- t~ -t-t~' d- 6") ,  

1 97ty(x, y ) -972 , (x ,  y) l < e +  T(boa+btf l+b2y+b+6'+6") ,  

ct~_e-F T2(boct+btfl+b2)~d-6 + 6 ' + 6 " ) ,  

fl, ?<=e+ T(bou+blfl+b2?+6+6' +6"). 

Relations (41), (42) yield 

6" <=boot + bt fl + b2 y , 

ot_~ e + 6 T2 (bo o~ + bx fl + b2 y) , 

6, 6' <2(bo cz+ bl fl+ b2 7), 

fl, y~_e+6T(boo:+b~fl+b2y). 

(42) 

(43) 
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The last relation can be written in the form 

f l=6Tbo4a~+6Tbl~lf l+6Tb241V+e~1, 

?=6 Tbo 42O~ +6 Tbl ~2fl +6 Tb2 42 )'+e42, 

where 0<  41, 42 < 1 are convenient numbers, and then 

( 1 - 6  Tb I ~1) f l - 6  Tb 2 ~t )'= 6 Tbo ~10t + e 41, 

- 6  Tbt ~E f l+(1-6  Tb2 42)y=6 Tbo 42O: + ~2  . 

If A' is the determinant of this system, we have A' ___ A > 0, 0 < 6 T b~ < I, j =  1, 2, and 

f l=A'- 1 {(1-6  Tb 2 ~2) (6Tbo 4t ct+e Ca) +(6 Tb2 Ca) (6Tbo 42 ~+e  42)) 

<2A-l(e+6Tbo~) .  

Analogously, we have 
~<2A-l(e+6Tbo or). 

Fo(x, y)=f (x ,  y, Uo(X)+ vo(y), U'o(X), V'o(y)), I1o = T -2 S SFo(4, rl) d4 dq, 
O 0  

T T 

mo(y)=T-X ~Fo(r Uo(X)=T-X ~Fo(x,q)drl, 
0 0 

x y  

q~a(x, y)=uo(x)+vo(y)+ ~ ~ [Fo (~, rl)-mo(rl)-no(~)-#o] d~ dq, 
oo 

and successively, 

Fk(X, y)=f(x, y, Ok(X, y), q~kx(X, Yl +tPky(X, y)), 
T T  T 

#k=r-2S SFk(~,rl)d~drl, mk(y)=r- l jFk(~ ,y )d4 ,  
O 0  0 

T 

nk(X)= T -1 ~Fk(x, q) dq, ~Ok+ I(X, y)=Uo(X)+Vo(y)+ 
0 

T T  

+ I I [Fk(~, rl)--mk(rll--nk(O--I~k] d~ d~l, k= 1, 2, . . . .  
0 0  

Arch. Rational Mech. Anal., Vol. 20 13 

(44) 

(45) 

Finally, by (43) 

~ < e + 7 2  T3A - 1 bo(bx + b2) ~+6 T 2 bo 0t+ 12 T2A- 1 ( b l +  b2) g. 

Since the number k defined in (40) lies in the interval 0 < k <  1, we have 

~ < ( 1 - k ) - ~ [ l +  12A -1 T2(bl+b2)] e. 

This proves that ~, fl, y, 6, 6', 6 " ~ 0  as e ~ 0  uniformly in K. Theorem lII is 
thereby proved. 

10. A Method of Successive Approximations. Under the hypotheses of Theo- 
rem II[, the usual method of successive approximations defined by (Pk+ 1 =5~Pk, 
k = 0 ,  1 . . . .  converges toward the solution q~ of problem (11)-(18), where r 
is an arbitrary element of K. It may be convenient to use as first approximation 

Then q~o(X y) = uo (x) + Vo (y). 
T T  
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Then we have r (tOkx---#~Ox, ~Oky-' t '~Oy , mk-..m , nk-..n , pk-.+lt uniformly for 
0_<x < T, 0=y-< T, and consequently we have also tpkxy~p= r as k o  oo uniformly. 

11. Smoothness of the Solution. Two theorems can now be stated concerning 
the smoothness of the solution (tp, m, n , /0  of the problem ( 1 1 ) - 0 8 ) .  

(~) Under the conditions of Theorems I, II, III, if f ( x ,  y, z, p, q) is of class 
C a in R and Uo(X), vo(Y) of class C 2, then re(y), n(x) are of class C 1 and tp(x, y) 
of class C 2. 

This statement was essentially proved in Section 12 of [2a]. A more precise 
statement is as follows: 

(fl) Under the conditions of Theorems I, II, III, if f ( x ,  y, z, p, q) is of class 
C a with Lipschitzian first order partial derivatives, if Uo(X), vo(y) are of class 
C 2 with Lipschitzian second order derivatives, then re(y), n(x) are of class C a 
with Lipschitzian first derivatives and (p(x, y) of class C 2 also with Lipschitzian 
second order partial derivatives. 

The proof is the same as for (ct). An analogous statement holds: 

(y) Under the conditions of Theorem I, II, III, if f ( x ,  y, z, p, q) is of class 
C a +' in R with Lipschitzian partial derivatives of the order 1 +r ,  if u o (x), vo(Y) 
are of class C 2+' with Lipschitzian derivatives of the order 2 + r ,  then m(y), n(x) 
are of class C a+' with Lipschitzian derivatives of order 1 +r ,  and q~(x, y) is of 
class C 2+" with Lipschitzian partial derivatives of the order 2 + r .  

2. Criteria for the Existence of Periodic Solutions 
in the Large of the Original Problem 

12. A Differential Equation Containing a Small Parameter. Let us consider 
the differential equation 

u x y = f (x ,  y, u, ux, uy), 

f =  e [~O (x, y) + C u + ~1 (Y) us + ~k2 (x) uy] + e 2 g(x, y, u, u~, uy), 
(46) 

where 8 is a small parameter, and ~k, ~bt, ~k2, g are periodic functions of period 
T=2n/to in x and y. The Fourier series of ~, ~b 1, ~k 2 will be denoted by 

~p(x,y).~ ~ ( a , . . c o s m t o x c o s n t o y + b m n c O S m t o x s i n n t o y +  

+ c ~ .  sin mtox  cos n to y+d,,,,, sin mtox  sin n toy) ,  

oo 

tp a (Y) " eo + ~ (e. cos n to y + f .  sin n 09 y),  
a 

co 

~2(X)"'go + ~ (gn COS n w  x + h. sin nto x) .  
X 

If Uo (x), Vo (Y) denote arbitrary boundary values with v o (0)= 0, and Uo, Vo both 
of class C x and u~, v~ Lipschitzian with constants ka, k2 respectively, then it is 
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convenient for us to denote their Fourier series as follows: 

co 

Uo (x) ~ ~o + ~ (cq cos n o9 x -  ct. + ft. sin n co x), 
1 

co  

vo (Y) " ~  (7. cos n co y - 7. + 6. sin n co y),  
1 

(47) 

where both series ~ ~.,, ~ 7. are absolutely convergent. With this notation we 
have 

T co 

uo(O)=ao, Vo(0)=0, T - I  IUo(X) d x = % - - ~  a., 
0 1 

T co 

T-alvo(y)  dy = -Z~' ."  
0 1 

If we apply formally the method of successive approximations of Section 10 
to equation (46) with initial values Uo(X), Vo(y), we obtain at the first approxi- 
mation and preserving only the terms in e, namely a quadruple [tp o, e too, e no, 

/to], with ~Oo, too, no,/to given by 

x y  

tPo(X , y)=Uo(X)+vo(y)+e S S [Fo(~, q ) - m o ( ~ ) - n o ( q ) - / t o ]  d~ dr 
o o ( 4 8 )  

T T 

m o (y) = T -  x I Vo (~, Y) d ~ - / t o ,  no (x) = T -  1 1 Fo (x, q) d q - / t o ,  
0 0 

T T  

/to = T -2  1 I ro(~, q) d~ dq,  
0 0  

F o (x, y) = 0 (x, y) + C Uo (x) + C Vo (Y) + ~O,(y) u• (x) + ~P2 (x) v; (y). 

If we write 
at) co 

mo(y) , . .~(B.cosncoy+C, sinnogy), no(x)~~(D,  cosnogx+E, sinnogx), 
1 1 

/ t o = A o ,  

we obtain ( co co) 
/to=Ao=aoo+C a o - ~ s - ~ s  , 

k 1 t 

rno(y)=aoo+~l(y)+C % -  as + C v o ( y ) + g o v ; ( y ) - / t o ,  (49) 

no(x)=aoo+K2(x)+Cuo(x)+eoU'o(X)+ c - 7s -~to, 

T co 

tq (y)= r - l  I O(~, y)d~--aoo,~,(ao.cos nog y + bo.sin no9 y), 
0 1 

r co ( 5 0 )  

r2 (x) = T -  * S 0 (x, r/) d r / -  ao o "~ Y'. (a.o cos n o9 x + c.o sin n to x).  
0 l 

1 3 "  
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In  terms of the Fou r i e r  constants  re la t ions (49) become 

A o = a o o + C  ~ o -  cq -  ys , B . = C y . + n c o g o ~ . + a o . ,  

Cn=C S . - n  o~ go ~'. + bo.,  D .= C e. + n o9eo fl. + a.o,  (51) 

En= C f l . -  n to eo ~.+C.o, n = 1,2 . . . . .  

We shall  denote  by  u(x), v(y) the excesses of the funct ions  Uo(X), vo(y) over 
their  mean  values :  

oo 03 

u ( x ) = u o ( x ) - ~ o  + ~ e ~ ~ ~  (e~cos so) x + fl~sin sog x) ,  

1 t ( 5 2 )  co co 

v(y) = vo (y) + ~ ~ "~ ~ ('~s cos s og y + &~ sin s o) y) . 
1 1 

If  we require  p o = 0 ,  mo(Y)=0 ,  no(x)=O, then rela t ions (49) reduce to 

Cv(y )+gov ' ( y )=  - x l ( y ) ,  C u ( x ) + e o u ' ( x ) =  - xz (x ) .  

F o r  e o = 0, we have 

u(x) = - C -  1 x~ (x); (53) 
for  eo + 0, we have 

u(x)=exp(-eg 1Cx) g +eff 1S exp(eg 1 C ~ ) x 2 ( ~ ) d r  , 
0 

T 

K =  - e g  z C ( 1 - e x p ( - e g  I or))  -~ I e x p ( e g  ~ Cx)dx x (54) 
0 

x 

x I exp(eff ~ C ~) x2 ( 0  d ~, 
0 

where the cons tan t  K is de te rmined  in such a way tha t  

T 

I u ( x ) d x = O .  
0 

Analogous  relat ions ho ld  for  v (y). This determines  all  the coefficients cq, fin, ) ' . ,  ~5., 
n =  1, 2 . . . . .  Actual ly ,  re la t ions  (53), (54) are equivalent  to  those we ob ta in  
f rom (51) by  tak ing  B. = C. = D.  = E.  = 0 and  solving with respect  to  e . ,  fin, 7. ,  cS: 

o:.=( C2 + n2 o92 e2)- l ( -  C ano + n og eo Cno) , 

fln=(Ce-t-n2 ogZ e g ) - l ( - n t o e o a n o - C c n o ) ,  

y = ( C Z + n  e o92 g2)- l ( _ C a o . + n  to go bo . ) ,  

tS. = (C 2 + n 2 to 2 g2)-  1 ( _ n co go a o .  - C b o . ) ,  

n = 1, 2, . . . .  

The coefficients e . ,  fl . ,  y . ,  ~5., n =  1, 2 . . . . .  being so de termined,  then equa t ion  
Po = A o = 0 yields 

oo o0 

COo= - C - '  aoo + ~.,~+ ~_,r~, 
1 ! 
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provided the series ~ ~,, ~ V~ converge. This will be the case under the hypotheses 
of Criterion I below. We shall denote the corresponding functions Uo(X), vo(y) 
so determined by U(x), V(y), or 

U (x)=u(x) + ~ o - ~  O~s~O~o + ~ (~cos s o~ x-ot~ + [i~sin so~ x), 
1 1 (55) 

co  o3 

V(y)=vO')-~ y~~~ (y, cossw y-7,+6,sinsog y). 
1 1 

Under the conditions of Criterion I we shall require that these functions be 
interior points of the set defined by relations (7) of Theorem I. 

13. Criterion I. If the func t ionf  given in (46) for all [ e [ < So satisfies all condi- 
tions of Theorems I, II, III with given constants T, N, N~, N2, L, M1, M 2, 
M 3, b o, b~, b 2, and in addition i f f  is Lipschitzian with respect to x and y in R, 
if C4=0, and the functions Xl(X), x2(Y), U(x), V0') defined in (50) and (55) 
are of class C ~ with Lipschitzian first derivatives, and 

IU(O)I<No<N, [U(xl)-U(x2)l~Nlolxl-x2l ,  Nlo<N1, 

[V(yl)-V(y2)<=N2o[yl-y2], N2o<N2, 

then there is some ~o, 0 < ~o--< ~o, such that equation (46) for all [5[__< ~o possesses 
at least one periodic solution ~p(x, y) of period T in x and y, which is Lipschitzian 
in E z together with ~Px, <Py, ~Pxy: 

q~xy=f(x,y,~p,~p~, ~py), ~p(x+T,y)=~p(x,y)=~p(x,y+T). 

Moreover, the periodic functions u o (x) = ~p (x, 0) = ~p (x, T), v o 0') = ~P (0, y ) -  cp (0, 0) 
=~p(T,y)-~p(T, 0), satisfy relations (7) of Theorem I. 

14. Proof  of  Criterion I. Let us denote by k4 o, ks o the Lipschitzian constants 
of U(x) and V(y) respectively, and let k 4, ks be arbitrary numbers k4>k4o, 
ks>kso. Let us denote as usual by k 1, k 2 the Lipschitzian constants o f f  with 
respect to x and y respectively in R. 

Let S be the set of all pairs w = [Uo (x), v o (y)] of functions Uo (x), v o (y) periodic 
of period T, of class C l, with derivatives U'o(X), V'o(y) Lipschitzian of constants 
k4, ks, and satisfying relations (7) of Theorem I, that is 

l uo (0 ) l~N ,  [Uo(XO-Uo(X2)J<~Sllxl-x21, 

v 0 ( 0 ) : 0 ,  [uo(Yl)-vo(Y2)[<~N2 lY~-Y2[. 

Then Wo = [U, V]eS. We shall consider S imbedded in the Banach space of 
all pairs of periodic fuctions of class C ~ with norm 

[[w[[=max[u(x)[+maxlu'(x)[+maxJv(y)l+max[v'(y)[. (56) 

For  every w= [Uo (x), vo(y)]eS we shall determine the solution W= [tp, era, en, e#] 
of the modified problem relative to (46). Since this solution can be determined 
by the method of successive approximations of Section 10, we see that W can be 
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written in the fo rm 

r(x, y, 5) = r y) + ~(x ,  y, e), m (y, e) = m o  (y) + ff~ (Y, e), 

n (x, 5) = no (x) + fi (x, 5), #(e) =/~o + ~ (5), 

where q~, m, n , / ~ = O ( 1 )  uniformly as 5 ~ 0  and q)o, mo, no, #o are given by  for- 

mulas (48). 
By use of the functions u(x), v(y) as in Section 8, equations /~=0, m(y)=O, 

n (x) = 0 reduce to 
C v(y) + go v' (y) -- -- ~q(y)--  ff~ (y, 5), 

C u (x) + eo u'(x) = - x2 (x)- ?~ (x, e), (57) 

aoo+C ~o- ~ -  ?~-~(e)=O. 

For  e o = 0 we have 
u (x) = - C -  1 (x2 (x) + ~ (x, 5).; (58) 

for  eo + 0 we have 

u(x)=exp(-eol C x) IK + eol i exp(eoI C ~)(x2(O+ n(~, 5))d ~ ], 
r x (59) 

K = - eo 2 C (1 - exp ( - eo 1 C T)) -1 S exp (eo I C x) d x ~ exp (eo I C ~) x 
0 0 

x (~:2 (4) + ~(r 5)) d r 
and hence 

u'(x)=-C-l(d/dx)(x2(x)-l-~l(x,8)) if eo=O,  
(60) 

u ' ( x ) = - e ~  1 (Cu(x)+x2(x)+h(x, 5)) if e o ~ 0 .  

Analogous  formulas  hold for  v(y). 

This determines u(x), v(y) and hence all coefficients 0~., ft.,  y.,  3. ,  n = 1, 2 . . . . .  
By R e m a r k  1 we know that  m, n are Lipschitzian functions, and so are rfi, fi 
as well as xl ,  Xz. Thus u(x), u(y) are periodic functions of mean  value zero, 
of class C 1, with Lipschitzian first derivatives. Thus,  the series ~ cq, Y'y .  are 
absolutely convergent,  and (47), (57) yield 

e o = - C  -1 aoo-~(5) +~oq+~y~, 
] 1 1 (61) 

= - C - '  ( a  o o - ~ ( 5 ) )  - ,, ( 0 )  - ,, ( 0 ) ) ,  

co oo 

Uo(X)=U(X)+ao_~O~,, vo(y)=v(y)-~y.. (62) 
l 1 

Note  tha t  these functions, when we take r~ = fi = 0, reduce to U(x) and V(y) 
respectively, and thus the convergence of the series ~ ~.,  Y',~. of Section 12 is 
proved  above.  

Actually,  for  every w=[u(x), v(y)]eS, we can first determine m, n, # as in 
Theorems  I, II ,  I I I ,  using the me thod  of successive approximat ions  of Section 10; 
then we determine r~, h, and finally the second members  of formulae  (58), (59), 
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(60), (62), and analogous ones determine new functions, say w=[uo(x), vo(y)]. 
Thus, we have a map ~ ' ,  

W=.~ w, weS,  

whose fixed elements w = ~ ' w ,  if any, have the property that #=0 ,  m(y)=O, 
n(x) -O. 

We have already chosen the uniform topology of class C 1 on w and �9 by 
means of (56). Let us choose the uniform topology of class C o on rn, n as in 
Theorem III, as well as on rh, ft. We know already from Theorem III that m, n 
are continuous functions of w, and so are r~, ft. The second members of (58), 
(59), (60), (62) define continuous functions of n5, ft. Thus ~" is a continuous 
function of w for weS in the topology defined by (56). 

By Theorems I, II, III we know that re(y, 5), n(x, 5) are Lipschitzian functions. 
The same property holds for nq(y, 5), fi(x, 5), but these functions - as well as 
their Lipschitzian constants - have a uniform bound of the form M 5 for some 
M > 0  and all [e l<%.  Then, by choosing convenient constants k, kl, we have 

[Fn(y, 5)l,l~(x,~)l<=ks, [~[__<k~, [Fn(yl,e.)-Fn(y2,8)l<=k~lYt-Y2[, 

I~(xl ,~)-~(x2,~) l<kslxl -xz[ ,  I~o-Ul<kl~,  Ib -o -Vl<k l s ,  

I~'o-U'l<ka~, I~d-V'l<k15, [~o(xO-U(x,)-~o(Xz)+U(x2)l<kl~, 

Ivo(yl)-  V(Yi)-ff(Y2)+ V(yz)[ < k l  ~, I ~;(xl)--  U'(xx)-U;(X2)+ U'(x2)l <ki ~, 

[ v~(Yl)- V'(yl)-'ff'(y2)+ V'(Y2)l<kl 5. 

If k4, ks are the Lipschitzian constants of U', V', and 

~-0 = min [%, k~- ~(N-No),  k~- I(N~ -N~o), k~" 1(N2 -Nz  0)], 

then for 151=<~o we have 

I~o(0)l<l U(O)l+kx s<No+k~ 5<N, 

[ Uo(X~) - Uo(X2)I _- < (N~o + kl 5) 1Xl --Xel<Nt I xx - X 2  I, 

l u;(xl)-u'o(xe)l<(ka +kx ~)[xz - x z l ,  

[vo(y~)-?~o(Y2)l<(N20+kt~)ly~-y2l<N2lYl-Y2], 

] v~ (Y~)- v~ (Y2) I < (ks + k l  5)[y~ -Y2I .  

This shows that, for I~l<Eo, ~ maps S into itself, ~ ' : S ~ S ,  and S is a convex 
closed compact subset of a Banach space. By SCnAUOER'S fixed point theorem ~" 
possesses at least one fixed element w=.~weS, w=[uo(x), vo(y)], with Uo(X), 
vo(y ) satisfying relations (7) of Theorem I. Criterion I is thereby proved. 

15. Example. The equation 

u ~ = ~ ( 1 - u ) + 5 2  g(x, y, u, u~, uy), 

where g is periodic of period 2n in x and y, has a periodic solution ~o(x, y) of the 
same period, 

~o (x, y) = 1 + O (e). 
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The analogous equation 

uxy=e(sinx-cosx-sin y+cos y+u+ux+uy)+82 g(x, y, u, ux, uy) 

with g as above has a periodic solution 

~0 = cos x - cos y + 0 (8). 

16. Another Equation Containing a Small Parameter. Let us consider the 
differential equation 

Uxy=f(x, y, u, ux, uy), 
(63) 

f=~(x ,  y)+Cu+~l(y)ux+~k2(x)uy+sg(x, y, u, u:,, uy), 

where 8 is a small parameter, and ~, ~bl, ~2, g are as in Section 12. We assume here 
that, for 8=0, equation (63) possesses a known periodic solution of period T 
in x and y, of the form 

~0o (x, y) = Uo (x) + Vo (y), 

where u o (x), vo(y ) have Fourier series (47), and hence 

(x, y) = - C u o (x) - C Vo (Y) - 01(Y) u; (x) - 02 (x) v• (y). 

Under the hypotheses below, we shall prove that for 181~=0 sufficiently small, 
(63) possesses a solution ~o(x, y )=  ~0o(X, y )+  0(8) which is periodic of period T 
in x and y. 

17. Criterion H. If the funct ionf  defined in (63) for all 181_-__eo satisfies all 
conditions of Theorems I, II, III with given constants T, N, N 1, N2, L, M 1, 
M2, M3, bo, bl ,  b2 and in addi t ionf  is Lipschitzian with respect to x and y in R, 
if C~=0, if (63) possesses for 8=0 a solution tpo(x,y)=U(x)+ V(y) with U, V 
periodic of period T, if the functions U(x), V(y), tq(x), Xz(y ) are of class C 1 
with Lipschitzian first derivative, and 

IU(O)I<No<N, IU(xl)-U(xz)l<N~olx~-x21, Nlo<N1, 

[V(yl)-V(Y2)I<N2oIYt-yz[,  N2o<N2, 

then there is some Co, 0 < ~o < 8o, such that equation (63) for all I e I < ~o, possesses 
at least one periodic solution (o(x, y) of period T in x and y, which is Lipschitzian 
in E2 together with ~ox, (oy, ~0xy: 

(px,=f(x,y, qT,(px,~oy), qT(x+T,y)=qo(x,y)=q~(x,y+T). 

Moreover, the periodic functions Uo (x) = tp (x, 0) = q~ (x, T), v o (y) = ~o (0, y ) -  ~o (0, 0) 
= ~o (T, y)-~0 (T, 0) satisfy relations (7) of Theorem I. 

18. Proof of Criterion II. As in Section 12 let us apply formally the method 
of successive approximations of Section 10 to equation (63) with arbitrary initial 
values Uo (x), Vo (y). Then the quadruple [~o, m, n,/~], the solution of the modified 
problem for equation (63), is given by 

tp(x,y,e)=q~o(X,y)+(o(x,y,e), m(y,~)=mo(y)+ff~(y,a), 

n (x, 8) = no (x) + ~ (x, 8), ~ (8) =/~o + ~ (8), 
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where tp, m, n , /7=0(1)  uniformly as e--*0, and q~o, mo, no,/~o are given by for- 
mulas (48). In addition, we know that for Uo(X)= U(x), vo(y ) = V(y) we have 
/1 o =0 ,  mo(y ) =0, no(X ) =0. We can now repeat with obvious variants the argument 
of the proof of Criterion I. 

19. Examples. The equation 

u x y = - 1 + u + ~kt(y ) ux + ~b 2 (x) uy + 5 g(x, y, u, ux, uy) 

for 5 = 0  has the obvious solution u =  1. Since C4:0, the same equation has a 
periodic solution tr of period T in x and y for all [ 5 [ sufficiently small. 

Analogously, the equation 

u~ r = - cos x + sin x + cos y - sin y + u + u x + uy + e g(x, y, u, llx, lly) 

has, for e=0 ,  the obvious solution u = c o s  x - c o s  y. Since C4:0, the same equation 
has a periodic solution of period 2 n in x and y for every 1514:0 sufficiently small. 

20. Application to the Wave Equation. Let us consider the differential equation 

ut , -ur  ~=f (t, 3, u, u,, u~) , (64) 

w h e r e f  is periodic in t and ~ of period T. Then the transformation 

t = x + y ,  ~ = x - y ,  x = 2 - 1 ( t + 4 ) ,  y = 2 - a ( t - 4 ) ,  (65) 

changes (64) into 
u~y=F(x, y, u, u~, uy), 

where 

F = f ( x + y , x - y ,  u,2 - l u x + 2  -~ ur, 2 - I u ~ - 2  - t  uy), (66) 

and F is periodic of period T in x and y. Theorems I, II, I II  and the criteria should 
now be applied to (66). Other transformations beside (65) can be used. 

As an example, let us consider the equation 

utt-ur 4)+Cou+21(t,~)ut+22(t,  4)uc]+52 g(t,~,u, ut,ur (67) 

2(t, 4) = Ao + Bx cos 2 t + C~ sin 2 t + B 2 cos 2 ~ + C2 sin 2 ~ + 

+ D l  c o s ( t + 4 ) + E 1  s i n ( t + s  c o s ( t - 4 ) + E 2  s i n ( t - i ) ,  
(68) 

21(t, ~ ) = A + B  cos(t + r + C sin(t + ~ )+O c o s ( t - 4 )  + E  s i n ( t -  4), 

22 (t, 4) = A' - B cos (t + ~ ) -  C sin (t + 4) + D cos (t - 4) + E sin ( t -  r 

where Ao, B . . . . .  E are constants, Co4:0 , and g is of period n in t and 3. By the 
transformation 

t = 2 - l ( x + y ) ,  ~ = 2 - 1 ( x - y ) ,  x = t + 4 ,  y = t - - r  (69) 

equation (67) is changed into 

uxy=5[~k(x, y ) + 4 -  l Co u + ~I(Y) u~+ ff2(x) uy] + 
(70) 

+52 g(2-1 x + 2 - 1  y, 2- I  x - 2 - 1  y, u, ux+uy, ux-uy) ,  
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where the second member has period 2~ in x and y, and 

~O(x, y)=aoo +a lo  cos X+Cot sin x+aol cos y +  bol sin y +a11 cos x cos y +  

+ bx x cos x sin y + c 11 sin x cos y + dl l  sin x sin y ,  

~l(y)=eo+elcosy+f ls iny ,  ~2(x)=go+glcosx+hls iny ,  

4aoo=Ao,  4azo=D1, 4col =E t ,  4ao t=D2,  4ho t=E2 ,  (71) 

4al l=Bt+B2,  4bt1=C1-C2,  4clz=C1+C2, 4 d l t = - B l + B 2 ,  

4eo= A + A', 

2 e t = D ,  2f l=E,  4 g o = A - A ' ,  2g I = B ,  2 h 1 = C .  

By Criterion I we conclude that if Co 4:0 and 18] sufficiently small, then equation 
(70) has at least a periodic solution q)(x, y, 8) of period 27r in x and y, and then 
equation (67) has at least a solution 

u(t, ~, e)=tp(t + ~, t -~ ,  ~) , 

also of period 27r in t and ~. 

21. Another Example, Let us consider the differential equation 

u, , -u~=A(t ,  ~)+Co u + 21(t, ~) u,+22(t, ~) u~+e g(t, ~, u, u,, u~), (72) 

where 2, 21 , 22 are given by (68) and again Co 4:0. By the same transformation (69) 
equation (72) is changed into 

uxy=~b(x, y ) + 4  -1 Co u+~l(y) ux+~P2(x) uy+ 
(73) 

+eg (2  -1 x + 2  -1 y, 2 -1 x - 2  -1 y,u, ux+uy,ux-uy), 

where ~O, ~a, ~02 are given by formulas (71). It is immediately seen that (73) for 
= 0 has a solution of the form 

u(x, y)=  U(x)+ V(y), U(x)=~o +~x cos x+flt s inx,  

V(y) =Yi cos y+6x sin y 
if and only if 

Ba = A I Co(E D I + D E1) + A x( A + A') (D D I -  E E1) + 

+ A  2 Co(CD2+BE2)+A2(A-A')(BD2-CE2), 

B2-~A 1 Co(-EDI+DEO+AI(A+A') (DD1-EE1)+ 

+ A  2 Co(-CD2+BE2)+A2(A-A')(BD2+CE2), 

C~ =Ax Co(-DDx+EEt)+A~(A+A')(EDx+DE1)+ (74) 

+,42 Co(-B D2 +C E2)+ ,42(A-A')(C D2 + B E2), 

C2=A 1 Co(-DDI-EE1)+,4x(A+A' ) ( -EDI+DEI)+ 

+,42 Co(B D2 + C E2)+ ,42(A- A') (C D2-  B E2) , 

,41=(C2 +(A + A')2) -1, A2=(C20+(A-A')2) - t  
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In this situation then 

~ , = A , ( - C o  D I + ( A + A ' ) E , ) ,  ~ t = A , ( - C o  E , - ( A + A ' ) D t ) ,  

7 t = A 2 ( - C o D 2 + ( A - A ' ) E 2 ) ,  3 t = A 2 ( - C o E 2 - ( A - A ' ) O 2 ) ,  ~o = - C o  t a o .  

By Criterion II we conclude that if C O 4:0, [5] sufficiently small, and relations (74) 
hold, then equation (73) has a periodic solution ~p(x, y) of period 2zr in x and y, 
and (72) has a solution 

u(t, ~, e)=~p(t + 4, t - ~ ,  e) 

also of period 2n in t and 4. 

For instance, for the equation 

urt -uc  r D1 cos ( t+~)+Et  sin( t + ~) + D2 c o s ( t - i ) +  
(75) 

+ E  2 s in ( t -~ )  + u + u, + ~ g(t, 4, u, u t, ur 

where DI,  El ,  D2, E2 are arbitrary constants and g periodic of period rt in t 
and ~, we see that relations (74) are all satisfied with 

B I = C t = B 2 = C 2 = O ,  B = C = D = E = O ,  Ao=0,  C o = l ,  A = I ,  

A ' = 0 ,  A 1=A2=2 -1. 

The corresponding equation (73) is 

4uxy=D ~ cos x + E  t sin x + D  2 cos y + E  2 sin y +  u +ux+uy+e  g. 

For 5=0 this equation has the periodic solution tpo(x,y ) of period 2r~ in 
x, y given by 

- 2  t#0 (x, y )=  (D1 --E t) cos x + (D t + Et) sin x + (D 2 -E2)  cos y + (D2 + E2) sin y ,  

and hence (75) for 5=0 has the periodic solution 

Uo(t, 4) = - 2 - t ( D t - E 1 ) c o s ( t  + ~ ) -  2 - t ( D l  + Et)s in  (t +4) - 

- 2-  t (D 2 _ E2 ) cos ( t -  ~ ) -  2-  t (D 2 + E2 ) sin ( t -  4). 

Thus, for all [el sufficiently small equation (75) has a periodic solution of period 
2n in t and ~ of the form u(t, r 4)+0(5).  

22. Remark. In the autonomous case, that is, w h e n f  does not depend on x and y, 
then $ =aoo,  ~,t =eo,  ~k 2 =go,  g=g(u,  ux, uy). It is easy to verify that the periodic 
solution r of equation (46), whose existence is proved by Criterion I, is a constant. 

Concerning Criterion II, let us note first that equation (63) in the autonomous 
case reduces to 

uxy=ao o + C  U + eo u~ + go uy + e g(u, ux , uy) . (76) 

Under the hypothesis of Criterion II we have C4:0 and 

IC(z I - z 2 ) +  e g(zt ,  p, q ) - 5  g(z2, p, q) l <bo lz  1 - z 2 l  (77) 

for all zl ,  z2, p, q, e with Izt I, ]z21<Mt,  [pI<Mz, Iql<=n3, lel<eo. We may 
well assume bo>0. From (77) we deduce first, taking e=0,  I CI <bo, and then, 
taking e = %, [ g ( z t ,  P, q ) - g  (z2 ,  P, q) ] < (bo + [ C] )  s o t ] zx - z2 [ --< 2 bo So t [ z l  - z21, 
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and  hence g is un i formly  Lipschi tz ian with cons tant  2bo e o 1. Then,  for 1~1~ ~ = 
ra in[%,  So [CI/4bo], we see tha t  eg(z,p, q) is un i fo rmly  Lipschi tz ian in z with 
cons tant  1C[/2. Then for  [ e [ < e l  and  C + 0 ,  the expression aoo+Cz+eg(z , O, O) 
is monotone ,  namely  strictly increasing or  str ict ly decreasing as Cz. Note  that ,  

for  ~o = C -  1 I ao o I < M1,  there is a unique ~o = ~ (0) = C -  a such tha t  aoo 2)=~o, 
= 0  satisfy the equa t ion  

ao o + C  ~ + e  g(),, 0, 0 ) = 0 ,  (78) 

and thus there is some e2, 0 < e e < e l ,  and  a cons tan t  7=V(e)  such that  (78) is 
satisfied for  151 < ~2. Then equa t ion  (76) is sat isfied for  ~ = 0 by  the cons tan t  func- 
t ion r V ( y ) = ~ o ,  with U = ) ' o ,  V = 0  and  equa t ion  (76) is satisfied 
for  [ ~ [ < e2 by  the cons tan t  funct ion ~o (x, y) = V (e). 

The research reported here was supported in part by U. S. National Science Foundation 
grant G-57 at the University of Michigan. 
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