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1. Introduction 
This paper continues our study of the representation of solutions of the 

Euler-Poisson-Darboux equation [4]. This linear partial differential equation, of 
the hyperbolic type in two independent variables, has the form 

02r 0 2 r  2~ 0r 
(1.1) --~z-=--~-Z-r -r r Or 

where we have assumed ct to be a real parameter such that 0<c t<  1. For a dis- 
cussion of other real values of a we refer to [4] and [9]. This equation has been 
the object of much study, in part due to its interest in many specific problems 
in classical physics [3] and in part due to its intrinsic mathematical interest [9]. 
On the latter points, it is perhaps the most simple linear partial differential equation 
with a singular line (r =0). As we have remarked in [4], the presence of this line 
poses certain questions which are beyond the scope of the standard theory. 

There are three different representations known for equation (1.1), the first 
one having been given by POISSON [6] in 1823. It has the form 

g 

(1.2) r  Sf(t+rcosd/)sin 2~-l~bd~+rl-2~Sg(t+rcos~)sinl-2~d ~ 
0 0 

for 0 < c t < l ,  ~#1/2.  For 0<a t< l /2 ,  the first integral dominates in the limit 
r ~ 0  +, while for 1/2<ct< l, the second one does. Given tha t f (z)  and g(~)eC 2 
in the interval t-r<_z<t+r, we can show that (1.2) satisfies (1.1) and that 

L imr  (t, r) = F(1/2) F(ct) 
,~o + 2r(g + 1/2)f(t) 

and 
Limr2~ 0 r  F(1/2)r(1-ct) 
,-,o+ dr  = f ( l / 2 - g )  g(t) 

provided that 0 < g < 1 / 2 .  If 1 / 2 < ~ < I ,  these limits can be read as finite parts in 
the sense of Hadamard. The two integrals in (1.2) are clearly linearly independent 
save for the case g = 1/2. 

15" 
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For the exceptional case cr we write (1.2) in the form (following DAR- 
BOUX [2]) 

r) ~[f(t+rcos~b) g(t+rcosr ] r sin2a-1 ~ d ~  
=o [ 2 1 - 2 ~  J 

(1.2a) oJ'[ 2 g (t-'4- r c~ ~s)'] sin'- 2" !b d/b" + r l _ 2 , "  S ( t +  cos0)§ 1 - 2 ~  J 

In the limit ct--* 1/2, (1.2a) becomes 

r (t, r) = Sf(t  + r cos r d r + S g(t + r cos ~b) In (r sin 2 r d ~b 
0 0 

so that in this case we have 

Limc~(t,r)=irf(t) and Limr~r=rCg(t ). 
r--*O + 

A second representation is to be found for the special case ~=1/2 in VOL- 
TER_~'S work [8] of 1892. For 0<ct<  1, equation (1.1) is satisfied by either of the 
following representations: 

(1.3) 

o r  

(1.3a) 

co  

S [ f l  (t + r cosh ~b) +f2 (t - r cosh r sinh 2 ~- 1 ~b d ~b 
0 

oo 

rt-  2~ ~ [ f  3(t + r cosh r + f4(t-rcosh ~b)] sinht- Z~ ~k d~b" 
0 

In order that (1.3) and (1.3a) be solutions of equation (1.1) we require order 
conditions on f l  (z),f3 (z),f2 ( -  ~) and f3 ( -  ~) as ~ ~ ~ as well as some smoothness 
conditions on these functions, and we shall discuss them in Section 3. Observe 
that (1.3) and (1.3a) employ data which are outside of the interval (t-r,  t+r). 
We have already discussed in [4], Section 8, the interpretation off3 ( t ) + f 4 ( - t ) .  
Incidentally, LAMB [5] felt that for the special case o~=1/2, (1.3) was preferable 
to (1.2) since (1.3) embraced both converging and diverging waves while (1.2) did 
not discriminate them. We shall see that this point is illusory. 

The third representation was given by PdEMANN in 1860 in terms of what is 
now called a RIEMANN function [7]. In fact this one may be used to obtain r (t, r) 

for 0 < t < r  when the data ~b(t, r) and ~ are assigned at t=O. If, however, such 

data are given when 0 < t < r, then there are some modifications in the results of 
RmMANN, as CoPsos [1] had pointed out in 1958. CoPsoN had made extensive 
use of certain integral transforms to find these modifications. The results of 
PO[SSON, VOLTERRA and CoPsoN are all equivalent in the restricted interval of ~t 
which we employ. It is, of course, possible to extend this interval by methods 
which are standard for equation (1.1) [9], but we shall not pursue this point here. 
It is to be noted that we do not require data beyond the point r + t on the t axis. 

< r < t, assumptions regarding the behavior of ~b and ~ at t = 0 in the neigh- If 0 
borhood of r = 0  + will be needed. U $  
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In order to demonstrate the equivalence of (1.2) and (1.3) we ask if it is possible 
to express them in terms of Cauchy data on the regular line t=0 ,  r>0 .  Upon 
doing so, we encounter some simple Abel integral equations. These equations may 
be solved and upon simplification we are led directly to the Riemann represen- 
tation for both of the cases 0 < t < r and 0 < r < t. In the process we find CoPsor~'s 
extension of RIEMANN'S result. We shall see that the POISSON representation is the 
easiest one to handle. 

2. The Cauchy Problem for (1.2) 

Since the two integrals in (1.2) are linearly independent when 0 < ~ < 1, ~ 4:1/2, 
we shall consider two separate Cauchy problems when ~ :  1/2. The exceptional 
case ~=1/2 will be discussed separately. We first examine the Cauchy problem 
on the line t = 0  for the regular representation 

~t 

(2.1) ~b 1 (t, r) = Sf(t + r cos ~k) sin 2 ~- 1 ~k d ~k. 
0 

That is, we shall show that we can rewrite (2.1) in terms of q~l(r, t)=al(r) and 

t~t =b l ( r ) '  when r_~0 and t=0 ,  for 0<c t<  1, ~taF 1/2. Then we shall show that 

the same may be done for the singular part 

(2.2) ~b2 (t, r) = r 1 - 2 �9 S g (t + r cos ~b) sin 1 - 2 �9 ~k d ~b 
0 

in terms of dp2(t, r)=a2(r) a n d - ~ t 2  =b2(r), when r > 0  and t=0 ,  again for 

0<c t<  1, ~ :  1/2. The details of these problems are essentially the same and we 
shall only examine the particulars of the first one. In order to simplify the sub- 
sequent discussion, we shall decompose ~bl (t, r) and tk2(t, r) into two parts, one 
of which vanishes while the other of which has a vanishing t derivative at t=0 .  
That  is, we shall investigate the forms of the functions ~bl (t, r) and ~b z (t, r) which 
are respectively odd and even about the line t =0. We shall only discuss the cases 
which deal with the vanishing of ~bl and qb 2 since the other two cases are essentially 
the same. Now (2.1) may be rewritten with the substitution r = r  cos~k as 

r P [f(t+z)+f(t-z)] dr 
(2.3) ~b l(t,  r )=  j'sin 2~-2 ~k[f(t+r)+f(t-O] dr=~o r 2 , - 1  [r  2 _ r ]l 

0 

From the condition q51 (0, r) =0,  we conclude thatf(~) + f ( -  r) =0. When the deriv- 
ative condition is employed we obtain 

r 

bl( r )=oj  [ f ' ( z ) - f ' ( - z ) ]  dr 

where the prime indicates differentiation with respect to z. This integral may be 
inverted to give 

(2.4) [ f ( 2 ) - f ( - 2 ) ] = 2  s i n ~  ~ ~ bl(z)z2~d'c O < c t < l ,  ~ 1 / 2 ,  
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since bl(x) is bounded  and continuous when t -r<x<t+r.  S i n c e f  is odd, we 
find that  

sinlr~ } bl( 'c)z2~d'r 
(2.5) f ( 2 ) = - f ( - 2 ) =  ~z o ( 2 2 - z 2 )  ~ ' 2 > 0 .  

N ow we have two cases to  consider, depending on whether  r,~t. Let  us suppose 
that r < t. Then  

. s inn~  ~ (  t+: 22~b l (2 )d~  
,/,,(t, " ) =  ~ ~--~-~=-r-, (g(:-:Y'-~ d~ o j" E ( t + ~ ) 2 - 2 ~ ]  " 

(2.6) , , - ,  22~ b~(2)d 2 

+ o ~ ( : - : ) ~ - '  d~ o ~ [(t-~)2-22Y J" 

These integrals may  be written in a more  useable form by interchanging the order  
of integration and performing some rearrangements.  We have then 

. sin rc a I i  d~ (t, r ) = ~  ~ v  22" bl (2) d'~" ~o [r2-'c2]'- l [(t +'c)2- 22]-" d'c 

t+r  
+ ~ 22~b1(2) d2  i (r2-z2)~-~[(t+'c)2-2z] -~d~ 

t ~ . - t  

t - - r  r 
+ ~ 22" b~ (2) d 2 ~ (r  2 - z2) ~ - '  [(t - z) 2 - 22 ] - "  d 

0 0 

i } + 2~'b,(2) a2 I ( : - : ) ~ - ~ [ ( t - ~ ) 2 - ' : ]  -~d~ �9 
t - r  0 

If we now replace �9 by - z  in the third and four th  integrals, ~bl (t, r) will simplify to 

. sinT~O~ ~ t ~ r  r 
q~'(t' r ) =  ~r---fi~-cr-~ ( 0  22"b~(2)d2J, (r2-x2)"-'[(t+z12-22]-~dz 

+ ~ 2 2 " b l ( 2 ) d 2  (r2-~2)'-l[(t+x)2-),2]-'d~ . 
t - r  2 - I  

Several remarks should be made about  equat ion (2.7). The first is that  the 
inner integral in each term is an Eulerian integral which can be reduced to a more  
familiar form. In order to effect this, we apply a bilinear t ransformat ion to the 
z integral with limits which run f rom - r  to r such that  the points z ( - 2 - t ,  
k - t ,  - r ,  r) go into a (Z ,  oo, 0, 1) where 

Z =  t 2 - ( r - 2 )  2 
4 r 2  

Then 
r 

I ( r2 - z2) " -  1 [(t + z)2 _ 22] - �9 d �9 = Z - ~ 2 - "  r" -1 F 2 (a) F(a,  ct, 2 a, 1/Z) 
- ,  2F(2c0 

where F(a,  a, 2a, l/Z) is the hypergeometric  function. Similarly if we apply a 
bilinear t ransformation to the z integral which runs f rom 2 - t  to r such t h a t  
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(T- r ,  - 2 - t ,  r, 2 - 0  goes into a(oo, Z, 1, 0) we get 

~" F(~, 1 - ~, 1, Z). 
2 

,~-t  ( r2  - -  z 2 ) ~ -  1 [ ( t  + ,r __ 22] -~  d ~  = 2 r I -~ sinn~ 

Hence we may rewrite equation (2.7) as 

r  t [ , /  2 \ "  F2(00 
27~ o ~-'r-Z-) F-ff--(-(~ F(~ 

(2.7a) 1 '+" 

which is valid for r < t, 0 < ~ < 1. 
The second remark deals with the observation that there are two different 

integrals required on the 2 axis for the case r < t. We therefore have a very spe- 
cific continuation of F(e, 1 - ~ ,  1, Z), t - r < 2 < t + r  into the interval 0 < 2 < t - r .  
Indeed, if one draws characteristics from the point (t, r) to the t axis, there are 
intersections at the points ( t - r ,  0) and (t + r, 0). One of these characteristics will 
also intersect the r-axis at (0, t+r) while the other characteristic drawn from 
( t -r ,  0) will intersect the r-axis at (0, t - r ) .  Accordingly, this second characteristic 
is the reflection of the one drawn through the point (t, r) from the line r =0  and 
it is this one which brings about the two integrals in equation (2.7). The second 
integral is the conventional Riemann representation while the first one is a modi- 
fication noted by COPSON [1 ] in 1958. The conventional Cauchy existence theorem 
does not apply here since one of the characteristics through the point (t, r) inter- 
sects the singular line r = 0  as well as the line t=0 .  Finally, since f ( ~ ) e C  2, 
t-r<2<_t+r, the POISSON representation for the regular case (2.1) implies that 
C t = f ' ( t )  at r = 0  and Ct ,=0,  r--,0 +. From the first conclusion we have that 
bx (0+)=f ' (0)  and from the second one we have that dbl/dr=O, r--*0 +. Since r 
exists at t =0, it clearly satisfies a Lipschitz condition in r. 

We now turn to the case r >  t. Here we have {, , r  s in r~  [. 22~b~(~.)d~.[. (r2_~2),_~[(t+~)2_~2]_~d~ 
7or 2~-1 o o 

t + r  

+ S )'2~b,(2) d2 S (r2--z2)~-x[(t+z)2--22] - ' d z  
t A - t  

(2.8) t t-~ 
+ 

0 0 

, ,  +} -- I 22~b1(2) d2 (r2-z2)~-~[(t-z)2-)'2] - ' d  �9 
0 t + 2  

The form of the last integral arises from the requirement that it is necessary to 
employ (2.5) when the argument o f f  is negative. Upon replacing T by - z  in the 
third integral and noting that 

(2.9) S (r2-z2) ' - l[ ( t+z)2-22]- 'dz= S (r2-~2) ' - l [ ( t -z )2-22]- 'dz ,  
2 - t  A + t  
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we get 
s inn~ ~+t _~2)~- (2.8a) q~(t, r )=  ~r---~-~_ ~ I 22"bt(2) d2 ~' ( r2 ~[( t + x ) 2 - 2 2 ] - ' d x "  

r - - t  ) .-- t  

The relation (2.9) may be derived by applying the bilinear transformation 

2tr2 +(t2-22 + r2) tr 
Z= t2_~,2+r2_t_2ttr 

to the integral on the right side of the equality. Upon employing the same bilinear 
transformation which we did in (2.7), we may reduce (2.8a) to 

(2.8b) d?l(t,r)=2,St F(o~, l -~, l ,Z)bl(2)d2 , r>t ,  0 < ~ t < l .  

The Cauchy problem for r r) on the line t = 0  (when r r )=0)  follows 
without any major changes in method. Indeed for r < t 

t~2(t, r) = sin ~z ~ r2 b2 (,~) d~, (r2-,c2)-'[(t-t-v)2-~,2]~-ldx 

+ I 2b2(2)d2 (r2--~2)-'[(t+~)2--22]'-ld~ 
t - - r  A--t 

(2.10) 
sinzcct F2(1 

-- t "Z~-t b2(A)F(1 -~t, 1 - ~ ,  2 -  2ct, l /Z)d2 
2n F ( 2 - 2 ~ )  o 

1 t + r  

2f~r 
For r > t, we get 

r r)= 
r + t  

s i n ~  I 2b201") d2 S ( r2 -z2 ) - 'E ( t+~)2 -22]  "-1 d~ 
r - t  2 - t  

(2.10a) 1 ,+t 
=-~,S (2) 'b2(2)F(1-~,~ 

Both (2.10) and (2.10a) are valid for 0<ct<  1. The kernels in (2.8b) and (2.10a) 
are the same due to the fact that F(~, 1 -ct, 1, Z)=F(1--ct ,  ~, 1, Z), but there are 
some distinct differences in the kernels of (2.7a) and (2.10). Note that since 

g (2) e C 2 in an interval which includes the origin, we have -~- (r 2 ~- 1 b2) = 0, r 0 
+ 

and r 2~ t3~b2 -- V ~ F ( 1 - - ~ )  ar F (�89 g(t), r ~O + when 0<ct<  I, ~t~: 1/2. 

There is no difficulty in treating the exceptional case ct = 1/2. If we use (l.2a) 
to determine ~bl(t, r) and r r), we shall acquire the situation which we dis- 
cussed in Section 1 of [4] in terms of bl (r) and b 2 (r). 

3. The Volterra Representation for (1 .1)  

We have seen in Section 2 that the POISSON representation for equation (1.1) 
could be converted into a Riemann representation for 0 < r <  t or 0 < t < r, when 
0<c t<  1. This representation makes use of data between t - r  and t+r on the 
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t-axis. As such it uses data  on the singular line r = 0  which has been cut out  by 
the characteristics of (1.1) drawn f rom the point  (t, r). In 1892, VOL~RRA gave 
another  set of representations for  equat ion (1.1) in the special case e =  1/2. The 
data  they require are now to be found in the complement  of the interval of length 
2 r which is symmetric about  a point  on the t-axis. For  0 < e < 1, his representations 
assume the forms 

(3.1 a) Sfx (t + r cosh ~) sinh 2 ~- ~ ~b d O, 
0 

oo 

(3.1 b) ~f2 (t -- r cosh ~b) sinh 2 " -  1 ~b d ~b, 
0 

oo 

r I - 2 ~ ~fa (t + r cosh  ~b) sinh 1-2 at ~r d~b, 
0 

(3.2a) 

and 

(3.2 b) r 1 - 2 �9 I f a  ( t -  r cosh 0)  sinh 1 - 2 �9 ~k d ~k. 
0 

We can show subject to appropriate  behavior  off i (2) ,  i=l ,  3 a n d f ~ ( - 2 ) ,  i = 2 ,  4 
when 2 ~ 0% as well as some differentiability properties o f f~ (+2) ,  that  (3.1) and 
(3.2) satisfy (1.1) ([4], Section 8). 

There are, however,  t runcated versions of (3.1) and (3.2) which are more  
useful for  our  purposes. If for  example, f l ( 2 ) = f 2 ( - 2 ) = 0 ,  for  2 > L > 0 ,  we can 
write 

Oo 
~x (t, r) = S f l  ( t +  r cosh ~)  sinh 2 , - a  ~k d~b 

0 

(3.1 c) 

and 

(3.1d) 

where 

and 

I[/1 

~2 (t, r) = S f2 (t -- r cosh ~b) sinh 2 " -  1 ~b d ~k 
0 

~b o (t, r, L) = In L -  t + ] , / (L-  0 2 - r 2 
/" 

~,l(t, r, L ) = l n  L+t+V(--L--~)-r-Z~ 
r 

and - L < t < L .  Under  the hypotheses that  f l 0 .  ) and f 2 ( - 2 ) ~ C  2, [ ; t l < L  and 
0 < ~ < 1 ,  a direct calculation will show that  ~ t ( t ,  r) and ~2(t, r) are solutions 
of (1.1). This being the case, if we now form a linear combinat ion of ~ l ( t ,  r) 
and ~2 (t, r) and ask whether  this combinat ion implies a regular Cauchy problem 
on the line t = 0 ,  r > 0 ,  we shall see that  the results of Section 2 are rederived. 

We therefore investigate the same Cauchy problem which we did in Section 2 
using ~a(t ,  r) and ~2(t ,  r) as a solution of equat ion (1.1) and the initial con- 
ditions ~1(0, r) + ~2 (0, r) = 0 and 0 [~1 (t, r) + ~z (t, r)]/a t = bx (r), r > 0, t = 0. F r o m  
the first initial condit ion we get immediately 

(3.3) fx ( z ) + f 2 ( - z ) = 0  r< z< L .  
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From the second one, we get an Abel-type integral equation, that is, 

[ 0fl  af2 ] d 
b r r a _ f 2 ( - L ) - f l ( L )  ~.L--~ -~-J 

where now the functions f l  and f2 under the integral sign depend only on z. This 
integral equation may be solved, and we get 

(3.4) f l ( r ) _ f 2 ( _ r )  = 2 sin 7r___________~ z2~ bl (z) d z  
7~ r (~2-- r2)~ 

From (3.3) and (3.4) we may therefore conclude that 

f l ( r ) = - f 2 ( - r ) =  sinTrct ~ z2*bl(z)dz r > 0 .  
7C r (T2--r2) ~ ' 

Let us observe that we need a condition such as bl(z)eC', O<x<L in order to 
write (3.4). 

In order to show that ~1 (t, r )+  ~2 (t, r) can be written as a representation of 
the Riemann type, we start with the aid of (3.1 c) and (3.1 d) and put 

L-t f l ( t + z ) d  z L+t f 2 ( t_ z )d  z 
(3.5) ~ l ( t ,  r)-[-t~2(t , r ) =  ! /.2~t_1(,~2 r2)1_c t -1- ! /.2 ~t- 1(172 F2) l-~t " 

At this point it becomes clear that we should distinguish the cases r > t and r < t. 
For r > t, f2 ( t -  ~) = - f l  ( z -  t) and therefore (3.5) becomes 

o~ ~L-t dz L 22~bl(2)d2 
Ol(t,r)+O2(t,r)= sin_______~_~rc [ ~ (z2-r2)l-',~+, [22 - ( t+z )2 ]"  

(3.6) L+t dz 22~bl(g)d2 
-- ! (172--r2) 1 - a , - t  ~ D~2 -- (z -- t)2] ~ j "  

We can now show that for L >  t, (3.6) is independent of L. This is accomplished 
by calculating the partial derivative of the right hand side of (3.6) with respect to 
L and showing that it is identically zero. Indeed, this partial derivative is 

s in~a  I ~ - '  L2"bl(L)dz r .+ ,  L2,bl(L)dz 
7~ . 1"-C2 --  r2 ]  l - "  [L2 - (t- l-  $)2] "  r ~ ['c2 - r ~ r ~ - -  (-~_ t )2 - ] , j  �9 

On the other hand 

L + t  d'c  L - t  dz 
�9 ~ E z 2 - r 2 ] X - ~ E L 2 - ( t + z 2 ) ] ~ =  ~ [z2-r2]X-'El_~-(z-t)2]" 

which we can show as we did in Section 2. Since (3.6) is independent of L, it 
leads directly to a Volterra type of representation (the case L--* ~ )  or we may 
put L = t + r in which case we get 

(3.7) Ol(t, r )+O2(t ,  r )=  sinrc~ ~ 2 t  dz t-F r )~2~ bl(2) d2 
f 

, 



Theorems of Poisson, Riemann and Volterra 227 

Upon interchanging the order of integration (3.7) becomes 

sin TT, o~ r+t &+t dT 
(3.8) ~ , ( t ,  r )+~2( t ,  r )=  ~ 22"bx(2)d2 It2-- r2]" [,~2-- (t-- t) 2] 1 - ' "  7~ r--t 

However, with the aid of an appropriate bilinear transformation we may write 

~+t d~ t-~ d~ 
~r ['r Jr [ 'c2-- r2]~[( 'c - - t )2--~ ,2]  1-~ 

and upon replacing z by - � 9  in the last integral this becomes 

~ - ,  & _ r2) ,  [ ( z  + 02  _ ~ 2 ] , - ,  �9 

Hence (3.8) is precisely (2.8a). 
Now we turn to the case 0 < r <  t. Here we have from (3.5) that 

4i~ (t, r) + ~[)2 (t, r) 

z - ,  f l ( t + z ) d  ~ 
= ! r2" - l ( . c2 - r2 )  1-a 

L- ,  f l ( t + z ) d  ~ 
---- f r 2 a - l ( , ~ 2 - - r 2 )  1-~ 

L + t  f2(t-'Odz 
[- ! r2a-1(,c2--r2) 1-a 

F i f 2 ( t - z ) d z  
r r 2 a -  1('~2-- r2) 1-~ 

L+t f l  ('C-- t) d'c 
I ~2,-,&_~2),-, t 

(3.9) sinTr~ { ~-t aT L 22~bl(R)d2 
=r2--~-~-=~-~ - . ( z 2 - r 2 ) l - % L  [22- ( t+z)2]  ~ 

' d z  ~ 22,b1(2)d2 z+t dz  L 22,bx(2)d2 
+ !  (x2- - r2) t - ' , -  J, [22 -- (, -- z)2] " F  ! (z2- - r2) ' - ' ,~ t  [-~----(---~--t--~"J" 

But (3.9) is independent of L so that if we put L = t + r, we get for the ease 0 < r  < t 

. s i n ~ ,  {i d ,  '+'  22"b,(2)d2 
~]~l(t, r )J l -~2(t ,  r ) =  r-----~-~-~_ 1 [ T 2 _ r 2 1 1 - ,  S [,~2 -- (t -- -c)2 ]a 

,+2t dz ,+t 22, b1(J.)d2 } 
+ ,~ r ~ _ r 2 ] , - ,  I,_ [~2- (~ -0~ ]  �9 �9 

If we now interchange the order of integration in these integrals and simplify the 
result of this, we get 

f t--r t+,~ dz  ~ l ( t , r ) + ~ 2 ( t  ' . sinzr~ S 22"b1(2) d2 
r ; = ~ r 2 " - '  0 , - ~  E ~ 2 - r 2 ] ' E ~ 2 - ( t - ~ ) 2 ]  ~-" 

t+, t+~ dz } 
+t - r  ~ 22"b1(2)d~" r ~ [ ' g 2 - - F 2 ] a [ ' ~ 2 1 ( t l ' O 2 ] l - - a  " 

This final result can be cast into the form (2.7a) from which we observe that the 
PoIssoN representation accomplishes everything which VOL~RRA'S does. Thus 



228 F.G.  FRIEDLANDER & A. E. HFalqS: 

implicit in the work of POISSON for  equat ion (1.1) is the work of RIEMANN [7], 
DARBOUX [2], and VOLTERRA [8]. On the latter score, we note  that  we have given 
a verification which is different f rom DARBOUX'S. There are also similar results 
which are associated with (3.2a) and (3.2b) (see Section 2). 

4. The Source-Like Character of the Volterra Representations 

We now examine an interpretat ion of the functions f~(2), i = 1,3 and f i ( - 2 ) ,  
i=2 ,4 .  We shall see that  they are related to various types of " s o u r c e s "  on the 
axis r = 0  (with appropriate  numerical factors). Fo r  the special case a =  I/2 this 
was observed by LAMB in 1903. We shall examine (3.1 a) and (3.2a) in this connec- 
t ion in terms of the t runcated form of the VOLTERRA representation. Similar results 
are available for  (3.1 b) and (3.2b). 

Let  us then turn to r (t, r). We have 

~o 
#1 (t, r) = S f l ( t +  r cosh $)  sinh 2~- 1 $ d~b. 

0 

If O < a <  1/2, we have 

r ~o 

1r r) l < S [fl(t+rc~ sinh2~-I Od~k<M~ S sinh2 ~- 1 ~kd~k 
0 0 

where M 1 = m a x  ]fl(t+rcosh~b)l, 0<~<~o. Sincefl(t+rcosh~b) is cont inuous 
and 

S sinh2 ~- 1 0 d 0 
0 

exists for  0 < ~ <  1/2, we may let r--}O + and we have 

(4.1) 
41 (t, 0 +) = f l  (t) ~sinh 2~-1 $ d $ = F (ct) F ({_- ct) f l  (t).  

o 2]/zc 

The numerical factor  in (4.1) differs by a factor  of cos ~ a f rom its PoIssoN counter-  
part. It  may  also be interpreted as a finite par t  integral for  other  values of 
(see [4], Section 8). 

Now we examine ~3(t,  r). We shall show that  for  restricted ~, r2~O~a/ar is 
propor t ional  to fa(t) when r ~ 0  +. In order  to  do so, we calculate O~3[~r to  
obtain 

r 
a~3 = (1 - 2 ~t) r -  2 �9 S f3 (t + r cosh ~b) sinh I - 2 ~ ~k d ~k 
a r  o 

(4.2) + r 1 - 2 �9 ~~ Of3 (t + r cosh ~k) cosh ~k sinh 1 - 2 �9 ~b d ~k 
o ~t 

_r_2~fa(L)(sinhl_2~o ) (L-t)  
1 / ( L -  0 2 - r 2" 
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As (4.2) stands, it is not  obvious what  is the nature of the behavior  of a~3/ar 
as r--*0 +. In order  to cast it into a more  useful form,  we follow LAMB and write 

q,o 
r2~ a~3 = ( 1 - 2 ~ )  Sf3( t  + r cash ~k) sinh 1-2~ ff d ~  

d r  o 

~o a f  a (t + r cash ~k) 
+ r S [sinh ~k+ e -~] sinh t -2~ ~k d~k 

0 St 

(L - t ) f  3 (L) sinh 1 - 2 ~ ~k ~ 

V (L  - 0 2 _ r 2 

U p o n  integrating the first term in the second integral by parts and restricting 
to the interval 0 < a <  1/2, we get 

r2~ a~3 _ - ( 1 - 2 ~ )  ~~  r cosh ~,)] [ e - *  sinh -2~ ~]  d~b 
a r  0 

(4.3) + f a  (L) [1 [ / (L_t )2  =r  2] sinhl 
L - t  

~ 2 ~ ~ 0  

+ r i  o [ . a f 3 ( t ~ t c ~  ] [ e - * s i n h l - 2 " f f ]  d~k. 

This may  be simplified to 

r 2 a ati5 3 _ *o 
( 1  - -  2 ~) ~ ['f3 (t + r cash ~,)] [ e -  * s inh-  2 �9 ~]  d 

a r  o 

(4.4) + r ~o a f  a (t + r cash ~b) [ e -  * sinh i - 2 �9 ~]  d 
o St 

rl+2~fa(L ) 
[ ] / ( L -  0 2 - r z + L -  t] [L - t) 2 - r2] "" 

N o w  s incef3(A)zC 2, 2 > 0 ,  it is permissible to let r ~ 0  + and we are left with 

oO 

Lim r 2" a4~3 = - ( 1 - 2 ~ ) f 3 ( t ) ~  e -*  s i n h - 2 " ~  d ~ =  F ( 1 - a ) F ( � 8 9  
,-.o* Or o V-~ 

Let  us note  that  we cannot  treat  the case a = 1/2 directly f rom (4.3). In this 
case we return to (4.2) and observe that  the first integral disappears and then 
we are in a posit ion to apply LAMB'S device. In this case we have 

a~3 Lim r = - f 3  (t).  
r-.,0 + a r  

This indicates the presence of a conventional  two-dimensional  " logar i thmic  
sou rce"  of strength f3 (t) on the t-axis. But this is the form of the source strength 
in the POISSON representat ion (1.2a) when ~=1/2 where it indeed displays the 
logari thmic source explicitly. 
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