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In previous papers [3-5] we have given existence theorems for solutions in 
Sobolev spaces of multidimensional Lagrange problems of optimization in a 
fixed domain, bounded or unbounded. In the present paper we shall apply the 
previous results to the case where the partial differential equations are written in 
canonic form. 

The canonic form which we take into consideration is the one proposed by 
RASHEVSKY in his book [9, pp. 323 - 324]. THOMAS & TITT [10] consider essentially 
the same form though this form is not written explicitly. ILaSHEVSKY has pointed 
out the generality of the proposed form. In [6-8] LURm discusses necessary 
conditions for Lagrange problems of optimization with partial differential equa- 
tions in canonic form. In particular, in [7, 8] LumE discusses necessary conditions 
for an optimal solution in a two dimensional problem of magnetohydrodynamic 
channel flow, though with no previous existence analysis. 

In the present paper we shall show that our existence theorems yield the 
existence of an optimal weak solution for LURIE'S problem of magnetohydro- 
dynamics. This optimal solution, of which we prove the existence, is weaker, 
however, than those considered by LURIE, namely it is a weak solution in the 
sense of Gamkrelidze with state functions belonging to a Sobolev space W21. 

Part I. 

w 1. Partial Differential Equations in Canonic Form 

To simplify our exposition we shall assume that the number of independent 
variables is 2, and we shall denote them by x, y. Let G denote an open subset of 
the xy-plane E2, and denote by z (x ,  y ) = ( z  I . . . .  , z"), u(x ,  y ) = ( u  1, . . . ,  urn), real 
functions of x, y in G. We shall designate z ~, i = 1, ..., n, as the state variables, 
and uJ, j =  1 . . . . .  m, as the control variables, all of which are in any case dependent 
variables. 

We shall consider (with RASrIEVSKY & LORm) partial differential systems of 
the form 

(1) O z i / O x = X ~ ( x , y , z , u ) ,  O z i / O y = Y i ( x , y , z , u ) ,  i=1 ,2  . . . . .  n, 

(2) O XJO y = 0 YdO x ,  i = 1, 2 . . . . .  n ,  
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where in the latter equation the derivatives are taken with respect to all arguments 
of Xi and Yi. (We denote here as variables u j, j = l ,  ..., m, both classes of  
RASrmVSKX'S & Ltyam's variables ~r and u ~. See [8] and [9].) 

Equations (1, 2) presuppose an amount of differentiability properties which 
will not be realized in the statements of our existence theorems below. Thus, we 
shall replace (2) by the weaker form 

(3) SS(X,~o,--Y~qb~)dxdy=O, i=1  . . . . .  n,  
G 

for every scalar function ~0 (x, y), (x, y) e G, of class C co in G and having compact 
support contained in G (briefly of class C~ ~ in G), and in view of (1), equation (3) 
can be replaced by 

~ (z x ~o,- zy qb,) dx dy = 0 (4) i i 
G 

for every ~oe C~ ~ Whenever the functions X~, Y~, z ~, u j are continuously dffferen- 
tiable with respect to all their arguments, then relations (4), or (3), yield equa- 
tions (2). 

As stated by RASHEVSKY (1OC. tit.) equations (1) present a standard form of a 
remarkably general class of systems of partial differential equations, which all 
can be written in the form (1) (with the number of dependent variables increased 
if necessary). The presence of an increased number of variables is typical in the 
majority of applications. For instance, the Helmholtz equation z~x + z~y + uz I =0 
can be written in the form (1) with n=3,  m = 3  as follows (with u replaced by 
u, v 1, v 2, and z 1 by z 1, z 2, z3): 

1 2 1 2 2 3 1 3 2 Z x ~ Z  , Z y ~ Z  3, Z x ~ - - U 2 - - U Z  1, Z y ~ / )  1, Z x ~ O  , Zy ~ I )  . 

The wave equation x 1 zyy-(kzx)x=O can be written in the form above with n=2 ,  
m = 2 :  

1 _ v l / k ,  1 2 2 2 1 Z x =  Zy--~O2~ Z x = U  , Z y = - - U  . 

The form (1) corresponds to problems in a weaker form than those given by the 
differential equation of higher order. For instance, the system with n =2, m =3, 

1 1 1 _ _ / ) 2 + 1 , /  2 2 2 1 
Z x ~ l )  , Zy~-- , Zx~-O , Zy-~.l) , 

yields the system AzX=uy, Az2=u~ (with A=(O2/Ox2)+(OZ/Oy2)) only if u is 
differentiable. In other words, the solutions of systems (1) can be thought of as 
generalized solutions of some original higher order partial differential equations. 
We shall further generalize the concept of solution in a number of ways. 

w 2. Notat ions  for Lagrange Problems with Partial  Differential Equations 
in Canonic Form 

We shall first introduce unilateral constraints in a form more general than 
those considered by LURIE, namely in a form similar to those of our previous 
papers [3 - 5]. 

For every (x ,y)eclG let A(x,y) denote a given nonempty subset of the 
z-space E,. We shall denote by A the set of all (x, y, z)~E 2 xE,, with (x, y)ecl G, 
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zeA(x,  y). We shall assume below that A is a compact, or at least closed, subset 
of E2 x En. For  every (x, y, z)eA let U(x, y, z) be a nonempty subset of the u-space 
Era, and let M denote the set of all (x ,y ,z ,u)  with (x,y)eclG, zeA(x ,y) ,  
ue U(x, y, z), or (x, y, z)eA, ue U(x, y, z). We shall consider couples z(x, y) = 
(z 1 . . . . .  z"), u(x, y) =(u I . . . .  , urn), (x, y)eG, satisfying the constraints 

( x , y , z ( x , y ) ) eA ,  u (x , y )eU(x ,y , z ( x , y ) )  a.e. in G. 

To simplify notations we shall often denote by f the 2n-vector function 
f (x ,  y, z, u)=(f l ,  ... ,f2n) defined on M by 

f i=Xi (x ,y , z ,u ) ,  f,,+~=Y~(x,y,z,u), i=1  . . . . .  n. 

i " l  n ) .  We shall also denote, if needed, by D z the 2 n-vector (z~, i = 1, ..., n, zy, t - 1, . . . ,  
Then the differential system (1) can now be written in the simple form 

D z = f ( x , y , z , u ) .  

This canonical system is a particular case of the systems of partial differential 
equations of any order we have considered in [ 3 -  5]. Most of the results below 
are particular cases of those of [3 -5] .  

Given ~ > 0 and a point (xo,Yo, Zo) eA, we shall denote by "closed neighborhood 
N~(xo, Yo, Zo) of radius ~ of (Xo, Yo, Zo) in A "  the set of all (x, y, z)eA at a 
distance ___< ~ from (Xo, Y0, Zo). Also, we shall denote by U~ the set of all points 
ueEm at a distance <e  from a given set U. We shall say that U(x, y, z) is metrically 
upper semicontinuous at the point (Xo, Yo, Zo)~A provided, given e>0,  there is 
some ~ =~(Xo, Yo, Zo, e )>0  such that U(x, y, z )c  [U(x0, Yo, Zo)]~ for all (x, y, z)e 
N~(xo, Yo, Zo). We shall say that U(x, y, z) is metrically upper semicontinuous 
in A provided U(x, y, z) has this property at every point (x0, Yo, Zo)eA. This 
concept of metric upper semicontinuity is most often used when the sets U(x, y, z) 
are compact and all contained in a bounded part of Em. In general, the sets 
U(x, y, z) are only closed and not compact, and in these cases it has been found 
[ 1 - 5 ]  that analogous concepts of upper semicontinuity, more topological in 
character, are needed. We shall denote these properties as properties (U) and (Q). 

First, given ~ > 0  and a point (Xo, Yo, Zo)eA let us denote by U(xo, Yo, Zo; ~) 
the set 

U(xo, Yo, Zo; ~ )=U U(x, y, z), 

where U ranges over all (x, y, z)eN~(xo, Yo, Zo). We shall say that U(x, y, z) 
satisfies property (U) at a point (Xo, Yo, Zo)e A provided 

U(xo, Yo,Zo)= ~ cl U(xo, Yo, Zo; 6), 
~ > 0  

that is, 

U(xo, Yo, Zo) = (] cl d U(x, y, z). 
(x, y, z) ~ N6 (xo, yo, zo) 

We shall say that U(x, y, z) satisfies property (U) in A if U(x, y, z) satisfies 
property (U) at every point (Xo, Yo, Zo)eA. A set U(x, y, z) satisfying property (U) 
is necessarily closed as the intersection of closed sets. Below we shall also consider 

6* 
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the sets 

Q(x, y, z )=f(x ,  y, z, U(x, y, z)) 

= [~ =(~1 . . . . .  ~2") I ~ =f(x ,  y, z, u), u e U(x, y, z)] ~ e 2 . ,  

and other analogous ones which we shall introduce as needed. We shall say that 
such a set Q(x, y, z) satisfies property (Q) at a point (Xo, yo, Zo)eA provided 

Q(xo, yo, zo) = 0 el co Q(xo, yo, zo; 6), 
6 > 0  

that is, 

Q (Xo, yo, Zo) = N el co U Q (x, y, z).  
6 ( x ,  y ,  z )  E N~ (xo ,  Yo, zo)  

We shall say that Q(x, y, z) satisfies property (Q) in A if Q(x, y, z) satisfies 
property (Q) at every point (Xo, yo, zo)eA. A set Q(x, y, z) satisfying property (Q) 
is necessarily closed and convex as the intersection of closed and convex subsets 
of E2, .  Above, cl E denotes the closure of a set E, and co E denotes the convex 
hull of E. Thus, cl co E denotes the closure of the convex hull of E. 

As in the previous papers [ 3 - 5 ]  and as usual we shall assume for G and its 
boundary S=dG a certain amount of regularity, and we shall say that G is of 
class Kol. If G is an open bounded set, by G of class Ko~ we shall mean that 
K = c l  G = G  w S is the union of finitely many nonoverlapping parts K1 . . . .  , Ks, 
each Kj = T~ (R) being the 1 - 1 image of a rectangle R under a transformation T i 
which is continuous with its inverse T -  1, and both T~ and T 71 can be represented 
by means of functions of class C 1, j =  1 . . . .  , J. (Actually, it would be enough to 
assume that both Tj and T 7 ~ are Lipschitzian of a given constant.) The further 
usual convention shall be made that the boundary S of G is the union of non- 
overlapping arcs 2,, each 2 s being the image under Tj of one side lj of R, or 
2~ =T j ( l j ) f o r  only onej .  

If G is unbounded, we shall say that G is of class Kot if its closure K = c l  G = 
G u S is the countable union of nonoverlapping parts K1, K2 . . . . .  each Kj = Tj (R), 
j =  1, 2, ..., as before, and with the further assumptions that each set 

N 

VN = (3 K j = c l  GN 
j = l  

is the closure of an open bounded set GN of class K01, that every interval R of E v 
has a nonempty intersection with at most finitely many Kj, and that G =  (3 GN, 
GN = GN+ 1, that is, G is the union of the bounded open subsets G N all of class K01. 

Obviously, there are oo-many decompositions as described above of sets G 
of class Kol, bounded or unbounded. Any such decomposition will be called a 
typical representation of the set G of class Kox. If G is a bounded open set of 
class Kol then, concerning the couples z(x, y) =(z  1, ..., z"), u(x, y) =(u 1 . . . . .  urn), 
we shall assume that each component z ~ belongs to a Sobolev space W~(G) with 
p~> 1, and that each component u J is measurable in G. As a consequence, each 
component x ~ has boundary values q~ on the boundary S=OG of G and q~ is of 
class Lp~ on S. Also, each component z has first order generalized partial deriva- 

�9 f i f i �9 �9 i f fives zx=D~z, zy=Dyz, t = l  . . . . .  n, a.e. m G, and z ,  z~, zy~Lp,(G). 
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If G is an unbounded open set of class Koi, and G=U GN, GN=GN+D one of 
its typical representations, then we shall assume again each component u J meas- 
urable in G, and each component z i restricted to GN belonging to a Sobolev 
space W~(GN) for all N (and the same p~> 1); briefly, zi~ W~(GN) for every N. 
Then each component z t has boundary values q~ on S which are locally of class Ln~ 
on S, and each z ~ has generalized first order partial derivatives z~ =Dxz i, z~ =Dyz ~ 
a.e. in G with z i, D:,z ~, Dyzi~Ln,(GN) for every N. 

We shall now require a set (B) of boundary conditions involving the boundary 
values of the functions z i, i = 1 . . . . .  n. On these boundary conditions (B), we shall 
assume the following closure property for the case of G a bounded open set of 
class Kol and for given numbers p~> 1, i=1 ,  ..., n: (PI) if z (x ,y )=(z  1, . . . ,  z"), 
z k (x,y) = (z~, .. . ,  z~,), (x,y) ~ G, k = 1, 2, ..., are vector functions whose components 
z i, z~ belong to the Sobolev class W~(G), if z~ ~ z  i as k ~ ~ strongly in Lp,(G), 
if D~, z~ ~ D:, z ~, Dy z~ ~ D r z i as k ~ ~ weakly in Lp, (G), and the boundary values 
~0~ of z~ on S satisfy boundary conditions (B), i = l ,  ..., n, then the boundary 
values q~i of z ~ on S satisfy boundary conditions (B), i =  1 . . . . .  n. 

For  G an unbounded open set of class Kol in a given typical representation 
G = 1,.)GN, GN ~ GN+ I, as described before, we shall replace (P1) by the analogous 
condition, say still (P1), where we assume only z i, z ~  W~(GN) for every N, we 
assume only that z~ ~ z '  as k ~ ~ strongly in Ln,(GN) for every N, and we assume 
only that Dxz~ ~ Dxz i, Dyz~, ~ Dyz ~ weakly in Lp~(GN) for every N. 

For  instance, if the boundary conditions (B) are defined by requiring that 
some of the boundary values coincide with preassigned continuous functions ~o ~ 
on certain arcs of S =  a G, then by force of SOBOLEV'S imbedding theorems [9], as 
well as by direct argument, we know that property (P~) is valid. 

Beside the 2n-vector f ( x ,  y, z, u), or f =  [X~, i= 1 . . . .  , n, Yi, i = 1, . . . ,  n], we 
shall consider a scalar function fo(x ,  y, z, u) also defined on M, and we shall 
denote by f the (2n+  1)-vector function f ( x ,  y, z, u) = ( f o , f )  = ( f o ,  X~, Y~, i =  
1, ..., n). 

Let us mention that for a function ze  Wr we shall denote by Dn(z, G) and 
fin(z, G) the nonnegative numbers 

On(z, G)=(~  [-(D x z) z +(O r z)2] p/2 dx  d y) l/p, 
G 

~p(Z, G)= D,(z, G ) + ( ~  I z I"dx ely) ~/'. 
G 

A pair z ( x , y ) = ( z  1, . . . ,z"),  u (x , y )=(u  1, . . . ,u") ,  (x ,y)eG,  with z ieW~(G)  
[zie W~(GN) for every N if G is unbounded], u j measurable in G, satisfying 
(x, y, z(x, y))eA, u(x, y)e U(x, y, z(x, y)), Dxz i =Xi(x,  y, z(x, y), u(x, y)), D , z '=  
Yi(x, y, z(x, y), u(x, y)) a.e. in G, i =  1, ..., n, satisfying the boundary conditions 
(B), and such thatfo (x, y, z (x, y), u(x, y))eLI(G ), is said to be admissible�9 A class f2 
of admissible pairs is said to be complete if, for any sequence Zk, Uk, k = 1, 2, .. . ,  
of admissible pairs all in f2 and any other admissible pair z, u such that Zk ~ Z in 
the sense described under (Px) [according as G is bounded or unbounded], the 
pair z, u belongs to I2. The class of all admissible pairs is obviously complete. 

The Lebesgue integral 

I [z, u] = I I f o  (x, y, z (x, y), u (x, y)) d x d y ,  
G 
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where z, u is any admissible pair, is said to be the cost functional, or performance 
index. We shall seek the minimum of I[z, u! in classes {2 of pairs (z, u) with 
z ieW~(G),  p i> 1 [or z*eW~(GN) for every N], and u j measurable, satisfying the 
constraints, the boundary conditions, the differential equations, and possibly a 
number of integral inequalities concerning the functions z ~ which we shall mention 
below. 

Requirement (2) in the weak form (4) is always satisfied by any function z i of 
a Sobolev class W~(G), p >  1. Indeed, any such function z ~ is the limit of smooth 
functions z~ (at least of class C2), for which the relations 

o o 
ax \ ay l - - g - y - \  ax ! = ~  

are satisfied everywhere, and z~ ~ z strongly in L,  ( G), and Dx Ztk -~ D~ z i, Dy Zik --* Dy z i 
weakly in Lp(G) as k ~ oo. The differential relation above then implies 

O) I I  ' ' [(OxZk) (p,--(D, Zk) q)~] dx  d y=O 
G 

for all tpECf(G),  and since q~sC~(G) ,  % e C ~ ( G ) ,  we can take the limit in (5) 
as k -~ co, and obtain 

II [(D~ z') (py-(Dy z i) q)~] dx  d y =0  
G 

for all (peCk(G). If G is unbounded, the same argument applies provided for 
every tp e Cg (G) we take a G s with N sufficiently large. 

All we have to do therefore is to prove the existence of optimal solutions in 
Sobolev spaces as mentioned above. In the process of the regularization problem 
it is often proved that the minimizing solutions are actually smooth. 

w 3. Existence Theorems for Lagrange Problems in Sobolev Classes W~, p > 1 

Existence Theorem 1. Let G be bounded, open, and of class Kol, let A be com- 
pact, let U(x, y, z) be nonempty and compact for  ~ery  (x, y, z)~A, and let U(x, y, z) 
be metrically upper semicontinuous in A. Let f ( x ,  y, z, u ) = ( f o , f ) = ( f o ,  X i, Yi, 
i = 1, ..., n) be continuous on M, and let us assume that the set Q (x, y, z) of all 
~=(~o, 0 s E 2 , + l  with ~~ y, z, u), ~ =f(x ,  y, z, u), ueU(x ,  y, z), is a convex 
subset of E2 n + 1 for  every (x, y, z) ~ A. Let (B) be a system of boundary conditions 
satisfying property (P1). Let [2 be a non-empty complete class of admissible pairs 
z ( x , y ) = ( z  1 . . . . .  z~), u ( x , y ) = ( u  1 . . . . .  Urn), (x ,y)~G,  with z~WIv,(G), p i > l ,  
i = 1, ..., n, u j measurable, j =  1 . . . . .  m, and satisfying given inequalities 

II [z'[ p' dx  d y <  N, for  i~{fl}, 
G 

(6) IIIO~z'lPdxdy<N. for  ie{fl}x,  I I lD,  z ' i P ' d x d y < N , 2  for  ie{fl},  
G O 

for  certain given constants Ni, Ni l ,  Ni 2 and all i of  certain systems {fl}, {fl}x, {fl}y 
of indices 1, 2, ..., n (which may be empty). Then the cost functional I[z, u! possesses 
an absolute minimum in f2. 
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Assume now that G is unbounded, open and of class Kol, and that G = 0 GN, 
GNcGN+I, is a typical representation of G. Assume that A is closed, but that 
for every closed finite interval RoE2  the subset of all (x, y, z)~A with (x, y)~R 
is compact. Let us assume that 

(7) fo (x, y, z, u) > - $ (x, y) for all (x, y, z, u) > M,  

where $ (x, y ) >  0 is a given L-integrable function in G. If we know that for every 
pair z, u of f2 we have 

(8) zZ~ W~ (G), i = 1 . . . . .  n,  

and that there are constants M;, such that 

(9) ~ i Op,(z, G) < M~, i =  1 . . . .  , n,  

for every admissible pair z, u of the class f2, then Theorem 1 still holds as above, 
and for the minimizing admissible pairs z, u of the class f2 of which we assert the 
existence (at least one) we know that (8) and (9) hold. 

Again assume that G is unbounded, open, and of class Kol, and that G = U  GN, 
GNcGN+ 1, is a typical representation of G as before. Assume that A is closed, 
but that for every closed finite interval R c E 2  the subset of all (x, y, z )eA with 
(x, y )eR  is compact, and assume that (7) is satisfied as before. Theorem 1 then 
holds in a particularly weak form. Indeed assume that for every pair z, u of the 
class f2 we have zieW~(GN) for every N, Pi> 1, i=1  . . . .  , n. Assume that rela- 
tions (6) hold in the weak form 

$~ Iz'l p, dx d y < N i ( N  ) for is{]~}, 
G 

I~lDxz' lP'dxdy<Nil(N) for ie  {fl}x, 
GN 

$~lDyz'lP'dxdy<Ni2(N) for ie{fl}y 
Grr 

for every N and for certain constants Ni(N), Nil(N), Ni2 (N) which may depend 
on N. Under these weak assumptions Theorem 1 still holds, and for the mini- 
mizing admissible pairs (z, u) of the class f2 of which we assert the existence 
(at least one) we know that 

I),,(z',GN)<MIN, i=1  . . . .  , n ,  

for every N and constants M;N which may depend on N. 

Existence Theorem 2. Let G be bounded, open, and of class K o 1, let A be closed, 
let U(x, y, z) be nonempty and closed for every (x,y, z)~A, and assume that 
U(x ,y , z )  satisfies property (U) in A. Let f ( x , y , z , u ) = ( f o , f ) = ( f o ,  Xi, Yi, 
i = 1, ..., n) be continuous on M, and let us assume that the set Q (x, y, z) of all 
~=(~o, ~)EEzn+I with ~~ , y, z, u), ~ =f(x ,  y, z, u), u~ U(x, y, z), is closed 
and convex for every (x, y, z)~A, and satisfies property (Q) in A. Let (B) be a 
system of boundary conditions satisfying property (P1). Let I2 be a nonempty 
complete class of admissible pairs z ( x , y )=(z  1 . . . . .  zn), U(x,y)=(U I . . . . .  uS), 
(x,y)~G, with zi~W~,(G), p ~ > l , i = l , . . . , n ,  u j measurable in G, j = l  . . . .  ,m,  
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and satisfying given inequalities 

(10) SS Ifo (x, y, z(x,  y), u (x, y))I p~ dx  d y < No, 
G 

SS Iz'lP, dx dy<=N, for ie{/~}, 
G 

SSlDxz'lP'dxdy<=N. for ie{fl}x, SSID~z'lP'dxdy<N,2 for ie{B}~ 
G G 

for  certain given constants p o > l ,  No, N~, N~I, N,2, and all i of  certain systems 
{fl}, {fl},, {fl}y of indices 1, 2, ..., n (which may be empty). Assume that (z,u)el2, 
I[z,u] < Lo implies 

S S l z ' l " d x d y < L , ,  
G 

SS I Dx z'l p' dx dy<L.,  SSID. z ' l"  dx dy<L,2, 
G G 

for  all i= 1 . . . . .  n which are not in {fl}, {fl}~, {fl}, respectively, and for  certain 
constants L i, Lil, Liz  (which may depend on L o, Ni, Nil, Ni2, No, G, (B), f2). 
Then the cost functional l[z,u] possesses an absolute minimum in f2. 

Assume now that G is unbounded, open, and of class Kol, and that G=(.J GN, 
GN=GN+~, is a typical representation of G. Assume that (7) holds as before. 
If we know that for every pair z, u of f2 we have 

(11) z i E W~,(G), i = 1, . . . ,  n, 

and that there are constants No, N6, M[ such that 

(12) Dap,(z ', G)<=M~, i= 1 . . . .  , n,  

SS ]fo(x, y, z(x,  y), u(x, y))[po dx  d y <  N o , 
G 

SS I fo (x, y, z (x, y), u (x, y))l d x d y < N; 
o 

for every admissible pair z, u of the class f2, then Theorem 2 still holds as above, 
and for the minimizing admissible pairs z, u of the class f2 of which we assert 
the existence (at least one) we know that (11), (12) hold. 

Assume again that G is unbounded, open, and of class Ko~, that G=UGN,  
GN c GN+ 1, is a typical representation of G as before, and that (7) holds. Theorem2 
holds also in a particularly weak form. Indeed assume that for every pair z, u 
of the class f2 we have f leW~(GN) for every N, p i > l ,  i=1  . . . . .  n. Assume that 
relations (10) hold in the weak form 

SS ]fo(x, y , z (x ,  y)) ,u(x ,  y)lP~ dx  d y<=No(N), 
GN 

~S Ifo(x, y, z(x,  y), u (x, y))l dx  d y <= N~, 
G 

SS Iz'l p' dx dy<Ne(N) for i~{/3}, 
GN 

SS IDxz'l € dy<N.(N) for ie{[3}~, 
Gee 

S$lD~z'l"dxdy<=N,2(N) for ie  {/~}~ 
Gzv 
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for every N and for certain constants Po > 1, N~ > 0, and other constants No (N), 
Ni(N),  N.(N), Ni 2 (N) depending on N. Assume that (z, u) e I2, I[z, u] < Lo implies 

II [ zi] p' dx  d y < Li (N ),  
GN 

Ii IDx z'l p' dx  d y < L a ( N ) ,  SI[D, z' I" dx  d y < L , 2 ( N ) ,  
GN GN 

for certain constants Li (N  ), Li l(N),  L i2 (N ) (which may depend on N, Lo, 
No(N),  N~, Ni(N) ,  N , ( N ) ,  Ni2(N),  G, (B), f2) and for all i=1  . . . .  , n which 
are not in {fl}, {fl}x, {fl}, respectively. Under these weak assumptions Theorem 2 
still holds, and for the minimizing admissible pairs z, u of the class t2 of which 
we assert the existence (at least one) we know that 

D~,(z', GN)<=MIN, i= 1 . . . .  , n,  

for every N and constants Mi'N which may depend on N. 

Existence Theorem 3. Let G be bounded, open, and of class K o 1, let A be closed, 
let U(x, y, z) be nonempty and closed for  every (x, y, z )eA,  and assume that 
V ( x , y , z )  satisfies property (V)  in A. Let f ( x , y , z , u ) = ( f o , f ) = ( f o , X i ,  Y,, 
i = 1 . . . .  , n) be continuous on M, and let us assume that the set Q(x, y, z) of all 
~=(~o, ~)eE2.+l  with ~o> f o ( x , y , z ,  u), ~ = f ( x , y , z ,  u), u e U ( x , y , z ) ,  is a con- 
vex closed subset of Ez.+I  for  every ( x , y , z ) e A ,  and that Q ( x , y , z )  satisfies 
property (Q) in A. Let us assume that f o (x, y, z, u) >_ - M o  for  all (x, y, z, u)e M 
and some constant M o > O. Let (B) be a system of boundary conditions satisfying 
property (P1). Let f2 be a nonempty complete class of admissible pairs z(x, y ) =  
(z 1, ..., zn), u(x, y) =(u 1, ..., Urn), (X, y)eG,  with ziEw)~(G), pi > 1, i= 1, ..., n, 
u j measurable in G, j = 1 . . . . .  m, and satisfying given inequalities 

I I I z ' l " d x d y < N ,  for  i~(fl}, 
19 

(13) I I I D x z ' l P ' d x d y < N .  for  ie{fl}x,  
G 

IS]Dyzilp'dxdy<=Nj2 for  ie{fl}y 
G 

for certain constants N,, N . ,  Ni2 and all i of certain systems {fl}, {fl}x, {fl}y of 
indices l, 2 . . . .  , n (which may be empty). Assume that (z, u)eI2, I[z, u] <=L o implies 

~ ] z ~ l P ' d x d y < L i ,  
G 

I I I D x z ' l P ' d x d y < Z , ,  SI ID,  z ' l P ' d x d y < L , 2 ,  
G G 

.for certain constants Li, La ,  Li2 (which may depend on L o, N~, N~I, Ni2, G, 
(B), ~)  and for  all i = 1 . . . . .  n which are not in {fl}, {fl}x, {fl}r respectively. Then 
the cost functional I[z, u] possesses an absolute minimum in t2. 

Assume that G is unbounded, open, and of class Kol, and that G=UGN,  
Gs ~ GN+ 1, is a typical representation of G. Assume that fo (x,y, z, u) >_ - ~b (x,y) 
for all (x, y, z, u )eM,  where ~b(x, y ) > 0  is a given L-integrable function in G. If 
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we know that for every pair z, u of f2 we have 

(14) z' ~ W) , (G) ,  i =  1 . . . . .  n ,  

and that there are constants M" such that 

(15) ~ ' ' Dp,(Z, G) < Mi, i = 1 . . . . .  n, 

for every admissible pair z, u of the class t2, then Theorem 3 still holds as above, 
and for the minimizing admissible pairs z, u of the class f2 of which we assert the 
existence (at least one) we know that (14), (15) hold. 

Assume again that G is unbounded, open, and of class Kox, and that G = 0 GN, 
GscGN+x, is a typical representation of G as before. Theorem 3 holds then in 
a particularly weak form. Indeed assume that for every pair z, u of the class t2 we 
have zi~w~,(GN) for every N, p i > l ,  i=1,  .. . ,  n. Assume that fo(x, y, z, u)> 
-~b(x, y) where if(x, y ) > 0  is of class Lx(G). Assume that relations (13) (if any) 
hold in the weak form 

[.[. Iz'l p' dx dy<Ni(N) for iE{fl}, 
GN 

S[.IDxz'lP'dxdy<N,(N) for i~ {/~}~, 
GN 

~. [. ID, z'l"'dx dy<Ni2(N) for i~ {/~}~ 
GN 

for every N and for certain constants Ni (N), Nix(N), Ni2 (N) which may depend 
on N. Assume that (z, u)ef2, I[z, u]<Lo implies 

II[ zi [" dx d y < L,(N), 
GN 

SS [Dx zil p' dx dy<L,x(N ), ~ [Dy z'l p' dx dy<L,2(N ) 
GN GN 

for certain constants Li(N ), LII(N ), Li2 (N) (which may depend on N, L 0, Ni(N ), 
N~x(N), N~2(N), G, (B), f2) and for all i =  1, ..., n which are not in {fl}, {fl}x, {fl}y 
respectively. Under these weak assumptions Theorem 3 still holds, and for the 
minimizing admissible pairs z, u of the class I2 of which we assert the existence 
(at least one) we know that 

Op,(z, GN)<MiN, i= 1 . . . . .  n, 

for every N and constants M[N which may depend on N. 

Remark 1. Theorems 1, 2, 3 above are particularizations, for problems with 
partial differential equations in RASHEVSKY'S form, of the existence theorems we 
have stated and proved in [3], [4], and [5, w 5] for fixed bounded or unbounded 
domains. 

Remark 2. In Theorems 1, 2, 3, as well as in Theorem 4 below, it is enough 
to require that the boundary conditions (B) satisfy property (P~) relatively to 
the complete class f2 under consideration and for the pairs z, u of the class O 
for which l[z, u] <Lo. 
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Remark 3. We have shown in [5] by means of examples that, for G unbounded, 
the requirement fo>=-~k, ~O~LI(G), cannot be replaced by fo_- > - M  o, Mo a 
positive constant. 

w 4. An Existence Theorem for Lagrange Problems in Sobolev Classes W1 

Existence Theorem 4. Let G be bounded, open, and of class Kol, let A be closed, 
let U(x, y, z) be nonempty and closed for ev~y (x,y,  z)eA, and assume that 
U(x, y, z) satisfies property (U) in A. Let f ( x ,  y, z, u )=( fo , f . )=( fo ,  Xi, Yi, 
i = 1 . . . .  , n) be continuous on M, and let us assume that the set Q(x, y, z) of all 

= (~0, () e E2, + 1 with ~0 >= fo (x, y, z, u), ( =f(x,  y, z, u), ue U(x, y, z), is a convex 
closed subset of E2,+ 1 for every (x, y, z)eA, and that Q(x, y, z) satisfies property 
(Q) in A. Let us assume that there is a continuous scalar function �9 (~), 0 <= ~ < + 0% 
and two constants C, D>=O such that r as ~---,+0% and 

fo(x,y,z ,u)>q~(lu[) ,  IX,(x ,y ,z ,u) l ,  IY~(x,y ,z ,u) l<C+Dlu[ 

(16) for all ( x , y , z , u ) ~ M  and i=1  . . . . .  n. 

Let (B) be a system of boundary conditions satisfying property (P1). Let ~ be 
a nonempty complete class of admissible pairs z ( x , y )=(z  1 . . . . .  z"), u (x ,y )= 
( u l , . . . , u m ) ,  (x,y)eG, zieW~(G), i=1,  . . . ,n ,  u~ measurable in G, j = l  . . . . .  m, 
satisfying given inequalities 

5S ]z'] dx dy<N~ for ie{fl}, 
G 

(17) 5S]Oxz~ldxdy<=N, t for ie{fl}x, ~lOyz' ldxdy<=N,2 for ie{fl}y 
G G 

for certain constants N i, Ni 2, Ni2 and all i of certain systems {fl}, {fl}~, {fl}y of 
indices 1, 2 . . . . .  n (which may be empty). Assume that (z, u)es I[z, u]<=L o implies 

~]z ' [dxdy<=L, ,  i = l , . . . , n ,  
G 

for certain constants Li (which may depend on L o , N~, N n, Ni2, G, (B), ~).  Then 
the cost functional I[z, u] possesses an absolute minimum in ~2. 

Assume that G is unbounded, open, and of class Kol, and that G=OGN, 
GN = GN+I, is a typical representation of G. Let us assume (i) that fo (x, y, z, u)> 
- ~ (x,y) for all (x,y, z, u) e M, where ~ (x,y)__> 0 is of class L1 (G). Assume (ii) that 
for every N there is a continuous function eN(~), 0<  ~ < + OO, and two constants 
CN, D u > 0  such that ON(~)/~ ~ +0o as ~--* +0% and 

f o (x , y , z ,u )>r  IXi(x,y,z ,u)l , lY~(x,y,z ,u)l<CN+DNlu[ 

(18) for all (x, y, z, u) e M with (x, y) e GN. 

Assume that for every pair z, u of the class ~2 we have 

(19) z ~ ~ W~(G), i= 1 . . . . .  n, 

and that there are constants M[ such that 

(20) Dl(z i, G)<= M~, i= 1,. . . ,  n, 
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for every admissible pair z, u of the class s Then Theorem 4 still holds as above, 
and for the minimizing admissible pairs z, u of the class s of which we assert the 
existence (at least one) we know that (19) and (20) hold. 

Assume that G is unbounded, open, and of class Kol as before, and that 
G = U G~, GN c GN+ 1, is a typical representation of G. Assume that (i) and (ii) hold 
as before. Theorem 4 holds also in a particularly weak form. Indeed assume that 
for each pair z, u of the class f2 we have zie W~(GN), i = 1 . . . .  , n, for every N, and 
that relations (17) hold in the weak form 

SS Iz'[ dx dy<Ni(N) for i~{fl}, 
GN 

SSlDxz'ldxdy<=N.(N) for i~ {/~}x, 
GN 

~ ID,,z'l dx dy<=N~2(N) for i s  {/~}y 
Gzv 

where Ni(N), N, (N) ,  NI2(N) are given constants which may depend on N. 
Assume that (z, u)e s I[z, u] < Lo implies 

j j  I z'l dx dy<Li(N) 
GN 

for every N, where Li(N) are constants (which may depend on N, L o, N~I(N ), 
N~ z (N), G, (B), f2), and for all i = 1, . . . ,  n which are not in {/8}. Then Theorem 4 
still holds, and for the minimizing admissible pairs z, u of the class s of which 
we assert the existence (at least one) we know that 

DI(Z',GN)<MIs, i=1  . . . . .  n 

for every N and constants M'N which may depend on N. 

Remark 4. Growth condition (16) can be replaced by the following more 
general condition: There is a constant Mo > 0  and, for every e>0 ,  another con- 
stant M~ > 0 such that fo (x, y, z, u) => - M o and [ X~(x, y, z, u) 1, [ Y~(x, y, z, u) [ < 
M~+~[fo(x, y, z, u)+M0] for every (x, y, z, u)~M, i=1 ,  . . . ,  n. Analogously, 
growth condition (18) can be replaced by a similar condition with constants 
M o , M~ replaced by constants M o N, M~ N which may depend on e (see [5, w 6]). 
The constants Mo, M~ (or M o N, M~N) can be also replaced by integrable functions 
Mo(x, y), M,(x, y). On the other hand, growth condition (16) [or (18)] has impli- 
cations which make it easier to verify that the sets (~ satisfy condition (Q) in A. 
We shall discuss this point elsewhere. 

Remark 5. Theorem 4 above is a particularization, for problems with partial 
differential equations in RASH~VSKY'S form, of the existence theorem we have 
stated and proved in [5, w 6] for fixed bounded or unbounded domains. 

Remark 6. In many cases the sets Q or Q are not convex, and examples show 
that an optimal solution may fail to exist. In these cases, it has been proposed 
to replace the system and the functional 

i z~=XAx, y,z,u ), Zy= ~(x,y,z,u), 
(21) 

I = $$fo(x, Y, z, u) dx dy 
G 
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by a new system and a new functional 

z' =E itJ x,(x, y, z, u%, z' =E itJ Y,(x, y, u%, 
(22) 

J= IIE Jo( , y, dx dy, 
G 

where ~ ranges from 1 to #, where we still have n state variables z t, ..., z", but 
the control variable, or m-vector u, is now replaced by a new control variable, 
or (#m + #)-vector v = (u {1) . . . .  , u {~), it1, -.-, itu) (GAMr,~ELmZE'S sliding regimes, 
or weak solutions). Here each m-vector u {j) is subject to the same constraint 
as before, or u{J)eU(x, y, z ) , j = l  . . . . .  /~, while the # scalars 2j are subject to 
the limitations it1 > 0, ~ itj = 1. In other words, if F denotes the simplex itj > 0, 
j =  1, ..., #, . ~  iti = 1, we require ve V(x, y, z)= U ~ x F. We shall require the state 
variables z' to belong to the same Sobolev spaces W~,(G) as before, and we 
shall require all variables u {j), itj, j = l ,  ...,/~, to be measurable. Interpreting 
the itj as probability distributions, the new state variables z ~ can be thought of 
as generated by a probability distribution of the # controls u <j) (acting con- 
temporaneously). Here the sets (2(x, y, z) shall be replaced by analogous sets 
(~*(x, y, z). Here (~*(x, y, z) is the set of all points ~=({o . . . . .  {2,), with 

~o > Z it~ fo (x, y, z, uO)), 

~=~2jXi(x,y,z ,u(J)) ,  ~,,+i=~)..iYi(x,y,z,u(J)), i=1 ,  . . . , n ,  

and hence, each point of Q* can be thought of as the convex combination of # 
points of the set Q. Thus, i f /~>2n+2 ,  the sets Q* are all convex. For more details 
see [5], and, for v = 1, see [1, 2]. 

Remark 7. Note that growth condition (16) for system (21) does not imply 
an analogous condition for system (22). Nevertheless, relation IX il, I Y~I < M~ + 
e(fo+Mo) of Remark4 implies an analogous relation for system(22). (See 
[5, w 7].) 

Part II. 

w 5. Lurie's Optimization Problems 
in the Theory of Magnetohydrodynamical Channel Flow 

In harmony with LUglE [7, 8] let us consider the rectilinear motion 

{~= [V(y), 0, 0]}, ( x , y ) E G = [ - o o < x < + o o , - d < y < d ] ,  

of a conducting fluid along a plane channel of width 2d. Let the specific resistance 
u(x, y) of the fluid be restricted by constants a and b, so that O<a<=u(x, y)<__ 
b < + oo. Let E and H denote the electric and magnetic field respectively. The walls 
of the channel will be assumed insulating everywhere except for two sections of 
equal length 2l occupied by ideally conducting electrodes located opposite each 
other on different walls. The electrodes are connected through the outer load R. 
As soon as the transverse magnetic field/~ = -  i 3 B(x) is imposed on the moving 
fluid, an electric current of density ~=(j~, jy ,  0) is induced inside the channel. 
We shall use the notation 

(1) j~=v, j y = w ,  v=v(x,y),  w=w(x,y) .  
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Then through the outer load there flows a total current equal to 
+l 

(2) I= I w(x, +fi)dx.  
- l  

Provided the magnetic Reynolds number (Rein) is small compared with unity, the 
induced magnetic field can be neglected in comparison with the external field [7, 8], 
that is, we can take/~ =/--L Moreover, if the magnetohydrodynamic (mhd) param- 
eter of interaction (N) is also small, it is possible to neglect the Lorentz force in 

z_ 2 z; 
I 

-1.] 

z 2 - z'_ 

~y 

t ! 
i t 
! 
! 

-d z~ 

~ X  

Fig.  1 

the dynamic equation so that the velocity distribution can be considered as pre- 
scribed by the purely hydrodynamical problem of rectilinear motion in a channel 
[7, 8]. These two assumptions simplify the basic mhd equations, as given, for 
instance, in [11]. By introducing the notations 

(3) f =  -cur l  ~a z 2 , /~= -g rad  z 1 , z l=z l ( x , y ) ,  Z2=Z2(X,y), 
so that z 1 and z 2 are the electrical potential and current functions respectively, 
LURII~ [7, 8] gives the mhd equations in the form 

OZ 1 ~ Z  1 

- -  ~..-~ - - U  V 
Ox ' ay 

Oz 2 Oz z 
Ox =w,  Oy 

(4) 

_ _ -  u w + c - I V B ,  

where c is a positive constant, and to these equations should also be added the 
compatibility relations 

(5)  o-~ ~, Ox ! Ox \ Oy1 '  - ~  ~, Ox ! Ox ~, Oy ! 

which, after reduction, become 

O ~ Ow Ow ^ 
(6) o x ( C - '  V B - u w ) +  v ,  (uv)=0,  -~--+--~-y =O, 

and where a<u(x, y)<b. The upper limit b corresponds to the resistance of the 
fluid when all external ionization factors are withdrawn, the lower limit charac- 
terizes the maximum number of ionization possibilities. 



Multidimensional Lagrange Problems of Optimization in a Fixed Domain 95 

At infinity, the components v, w of the current density should be assumed to 
vanish. Because of equations (4) the functional I takes the form 

I=z2( l ,  + _ d ) - z 2 ( - l ,  +_d). 

The boundary conditions, as proposed in [7, 8], are as follows 

zl(x, ++_d)=z~ =constant for [ x [ < l , 

z2(x, ++_d)=z2+ =constant for l <x  < + oo, 

z2(x, + d ) = z  2 _ =constant for -oo  < x <  -1 ,  
d 

z1(+ o% d) - zX(  + o% - d ) = z l ( -  o% d) - zX(  - oo, - d ) = c  -1 I B(x) V ( y ) d y = e ,  
- d  

z2(+ oo, + d ) - z 2 ( - o o ,  + d ) = R - X ( z l + - z X ) .  

The last equation is only a relation between given constants and can be written 
in the form 

1 1 2 z+ - z _  =R(z+ -z2-). 

The total Joule losses are given in [7] in the form 

+oo d 

J =  I I u ( v 2 + w 2 ) d x d y  �9 
- -  oo  - d  

For the case of an homogeneous magnetic field B, the functionals I and J are 
related by the identity J =  I e - 1 2  R, as stated in [7]. LtJRm'S problems for the mhd 
channel flow in [7, 8] are the problem of the maximum of I (maximum current), 
and the problem of the minimum of J (minimum Joule losses). As LURIE 
mentions, other analogous problems can be taken into consideration. We shall 
consider below the problem of the minimum of J. 

The Lagrange-Type Problem of LURIE 

If we introduce the notation 
Y 

(7) W(y)=c -1 ~ V ( y ) d y ,  -d<=y<=d, 
- d  

and the new variable Z = ( Z  1, Z 2) by means of the relations 

Y 

ZI(x ,Y)=Zl(x ,Y)  - I c-1 V (y )B(x )dy=z l ( x ,Y )  - W(y)B(x) ,  Z2(x , y )=z2(x , y ) ,  
- d  

then equations (4) become 

(8) 

0 Z  x 0Z 1 
= = Ox - u v - W ( y ) B ' ( x ) ,  Oy - u w ,  

OZ 2 0Z 2 
Ox =w ,  Oy - v ,  

- ~ < x <  + ~ ,  - d < y < ~  while the accompanying relations (5) remain with 
unchanged, and where B '=  dB/dx. 
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If G denotes the unbounded open set G = [ - o o < x < + o o ,  -d<y<d], we 
shall consider the vector functions Z(x, y) = ( Z  1, Z2), and scalar functions u(x, y), 
v(x,y), w(x,y), satisfying (a) the first order partial differential equations (8) 
(of RASrmVKY'S type); (b) the associated relations analogous to (5) which we shall 
write in the weak form 

(9) i I~(Z:,tpy-Zj,~ox)dxdy=O, i=1 ,2 ,  
G 

for every q~ e C~ (G); (c) the constraints 

0 < a < = u ( x , y ) < b <  +oo, 

ff u( 2 +wbd dy< +oo, 
G 

(d) the boundary conditions 

Z~(x,-d)=zX__, Z~(x,d)=z~+-W(d)n(x) for Ixl~l, 
(10) 

Z2(x,+d)=z 2 for l < x < + ~ ,  Z2(x,+_d)=z2_. for - o o < x < - l ,  

(11) Zl(+oo, d)=Z1(+oo, -d),  zl(-oo, d)=Zl(-oo, -d).  

Since we are interested in the minimum of J, it is not restrictive to add the further 
constraint 

+oD d 

(12) J= S S u(v2+w2)dxdy <M 
--o0 - d  

for some sufficiently large constant M. Here R, d,/, a, b, c, M are positive constants, 
z~, zl+, z 2, z2_. are constants such that zl+-zL =R(z 2 -z2_), V(y), B(x) are given 
functions, B(x) continuous with B'(x), and W(y) is defined by (7). 

We shall assume I V(y) I < c D1 for - d <  y < d and some constant Dr. We shall 
also assume B'eL2(-co, + 00) and we denote by D2 the constant 

+Qo 

9 2 =  ~ n'2(x)dx, 
- o o  

so that IW(Y) l<2dDt. Then from (8) and (12) follows 

~ laZ~/axl2 dxdy<2b M +16d3 D~ D2, 
G 

jj J SZ~/ay 12 dx dy <= b M, 
G 

~SldZ2/dxl2dxdy<a-~M, ~ldZ2/Syl2dxdy<a-IM. 
G G 

Thus, for any pair Z=(Z t, Z2), U=(u, v, w) satisfying (a), (b), (c), (d) and (12) 
we necessarily have a<u<b, (v, w)eE2, Z~, Z~, Z 2, Z2eL2(G). 

Remark 8. With the notations of w 3, f , f  o and j T = ( f o , f )  are now given by 

f (x ,y ,u,v,w)=(-uv-W(y)B'(x) ,-uw, w, -v), fo=u(v2+w2), 
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and U is the fixed set U=[a<u<b, -oo<v, w< + oo]. Then the corresponding 
sets (~(x, y) and Q.(x, y)=f(x, y, U) are not convex since their common projec- 
tions on the ~1 ~2 ~3 ~4_space are the sets Q(x, y)=f(x, y, U)of all (~1, ~2, ~3, ~4) 
such that 

~I=_uv_W(y)B,(x) ,  ( 2 =_ uw,  ~3=w, ~4=_v, (u,v,w)~U. 

It is enough to show that their displacement Qo is not convex, where Qo is the set 
of all (=((1 ,  (2, (3, ~4) with 

~=-uv,  ~2=_uw, ~3=w, ~4=-v, (u,v,w)~U. 

For u=b, v = 1, w = 1, we have the point ~1 = ( - b ,  - b ,  1, - 1)~Qo, and for u=a, 
v = -  1, w = -  1 we have the point ~2 =(a, a, - 1 ,  1)~Q0, while the point 

=2-1  ~1 + 2-2 ~2 = [ 2 - ' ( - b  + a), 2 - 1 ( - b  +a) ,  0, 0] 

is the image of no point of U since ~3 = ~4 =0 implies w =v =0 and hence ~ = ~2 =0, 
while -b+a=t=O. Thus ~x~Qo, ~2~Qo, ~=2-1~1+2-~2r and Qo is not 
convex. 

A Weak Form of LUPOE'S Optimization Problem 
The weak form of LU~E'S optimization problem, corresponding to GAMg.RE- 

LIDZE'S sliding regimes, is considered in this section. 
We shall consider a class 12 of systems Z 1, Z 2, u i,  vj, wj, 2y, j = l ,  ..., #, of 

functions in G, where as before Z 1, Z 2 are the state variables, and uj, vj, wj, ~j, 
j =  1, ..., p, are new control variables. The variables 2 i represent probabilistic 
distributions, and therefore they satisfy the constraints 

(2, . . . . .  ,~AeV= [,~j-->0, J =1 . . . . .  p, 41+ "" + k s = l ] .  

For every j =  1, ...,/1, the triple (uj, vj, wj) is required to lie in U, or (us, vj, wj)e U, 
j = l ,  ..., #, so that a<uj<_b, (vy, Wy)eE 2. In other words, the control space is 
now the set V= U s xF ,  and the new control variable (uj, vj, wj, 2~ , j=  1, ...,/~) 
is required to lie in U s x F. 

We shall replace the differential system (8) by the relaxed system 

1 1 Zx: --Z ajUj~)j-- W(y) B'(x), Z~ -~- --Z ~jUjWj, 
03) Z2_x=Z ~jWj, Z2=-Z,~juj ,  

where Y. ranges over all j =  1 . . . .  ,/~. The new functional shall now be written in 
the form 
(14) J = ~ Z  2 2 2j uj(vy + w j) dx d y , 

G 
and since we seek the minimum of J, it is not restrictive to assume that 

(15) I I Z  2 2 2juj(vj + w~)dx d y< M 
j 

for some sufficiently large constant M. The open unbounded set 

G =  [ -  oo < x <  + m, -d<y<d] 
7 Arch. Rational Mech. Anal., Vol. 29 
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is obviously of class Kol, and for its typical representation we shall take G = U GN, 
GN~GN+I, with G N = [ - N I < x < N I ,  - d < y < d ] ,  N = l ,  2, . . . .  

We shall define the class I2 as the class of all systems 

(16) Zl(x ,y) ,  Z2(x,y) ,  uj(x,y) ,  vj(x,y),  wj(x,y), 21(x,y), j = l , . . . , / ~ ,  

with Z1, Z2eW12(GN) for every N, uj, vj, wj, 2j measurable in G, j = l ,  ...,/~, 
satisfying (15) and the differential equations (13) a.e. in G, as well as the con- 
straints mentioned above, or 

(u j ,  vj, w2, ).j, j = 1 . . . . .  /~) r U g x F, 

while for the values of the pairs (Z 1, Z 2) we propose no constraint at all, that is, 
we take all sets A(x,y)=E2,  and hence A=(cl  G)xE2,  a closed subset of the 
xy z  ~ z2-space. We do not require L~ or L2 integrability of any single function v j,  w j,  
j =  1, . . . ,  v, but only the Ll-integrability of the expression 

(17) F o = ~  2j uj(v 2 + w 2) 

in G as is implied by the constraint (15). Nevertheless the local L-integrability of 
the functions u j,  2j is implied by their measurability and boundedness. Also, we 
shall restrict I2 by imposing boundary conditions. We shall impose only the 
condition (10), or 

Z X ( x , - d ) = z [ ,  Z l (x ,d)=zl+-W(d)B(x)  for I x l < / ,  
(18) 

Z2(x,++_d)=z~ for / < x < + o o ,  Z2(x,++_d)=z 2_ for - o v < x < - l .  

Indeed these conditions possess property (P1) as mentioned in w 1. A remark 
concerning condition (11) will follow. 

Remark 9. We shall assume that the class f2 is not empty, that is, we assume 
that the differential system, the boundary conditions, and the various constraints 
can be satisfied by some pair z(x, y), u(x, y) as above. This question must be 
discussed elsewhere, though the elliptic character of the fundamental system (8) 
hints at the possibility of answering this question in the affirmative. 

Let us prove that for any system (16) of the class f2 we have 

I 2 ~L2(G)" (19) Z~, Z 2 , Z r , Zy 

Since Z ~, Z2e W~(G~) for every N, certainly we have Z~, Z 2, Z~, Z2EL2(GN) 
for every N. Hence 

SS (Z~) 2 dx dy = ~ (~ 2j uj w j) 2 dx d e . 
GN GN 

For every (x, y)eGN, let s be one of the indices ] =  1 . . . .  , #, for which 

I,~su~w~l= max I&jujwjl, 
j= l,...,v 

so that 
I Y~,~j u~ wj I-<_ ~ I,~suswsI 

and hence, since a <= us < b, 

~ (zl)  2 dx d y < 122 ~ (~s Us Ws) 2 d x d y < ~2 b ~ 22 u~ w 2 d x d y.  
GN GN G 
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Since 0 < 2s < 1 (hence 0 N 22 < 2s < 1), we have also 

S~ (Z~) 2 dx d y<-_# 2 b ~S gsu~ w2 dx d y<=l~2 b ~ E 21u1( v2 + w2) dx d y, 
GN GN GN 

S~ (Z J) 2 dx d y < #2 b M 
GN 

for every N, and hence Z~ eL 2 (G), and 

(20) Si (Z J) 2 d x d y < #2 b M.  
G 

Analogously, we can prove, using the elementary inequality (a + fl)2 < 2 a 2 + 2 f12, 
that 

~S (Z~) 2 dx d y < 2 ~S (E 2i uj vj) 2 dx d y + 2 ~ W 2 (y) B '2 (x) dx, 
GN GN GN 

and hence, as before 

J~ (Z~) 2 d x d y =< 2#2 b ~S Z 2j uj (v 2 + w 2) dx d y + 2 j~ W 2 (y) B '2 (x) d x d y 
(21) G G G 

<=2122 b M +16da D2 D2 . 

By analogous argument we have also 

(22) SS(Z2)2dxdy<=#2a-lM, S~(Z2)2dxdy<=p2a-iM. 
G G 

Statement (19) is thereby proved. 

Remark 10. The L2-integrability of Z~, Z~ which we have just proved certainly 
assures for Z 1 a remarkable "smoothness"  at oo in the strip G, but does not assure 
the existence of any of the limits z x ( +  ~ ,  y), ZI( - 0% y), -d<=y<=d, and even 
less the existence of the limits L~, L 2 of Z ~ as x --* + ~ ,  or x ~ - ~ .  (The L1- 
integrability of Z~, Z~ in G would assure this.) Essentially for the same reasons 
the boundary conditions ( l l )  do not satisfy property (P~) for p=2. Thus, this 
boundary condition has to be abandoned in the present scheme. The question 
whether the optimal solution has this property shall not be discussed here, and is 
left to the regularization problem. 

In order to apply Existence Theorem 3 we shall now prove that the systems (16) 
of the class O satisfy uniform integral relations 

(23) ~(Z')2dxdy<CN, ~S(Z2)2dxdy~DN, 
GN GN 

where CN, DN are constants which may depend on N (and on the data of the 
problem), but do not depend on the particular system (16) of the class O taken 
into consideration. 

To prove the first of relations (23) we shall use exclusively relations (20) 
and (21) which we shall write here in the form 

(24) II(Z~)2dxdy<A=#2bM, ~I(Z~)2dxdy<B=2l~2bM+16daD2D2, 
G:v GN 

for all N. 

7* 
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It is enough to prove the first relation (23) for functions Z 1 of class C 1 in GM 
satisfying (24), since every function of class W~(G~) in a given GN, can be ap- 
proached by means of functions of class C 1 with the same bounds (24). (This 
argument has been used already in [5, w 2, (2.i)].) Since 

l d 

(zl)~a~ay= ~ a~ ~ (z~)~ay~A, 
G1 - l  - d  

there is at least one point ~, -l<~<1, such that 

I (z ,~(~,y)Yay----  . 
- d  

Since Z~(x, - d ) - - z ~ ,  a constant, we also have, for -d<y<d, 

IZX(~,y) l  - - z~_+jd  =lz~_ I+ d y  (Z~)2 dy 

<= l z ~_ 1+ (2 d)~ (A/21)~= A ' , 

where we have denoted by A' the last constant. Now, for ~<x<Nl, N > I ,  we 
have x-~<Nl+l=(N+ 1)/, and 

I ; i IZl(x,y)l  = Zl (~ ,y )+  Zlx(~,y)d~t <A'+ IZ~(~,y)ld~ 

<A'+(N+l)'l'(i'(Z:(e,y))2de) ~, 
and finally 

I I(Zl(x,Y))Zdxdy<~ !, 2A'2+21(N+I) Zl(~,y))2d~ dxdy 
- d  - - 

N I  d N l  

_-<4a/(N+I)A'2+2(N+I)I $ ~ ~ (z~(~,y))2a~axdy 
- d  

N l d  

=4dl(N+I)A'2+212(N+I) 2 ~ ~ (Z~(x, y))edxdy 
- d  

<4d l(N+ 1) A' 2 +212(N+ 1)2B. 

An analogous relation holds for - N  l<_ x <_ ~, and hence 

SS (z l(x, y))2 d x d y < 8 d l(N + 1) A' 2 + 4 l 2 (N-t- 1) 2 B = C N . 
GN 

The first relation (23) is thereby proved. The remaining relation (23) can be 
proved by an analogous argument by using inequalities (22) and the information 
that Z2(x, -d)=z2+, a constant, for all x with l<x<21. 
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If we denote by u* the set of variables u i,  vj, wj, 2 i,  j =  1, . . . ,  p. we shall now 
consider (as in the Remark 8) the 4-vector F, and the 5-vector F =(Fo, F) de- 
fined by 

F (x, y, u*) = (-- ~_, 2i uj vj - W(y) B' (x), - ~ 2j Uj W j ,  ~ ~j W j ,  -- Z "~J $)J)' 

and F o already defined in (17), or 

Fo (x, y, u*) = E 2J u~ (v 2 + w2). 

We shall now consider first the set Q(x, y) of all (=(~0, ~ ,  ~2, (3, ~4) with 

~0 = U(/32.~_ W2) , ~I= - u v - W ( y ) B ' ( x ) ,  ~2= - u w ,  ( a = w ,  ~'*= - v ,  

for (u, v, w)eU, and then the set Q*(x,y) of all ~=(~o, ..., ~4) with 

(25) 
 o= _ jUj(V2+W2), 

with u* =(uj ,  vj, wj, 2j, j =  1, ..., #)e U t' x F. Thus, Q* is the set of all convex 
combinations of ~t points arbitrarily taken in Q. If we assume # = 6, then certainly 
the set @*(x, y) is convex, and this holds for every (x, y)eG (and even for every 
(x, y)ecl  G, and hence for every (x, y, z)eAecl  G x E2, since Q does not depend 
o n  Z). 

As a consequence, the set Q*(x, y) that we obtain, in harmony with Theorem 3, 
by replacing the first relation (25) with (o_>_ ~ 2 2 2juj(vj +wi), is also convex. 

Let us prove that the sets Q*(x, y) are closed. It is enough to prove that the 
set Qo below, obtained by a rigid displacement in 25, is closed. In other words, 
we shall prove the closure of the set Qo defined as the set of allpoints ( =((0 . . . . .  ( , )  
such that 

~O~E2~jUj(~)2_{._.~2), r __E 2jUjDj ' 

with u* =(uj,  vj, wj, 2 j , j =  I, . . . , / 0 e U  ~ •  

Let ( = ( ( ~  . . . . .  (4) ecl Qo, and let (k =((k ~ -'-, (k4), k = 1, 2, ..., be a sequence 
of points of Qo convergent to (. Then there are numbers Ujk, Vjk, Wjk, 2jk, 
j = l ,  ..., #, k = l ,  2 . . . . .  with 

0 2 2 >E =E Wjk), Ujkl)jk, 
(26) 

--~2=~,~jkUjk Wjk, k =E 2t'jk Wjk, 

a~ujk~b,  --O0<l)jk,Wjk<-{-O0, 2jk~>O, E , ~ , j k =  1, 
and 

If for oo-many k some 2jk=0, then, by an exchange of indices we may as 
well assume that this occurs for the same j,  say j =  1, and by an extraction, we 
may as well assume that this occurs for all k, and in this case we are reduced to 
the same situation with # replaced by ~u-1. Thus, it is not restrictive to assume 
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that  at most  finitely many  2jk are zero, and finally, by abandoning  a few terms 
of the sequence, we m a y  as well assume 2jk:~O for  a l l j  and k. 

If there are ~ - m a n y  2jk as  small as we want, we can always assume that  this 
occurs at least for  j = # ,  and then we can extract a subsequence with 2~k ~ 0  as 
k ~ ~ .  If there are still ~ - m a n y  2jk, with 1 _-<j_-</~- 1, in the extracted subsequence 
with "~jk as small as we want, we can as well assume that  this occurs f o r j = / ~ -  1, 
and by a new extraction we may assume 2~_ ~,k-'~'0 as k ~ ~ .  By repeating this 
process, we obtain a subsequence, say still (~,jk,J= 1, . . . ,  kt), k = l, 2, . . . ,  such that  

1__>2/k__>7>0 for  all j = 1 , 2  . . . .  , # ' ,  

,~jk-"~O as k - ~  f o r a l l j = # ' + l , . . . , ~ t .  

Since ~ 2jk = 1 for  every k, the first alternative must  actually occur for  at least 
one j, that  is, 1 < p ' <  p. By a new extraction, we obtain now a subsequence, for  
which we use the same notation,  such that  

,~jk--~2j~]l>O as k - - . o o ,  j = l ,  2 , . . . , # ' .  

2 j k ~ O  as k - ~ o o ,  j = # ' + l  . . . . .  St. 

Since the numbers  Ujk are bounded,  we can always extract the subsequence in 
such a way that  we have also 

U j k ~ U j  as k ~ o 0 ,  j = l  . . . . .  p ,  a<=uj<__b. 

N o w  ( o _ ,  ~o, hence [(o] is a bounded  sequence, and 

(27) ~o ~ E "~jk Uj k(O2k "4- W2k). 

We shall denote by ~ ' ,  ~ " ,  ~. sums ranging over a l l j  = 1 . . . . .  # ' ,  o r j = # '  + 1 . . . . .  St, 
or  j = 1 . . . .  , / t ,  respectively. Hence (27) yields 

(28) o , 2 ~ k ~ Z  ~jkUjkQ)jk + 2 Wj k) 

with 2jk--*~.j>=?>O, Ujk--*Uj>=a>O, j = l  . . . . .  i f ,  and [(o] bounded.  Hence, the 
2 # '  sequences [Vjk], [Wjk], j =  1 . . . . .  # ' ,  are also bounded,  and we can extract the 
subsequence in such a way that  we have also 

vj k --~ Vy, Wj k --~ Wj as k -~ ~ ,  v j ,  wj finite,  j = 1 . . . . .  #'.  

Actually, relation (27) yields also 

(29) ( o > ~ , ,  2 2 "~jk Ujk(l')jk + Wjk), 
and hence the sequences 

- z , kWjk], j = # ' + l  . . . . .  St, [~j  k Uj k Vj k] [~j  k Uj 2 

also are bounded,  and so must  be the sequences 

[2J  h] ' +  �9 , ['~j k Wj k]' j = I ~ 1 . . . .  ~, 

since 0 < a < uj k <= b. Note  that  for  any j, either [Vjk] contains a subsequence which 
converges to zero, and in correspondence 2jkVjk--*O, or [Vjk ] contains a sub- 
sequence bounded  away f rom zero and in correspondence [2j~vjk] is also a 
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bounded sequence. At least one of the two alternatives must occur. By repeating 2 # 
successive operations of extraction we can obtain, therefore, a final subsequence 
such that the sequences 

['L~vJk], [ ,~ykwjd,  J = l , ' +  1 . . . .  , ~, 

are bounded. Then we can extract also a subsequence such that 

2j k Vj k ~ Ay, 2j k Wj k ~ By as k ~ ~ ,  A j, Bj finite, j = #'  + 1 . . . . .  # .  

F rom relations (26) we deduce now as k ~ 

E 'A j=  -~4-~t~jv j ,  EHBj=~3-Et~yWj, 
(30) 

E"Ajuj= -r E"ByUj= -r 
Let us prove that all numbers A j, By are zero. Assume this is not the case, and 
that at least one of the numbers Ay, By, j = # ' +  1, ...,/~, is #0 .  Let us write the 
first relation (26) in the form 

(31) EH[('~jkl)jk)UjkOjk"~(~jkWjk)UjkWjk] <yO=Sk --/~'~t2 jkUjk(1)jk+Wjk)2 2 , 

where the second member  converges to 

cO - - E '  2 2 2y uj(vy + w j). 

In the first member  of (31) each of the products (2ykVyk)UjkVyk, (2jkWjk)UjkWyk 
is >0 ,  hence (31) can be written in the form 

(32) ~"[[2ykVjkl  ujk Ivjkl+l,~y~ wjkl ujk Iwj~lq<m, 
where m > 0 is some fixed number. 

In (32), I,~j~vykl~lAjl, IAj~wjkl-~lnjl, and Uyk~Uj>a>O, with U j k > a > 0 ,  
j = kt' + 1, .. . ,  kt, and all k, while 2jk ~ 0 as k ~ or, j = #'  + 1 . . . . .  #. If one at least 
of the numbers Ay, By, say Av, were different f rom zero, then I vv~l ~ + oo as 
k ~ or, and 

I2~kVkl~lavl#O, U~k>a, Ivvkl--' + ~ ,  

would imply that the first number of (32) approaches + oo as k ~ or, a contra- 
diction. Thus A i =By =0,  j = # ' +  1 . . . . .  #, relations (30) become 

-Y/ Xjujvy=~L -Y/ Xjujwj=~ ~, 
--Et~jWj=r 3, Et~jl)j=r 4, 

and f rom (28) also 
r Et flgjUj(1)2"-[-W2), Et ~j= l. 

In other words ff=(~o . . . .  , ~*) belongs to (~o as a convex combination cor- 
responding to some ~t', 1 < # ' < #  (in other words we can take 2 j = 0 f o r  j =  
/z' + 1, .. . ,  ~). We have proved that Qo is a closed set, and so are all sets Q* (x, y) 
as rigid displacements of Qo- 

Here the set U" • F is a fixed closed set and hence certainly satisfies property 
(U). Here the sets (~* are rigid displacements of Qo by the vector 

(0, - W(y)  B' (x), O, O, 0). 
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Since W(y) B'(x) is a cont inuous funct ion on cl G we conclude that  Q* certainly 
satisfies proper ty  (Q). 

By force of Theorem 3 with ~b(x, y ) = 0  and the corresponding remarks,  
we conclude that LURIE'S problem has a weak optimal solution (Z 1, Z 2) satisfying 
equations (13), satisfying the boundary  conditions (18), minimizing the functional  
(14), with # = 6 ,  and such that  

1 1 2 2 Zx,Zy,Zx,Zy~L2(G);  Z1, Z2~L2(GN) for every N ;  

and Z 1, Z2~ W12(GN) for  every N. 

Remark 11. The question as to whether the sets (2", or  (~*, are convex for  some 
value of /~  less than six has no t  been discussed above. Our  existence statement 
holds for  any #_-<6 for  which the sets (~* or Q* are convex. The question as to 
whether weak solutions (that is, satisfying equations (13)) and corresponding 
values of the cost  functional  (14) can be approximated by means of solutions of 
equations (9) and corresponding values of the cost  functional  (12) will be answered 
elsewhere. 
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