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1. Introduction 

This paper deals with the minimum problem concerning an integral of the 
form 

(1.1) l ( x ) =  ~ f ( t ,  x,  x ~1) . . . .  , x ~m) . . . .  , x e)) d t  
t2 

where l is an arbitrary positive integer, where x tin) denotes the vector x tin) = 
(x~ ml . . . . .  x ~ )  of the derivatives of x of order m taken in an arbitrary but fixed 
order, and where f2 is a bounded open domain in the n-dimensional Euclidean 
space E" of points t = ( t x  . . . .  , t,). 

In certain basic aspects (e.g. in the use of convexity considerations and of 
the reflexitivity of the Sobolev spaces) the method of the present paper is the 
same as the one used in a recent paper by F. E. BROWOER [3] x, while in other 
aspects the treatment is different. This will be clear from the following outline 
of the existence proof given in the present paper: 

The Sobolev space W~=W~(f2) is a reflexive Banach space. Therefore, the 
closed ball B R c WJ with radius R and center 0 is weakly compact, i.e. compact 
in the relative topology of BR induced by the weak topology of WJ. Consequently 
for the proof of the existence of an x o e B R  minimizing I ( x )  in BR it will be suffi- 
cient to show that l ( x )  is weakly lower semi-continuous (see [10]). To do this, 
we use the notation 

(1.2) f (x  ; y)  = f (t, x (t) . . . .  , x ( t -  1), y(t)), 

(1.3) I ( x ;  y)  = I f ( t ,  x(t);  y( t ) )  d t  
f~ 

such that 

(1.4) I(x) =I(x; x). 

1 Numbers in brackets refer to the bibliography at the end of the paper. 
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Under assumptions to be specified later the following statements ~) and fl) will 
be proved: 

ct) for fixed xo~B R, Io(y)=I(xo; y) is weakly lower semi-continuous in y, 

fl) for fixed y~BR, I(x; y) is weakly continuous in x. 

As to the proof of ~) a nearly obvious argument (given in detail in [11; theo- 
rem 4.1]) shows that it will be sufficient to prove: to each, Yo in B R there exists 
a bounded linear functional 1o =lo(y)  on W~ such that 

(1.5) lo(y)-Io(Yo)>=lo(y-yo), y, yoeBR. 

The main assumption for the proof of (1.5) will be a convexity assumption 
on f with respect to the highest derivatives which implies a corresponding con- 
vexity of I(x; y) with respect to y 2. A linear functional I o satisfying (1.5) is then 
obtained as follows: if (for x fixed) H denotes the product space of W~ with the 
real line consisting of couples u = ( y ,  r), then the set II1cII  above the graph 
r=Io(y), i.e. the set of points (y, r) with r>Io(y) is convex and has therefore 
under rather general conditions a closed supporting hyperplane at the point 
Uo =(Yo, Io(Yo)) given by an equation of the form 

(1.6) ho(u)=ho(uo) 

where h o is a continuous linear functional on H. It is then proved that the restric- 
tion of ho to W~ multiplied by a proper constant is an l o of the desired properties 
(section 3). 

The proof of the statement fl) above is given in section 4. It is based on the 
extended form (4.2) of the Friedrichs-Sobolev inequality (4.1). The latter is 
proved in Appendix A by applying SOBOLEV'S imbedding theorems. The existence 
of a minimizing Xo~B R then follows easily by combining the results of sections 3 
and 4 (section 5). 

The inequality (4.1) is a generalization of the Friedrichs inequality given for 
the case l =  1 in an inner product space [4; p.489]. (See also [7; section 5] for a 
more general case.) From the point of view taken in the present paper an essential 
feature of FRIEDRICH'S inequality and its generalization (4.2) is that they imme- 
diately imply the weak continuity of the Lp norm of the derivatives of order < I 
of elements x~BR. (See Remark 1 at the end of section 4.) 

The compactness theorem known as RELLICH'S lemma (Rellichscher Auswahl- 
satz) [4; p.489] is a direct consequence of FRIEDRICH'S original inequality. Cor- 
respondingly it is shown in Appendix B that inequality (4.2) implies immediately 
a compactness theorem which may be considered as a generalization of RELLICH'S 
lemma. This theorem is not new. It is a special case of KONDRASEV'S theorem 
on the complete continuity of the SOBOLEV imbedding operator [13; chapter I, 
w 11]. 

2 Instead of a convexity assumption, a positivity assumption on the second differential 
(implying convexity) was used in [11]. The author is indebted to G. Mrrcrv for pointing out in 
conversations that convexity would be sufficient. Moreover in that paper in which the case l=- 1 
was treated the assumption just mentioned was made not only with respect to the first derivatives 
of x but also with respect to x itself. This resulted in a theorem of unnecessarily narrow scope 
as was pointed by L.M. GF, Avr~ [Math. Reviews 15, 39 (1954)]. 
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2. Preliminaries 

g2 will always be a bounded open domain in E n. Such an s is called a Sobolev 
domain if the Sobolev imbedding theorems [13; pp. 56, 57] hold. Sufficient con- 
ditions for this to be the case may be found in [13; p.66] or [12; chapter IV]. 

By "derivative" of a function x = x ( t )  defined in 12 we will always mean gener- 
alized derivative as defined in [13; p.33]. The Lp spaces and the norm Ilxllp 
of an xeLp are defined as usual. We always assume p >  1. 

For  any positive integer 1 the Banach space Wpt=Wpt(f2) is then defined as 
the space of all xeLp(O) which have derivatives in Lp(f2) of order up to and in- 
eluding 1, while the norm of x is defined by 

(2.1)  II x Ilwg =(11 x liP+ I1 x II~, p)~/P. 

Here tl x II~,p is defined as follows: let II x liE denote the Euclidean norm of the 
vector x el) defined in the first paragraph of the introduction; then 

(2.2) [[x tit, p=(~  II x <') IlP d t) x/p. 

Theorem 2.1. The Banach space W~ is reflexive. 

Proof. If the norm II x [Ig, p were re-defined by replacing in its definition (2.2) 
the Euclidean norm Ilxlle by the p norm, i.e. by 

I- l~ ql/p 

then the proof would be the same as the one given for theorem 2.1 in [11]. (Cf. 
also [2; p. 863] and [3] where this norm is used.) However a perusal of that proof 
makes clear how it should be modified to meet our case by using the following: 

Lemma 2.1. For any positive s let II Y II E. be the Euclidean norm of y =(Y l . . . .  , Ys). 
Then the space of all vector functions y ( t )=(y ,  (t) . . . .  , ys(t))  for  which Ily(t)[IE.~L, 
with norm 

(2.3) II Y l[ = {~ II y(t)IlPdt} x/p 

is uniformly convex. 

Proof. Since Lp is uniformly convex, it is easily seen that the proof given 
by M.M. DAY for his theorem 3 in [5] is valid for the present case. (Cf. also the 
concluding remarks in [5].) 

We now specify the assumptions on the integrand f of the integral (1.1). 
t and am (m =0,  1 . . . . .  l) are defined as in the introduction, and p(m) is a vector 
with components p~t ml . . . . .  pro. Then the function f ( t ,  p w), ..., p(O) is supposed 
to satisfy the following four conditions: 

A) f satisfies a Hoelder (or Lipsehitz) condition with respect to the variables 
prO), p(t), ..., p(t- ~). 

B) f is convex with respect p(O. 

C) For  any couple x, y of elements of B2R, f ( x ;  y) (see (1.2)) exists and is 
integrable over 12. 

Arch. Rational Mech. Anal., Vol. 21 11 
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D) To every couple Xo, Yo in B R there exists a neighborhood U(yo) of Yo 
such that I(xo; y) is bounded from above for ye  U(Yo). 

Remark. D) is satisfied if to every couple Xo, Yo of elements of Bs there 
exists a constant C =  C(xo, Yo) and a neighborhood U(yo) of Yo such that for 
each t ~ f2 

f(xo,y)<Clly~ for yeU(yo). 

3. Proof of the lower semieontiauity of Io ( y ) =  I (x0; y) 

As already pointed out it is sufficient to prove that (1.5) holds for some 
bounded linear functional l o. To prove the existence of such a functional we 
note first that the convexity assumption B) on f implies immediately the convexity 
of Io (y), and that assumption D) implies that Io (y) is locally bounded from above. 
It now follows from a well known theorem [1; Chapter II, w 5, proposition 2] 
that Io(y) is continuous in BR. From this it is easily seen that the se t / /1  c H  
defined in the introduction contains interior points (namely all points (Yo, to) 
with r o >Io(Yo); see also [9]), and that the graph of I o belongs to the boundary 
of HI. 

From these properties we conclude by a well known theorem [I; chapter II, 
w 3, proposition 3] that every point Uo=(Yo, lo(Yo)) of the graph of I o admits 
a closed supporting hyperplane H o. Therefore there exists a continuous linear 
functional ho=ho(u) o n / I  such that 

(3.1) ho(u)=ho(uo) 
is an equation for Ho while 

(3.2) ho(u)>=ho(uo) for uelI 1. 

Now let eo be an arbitrary element o f / / w h i c h  is not an element of W~. Then 
every ueH has the unique representation 

(3.3) u = r eo + y ,  r real, y E W~. 

Thus 

(3.4) h o (u) = r h o (eo) + h o (y). 

Since the points of the graph of Io are characterized by r=Io(y) ,  we see from 
(3.4) that 

ho (u) = I o (y) ho (eo) + ho (y) 

for u on the graph. But since the graph belongs t o / / 1  we see from (3.2) that 

Io (y) ho (eo) + ho (y) _-> Io (Yo) h (eo) + h (Yo) 
o r  

(3.5) 
If now 

(3.6) 

(Io (y) - Io (Yo)) ho (eo) > - ho (y - Yo). 

ho(eo)*O, 

then (3.5) implies (1.5) if we take for lo the restriction of the linear functional 
- h o / h o  (eo) to W~. 
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Suppose now ho(eo)=O. Then eo is an element of the hyperspace H given 
by ho(u)=0. Since eo by definition ~W~, the two hyperspaces H and W~ of /7  
are not identical, and W~ contains an element u~ which is not in H, i.e. for which 
ho(ul):~O. We now set e l=eo+ul .  Then ho(e:)=ho(eo)+ho(ul)=ho(ul)~O, 
i.e. (3.6) is satisfied with eo replaced by e~. On the other hand, e~ ~ W] since other- 
wise eo =e~-u~ would be in W~. 

4. The weak continuity of I (x;  y) with respect to x 

The goal of this section is the proof of 

Theorem 4.1. For f ixed yo~BR, I(x; Yo) is weakly continuous in x in the 
weak topology of B R. The continuity is uniform as Yo varies over BR. 

The proof will be based on 

Theorem 4.2. Let f2 be a Sobolev domain. Then there exists a positive constant 
M=M(f2)  with the following property: if for any positive ~, lacf2 denotes a cube 
of sidelength ~, and if for any positive integer N, O N = O N (~) denotes the union of 
N such cubes I~ . . . . .  I~ with disjoint interiors, then for m =0, 1 . . . . .  1 -  l there 
exist for & < 1 an ON and bounded linear functionals 2J~ ... p, on W t ( j  = 1 . . . .  , N), 

f l i=k where k varies from 0 to l - m - 1  such that the following Friedrichs- 
i 
Sobolev inequality holds: 

(4.1) 

�9 c? m x Pd t 
mi----  ,.. 

~ at1 . . . a t .  

N l -m-1 
"~-(~-mpEj=I k=0 ~ I]~#t=k [ E ("~Jflt"'fln(X))2] p/2 (~,mi=m)" 

The proof will be given in Appendix A. 

Our next goal is the proof of 

Theorem 4.3. Let ~1 be a given positive number. Then (with the notations used 
in theorem 4.2) there exist a positive & < 1 (which may be chosen arbitrarily small) 
and bounded linear functionals 2~,... ~, on W~ such that for x E B2 R c W~ 

a m x Pd t 
~ m'i'-'- m. Ot 1 ... O t .  

(4.2' <--MP~(I-m) PS[  ~=t ( t3lX .'~27p/2 
- -  "r~.ml+#l z,m.+#. I I dt+ 

f~ ~..81 -m ~''1 "'" ~''n / J 

N m - l - I  
"3t'(~--mPEj=l k=OZ [~l--~ =k('~'Jflt'"~n(X))2] p/2-1-?'l" 

11" 
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Moreover, the integral at the right member of this inequality may be replaced by 
(2R)p. 

The proof is based on the next three lemmas. 

Lemma 4.1. There exists a q>p and a constant C=C(q) such that for each 
x e W] 

(4.3) II x~ m) 114 < C II x Ilrvg 

for m = 0 ,  1 . . . .  , l - 1  and v= 1 . . . .  , am. (For the notation see the first paragraph 
of the introduction.) 

Proof. Suppose first that m>=l-n/p. Then according to a result by SOBOL~V 
[13, Theorem, p.69], (4.3) is true for every positive q < n p / ( n - ( l - m ) p ) .  Since 
the latter number is greater than p, the lemma is proved under the assumption 
made. 

If however m < l-n/p, then by the same theorem xt, m) is continuous, and more- 
over I x~mll < c o n s t  II x [l~,g. This inequality obviously implies (4.3) for every posi- 
tive q since the measure of t2 is finite. 

Lennna 4.2. Let 0 < p < q .  Let ot be a positive number, and ~={z} a family 
of elements of L~(f2) for which 

(4.4) ~ Izl~ dt <ct; 

then there corresponds to each positive ~l a ~ such that 

(4.5) ~ Izlndt<rl, zE~  
E 

if, with Iz(E) denoting the measure of the set E, 

(4.6) # ( E ) < ( ,  E e a .  

Proof. Setting zl =x n, one sees that it is sufficient to consider the case p =  1, 
and a proof in this case is given in [8; p. 163]. 

Lemma 4.3. With the notation of theorem 4.2 there corresponds to each positive 
an flu=fl~(t$) (with arbitrarily small iS) such that for each x~BRc W~ 

(4.7) S Ixt~m)lPdt<rl (m=0,  1 . . . . .  1 - 1 ) .  
D--  t~iv 

Proof. We first choose a q according to lemma 4.1. We then see from (4.3) 
that (4.4) is satisfied with ~=(xt~mllxeBR} and with ~t=C ~ RL On the other hand 
since fl is a bounded open set, there exists an flN(t$) with arbitrarily small 6 
such that (4.6) is true with E=f l -DIN.  Thus our assertion follows from lemma 4.2. 

Proof of Theorem 4.3. (4.2) is now an immediate consequence of theorem 4.1 
and lemma 4.3. The additional assertion of our theorem follows from the fact 
that integral at the right member of (4.2) is not greater than IJ x lit, p< II x llwg as 
is seen from definitions (2.1) and (2.2). 
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We are now in a position to prove theorem 4.1. In obvious notation we have 
for x, a, yo~B e 

l(x; yo)-I (a;  Yo) 
I - I  

(4.8) = S E I f (  t ,a~ . . . . .  a('-l)'x(m)'x(m+l) .... 'x( ' - ' ) 'Yg) - 
f~ m--0  

- f (t, a ~ a t, ..., a (m-l), a (m), x (re+l), ..., x 0-1), yg)] dt. 

From the definition of the vector x (m) (see the first paragraph of the introduction) 
we see that the bracket in (4.8) can be written as a sum of differences in each 
of which only one component a~ m) changes to x~ m). From assumption A) we con- 
elude therefore that the right member of (4.8) is majorized by a finite number, 
say a, terms of the form 

c3m(x-a) ~dt, 
(4.9) L~ at~'...Ot~" Em~=m 

where L and ~ are positive constants, the latter < 1. Since p >  I, it is easily seen 
from HOELD~'S inequality that the expression (4.9) is not greater than 

{ I Om(x-a) IP ] ~/" 
(4.10) Lx~ otr~,...Ot:. [ d'~ , Lx=LP/'(/:(g2)) ('-~)/" 

where #(12) denotes the measure of f2. 

Now x and a are elements of B e. Therefore x--aeB2R and we may apply 
theorem 4.3 to the integral in (4.10) with x replaced by x - a .  We see from (4.8) 
and (4.10) that with az = a  p/" 

[I(x; Yo)- I(a; Yo)[p/z< al L1 rl + r Lx(M 6 z-'~ 2 R)~ + 
(4.11) N l - m - t  

,1 r 
Now if ~ is a given positive number, we first choose r/such that the first term of 
the right member of (4.11) is less than ~/3, then 6 such that the second term is 
also majorized by e/3. After ~/and 6 are fixed, the third term of the right member 
of (4.11) is a finite sum of powers of bounded linear functionals. It is therefore 
clear that there exists a weak neighborhood U(a) such that this term is also not 
greater then e/3 for x~U(a). This obviously proves theorem 4.1. 

Remark 1. The argument at the end of the proof just given shows also that 
for xeBe and for m =0, 1 . . . . .  l -  I the Lp norm of any derivative x~ ~') of x is 
continuous in the weak topology of BR. Indeed, the absolute value of l[ x~ ~) [1 p -  
II a~llp is not greater than II (x-a)~llp,  and 1[ (x-a)~ m) IIp is the integral in (4.10), 
and therefore by theorem 4.3 is majorized by the right member of (4.11) with 
al and L~ replaced by 1. 

Remark 2. For x in BR the norm 11 x II~,p (defined by (2.2)) is lower semicon- 
tinuous in the weak topology of BR. Indeed, since a Banach space norm l[ x Ilw], 
has this property [10; lemma 2.4], and on account of (2.1), our assertion follows 
from remark 1 (with m =0). 
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5. Proof of the existence of an x0~Ba minimizing the integral (1.1) 

As pointed out in the introduction, it is sufficient to prove the weak lower 
semicontinuity of I(x). Let e be a given positive number. For x, a in BR we 
see from (1.4) that 

(5.1) l ( x ) - I ( a ) > I ( a ;  x ) - I ( a ;  a ) -  I~(x; x ) - t ( a ;  x) l. 

Now since I(a; x) is weakly lower semicontinuous in x (section 3), there exists 
a weak neighborhood V(a) such that the first difference of the right member of 
(5.1) is not smaller than - e  for xeV(a) ,  and by theorem 4.1 there exists a weak 
neighborhood U(a) such that I I ( x ; x ) - l ( a ; x ) l < e  for xeU(a).  Thus we see 
from (5.1) that l ( x ) - I ( a ) > - 2 e  for x e V(a)c~ U(a). 

Appendix A 

Proof of theorem 4.2. We first consider the cube 1=11 c E "  of side length 1 
with the origin as center and with sides parallel to the coordinate axes. The norm 
tlxll.,~tl) of x~W~(I) is then defined in section 2 with 12 replaced by L With 
SOBOLEV we introduce a new norm Ilxll~ in the following way: Let S l be the 
vector space of all polynomials 

1--1 

(g.1) P =  ~, ~ a~l... ~. t~l.., t. ~" 
k = 0  Y~q=k 

of degree less than l in the variables tl . . . . .  t.. S t may be considered a finite 
dimensional subspace of the linear space underlying W~(I). Therefore there 
exists a "supplementary" space L~ such that every x~W~(I) has the unique 
representation 

(A.2) x = P + x l ,  P ~ S  l, xlelJ, p. 

Then with the norm I[ Ill.z defined by (2.2) and with IIP IIs, given by 

l-  1 ) t/~ 

the new norm is defined by 

(A.4) II x [1~ = {11 f II~,ll + x,  I1s p} ' / '  

which may also be written as 

(A.5) II x H~ {ll P 11~+ II x [1~. p}~/P 

since by (A.2) the I th derivatives of x agree with those of xl, and therefore II x Ill. ~ = 
Ilxllll ,p- 

Now I is clearly a Sobolev domain. Therefore the following result of SOBOL~V 
is valid [13; p. 72] : 

o Theorem A.1. The norms II x IIw~<1) and II x II w'~ <i) are equivalent, i.e. there exist 
two positive constants m and M (not depending on x) such that 

0 
(A.6) m II x II,.~ <~ < II x II,." <I)--< M 11 x 11%, u>. 
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Since I[ xll p < IL xll w~ (i) (see (2.1)), we conclude from (A.6) that l[ xll ~ < M II xll o, ex~, 
or written out 

IIx II"dt-<M" _ �9 ~ , ; - - - -  , ] I a t +  
- -  t O f t  . . .  atn",l _J I I.l LE ~r = 

(A.7) 1-1 } 

Here we consider the a~, ...,, as bounded linear functionals on W~(I); this is possible 
since by (A.1) these coefficients are certainly bounded linear functionals on the 
finite dimensional space S t which by the Hahn-Banach theorem may be extended 
to W~ (I). 

We now want to extend (A.7) to the derivatives x(~ ") of x (m =0, 1 . . . . .  l - 1 ;  
v = 1, ..., a,,). Since the ( l - m )  tla derivatives of x~ ") a r e  l th  derivatives of x we see 
that tr,) t-m x~ eW~ (I). Therefore (A.7) remains valid if we replace x by x~ =1 and 
I by l - m ,  and the a . . . . . . .  by appropriate linear functionals on W~-m(I). Thus for 

(A.8) ~(m)_ orax 
~v ml , Otl ... Ot~." o=xmp=m 

we obtain 

I ~gm Pd t 
0 t~".., ate" 

(A.9) <MP~ [ X a , ~ - - ( "  t3Zx- .'~2]p/2 
, at,~,+a,.. .OtT.+a" ] j dt+ 

I -ra-1 

where we have set 

(A. 10) La,... a.(x) = M a~'~?., a.,. 

and where the ata~'!. a., ~ are obtained as follows: if Pz  S t is the polynomial occurring 
in the representation (A.2) of x, then the aIa~'!. a.,. are the coefficients of the poly- 
nomial 

Om p 
(A.11) PI-m:~= Ot'~L.. Ot m" zSt-"" 

We claim that the Lp .... a.,v defined by (A.10) are linear bounded functionals on 
Wtp(I). Indeed the linearity is obvious. As to the boundedness, we know already 
that the at~!..a,,v are linear and bounded on Wg-"(I), i.e. that there exists a C > 0  
such that 

(A.12) [aa,...p,(x~m))l<C IIx~"~ 
Now the pth power of II xc.m)llt-~.p is by definition precisely the integral at the 
right member of (A.9), and this integral clearly < II x lit. p-<_ II x I[ w~. (t). On the other 
hand II x~ m~ lip < Const. II x Ilw.~(1) which inequality follows from [13; theorem, p. 69] 
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in the same way as the inequality (4.3). These inequalities together with (A.12) 
and (A.10) prove our assertion. 

We now consider the cube I6 = E" of side length 6 < 1 with center 00 = (0~ o 0,), 
and parallel to the cube L Setting 

(A.13) Oi=O~ ~(8)=x( t )  where 0 = ( 0 x . . . 0 , ) ,  

and taking into account that the Jacobian 

(A.14) a ( q  . . . .  , t . )  = 6 - "  
0(o~ . . . . .  0.) 

and that 
amx 0"4 

(A.15) = 6 "  
0t~" ... 0t~'" " ' 001 ... 00,"" 

we see that (A.9) written in the new variables becomes 

(A.16) < M P f t ' - " " , [  ~ ( d 0 ] , , + a y 4  )21"/2 
I, ~:a, -,, ... 00~.+a ~ dO+ 

l - m - 1  

+6-', E [ E  "2, 
k=O ty.#~=k J 

where 

(A. 17) 2p,... p,, (4) = 6 "/" Lpt... p., v (x). 

We claim the 2p...p. are bounded linear functionals on Wtp(l~) with bounds 
independent of 6. Since we know that the LB, .. p. are bounded linear functionals 
on W~(I), we have to prove: if L(x) is a bounded linear functional on W~(1), then 

2(O=6"/PL(x), 0 < 6 < 1  

is a bounded linear functional on W~(Io) with a bound independent of 6. 

We omit the obvious proof of the linearity. Let ? be a bound for L. Then 

12 (O I"-- 6" I L (x) I"_-< 6" ~" II x II ~,,~ ~/) 

02 

_ n p -n o -n to Or4 2 o12 

(. la l f k Z o q = l \ U t T 1 .  " . ' V ~ n  / .J J 

where we again used (A.14) and (A.15). This inequality remains valid if in its 
right hand member we replace the factor 6 tp of the second integral by 1. But then 
the right hand member becomes T p II 4 I[ rv~ (x~) which proves that ~ is a bound for 2. 

We now return to the Sobolev domain 12 considered in theorem 4.2 and 
suppose that I 6 = f2. Then the following facts are easily veffied: if we map the 
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element xeW~(I~) on Yc=Yg(t) defined by 

Fc(t)=x(t) for teI~ 

= 0  for t e f 2 - l ~ ,  

we obtain an isometric imbedding of W~(I~) in W~(f2), and W~(I~) thus considered 
as subset of W~(f2) is a closed linear subspace of W~(f2). Consequently a linear 
bounded functional 2 on W~(I~) can be extended to a bounded linear functional 
on W~(f2). Therefore we may and will consider the 2p .... B, appearing in (A.16) 
as bounded linear functionals on W~(O). 

Now let I~ (j  = 1 . . . . .  N) and On be as described in the statement of theorem4.2. 
If then ~eWp(f2), then the restriction of ~ to I~ belongs to W~(/~). Therefore 
(A.16) holds for each I~. Since the ;tpi...p, now depend on j we use the notation 
2~...a, for them. If we add the inequalities thus obtained over j from 1 to N, 
we obtain the asserted inequality (4.1). 

Appendix B 

Another application of theorem 4.3. 

Theorem. Let B be a bounded set in W~(f~), and let px (p = 1, 2 . . . .  ) be a sequence 
of elements of B. Then there exists a subsequence Pt, such for m =0, 1 . . . .  , l -  1, 
v = 1, 2 . . . . .  tr s the sequence of derivatives pix~ ml, p2x~ '~) . . . .  converges strongly in Lp. 

Proof. Since B is bounded, there exists an R such that B c B R .  Since BR is 
weakly compact and therefore closed in the weak topology of W[, we have 
B c B a = B  R where the bar denotes closure in the weak topology. As a closed 
subset of the compact set BR,/~ is also compact in the weak topology. It follows 
by a well known theorem (see e.g. [6; p.430]) that B is weakly sequentially com- 
pact, which means by definition: every sequence px in B contains a subsequence 
p,x to which there exists an oxeW~ such that 

(B.1) lira 2(p,x) =2(oX) 
i-~cO 

for every bounded linear functional 2 on W~. Now p ,x -  pjxe B2 n since px e Be  Bg 
for all p. We see therefore from theorem4.3 that IIp,x-pjxll~ is majorized by 
the right member of (4.11) with tr LI replaced by 1, and x - a  by p,x-pjx.  Arguing 
as in the lines following (4.11), we see that to given positive 5 we can choose first 
~/and then 6 in such a way that the first two terms of the modified right member 
of (4.11) together are not greater than 25/3. It now follows from (B.1) that there 
exists an io such that the third term becomes less than 5/3 for i a n d j  greater than io. 

Remark. If B is dosed  in the weak topology, then oxeB. Sufficient for the 
weak closure of B is that B is convex and strongly closed (see e.g. [6; p.422]). 
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