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1. Introduction 

A method for explicitly solving the exterior Dirichlet problem for the three- 
dimensional Helmholtz equation in terms of the Dirichlet Green's function for 
Laplace's equation has recently been found [6]. The present work shows how a 
similar technique may be used to solve the exterior Neumann problem in terms of 
the corresponding Neumann-Green function for Laplace's equation. 

The existence of the required potential Green's function is proven by KELLOGG 
[5]. This work formed a basis for WEVL [14] and MiJLLER [9] who proved that a 
solution of the exterior Dirichlet problem for the Helmholtz equation exists. 
LEIS [7] extended these ideas to establish the existence of a solution of the exterior 
Neumann problem for the Helmholtz equation and an alternative existence proof 
has recently been given by WER~R [13]. The utility of these results in actually 
producing a solution, however, has not been demonstrated. 

That the solution of the boundary value problem for the Helmholtz equation 
may be found as a perturbation of the solution of the corresponding potential 
problem is shown by NOBLE [10]. The solution is expressed as a power series in 
wave number, each term of which is the solution of an integral equation of the 
second kind which differs from term to term only in its inhomogeneous part. This 
formulation of the problem does not yield an explicit representation of the solu- 
tion, however, except as the formal inverse of an integral operator. 

In the present work, a representation of the desired solution is derived which 
expresses the solution as a linear operation on itself plus a known term. The 
linear operator is shown to be bounded, and the inverse, for small values of wave 
number, is given by a standard LiouviUe-Neumann series. 

The principal result of the paper is contained in the following. 

Theorem. If 
(a) V is the volume exterior to B, a smooth, closed, bounded surface in E 3. 
(b) Go(p, Pl) is the potential Green's function of the second kind for this 

surface 



Exterior Neumarm Problem for the Helmholtz Equation 219 

and 

(c) u is a solution of the Helmholtz equation ( F 2 + k  2) u=0,  p~ V, and u also 
satisfies the radiation condition at infinity, then, for I kl sufficiently small, u is 
given explicitly in terms of the values of its normal derivative on B as 

U = e  ikr ~,  Lno U (0) 
n=O 

where the operator L is defined by 

c o ~ L o w = _ 2 i k  S Go(p, pl ) a 
v r~ Or 1 [rlc~ 

_ . . ~ r  B 

+ i k ~ Go (p, PB) ~ co (PB) d as, 

and 

U(0)=  _ ....~_/ 41r ~ Go(P'PB) e-ik'B onOU d~B; 

p andpl denote points in V, PB a point on B at distances r, r 1, and r B respectively 
from the origin of a coordinate system centered in B, dv 1 is a volume element in 
coordinates Pl, dan a surface element in coordinates PB, and alan is the normal 
derivative directed out of V. 

If the value of du/On is specified and the static Green's function G O is known, 
then clearly u (~ is also known explicitly. 

In the following section we introduce notation and derive an integral repre- 
sentation of functions regular at infinity. This theorem is then used, in Section 3, 
to obtain a representation of functions satisfying the Helmholtz equation and a 
Sommerfeld radiation condition. It is shown that the result includes the cases when 
u represents the velocity potential of an acoustic field scattered by a rigid surface 
when illuminated by plane waves or point sources. In Section 4, we prove that the 
representation considered as an operator equation may be solved iteratively, thus 
establishing the main theorem. The relation between the series of iterates and 
the usual low frequency expansion is described. The method is demonstrated in 
Section 5 in the example of scattering of a plane wave of sound by a rigid sphere. 
The results are shown to agree with the classical solution. 

Some deficiencies in the treatment of the Dirichlet problem are pointed out 
and corrected. No fundamental error has been found, however, and the treatment 
here parallels that in [6] as closely as possible, thus eliminating the repetition of 
many detailed arguments. 

2. A Representation Theorem 

The notation we use is consistent with that in [6]. Thus B is the boundary 
of a smooth closed bounded surface in E a, and V is the volume exterior to B. 
Erect a spherical polar coordinate system with origin interior to B, and denote by 
p a point (r,/), ~p) in V and by PB a point (r n, ~B, ~%) on B. The distance between 
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any two points p , p ~  V= V u B  will be denoted by R(p,p~) and is defined as 

R(p,p~)=[r2+r2-2rrl(cos~cos~l+sin~sin~lcos(go-tp~))] �89 (2.1) 

Furthermore, let c = max rn, so that B is contained in a sphere of radius c and 
assume that the normal to B is directed inward (out of V). 

A more precise definition of the degree of smoothness of the surface B is 
provided by requiring that it be described by an equation 

r n = g(O, ~) (2.2) 

where g is a continuously differentiable function of ~ and r Moreover, the quan- 
tity ~ .  rn, where r~ is the unit normal and r~ the unit radius vector, must be uni- 
formly HiSlder continuous on the surface. All of the results to follow remain valid 
if B is a finite union of disjoint surfaces, provided each of them satisfies the 
above requirements. 

A real valued function f :  V ~ E  1 is defined to be regular (in the sense of 
KELLOOG) at infinity if 

r f=O(1)  r2 3 f  O(1) as r - )oo  (2.3) , -~--= 

uniformly in ~ and ~. 

A complex valued function is regular if both real and imaginary parts are 
regular. 

The Neumann potential Green's function for the surface B, the existence 
and uniqueness of which is proven by KELLOGG, is defined to be a function 
Go(p,p~) of two points and may be written in the form 

1 
G~ 47~R(p, pl) ~-u~ P ' P t e V  (2.4) 

where Uo(p, px ) has no singularities in V and 

(a) V2Uo(p, pl)=O, p, p l~V,  

0 
(b) ~ Go(pB, P t ) = 0 .  

[This notation is used repeatedly and has the following meaning. Let 17 be the 
gradient operating on coordinates of p and r~ the unit normal on B directed out 

0 
of V. Then define VGo(pB, pl)=VGo(p, pl)]~n and-~-ff- n Go(pn,pl)=r~. 
17 Go(pn, Pl).] 

(c) Uo is regular at infinity. 
In terms of this Green's function we may state an integral representation of 

functions regular at infinity. This is contained in 

Theorem 2.1, If  co: V--,E 1 is a function which is twice differentiable in V and 
regular at infinity, then 

co(p)= ~ Go(p, Pt) 172 co(P1) d v t -  ~ Go(p, Pn) ~-~ co(Pa) d~n (2.6) 
V B 
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where Go(P, Pl)  is the Neumann potential Green's function, dv 1 is the volume 
element and 172 is the Laplacian both expressed in coordinates (rl, O1, ~1), dan is 
the surface element and a/On the inward normal derivative (out of V) both expressed 
in coordinates (r B, OB, ~PB). 

Proof. Let V' denote the volume exterior both to B and a small sphere S 
centered at R(p, Pl)=0, and interior to a large sphere, B1, entirely enclosing B. 
Then by Green's second identity 

S [to(P1) 172 Go(p, Pl)-Go(p, P,) 172 to(P1)] dr1 

v' rto( , a , a j 1 (2.7) 
= ~ [ p)-~n ao(p,p')-ao(p,p)-~n to(p ') da'. 

B+BI+S 

Letting the radius of S shrink to 0, we find that 

( ~176 aGO Go~ da'. (2.8) to(P)=- -f to-TU- 
$ 

If we make use of this result together with the differential equation and boundary 
condition satisfied by G O , equation (2.7) becomes 

to (p) = $ a 0 (p, p 1 ) 172 to (P l) d v 1 - ~ Go (p, PB) ~ n  to (PB) d tr B + 
v' a (2.9) 

+ ~ to(PB,) G~176 an ] 
BI 

The integral over B~ vanishes as the radius of B1 becomes infinite by virtue of 
the regularity of to and Go (details are given in [6]), thus proving the theorem. 

3. A Representation of Wave Functions 

A function u: V ~ E  1 is a scalar wave function for the volume V if 

(a) u(p) is twice continuously differentiable in V (ueC2(V)) with the under- 
standing that if pEB the limit is taken from the exterior, V, 

(b) (V2+k2)u(p)=O, peV,  (3.1) 

(c) r - ~ - - i k u  =o(1) ,  a s r ~ o o ,  uniformly in 0 and q~. 

Other statements of the radiation condition are possible (WILCOX, [16]), but 
this form, as given originally by S O ~ R ~ L D  [I1] is quite adequate for our 
purposes; it may be stronger than necessary, but it does what we want it to do, 
namely, characterize radiating solutions of the Helmholtz equation. 

We wish to employ Theorem 2.1 to represent scalar wave functions, but they 
are not regular at infinity in the sense of KELLOGG. In order to modify them, 
we employ a well-known expansion theorem given with varying restriction by 
ATrdSSON [1], S O ~ L D  [I2], B ~  & KAY [2] and most generally by 
WILCOX [15]: 
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T h e o r e m  3.1. I f  u is a scalar wave function for  the volume V, then 

e 'k" | f ,(~,tp) (3.2) 
U :  r n_-~O r n ' 

where the series converges absolutely and uniformly for  r > c + e, ~ > 0 and c ---max rB. 
Furthermore, the series may be differentiated term by term with respect to r, ~, and qJ 
any number of times, and the resulting series all converge absolutely and uniformly. 

It follows from this expansion theorem that if u is a scalar wave function, then 

(p) = e- i ~, u (p) (3.3) 

is regular and satisfies the hypothesis of Theorem 2.1. Furthermore, as may be 
verified easily, since u satisfies the Helmholtz equation, 

V2~= 2 i k  a 
r 8 r (r ~). (3.4) 

In addition, 

8 
an u ( P B ) = h ' V ~ = h ' V e - i k ' u = - i k h ' ~ a ? t ( P B ) + e  -ik'B au(pB)an ' (3.5) 

where ~ and ra are unit vectors in the normal (inward) and radial directions 
respectively at Pv. (If B is a sphere, ~ = -  ~ . )  Incorporating these results in 
the representation theorem, Theorem 2.1, establishes the following: 

Theorem 3.2. I f  

(a) u is a scalar wave function for  V, the exterior of a smooth, closed, bounded 
surface B and 

(b) Go(p, pl )  is the Neumann potential Green's function for  this surface 

( 9 G , p l ) = 0 )  Tn- o(pB 

then f f (=e- ikr  U) may be represented as 

~ ( p ) = - 2 i k  S Go(P, Pl) 8 
t" rl 8rl  [ r l u ( P l ) ] d v l +  

+ i k  ~ Go(p, pa)h .  ; ' au (pa )daa-  ~ Go(P, Pa)e - ' k "  8u(pn) 
B B an  

- -  daB. 
(3.6) 

Included in this theorem are representations of the solutions of the two most 
common exterior Neumann problems for the Helmholtz equation and the sur- 
face B. If 

au a [ 1 
8 n = 8 n I. 4 - n - - - R ~ )  J ' (3.7) 



Exterior Neumann Problem for the Helmholtz Equation 223 

then u represents the regular part of the Neumann Green's function for the Helm- 
holtz equation. If 

^ 

a u _  a (eik7.~) ' (3.8) 
an an 

then u represents the field scattered when a plane acoustic wave is incident in the 
direction 0~ on a rigid surface B. Note that the representation, (3.6), is in terms 
of u but ff is easily found by multiplying with the phase factor e ik'. 

The difference between the representation (3.6) and the corresponding ex- 
pression in the Dirichlet case is the occurrence of a surface integral involving the 
unknown function as well as one involving its normal derivative on the boundary. 
We shall show that the term involving the unknown function can be lumped 
with the volume integral leading to an expression of the form 

~ = L o ~ + u  (~ (3.9) 

which may be inverted exactly as in [6]. This is done in the following section. 

4. A Liouville-Neumann Expansion 

The form of (3.9) suggests that an explicit solution may be given in the form 
of a Liouville-Neumann series, i.e., 

~ = ( I - L ) - l o u ( ~  ~ Lnou ~~ (4.1) 
n = 0  

That this, in fact, is the case and that the series does converge to the solution is 
the subject of this section. The proof parallels the treatment of the Dirichlet case, 
though some modifications are necessary. 

First we define the partial sums 
N 

u(N)= ~ L"o u w). (4.2) 
n = 0  

We shall show that z7 (the solution we seek), u (~ (the known term), and all the 
iterates u (N), N = 1, are elements of a normed linear vector space and that in this 
norm 

lim u iN) .~. ~l . (4.3) 
N--~ oo 

Recall that V is the volume exterior to the surface B, and let 6 be the radius 
of a sphere entirely containing B in its interior. With the surface B we associate 
the following function space W consisting of the set of functions ~o: V- . .E  1 
satisfying 

(a) o~eC2(V),  t o e C l ( V ) ,  

1 ~ (4.4) 
(b) r = - -  ~ f" (~ tp) r > 6 

r n =  0 r n ' _ 
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and the series is uniformly and absolutely convergent and term by term differ- 
entiable with respect to r, 0 and ~o as are the derived series, 

(c) L = ~ Ym(S, ~o), 
m = n  

where Y,, is an mth order spherical harmonic, i.e., 

Ym(~9,9) = ~ AzmP~(cosO) e tt'p. 
l =  - m  

Clearly W is a linear space. It is essentially the same function space introduced 
in the treatment of the Dirichlet problem, although the present characterization 
is more precise. 

We define the following norm on W, 

II o9 II = max log(P) I �9 (4.5) 
p ~ 1 7  

We now proceed to prove a series of lemmas which enable us to establish the 
main result. We define two linear operators, K and K1, as 

and 

og--' ,Koog=-2ik ~ Go(P, P1) ~9 v rl 0 r I [rt Og(Pt)] dvx, (4.6) 

o9 --" KI o co= i k ~ Go(P, P~) n" ;'n og(Pn) dan. 
B 

The equation we wish to solve then is 

where 

and 

(4.7) 

ff=Lo ~7+u (~ (4.8) 

u(~ S Go(P, Pn) e-~'~ Ou(pB) dan 
B On 

(4.9) 

Lo f f = K o  if+K1 o ft. (4.10) 

Since L is linear and K is the same operator dealt with in [6], the decomposi- 
tion enables us to cite the already known properties of K. The static Green's 
function involved is, of course, different, but this does not change the behavior 
at infinity or at the source which are the vital properties. The different boundary 
condition does require a slightly more detailed proof of Lemma 4.4 below. We 
still must establish the properties of Kt, but happily this is much simpler. The 
first task, however, is to show that u (~ is in W. 

Lemma 4.1. u(~ W. 

Proof. The definition of u (~ (4.9), shows that u (~ consists of the potential 

of a single layer distribution of density e -zk'~ a__u_u plus another term (corre- 
an 
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sponding to the regular part of the Green's function) which is at least as well 
behaved. Therefore the differentiability of u (~ is essentially that of the potential. 

If the density e -ikr~ 9u . an is piecewise continuous, then according to KELLOGG 

[5, p. 122] the potential is infinitely differentiable in V, thus, in particular, the 
potential (hence u ~~ is twice continuously differentiable in V. Furthermore, 
if the density is uniformly HiSlder continuous, then again, according to KELLOGG 
[5, p. 165] the potential (hence u t~ is continuously differentiable in the closure V. 
That the density is uniformly HSlder continuous (hence piecewise continuous as 
well) is implied by the fact that u is a scalar wave function, and therefore ue C 2 (V). 

u C~(B), which together with the fact that B is closed This, in turn, implies ff~-e 

ensures that ~u/dn is uniformly HSlder continuous on B. Since r B is a continuously 
differentiable function of 9 and ~o it follows that e -ikr~' is uniformly HOlder 

continuous, hence so is the product e -ik'~ au &z " Therefore u t~ satisfies (4.4a). 

Go (P, PB) may be expanded in an absolutely and uniformly convergent series 
of spherical harmonics of the form (e.g. KELLOGG [5, p. 143]), 

1 p~ ,  
Go(p, pB) = ~ ~ A,,,(pB)--ff-4T , tcosoa)e i ' ~  r>_5. (4.11) 

~ = o  m = - n  r 

Thus for r>6 we may rewrite u (~ as 

a o  
1 

U ( ~  = - -  
n=O r n + l  

which is of the form 

~ P~(c~ elms* S Amn(PB) e-ik'e t3u da B 
m =  - n  B ~ n  

(4.12) 

u (~ ~ Y~(O' r (4.13) 
n = 0  r n+ l 

Thus (4.4b) and (4.4c) are also satisfied and the lemma is proven. 

Lemma 4.2. I f  09 e W, then L o co e W. 

Proof. Since L=K+K1 (all linear) and W is a linear space, it suffices to show 
that coe W implies that Ko coe W and K1 o we W. That we W implies Ko coe W 
is proven in [6]. (The fact that the potential of a volume distribution is differ- 
entiable up to and including the boundary is proven by KELLOGG [5, p. 152]. 
This is needed for the second part of (4.4a) which was omitted in [6].) It remains 
to show that toe W implies K 1 o coe W. Equation (4.7) shows that K~ o co is the 
potential of a single layer distribution of density i k t/. ~B co(pB) plus a regular 
term. That is 

Kx~ [ 4rcR(p,l t-u~ (4.14) 

where Uo is a regular potential function at all points p e  V. The proof is exactly 
the same as that used to prove Lemma 4. I, provided the density i k r~. ~B co (PB) 
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is uniformly H/51der continuous. The fact that coe W ensures that cocCI(10. With 
the fact that B is dosed and finite, it follows that co(PB) is uniformly H~51der 
continuous. The density then will be uniformly H~51der continuous if ~. ~B is. 
This, however, is one of the smoothness requirements on B (Section 2). Provided 
then that the surface is sufficiently smooth in this sense, the fact that K~o o~e W 
follows by the same arguments used to establish Lemma 4.1. 

Observe that this proof makes no use of the factor k in the definition of the 
operators. Thus if we define new operators, O, O1, and L1, all independent of k, 
so that 

L = k L l = k O + k O  1 (4.15) 
where 

and 

0 o o9= - 2 i  ~ Go(p, Pl) ~ [r 1 co(Pl)] dv~ (4.16) 
1I rl ~rl 

O1 o co = i ~ Go (p, pn) n. rB co(pB) d a n , (4.17) 
B 

then it follows immediately that 

Lemma 4.3. coe W implies that Llo coe IV. 

Lemma 4.4. LI is bounded. 

Proof. It is sufficient to show that there exists M < ~  such that if coe IV, 
then IIL~o co II ~ M  II co II. Furthermore, since 

L I = O + O  1 (4.18) 
and 

IIL~o coil = II 0 o co+Ox o coil__< II 0 o coil + I101o coll, (4.19) 

it is sufficient to demonstrate that 

II 0 o co II ~ M1 I[ co [I, M1 < oo, (4.20) 
and 

IlOxo coil<M2 IIcoll, M 2 < o o .  (4.21) 

Consider (4.20) first. Here the proof is slightly more complicated than that 
given in [6] since the static Green's function does not vanish on B, but the proced- 

afo ,, ure is much the same. Note that - ~ r  - u ,  where fo is the first coefficient in 

the expansion of co, equation (4.4b). Thus we may write 

0 o c o = - 2 i ~  Go(P, Pl) v rl Orl jr1 co(Pl) - fo]  dr1 

or, equivalently, 
1 0 

O o co= -2iv~ ~ ~ (rl Go(p, pl)[rl ~o(pl)-fo])dvl + 
(4.22) 

co fo 0 + 2 i ~  1 I - - r1  ( p l ) - - ~ - ]  - ~  [r, Go(p, px)]dvx. 
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It is a trivial calculation to show that for any scalar function F 

1 a (r 2F)=171 . (P lF) ,  

where 17t operates on (rl, 01, ~o~). With this relation, the divergence theorem may 
be employed to transform the first integral on the right-hand side of (4.22) yielding 

n (4.23) 

[ ,  Co(p, p,)] do1. 
V r l  

An additional surface integral over a sphere of infinite radius vanishes because 

r2Go(tO---~)=o(1) as rl ~ oo. 

The volume integral in (4.23) is the same as that arising in [6] except for the dif- 
ferent definition of Go and a factor 1/r 1. Actually this factor should have been 
present there also, though its absence does not affect the conclusions. 

Now we employ the following estimate 

where C is some constant independent of ~o. A different form of this was derived 
in [6], and, although the proof given there is subject to question, the result as 
stated above is still valid. A rigorous demonstration of this will be included in 
a subsequent communication. Assuming the validity of this estimate, together 
with the fact that since ~ and ~n are unit vectors, I r~. ~nl < 1, we see that for p c  V 

[~ r~-n dtrB 1 ~ - ~ ( r x G o ) d v x ] 2 C [ I o ~ l l .  IOocol=< Iao(p, pB)l 1 + v S r-~ (4.24) 

The surface integral may be rewritten, separating out the singular part of 
the Green's function, as 

e~ [Go(p, PB) I r-~B dab < ~4rc r 2 R(p, p Q d a n +  ~ l Uo (p, Pn) l dan.  (4.25) 

The first term on the right is the potential of a single layer distribution of density 
1/4n r 2. Since rB~=0 (the origin was taken within B) and the surface is smooth, 
dosed and finite, this density is uniformly HSlder continuous which means 
(KELLOGG [5, p. 165]) that the potential is continuously differentiable for all 
points p e V .  The second term on the right hand side of (4.25) is the integral of 
a bounded function over a finite surface and hence is also bounded. Thus for 

16a Arch. Rational Mech. Anal., Vol. 23 
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some N <  09, 
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[ Go(p, Pn) [ ~ dan<N, pe V. (4.26) 
n 

The volume integral in (4.24) is also bounded since the integrand is sufficiently 
well behaved. At the singularity of Go 

1 d-~(riGo)l=O(1/RZ) asR- -*0  

and is therefore integrable over any finite volume containing the singularity 
(KELLOGG [5, p. 148]). Furthermore 

(rl Go) O(1/rSl) as r 1 ~ 09, 

thus for some N1 < 09 

1 ~ Go(p, Pl)-] ~ [r 1 d vl < N1, p e V. (4.27) 

With (4.24), (4.26) and (4.27) we have 

IOocol<(N+N1)2C Ilcoll, pep ' .  (4.28) 

In particular this is true for the maximum value of 10 o ~o 1, therefore, renaming 
the constants, 

II O o co l[ <M111 co II. (4.28) 

Next we establish (4.21), thus proving the lemma. With the definition of O1 
(Equation 4.17) we see that 

[ O 1 o co [ < S [ Go (p, Pn) [ [ n" rn [ [ co (Pn) [ d a s . (4.30) 

By definition, 

Also t~ and r~ are unit vectors, 

Thus 

I co(PB) I ~ I1 co II. (4.31) 

(4.32) 

(4.33) Io lo  col~ Ilcolf ~ [Go(p, pB)I daB. 
n 

The inequality is strengthened if we insert the factor g2/r~ in the integrand where- 
upon we use (4.26) to write 

[Oxo col<62N Ilcol[, peV.  (4.34) 

Again, this is true for all values and hence also for the maximum value of 1Olo 09 I. 
Thus, letting M 2 =62N, we have 

1 O1 o col< M2 II ~o II, (4.35) 
proving the lemma. 
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Lemma 4.5. [I L II < 1 for sufficiently small [k]. 

Proof. Since L and L~ are linear, 

L = k L t implies [I L U = I k I l[ LI [I. 

Lemma 4.4 guarantees the existence of M such that 

(4.36) 

U Lx II < M .  (4.37) 

H e n c e  II L II < I k l  �9 M .  Choosing I k l  < l/M, w e  h a v e  p r o v e n  the  l e m m a .  

Lemma 4.6. ff(p)~ W. 

Proof. u is a scalar wave function, therefore u~C2(V). Since e -tk" is analytic 
in r and r is continuously differenfiable on B, ff=e-~k'u satisfies the requirements 
that ff~C2(V) and ff~C~(V), hence (4.4a) is satisfied. Furthermore, scalar wave 
functions may be expanded in spherical harmonics, i.e., 

u(p)= ~ h,(kr) Y~(~, ~p), r> 6, (4.38) 
n=O 

where hn(k r) are spherical Hankel functions of the first kind. The fact that 
(4.4b) and (4.4c) are satisfied follows from this expansion and the definition 
of the Hankel functions. Details are found in [6]. 

We now are in a position to prove the main result. 

Theorem 4.1. Let B be a smooth, closed, finite surface in E a described by the 
equation ra=g(~, q~) such that g is continuously differentiable for O<~<Tz, 
0 < t p < 2 n ,  and ~. ^ r B is uniformly Hi~lder continuous (equivalently, [l+(Vg)2] -* 
is uniformly H~lder continuous). I f  u (p) is a scalar wave function for V, the exterior 
of B, then for I k[ sufficiently small u(p) is given explicitly by the convergent 
expansion 

u(p)=e ik" ~ L ~ o u (~ (4,39) 
n=O 

where 

Go(P, pl) Lo u(~ - 2 i k  [ - -  d 

a 
v rt art Erl u(~ + ik ~ S Go(p, PB) n" ;'Bu(~ 

u~O)(p)= _ ~ Go(p,p~)e_ik,, a 
B 0 n u (Ps) d a s ,  

Go(p, ps ) is the static Green's function whose normal derivative vanishes on B, 
and the normal is taken out of V. 

Proof. Multiplying both sides of (4.39) by e -ik', we obtain 

if-- ~ L n o u (~ 
n=O 

Observe that if, u (~ and u (N) (the partial sums, 4.2) are in W (Lemmas 4.1, 4.2 
and 4.6). Thus [1 i f - u  (N) [1 is meaningful for any N_-> 0. We shall prove the theorem 

16b Arch. Rational  Mech. Anal., Vol. 23 
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by showing that for any e > 0, ~ No (e) 

II i f -  u (N) II <e  provided N>No.  (4.40) 

Theorem 3.2 shows that 
f f = L o  ~ + u  (~ (4.41) 

In addition, from the definition of u (N), we find 

N 
u(~)= ~ Lno u (~ which implies u(N)=Lo U(N-1)+U <~ (4.42) 

n=0  

With (4.41) and (4.42) it follows that 

i f -u(N)= L N+~ o if; (4.43) 
hence 

II • -noN)  II < il L II N+x II ff II. (4.44) 

But Lemma 4.5 states that II L II < 1 for I k [ sufficiently small and II ff II is bounded 
since f l e w  (Lemma 4.6). Therefore we may always make IILII N+x II fill as small 
as we wish by choosing N large enough. Specifically for any e > 0 

11L II N+x il ~ II <5 (4.45) 
provided 

8 

log  II ff II 
N + 1 > log  II Z II " (4.46) 

This proves the theorem. 
Representations of wave functions in two important special cases follow 

immediately. 

Corollary 1. The Green's function of the second kind for the Helmholtz 
equation and the surface B (OGk/On=O on B) is 

e i k R (p, po) 
Gk (P, Po) = t- u (p, Po) (4.47) 

4nR(p,  Po) 

where u(p, Po) is defined explicitly in (4.39) with 

�9 0 [eikR(P~'P~ 
u(~176  ~----~ G~ On ~-~,-p-~o)l d~"" (4.48) 

Coronary 2. The velocity potential u t when a plane acoustic wave is incident 
in a direction ~t on a rigid surface B (Out/On=O on B) is 

^ 

ut(p) = e i k, .  ~ + U (p) (4.49) 

where u(p) is defined explicitly in (4.39) with 

c~ (e,~,~.g) dan.  (4.50) u(~ = ~ Go(p, pn)e -~k'B On 
B 
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We may also easily prove that a scalar wave function is uniquely determined 
by the values of its normal derivative on a boundary. 

Theorem 4.2. I f  ul and u2 are scalar wave functions for V and 

aul  _ au2 on B, 
an an 

then u~ =u2 everywhere, pe  V. 

Proof. Assume u~ ~u2, and let ~ = e  -ik" u i. With Theorem 3.2 we have 

~l=Lo~l+u(~ g2=Lo u2-bU (0) (4.51) 

where u (~ is the same in both equations since the normal derivatives are equal. 
Therefore 

ul--u2----Lo (ul--u2),  
and 

II ~ x - ~2 II _-__ II L I[ [I ~l - ~2 II. (4.52) 

Since II ~1-~2 I1,0, by assumption, we may divide, obtaining 

l~llZl[ 
which violates Lemma 4.5. 

We conclude this section by pointing out the relation between the series re- 
presentation of wave functions expressed in Theorem 4.1 and the usual low 
frequency expansion. If the boundary data is analytic in k, as is the case in 
Corollaries 1 and 2, then the low frequency expansion expresses the wave func- 
tion as a power series in k, and the coefficients in such an expansion may be 
given in terms of the operators defined previously. Thus if 

then we may write 

u(~ ~ a,(p)k n, ~ (4.53) 
n = 0  

u(p)=  ~ b,(p) k ~ (4.54) 
n = 0  

where the bn's are defined in terms of the an's as 

b"=m ~ (ir),-m m 
o (n--m)! ~' I~1 o am-I. 

= l = 0  

(4.55) 

This result is exactly the same as in the Dirichlet problem (with the definition 
of the operator changed), and details are given in [6]. 

5. An Example - -  Scattering of a Plane Wave by a Sphere 

Both as a check and an illustration we apply the techniques described in the 
previous sections to a specific problem, scattering of a plane wave of sound by 
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a rigid sphere. In this zase the exact result is known, and we are able to show 
not only that the iteration produces the correct result but how the N th iterate 
approximates the exact result. 

The surface B is now a sphere of radius a whose center is taken as the origin 
of the coordinate system. The static Green's function of the second kind for 
the sphere is 

1 ~ f |  r~ na  2n+1 
Go(p, pO= - 4--~.~o ~ r - ~ - ~  (n+l ) ( r rO,+l  f P.(cosr) (5.1) 

where 

and 

r< = min (r, r l) ,  

r> =max(r ,  rl) 

cos y = ~. rl = cos 8 cos 81 + sin 8 sin 81 cos (~p - ~p 1). 

The incident field is a plane wave which, without loss of generality, is chosen 
as propagating down the z-axis, i.e., 

tti e-it~-;";, e - ikz  e- ikr  eos3 (5.2) 

The boundary values of interest are 

r = a  oo du i d -ik . . . .  ~ - k  ~, ( - i ) " (2n+l ) j ' ( ka )Pn(cosS )  (5.3) 
d-----n- dr  e = ,=o 

where j~ is the spherical Bessel function and the prime denotes differentiation 
with respect to k a, i.e., 

d (ka)  

The scattered field, u (where du /dn=-du i /dn  on B), is given by the methods 
described previously as 

where 
N 

u (N) = ~ / Y  o u (~ 
n = O  

o- (o):~x_ i k f { < 

L , '~'--2--~-~ ~n=o ~ Y+lq 

u = lim eik'u ~N) (5,5) 
N - ~ o o  

n a 2n+1 } 

n + l  ( r r l )  ~+1 • 

• V.(cos r)-~ a-S~ [r~ u~~ dvl + 

i k  ~ 2 n + l  a" 

(5.6) 

(5.7) 
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(cos ~ always involves coordinates of p and the integration variables) and 

ke  -*~ ~ 2 n + l  a n 
u(~ 4~ ~ =  n + l  r ~ + ~ x  

(5.8) 
o o  

x P~(cos r) ~ ( -  i)" (2m + 1 ) j ' ( k  a) Pro(COS Oa) daB. 
m = 0  

The orthogonality of the Legendre functions enables us to evaluate u c~ and 
the first few iterates. Omitting the details, we find these to be 

u(~ a e - * k a  
(2n+  1) n - l - 1  

n=o ( n + l )  ( -  i)" ~ j" (k a) P~(cos (5.9) 

u~ a e- ik~aj 'o(k  a) ( l  + i k a )+  
r (5 .10)  

- i k a  o~ 2 n + l  �9 n n + l  . i  + k a e  ~ ~ ( - t )  (a/r) j , ( k a ) P ~ ( c o s S ) [ l + i k a - i k r ] ,  
r l ~  l ! 

u~ 2] (p) = k a e-ik a a J'o (k a) [1 + i k a - (k a) 2 ] + 
r 

+ k a e - 'ka ~ 2 n + l  ( _  i)~(a/r)~+ l j , (k  a) x (5.11) 
~ 1  n + l  

[ (kr)2(n-1)  (ka)2(nZ+n-1)]  
x P~(cos ~) l + i k ( a - r ) + k 2 r a  2 n - 1  ( n + l ) ( 2 n - 1 )  " 

The exact expression of u is 

u(p) = - ~ ( -  i)"(2n + 1) j'~(k a) P~(cos ~) h~(k r) (5.12) 
~=o h',(k a) 

where the prime again denotes differentiation with respect to k a (see 5.4) and 
hn is a spherical Hankel function of the first kind. Explicitly 

/I e i~ i_~_ 1 ~ (n+m)! 1 h~(z)= . (5.13) 
(n-rn)!m v ( - 2 i  z) ~ Z m = 0  �9 

With this definition we find that 

h~(k r) _ 
h'. (k a) 

k a e i k (r- o) (a/r)" + 1 x 

( 2 n - m ) !  ( - 2 i k r )  m (5.14) 
m=o ( n - m ) !  m! 

( 2 n -  m)! ( _ 2 i k a ) m ( n + l _ m _ i k a )  
(n-m)V rnt r a = O  

The ratio of the two polynomials, of degree n in k r in the numerator and n + 1 
in k a in the denominator, may be re-expanded, for k a sufficiently small, in 
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ascending powers of k. Thus 

_ e i k ( r  - a )  

hn(k r) k a - - ~ - - ( a i r )  n+l ~ o~ t k s, n >-0 (5.15) 
h'n (k a) n + ~=o 

where the coefficients ct t are functions of r, a, and n. The first few have been 
found to be 

~o = 1, 

~ x = i a ,  n = 0 ,  

= i ( a - r ) ,  n > 0 ,  (5.16) 

0C2= - - a  2, n = O ,  

n--1 nZ-l-n--1 
=a r-- r 2 a 2, r / > 0 .  

2 n - 1  ( n + l ) ( 2 n - 1 )  

In terms of these expansions the exact result for u, equation (5.12), may be 
rewritten as 

u ( p ) = k a e  ik~'-") ( - i )  ~ (a/r)n+lj '~(ka)P,(cosS)~cqkt.  (5.17) 
n=0 1=0 

If we denote by UN (P) the expression resulting from taking only the first N terms 
in the expansions in k in (5.17), that is, 

- n 2 n + l -  ,-n+ N 
u n = k a e ' k ( r - a ) ~ ( - - i )  - - h - ~ ( a / r )  lj'n(ka) Pn(cosS)~atk '  , (5.18) 

n=0 /=0 

then we see that, for the values of N computed, 

UN = e i k r u(N) (5.19) 

where the first few iterates, u ~N), are given in (5.9)-(5.11). 

This could be pursued for more values of N but there is little reason to do so. 
The terms explicitly evaluated not only serve as a check on the method but are 
sufficient to show how the iterates approximate the exact solution. Just as in the 
Dirichlet case, the N th iterate approximates the exact result just as N terms of a 
power series expansion of the quotient of two polynomials approximates the 
quotient. 

6. Concluding Remarks 

The main result of this work has been the derivation of an explicit solution 
of the exterior Neumann problem in terms of given boundary data and the 
Green's function for Laplace's equation whose normal derivative vanishes on 
the surface. It  should be noted that this work does not, as originally thought, 
constitute a proof of the existence of a wave function for arbitrary (differentiable) 
boundary data. The series of iterates in terms of which the solution is obtained 
(4.2) do form a convergent Cauchy sequence. However, in order to show that the 
limit is in the space which we have defined (Lemma 4.6) it is necessary to use 
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the fact that this limit, in fact, exists. If  the space were known to be complete, 
then this wouldn' t  be needed. That  an existence proof can be constructed along 
these lines seems clear although some modification of the function space will 
be necessary. This work is now in progress. 

Another point concerns the smoothness requirements of the boundary. The 
validity of the explicit representation of the solution of the Neumann problem 
has been proven only for smooth bodies. However, preliminary calculations for 
the circular disk support  the hypothesis that the representation remains valid 
for bodies with edges. To prove this, however, will require a different definition 
of the norm. The pointwise convergence proven in Theorem 4.1 using the sup 
norm requires the wave functions to be twice differentiable on B. But it is known 
(e.g. BOUWKAMP [3], MEIXNER [8]) that  wave functions associated with bodies 
with edges have singular derivatives. Thus, convergence of the iterates in these 
cases will have to be established in some other norm, presumably some modified 
form of L2(V). These remarks are equally applicable to the Dirichlet problem. 

Finally, some comment  is called for concerning the values of k for which 
the series of iterates converges. While we have proven that  the series converges 
for I kl sufficiently small, that is, there exists some number ~ > 0  such that the 
series converges for [ k [ < a, no indication was given as to how large ~ hence [ k 1, 
may be. If the boundary data is analytic in k, this problem of estimation is equi- 
valent to finding the radius of convergence of the low frequency expansion (4.54). 
Such estimates are available only for special surfaces (e.g. DARLING & SENIOR [4]) 
and the general problem remains unresolved. 
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