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w 1. Introduction 

In a previous paper, [1], we proved the existence of global (weak) solutions of 
the initial-value problem 

(1.1) ut + j~l-ff~-j- J f j (u )=O,  

(1.2) u (0, x) = u o (x) 

in the region t>0.  Here x =(Xl, x2 . . . .  , xn), u =u(t, x), the f j ,  j =  1, 2, . . . ,  n, are 
continuously differentiable functions of a single real variable, and u0 (x) is in the 
class F; i.e., Uo(X) is a bounded function having locally bounded variation in the 
sense of TOt~LLI-CESARI. Moreover for each fixed t, u(t, x) is in the same class F. 

A function f is said to have bounded variation in the sense of TONeLLI-CEsld~I 
over a compact set (2 if there exists a set Z of measure zero in Q such that the 
functions 

V( x , , . . . , x i _ l ,  xi+, . . . .  ,xn)=var f ( x l , . . . , x i _ l ,  ",xi+l . . . . .  x ,) ,  i = 1 , 2 , . . . , n ,  
Q - Z  

are measurable and summable. This is equivalent to the statement that the gradient 
of f be a measure (in the sense of the theory of distributions) whose total variation 
is finite over the compact set Q. (See [1] for these definitions, or [7] and [8]. This 
equivalence was proved in [8].) 

It is well known that the generalized solutions of the above problem are not 
uniquely determined by the initial data [2]. However, in the case of a single space 
variable (n = 1), it has been shown that uniqueness can be achieved by imposing 
a further restriction upon the solution; i.e., generalized solutions satisfying this 
additional condition (usually referred to as the "entropy" condition) are uniquely 
determined by the initial data ( [3 -  6]). In this paper we obtain a result of this type 
for the case of several space variables. 

In the case when n = 1 our result is that of OLEINIK [3]. In that paper she proves 
that a generalized solution of the Cauchy problem 

(1.3) u,+ d--~ f ( u ) = O ,  u(O,x)=uo(x ) 
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satisfying the additional condition 

(1.4) u(t,  ~ l ) - u ( t ,  ~2) < K ( t ,  ~1, ~2), 
~ 1 - ~ 2  

where K is continuous in the half-space t>0 ,  will be unique if 

(1.5) f " ( u ) > 0  

for all real u. In the case of the Cauchy problem (1.1), (1.2), the same conclusion 
will follow if we impose the analogue of condition (1.4) on each space variable 
separately; i.e., 

u(t,  x l  . . . . .  x j _  1, ~1, x j +  . . . .  , x , ) - u ( t ,  x l ,  ... , x~_ 1, ~2 , xj+ ~ . . . .  , x,)  

(1.6) r - ~2 

< Kj(t, ~1, ~z, xl . . . . .  x~-l, Xj+ l . . . . .  Xn) 

f o r j = l ,  2, ..., n, and if we replace (1.5) by 

(1.7) fj'=~jf;'>=O, ~j>_-0, j = 1 , 2  . . . .  , n .  

Although these conditions are sufficient to insure uniqueness, with one excep- 
tion it is not known that the property (1.6) is possessed by any weak solutions of an 
appreciable class of initial value problems in more than one space variable. In the 
exceptional case, all the Kj's can be replaced by zero. In fact, in [1] we have shown 
that if the initial data Uo (x) is a monotonic function in each variable separately, 
then there exists a generalized solution u(t, x) with the property that u(t, .), for 
each fixed t, is monotonic in the same sense in the same variables. Therefore, the 
desirability of presenting the proof of the theorem using the condition (1.6) in its 
full generality is questionable. Moreover, the proof of the general theorem differs 
from that given by OLEINIK for one space variable at only one point. But the addi- 
tional argument is fully present in the proof of the special theorem using zero for the 
Kj's. For these reasons we shall be content to formulate and prove the following 
theorem. 

Theorem. Let f j, j =  1, 2, ..., n, be C 2 functions of a single real variable which 
satisfy (1.7). Let F M be the class of functions u(x), xeE", which belong to F and are 
monotonically non-increasing in each variable separately. Then the generalized 
Cauchy problem (1.1), (1.2) is well-posed in FM; i.e., 

A. For each Uo(X ) in Fu, there is a generalized solution u(t, x) of (1.1), (1.2) 
such that u(t,.)eFMfor each fixed value of t. 

B. u(t, x) is uniquely determined by Uo(X). 
C. For each fixed t, the mapping Uo(.)~u(t, .)  of Fu into itself is continuous 

in the topology generated by Ll-convergence on compacta. In fact, if u(t, x) and 
v(t, x) are the solutions of (1.1) for the initial data Uo(X) and Vo(X ) respectively, 
then the following estimate is valid: 

S lu( t ,x)-v( t ,x) ldx~_ ~ luo(x)-vo(x)ldx 
Q (L) ~2 (t .+at) 

where 6 is a constant and Q (K) denotes a hypercube [xil < K. 
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In this formulation part A is a special case of theorem 2 of our previous paper 
[1] and has been included for the sake of completeness. 

Before proceeding to the proof of this theorem we remark that it might be 
necessary to perform a transformation of the coordinate system to satisfy the 
hypotheses. For  example, if Uo (x) is monotonically non-decreasing in XR, then the 
theorem would still apply iff~'  <0 ;  that is, f~' =O~kf'l' where cq__<0. In this case we 

t P 

merely make the transformation of coordinates Xk ~ -  Xk, X ~  X~ , iT  k. 

w 2. Proof of B (Uniqueness) 

Just as in [1], we will avoid cumbersome notation by giving the details of the 
proof only for the case of two space variables. It will be clear that the arguments 
apply to the more general case modulo an unambiguous selection of subscripts 
and superscripts. Thus we consider the Cauchy problem 

(2.1) ut+ d-~f(u)+ ~-~g(u)=O, u(O,x,y)=Uo(X,Y) 

where f and g are functions in the class C 2 satisfying 

(2.2) f " = ~ g " > 0  

for some real number c~>0. Let us recall that by a solution u=u(t, x, y) of (2.1) 
we mean that u is a bounded measurable function which satisfies 

(2.3) J~. ~. [u~o,+f(u)q,x+g(u)%]dxdydt+ IIUo(x,y)q~(O,x,y)dxdy=O 
t > o  t = o  

for every compactly supported q~ = (p (t, x, y) belonging to the class C 1. Further- 
more, we shall assume that for each fixed t > 0, the solution u is monotinically non- 
increasing in both x and y;  i.e., the conditions 

u(t, 41, y ) -u ( t ,  ~2, Y) <0,  
(2.4) a r t - ~2  

u(t'X'~h)-U(t'x'~12) <0 
(2.4) b ~h -1/2 

are fulfilled for every t > 0  and for all real numbers x, y, r ~2, rh, r/2. 

(B'). Let f and g be C 2 functions of a single real variable which satisfy (2.2). 
Then there is at most one solution of the initial-value problem (2.1) which satisfies 
the conditions (2.4)a and (2.4)b. 

ProoL Suppose that u and v are solutions of (2.1) which satisfy (2.4). We shall 
show that u = v almost everywhere. For  this it is sufficient to show that 

(2.5) SSS (u -- v) q~ d x d y d t = 0 
t ~ o  

for all smooth (i. e., C 1) functions rp which have compact support. 

Let ta r be the usual Gaussian averaging kernel having as its support the sphere 
of radius r centered at the origin, and let ur = u .  co r, vr = v * ca r, where the symbol �9 
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denotes convolution product. We set 

1 

F,(t, x, y) = f(u,) -f(v,) = ~ f, (,9 9, + (I -,9) u,) d,9, 
g r  - -  9r  0 

Gr(t, x, y) = g(u,)-  g(v,) 1 - I g'(,9 v ,+(1- ,9)  u,)dO. 
Ur --  9r 0 

Then if tp is a smooth function vanishing outside of a compact set contained in 
t_>0, we consider smooth solutions ~(t, x, y) having compact support of the first 
order linear equation 

(2.6) ~t + F, ~bx + Gr ~r=tp , 

with ~ =0 on the plane t=T, where T is any number satisfying tp(t, x, y) =0 if 
t>T. From (2.3) and (2.6), it follows that 

(2.7) 

where 

and 

Now if we let 

and 

then 

~S (u - v) tp d x d y d t = ~ (u - v) [ ( F , -  F) @x + (G~-  G) ~br] d x d y d t, 
t~O t~_O 

F(t, x, y) = f(u) - f ( v )  
U - - 9  

g(u)-g(v)  
G(t, x, y) = ~ - -  

U - - 9  

C1 --max {If"  (t/)I : I'/I _- < max ['[I u II ~,  I1 v II ~o3} 

C2 = max {I g"(~)  I: I ~ I ~ m a x  [11 u II + ,  II v II + ] } ,  

1 

IF,-Fl<=CiS { ,91v~-vl+(1-,9)[u,-ul}d,9=�89 
0 

Similarly, 

so that 
I G,-Gl<�89 

lira S~S I F , - F  I d x d y d t = l i m ~ j ]  G,-G] d x d y d t = O  
r-~O Q r ~ O  Q 

for every compact set Q. Therefore, if we can show that ~x and ~y are bounded 
uniformly in r, then from (2.7) we would obtain (2.5), and this would complete 
the proof. Thus we shall now turn our attention to solutions of (2.6). 

The characteristics of (2.6) are curves which are solutions of the system 

dx dy -Gr( t ,x ,y ) .  
(2.8) dt -Fr( t ,x ,y ) ,  dt 

If 
x=x,(t ,z,~,tl) ,  y= y,(t, z, ~,~l) 
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is the characteristic passing through the point (z, ~, t/), then the solution of (2.6) 
which is equal to zero on t = T i s  given by 

(2.9) ~(~, r r l )= i q~(s, x,(s, z, r rl), y,(s, ~, 4, q)) ds . 
T 

We see that since f '  and g' are continuous and u and v are bounded, u, and v, 
are bounded so that F, and G, are bounded. Therefore from (2.8) and (2.9) we see 
that ~k is equal to zero for sufficiently large I ~ [ + It/I. Consequently @ has compact 
support. Moreover, it is clear that ~b is also smooth. 

We shall now show that the first derivatives of ~k are bounded uniformly in r. 
First note that in the region t>0 ,  the conditions (2.4) together with the basic 
properties of the averaging kernels imply that 

(2.10) Bu, < 0  By, < 0  Bu, < 0 ,  By, < 0  
B x -  ' a x -  ' B y -  B y -  

for each r>0 .  Next, from (2.9) we obtain 

a~p = i ( O~o Ox, aq~ Oy,.~ (2.11) 04 r \ - - ~ - - -  + - -  d s  a~ By a~ / 
so that in order to prove that a~bla~ is bounded independently of r, it suffices to 
prove that Bx,/B~ and By,/B~ are bounded independently of r. We set 

B x, d y, 
z , - a ~  ' w , = 0 r  ' 

and then using (2.8), we obtain the system 

dz, OF, OF, 
= Z r + - ~ W , ,  dt Bx 

(2.12) 
d w, BG, BG, 

: Z r - . } - ~ - W  , . cl t ax 

Now using (2.2) and (2.10), we have 

Similarly 

8F, 1 [ av, au,1 
ax - J  f"(~v,+(l- '9)u,)  ~ - - ~ - + ( 1 - ~ ) - - ~ - - ]  a~ 

=mSg"(o%,+(l-oa)u,) oq +(1-,9) a",l 
o ax ] a~ 

aG, < 0  
= ~  ~ X  : " 

Therefore (2.12) becomes 

aF,ay =~-~y' <0.= 

d z, aG, aG, 

dw, BG, aG, 
- -  Zr + - - ~ -  Wr , 
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so that 
dz, dw, 
dt dt ' 

and since, at t = x, z, = 1 and w, = O, we see that z, = ~ w, + 1. Then 

d w, OG, _~_ 
dt = Ox ( ~ w , + l ) +  w, 

( oo, 
= o~ Ox Oy ] Wr-t Ox" 

Suppose now t h a t ,  > O. Then 

w,(t)=exp [: (~ aG'+aG'] ds] i aY'exp [-: (~ OG'+aG'] da] ds 
Ox oy  : , ox - ~  7-~11 

>-lexp [i (ot OGr+OG'] ~ - - ~ ,  

1 

x ' d ( exp!'-~-s [-:(~aG'+OG']da]) dsOx ay] 

I [o OG,+aG,~ds ] _ e x p [ _  i q"  

1 
0t 

Therefore 
1 

0 > w , ~  - - - .  
Ct 

f rom which it follows that 1 __> zr >_- 0. Consequently, in view of our previous remarks, 
we see that ~b x is bounded independently of r. In a similar manner, we obtain that 
~by is also bounded independently of r. This proves the theorem in the case where 
~>0 .  

Suppose now that ~ =0.  Then f rom (2.2) and the definitions of F and F,,  we 
see that F=F, =const ,  so that if we show that ~y is bounded independently of r, 
we could again conclude f rom (2.7) that (2.5) is valid. To this end, we set 

then using (2.8) and (2.9), we get 

Oq r ~ Oq 

Yr.  
a,= Oq ' 

ay : i a, ds 
T 
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Furthermore, using (2.8) again, we obtain 

0a,  = aG, 
Ot Oy a, 

so that 

a,=expiaa-~--~-ds, 
r 

and since 

OG, < 0 ,  
Oy = 

we conclude that a, is bounded independently of r and hence the same is true for 
O~k/Oq. This completes the proof of part B. 

w 3. Proof of C (Stability) 

In this section we shall show that under the given hypotheses, the solution of 
the Cauchy problem (1.1), (1.2) is a continuous function (in the topology of L 1 
convergence on compacta) of the initial data. As before, we shall give the details 
only for n =2  space variables. 

Let us first recall some facts from our paper [1]. The difference scheme that 
we used was defined by 

k + l  k k k k 
Un, m - 1 ]  Un+ l , m  Un, m - -  -[- U n -  l ,  m -lL Un, m + l Jr" k h 

(3.1) k k k k 
_~ f(u,+l,m)--f(u,-1,m) ~ g(u,,m+l)--g(u,,s-l)=0, 

2q 2p 

for n, m=O, +_1, +2, ...; k=O, I, 2, .... Here p, q, and h are fixed positive num- 
bers satisfying q<6h, p<6h for some 6>0 ,  and we are using the notation 

u~,~=u(~ h, fl q, ~ p). 

Now if our initial data satisfies I u,,~ m I = < M for every n and m, we define .4 and B by 

.4=max{If'(u)l:lul<M}, B=max{Ig'(u)l:lul<M}, 

and we choose our mesh lengths p, q, h such that 2.4 h < q and  2 B h <p. We extend 
the definition of u to the entire t, x, y space (t_>0) by defining 

k U (t,x, y)= Uo,~,h(t,x, y)=Un, m 

for kh<t<(k+ 1) h, nq<__x<(n+ 1)q, mp<y<(m+ 1)p. Then if our initial data 
is in the class F, we have shown that the functions { Up, q,h} are compact in the 
topology of L~ convergence on compacta. 

We now make an important observation. Namely, under the hypotheses of 
our theorem (in w 1), the entire sequence of difference approximations {Uo,~,h} 
converges to the solution u of (1.1) and (1.2) constructed in [1]. This is clear since 



4 0 6  E .  CONWAY & J.  SMOLLER" 

the sequence of difference approximations forms a compact  family and the solution 
u is unique. 

k and V~,m are solutions of the difference scheme (3.1) Lemma.  Suppose the u., m 
corresponding to initial data u.,~ m and v.,~ m respectively, where I u ~ m I < M and 
I v~ m [ < M for  all n and m. Then for  arbitrary L > O, 

(3.2) Z l u. k, k ]<  Z I o o m--Vn, m Un, m--Vn, ml , 
q n ~ L  q l n l < L + k ~ h  
p m EL p[m[~_L+k~h 

where ~ [ a l < X denotes summation over all integers a for  which ~ I a [ < X. 

Proof.  Set " k . k "~ �9 then f rom (3.1) and the mean value theorem, Wn, m ~ Un, m - -  Un, m, 

Wkn, m = � 8 8  k - 1  - -  k - 1  - -  k - I  .J_Wn, ra_ l  Wn+ I, m"l- W n -  l ,  m-]- Wn, m+ l 

h 
2q 

h 
2p 

[f(ukn+l k-I  1,-I k-1 - - - -  m)+ f ( v ._ l ,m) - -  f ( u ._ l ,m)  ] 1. m ) - - f ( v . +  1, 

k - 1  k - 1  k - I  k - 1  
g (Un,  m - 1 ) ]  g(Vn, m-1)-- - - -  [g(u. ,  m +  1)  - -  g(Vn, m+ 1)  "4- 

~ � 8 8  k--1 - -  k--1 - -  k - 1  k - 1  
"~- Wn, m -  l ]  Wn+ 1, m "l- W n - 1, m "l" Wn, m+ 1 

h 
2q 

h 
2p 

[-f,(g~+l k-1 . , .  k-1 . k-1 W n -  l ,  m] 1, m) - - - -  W n + l , m - -  J [O~n-l.ra} 

, k - 1  k - 1  r / n k - 1  ,, k - 1  
- - -  [g (~n,m+l) Wn, m + l - - g  I, Pn, m-1)  Wn, m - 1 ] ,  

where ~,~1 and/~,-~1 are intermediate values for  u~,~ 1 and vi, jk- 1. Thus  

k [ 1  h ' ~-1 ] k- I  I'1 h ' k-1 3 w . + l , m +  
W n -  l ,ra w,.,= 2q : 

Wn, m+ l q- [ - ~ - - k - - - ~  g (fln, m_  + g(J3n, m+l) 1) Wn, m- 1, 

and since 2 A h < q  and 2 B h < p ,  the coefficients of the w k-1 t . j  are non-negative. 
Therefore  

1 Wn+ l , m  q ,, ~L 4 2 q  -Os 

p Im ~_L 

r l h , ~-1 1 ~ . i  1 + 
J 

II ' "-' ] '-' (3.3) + 2 .1 2p  g( /~ . ,m+l ) IW. ,m+l l  
q InI__<L LL-" 
plml~_L 

I'I h , k I 1 k - I  ] 
Wn, m-ll + L T + ~ f  g (/~...;-O] I l 
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Now 

[1 h , ] k_l [1 h w n +  1,m'+ ] - - - - - -  W n _ 1 , m ]  
_~+ , k-1 k-1 

qlnl<L~ 4 2 q f (~" + 1, m) [ " ~ q  f (O~n-- 1, m) I 

p l m l < L  

Plm[<L " 2 q  f (~,,m) I r ,m 
- (L /q )+  l <r<(L/q)+ 1 

I-1 h , k_11 
q- Z t ' 4  "~- --2"q-q f ( O~r, m ) J ]Wrk,-m/1 

p l m l < L  
- ( L / q ) -  1 <r<(L /q ) -  1 

< ~ 4 2q f(O~r'm) Iwr, ml 
plml<=L 

- (L /q) -  1 < r < (L/q) + 1 

[ t k - l ]  k--1 + ~ 1 +  h f(~r,m) Iwr, m[ 
p lml < L - ~  

- (L/q)-- 1 < r < (L/q) + 1 

Z 11w~,-21<=~ Z ~-1 = IW,.m I. 
p Iml-<L p ImI<L+P 

q Inl <L+q q lnl <L+q 
Similarly 

W n, m + l T "[- " ~  - n, m - pl,,l=L 4 2p g(fl,,s+X) I l+ g ( f l n ,  m - 1 )  11 
p l m l < L  

<�89 ~ I ~-~ Wn, m ] ~ 
p Iml <L+p 
qlnl<-L+q 

so from (3.3) it follows that 

iw ~ ~-1 ~-1 . , , .1< Z I < IW,,m = Z I- 
q Inl _-<L P Iml <L+p p Iml <L+Oh 
p [ml < L  q Inl <-L§ q Inl <-L+~h 

Thus continuing in this way, we obtain (3.2). This completes the proof of the lemma. 
(C') Let u(t, x, y) and v(t, x, y) be solutions of the Cauchy problem (2.1) cor- 

responding to the initial conditions Uo (x, y) and v o (x,.y) respectively, where Uo (x, y) 
and Vo (x, y) are both in the class F. Then 

(3.4) SS [ u ( t , x , y ) - v ( t , x , y ) l d x d y < -  ~ [Uo(X,y) -Vo(X,y) ldxdy  , 
Q (L) Q (L+~t)  

where Q(X) denotes a square whose sides have length X. 
Proof. We know that if { U i} and { V i} are the functions constructed from the 

difference equations corresponding to the inital data u o and v o respectively, then 
by our earlier observation 

U ~ u  and V ~ v ,  

where the convergence is understood to be L 1 convergence on compacta. Then 

~[. l u ( t , x , y ) - v ( t , x , y ) l d x d y <  [.~ l u ( t , x , y ) - U i ( t , x , y ) l d x d y +  
Q (L) Q (L) 

+ ~S [ U i ( t , x , y ) - V i ( t , x , y ) l d x d y  + ~ I V i ( t , x , y ) - v ( t , x , y ) [ d x d y  �9 
Q (L) Q (L) 

By choosing i sufficiently large, we can make the first and third integrals less than 
any preassigned e > 0. Then if we denote by [z] the largest integer not exceeding z, 

28 Arch. Rational Mech. Anal., Vol. 23 
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we obtain from the lemma 

SS [u(t,x,y)-v(t,x,y)[ dxdy<=2e+ ~ [ui(t,x,y) - vi(t,x,y)[ dxdy 
(2 (L) Q (L) 

< 2 8 +  Y, [ ll[i/h]-Iftlh][ 
= - - . , m  - . . . .  qP 

qlnl<L 
olml<L 

< 2 8 +  ~ I ~ o - U . , = - - V n , = [  qp 
q Inl<L+6kh 
pl=l~_L+6kh 

= 2 8 +  S~ IU~(x,y)-V~(x,y)ldxdy, 
Q (L+6t) 

where U~(x, y) and V~(x, y) are grid functions constructed from the initial 
o and o respectively. Now from lemma 5 in [1], we have that U~ ~ Uo data un, m Vn, m 

and V~ -+ Vo (again in the topology of L 1 convergence on compacta). Therefore we 
see from this that (3.4) is valid. This completes the proof of (C'). 

We conclude this section by noting that the methods employed in this paper 
show that if one obtains a condition which implies uniqueness of the solution for 
the Cauchy problem (1.1) and (1.2), where the initial data is in the class F, then 
for this class of solutions, it is always true that the entire sequence of difference 
approximations converges to the solution and the solution is a continuous function 
of the initial data. The topology here is given by L 1 convergence on compacta. 

The authors acknowledge partial support under grant number NSF-GP-3465 while they 
were visiting members of the Courant Institute of Mathematical Sciences. 
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