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1. Introduction 

We consider the existence of solutions of the Cauchy problem for a 2 x 2 
quasi-linear hyperbolic system 

(0 W,+F(tr)x=0, V(0, x)= Uo(X), 

where t>0,  - o o < x < o o ,  U(t, x)=(u(t, x), v(t, x)), and the function F(U)= 
(f(u, v), g(u, v)) is smooth. GLIMM [2] has proved existence of a weak solution 
provided that the variation of the initial data Uo(x) is small. GLIMM & LAX [3] 
then improved this result by requiring that the oscillation of Uo(x) be small. 
SMOLLER [7] has proved the existence of a weak solution provided that Uo(x ) 
is constant except for a single arbitrary jump (the Riemann problem). Finally, 
NISmDA [6] has proved existence for general data Uo but for the special case 
f= l / v ,  g=u. 

Here we will prove existence under the assumption that Uo(x) is constant 
except for two jumps; that is, Uo (x) is of the form 

(2) 
U , - -O0<X<X1,  

Uo(X)=~Um, X 1 < x  ,~X2, 

[ Ur, X2 < x  "< QO. 

Furthermore, we assume that these constant states Us, Um and U, are separated 
by two waves, which however can be of arbitrary strength. Thus, the Riemann 
problem with initial states Us and Um would generally produce two shocks or 
rarefaction waves separated from each other by a third constant state U3. Since 
we are only interested in the problem of elementary interactions, we will assume 
that U t and Um are related in such a way that only one such wave is produced 
and hence that U3 would actually be equal to Us or Urn. This means that the 
point Um must lie on one of four specified curves in the u--v plane through Uz 
(the shock or rarefaction wave curves, cf. [7]), but that the distance from U, to 
U s may be arbitrarily large. We assume that U, and Um are similarly related. 
Our object is to study the interaction that occurs when one of the waves overtakes 
the other, i.e., the initial waves move in such a way that they intersect destroying 
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U,. Our assumptions are the simplest which allows this to occur. We remark 
that these interactions are of considerable interest in gas dynamics; cf. [1] and 
the references given there. 

The method we use is the Glimm difference scheme [2]. We programmed 
Glimm's scheme for a computer and calculated approximate solutions for various 
functions F and initial data Uo. Observation of certain patterns in the behaviour 
of the computed solutions led to the proof of the existence theorem, which we 
give here. 

If the system (1) is hyperbolic and the initial data (2) satisfies our conditions, 
then each of the initial discontinuities produces one of four waves 1: a backward 
rarefaction wave, a backward shock wave, a forward rarefaction wave or a 
forward shock wave. This gives sixteen qualitatively different situations to con- 
sider. Of these, six are trivial because the waves never meet and there is no actual 
interaction. Of the remaining cases, three involve the interaction of only shocks 
and are effectively Riemann problems at the time of intersection. These were 
studied in [7] and [8]. Two cases involve a shock interacting with a rarefaction 
wave of the "opposite direction" and are considered in [8]. One involves the 
intersection of two rarefaction waves and is studied in [4] or [9]. This leaves the 
four cases which we consider here: a forward rarefaction wave overtaking a 
forward shock wave, a forward shock wave overtaking a forward rarefaction 
wave, and the two symmetrically equivalent interactions involving backward 
waves. In these situations we shall show that although the actual solution may 
be rather complicated (involving the formation and breaking of compression 
waves) the solution is contained in a bounded region determined by the initial 
conditions, and the variation of the solution on any line t =const. > 0  is bounded 
by a constant depending only on the initial conditions. 

We assume that fv g, > 0, and for definiteness we take fv < 0 and g, < 0. We 
also assume that (1) satisfies the following condition: if It and r~, i=1 ,  2, are the 
left and right eigenvectors of dF normalized so that d2~(r~)>0 and lira>O, then 
l~d2F(ri, rg)>0, i, j = l ,  2. (This is equivalent to assuming that the system (t) is 
genuinely nonlinear and satisfies the shock interaction conditions [8].) These 
conditions were studied in [7] and [8] and imply certain convexity and monotoni- 
city properties of the shock and rarefaction wave curves. 

Finally we assume the shock stability conditions ([7]) which state that 
21(U( t , x -O) )<a  holds across 2-shocks and 22(U(t, x+0) )> t r  holds across 
1-shocks where a is the shock speed. 

We can now state our theorem. 

Theorem. Assume that the system (1) satisfies the above conditions and that 
the initial data (2) is so chosen that each initial discontinuity produces only a single 
wave. Then the problem (1)-(2)  has a solution for all t>0 .  This solution is bounded 
and has uniformly bounded total variation on each line t =const. >0.  

1 Under the assumption of hyperbolicity, the Jacobian dF has real and distinct eigenvalues 
21(u, v)< 22(u, v). We shall say that a wave is "backward" if it is associated with ~1 even though 
21 is not necessarily negative. Similarly "forward" waves are those associated with 22. 
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We remark that our solutions are, of course, weak solutions in the usual 
sense of the theory of distributions. 

2. Numerical Experiments 

Although it was probably not intended for actual computation, Glimm's 
difference scheme can be implemented on a computer, and we have found it very 
useful as an experimental tool for the study of the complex interactions which 
occur in this problem. 

The Glimm scheme involves mesh parameters h =A t and k =A x. In the proof 
of the theorem we will require that 

(3) k]h>sup {I;tj(U)l, U~B, j =  1, 2} 

where B is a compact set known to contain the solution. This condition is anal- 
ogous to the well-known numerical stability condition k/h> c necessary for the 
simple difference approximation to the linear wave equation wtt-c2wxx=O 
(or if u=wt, v=cwx, the system vt-cux=O, ut -cvx  =0). But in actual computa- 
tion with the Glimm scheme, (3) apparently plays a somewhat different role. 
Even when it is not satisfied, experiments indicate that round-off errors and 
rapid changes in the solution do not exhibit exponential growth. 

The scheme defines a function V(x, t) which is a solution to the system on 
each horizontal strip n h < t < (n + 1)h. This solution is represented at mesh points 
(ink, nh) by values U,,,, which approximate U(mk, nh). Only m and n for which 
m+n is even are used. For n =0, U,,o = Uo(mk). For n +  1 >0,  the value of 
Urn,.+ 1 is calculated using Um-~,., Urn+ ~,n and a random variable a =am,. drawn 
from a uniform distribution - 1 < a_< 1. Specifically, Urn,. + t = V((m + a) k, (n + 1)h) 
where V(x, t) is defined, for (m-1)k<<_x~(m+l)k, nh<t<_(n+l)h, to be the 
solution of the Riemann problem (1) with initial data U(x, nh)=U,._l, . ,  if 
x < m k  and U(x, nh)= U,.+a,., if x>mk .  The solution of the Riemann problem 
generally requires computing the intersection of two curves defined by a pair of 
ordinary differential equations. Since this is done for each m and n, the Glimm 
scheme obviously requires much more computation than standard difference 
methods. 

We have only experimented with the special systems ut-vx=O, vt+f(u)x=O, 
where f ' < 0  and f " > 0 .  Here the Riemann problems can be solved relatively 
easily. Since - 21 (u) = 22 (u) = [ - : '  (u)] ~, we define 

2(u) = I - i f ( u ) ]  �89 , p(ul, u2) = 2(u) du , 

and 

tr (ux, u 2) = [(ux - u 2) (f(u 2) - f ( u  1))] 3 . 

The functions p and a characterize the rarefaction and shock wave curves respec- 
tively. 
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To compute Urn,.+1. let (Ul, Vl)=U,._I.,., (u,.vp)=U,..+l..., p=p(u~,u,), 
a =a(ul .  Ur) and consider four cases: 

I) - a < vp- vt ~ p, u1-5_ u, (back rarefaction, front shock) 

II) v.-vl-<__ - a  (back shock, front shock) 

I I I ) -  a < v , -  vt < p, up < us (back shock, front rarefaction) 

IV) p <vp-vz (back rarefaction, front rarefaction). 

If equality occurs, either choice may be made and one of the resulting waves 
has zero strength. (Our restriction on Uo implies that equality occurs initially.) 
For illustration, consider case I. Compute the intermediate state (u, v)= U by 
determining the intersection of the two curves v =vz + p(ul, u) and v =v, + tr(u, up). 
Generate a pseudorandom number ~ in the interval [-k]h, k/h]. Then define 
Urn,,+ 1 to be U, if 4_< -2(U:) ,  Up if ~rp=a(u,, u)/(up-u)<~, or Uif -2(u)~<_trp. 
Otherwise, if - 2 ( u ~ ) < ~ < - A ( u ) ,  let U,,,.,+l=(ue, vr where ur and 
vr =v~ + p (u~, u~) represent an intermediate state in a rarefaction wave joining Us 
and U. This completes case I; the others are similar and will be omitted. 

Fig. 1 illustrates the computer output for a typical problem. The symbols 
stand for different states at points in the x - t  plane. The letters L, M and R are 
the initial states, the digits and other letters are new states produced by inter- 
action, and the + signs are intermediate states in a forward rarefaction wave. 
For fixed t, as x varies only the first and last occurence of a symbol have been 
printed. In this example, a forward shock ( L -  M) overtakes a forward rarefaction 
( M - R ) .  The resulting interaction produces a sequence of weak backward shocks 
which eventually interact with each other. 

With standard finite difference methods, the propagation of discontinuities 
is somewhat obscured by the smoothing effects of the difference equations. It 
is difficult to distinguish between rarefaction and shock waves. However, with 
the Glimm scheme a sharp discontinuity across any shock is maintained for all t. 
The probabilistic mechanism causes an uncertainty in the location and strength 
of the jump, but not in its existence. 

3. Proof of the Theorem 

The proof of the theorem is by induction on the approximating solutions. 
That is, for fixed k and h, we state what the general pattern of the approximating 
solution is in the u - v  and x - t  planes at time t=nh, and then prove that no 
matter where the random points are chosen, these patterns are valid at time 
t = ( n +  1)h. This then enables us to study the approximate solutions at any time 
t=const .  >0  and to thereby obtain the necessary estimates. We assume that the 
reader is familiar with the results of [7], and we shall not hesitate to freely use 
these results without explicitly stating the exact reference. 

Since our technique is rather geometrical, we will need a few lemmas on the 
structure of the shock curves, most of which were used in the papers [7] and [8], 
but were not explicitly singled out. In order to state these precisely, we shall 
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need some notation. Let Po =(Uo, Vo) be a fixed point in the u - v  plane and let 
V=Sl (u; Po) and v=s2(u; Po) denote the back and front shock curves starting at 
Po, respectively. Similarly, let v =wl (u; Po) and V=Wz(U; Po) denote the back 
and front rarefaction-wave curves through Po. These latter two curves can be 
written in terms of the Riemann invariants ~ -  Se in the alternate forms Se = ~ (Po), 

=~(Po)  respectively. We can now state the following lemmas. 

Lemma 1. The curve 6a=Aa(Po) ( ~ = ~ ( P o ) )  lies entirely above the curve 
v=sl(u; Po) (v=s2(u; Po))for u<uo (U>Uo). 

Lemma2.  Let P1 =(ul, vl) be a point on v=si(u; Po) (v=s2(u; Po)); then 
v =Sl (u; P~) (v =s2 (u; P~)) lies entirely above the curve v =s  I (u; Po) (v =s2 (u; Po)) 

for u<ul (u>ul) .  

/.,emma 3. Let C(Po) (C'(Po)) denote the closed region between the curves 
V=Sz(U; Po) and v=w  (u; eo), U>Uo (v=s  (u; Po) and v=w2(u; Po), U<Uo). If  
Pl eC(Po) (PI~C' (Po)), then v=s2(u; PI) (v=s~ (u; PI)) cannot meet v=s2(u; Po) 
(v =sl  (u; e0)). 

Lemma 4. Let Y,(Po) denote the closed region between the curves v =st(u; Po), 
i=l ,2 ,  for v<vo. I f  e l=(ul ,  v~) is on V=Sl(U;Po), (P2 is on v=s2(u;Po)), 
then the curve v=s2(u; PI), u>ul (v=s,(u; P2), u<u2) cannot meet the curve 
v=s2(u; Po), U>Uo (v=st(u; Po) u~_uo) in ~'(Po). 

The proofs of Lemmas 1 and 2 are contained in [7]; the proof of Lemma 3 
is contained in [8], and the proof of Lemma 4 is similar to the proof of Lemma 3 
in [5]. 

With these lemmas in mind we can proceed to the proof of the theorem. Let 
the initial data consist of the three constant values Ul=(u z, ui), Um=(Um, vm), 
and U, = (u,, vr) which we shall sometimes write as L, M, R respectively. We let B 
denote the largest compact region defined by the six curves ~ = ~ ( U t ) ,  #~= 
#t(Um), ~ =#~(U,), b a =Sa(Uz), SP =SP(Um), SP = ~ ( U , ) .  We choose mesh lengths 
k and h so that (3) holds. 

In order to prove the theorem we have to consider only two cases: 

Case A: forward shock wave over takes a forward rarefaction wave, and 

Case B: forward rarefaction wave overtakes a forward shock wave. 

(The "backward"  cases are similar and can be omitted.) In Case A we have 
two subcases: i) strong rarefaction wave (Sa (U3 < ~ (Ur)) and ii) weak rarefaction 
wave (or see Fig. 2. 

Let us consider case i). We fix k and h with k/h constant and assume that at 
time t=nh the solution in the x - t  plane in the strip nh<t<(n+l)h is of the 
form shown in Fig. 3, that is, finitely many back shock-front rarefaction waves, 
followed by one back shock-front shock, followed by finitely-many front rare- 
faction waves. We also allow shocks and rarefaction waves of zero Strength to 
be included in our analysis. We shall further assume that the corresponding 
solution in the u - v  plane is of the form shown by Fig. 4. We shall show that 
these two diagrams are valid for the approximating solution in the strip (n+ 1)h < t 
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Case i): Strong rarefaction wave Case ii): Weak rarefaction wave. 

Fig. 2. The solid lines represent the shock waves; the dotted lines represent the rarefaction waves.* 

t : ( n+ I )h  

 VV" V / / .... / . ,  
t=nh  

Fig. 3 

L 

,,j ,,,,.,/../,i \ f~f \N\ 
.. .\ I \ J" NNNNNN 

Fig. 4 

< ( n + 2 ) h ,  no ma t t e r  where we choose  the r a n d o m  points  on the line t = ( n +  1)h. 
Once we do  this, it  will fo l low by  induct ion  tha t  these d iagrams  are  val id  on every 
s t r ip  nh<t<=(n+ 1)h, n = 0 ,  1, 2 . . . . .  

Le t  U,(x) and  U , + 2 ( x )  be the  solut ions  in the  ad jacent  rectangles  [ ( m - 1 ) k ,  
( m +  1)k] x [nh, (n+ 1)h] and  [ ( m +  1)k, ( m + 3 ) k ]  x [nh, (n+ 1)h] respectively,  

* The shock-wave curves are starlike with respect to the starting point, that is, each ray 
through the starting point meets the curve in at most one point. However, for simplicity in our 
diagrams, we have drawn these curves convex. 
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(m- t ) k  (m+l )k  (m+3)k 
t : (n+ l )h  --o o o - -  

t=nh x 
mk ( rn+2 lk  

v 
L 

<, .._--<'A t \ / i  3 ,o / \ ~ u  
, ,  ..--" / ~ , , / /  \ 

.>,-,  .Jy \ 

Fig. 5 

and choose random points a,, and am+ 2 on the segments [ (m-  1)k, (m+ 1)k] and 
[(m+l)k,(m+3)k] of the line t=(n+l)h respectively. We are to solve the 
Riemann problem for (1) with initial data 

(4) [U(am), U(am+2)] 

i.e., U((n+l)h, x)=U(am), if x<(m+l)k, and U((n+l)h, x)=U(a,,+2) if x >  
(m + 1)k. Here we have only four possibilities to consider, namely, 

a) Um(X)=(Sl, W2), U,.+2(x)=(Sl, w2) 
b) Um(X ) = ( S 1 ,  W2) , Urn+2(\ ) ~--~-(Sl, $2) 

C) Um(X)=($1, S2) , Um+2(x)=w 2 
d) Um(X)=W2, Um+e(X)=W2, 

where we are using the obvious notations, s 1 =back shock, w2 =front  wave, etc. 

Now case d) is trivial; it is resolved into waves only of the form We. Also 
from [8] it follows that the Riemann problem for (1) with data (4) in the case a) 
is resolved into waves of the form (sl, w2). Next we consider case b). In order to 
analyze this case, we consider the diagrams in the x -  t and u -  v planes shown in 
Fig. 5. The random point am can be chosen so that U(am) is only one of the follow- 
ing states: C), (2~, (.~ (in the rarefaction wave between ~)  and Q)), or (~-). Similarly 
U(a,,+2) can only be (L'-), ~),  ~). Thus we have only to consider finitely many 
Riemann problems which we can solve (using Lemmas 1 -  4). These are enumer- 
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(m-l)k (m§ (m,3)k t :  (n*l)h 

t=nh 
mk (m+2)k : -X  

R _..AL 

" \  ...-" I / \ 

..-",, oyl \ 
, -"  ",.. i t s  \ / \ 

14 ties on curve " ' - . . . .  

joining 3to R ) ~ " ' ' ' ' " ~  M ~ o  

Fig. 6 

ated in the table below (where the notations are self-evident, and where we omit 
some easy cases): 

[@, | | 

[@, | ~(Q, | 
[@, ~]-,(Q, | 

[| | ~(| | 
[| @]--,(@, | 

Q) =(sl, wp 

tO) =(s,, w2) 

@) =(s,, s2) 

~%) =(s .  w2) 

~ )  =(s,, s2). 

Note that if the solution is of the form (sl, s2), then the state on the right is (L~). 
Hence in the strip (n+l)h<t<(n+2)h, we can only get one back shock-front 
shock solution. 

Next we consider case c); in order to analyze this case, we consider the dia- 
grams in the x - t  and u - v  planes shown in Fig. 6. An analysis similar to the 
above yields the following table (here ~ is in the rarefaction wave between (L'-) 
and (L'-')): 

[0, | @, | s~), 
[@, | | | =(~,, w~), 
[| | | ~)=(,,, ~), 
[| | | | ~), 

if p is below q 

if p is above q 

if p is below q' 

if p is above q'. 
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V 

Rx I t. 
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Fig. 7 

Note that the solutions in cases a) through d) are of the same form in the 
strip (n+l)h<t<(n+2)h as the solution in the strip nh<t<(n+l)h ,  and that 
the new states produced in the u - v  plane lie in the desired regions. Also it is 
easy to check that this analysis is also valid in degenerate cases; i.e. in the cases 
where there are front or back waves of zero strength. It follows that the in- 
duction step is proved in this case, and so Figs. 3 and 4 are valid on the line 
t=(n+ l)h. 

Next consider the case ii) of a weak rarefaction wave (see Fig. 2). The induc- 
tion proof of this case is very similar to that of case i). The solution in the x - t  
plane in the strip nh<t<(n+ 1)h is the same as Fig. 3, and in the u - v  plane 
the solution is of the form shown in Fig. 7. We leave the verification of this to 
the reader. 

We shall now show that a subsequence of the approximating solutions con- 
verges to a solution of the system in Case A. In order to do this, it suffices [2] to 
obtain an estimate of the form 

(5) Var Ua, h(t, . )<cons t  

where the constant is independent of the random point a and the mesh length h. 
From our knowledge of the form of the solution in each strip nh<t<_(n+ 1)h, 
we shall show that this is a relatively easy task. 

We first note that in both cases i) and ii) each of the approximating solutions 
is bounded independently of the choice of the random point a and the mesh 
lengths h and k. Let us now consider the variation of u on any line t =c  =const.  >0,  
for any fixed a, h and k. We shall again only consider case i), the reason being 
that case ii) is similar. Suppose that the solution in the strip ~th<t<(~+l)h 
containing t=c, consists of n adjacent solutions (Uj, Uj+ 1, %+2) , j = l ,  2 . . . . .  
2 n - l ,  UI=UI, of the form (s x, w2), one (sl, s2)=(U2,+l, U2,+2, U2n+3), and 
m front waves w2. Then from the diagrams of the form of Fig. 4, we see that u 
is decreasing along the first n solutions and along the last m solutions. Thus if 
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Case i): Strong shock wave Case ii): Weak shock wave 
Fig. 8 

U'=(u ' ,  v') denotes the intersection of 6r162 with ~=~?(UI) ,  we have 

so that 

V a r  Uo, h(e, ")<(U~--U2,,+Z)+(U2,,+3 -- U2 .+2)  + ( U 2 . + 3  --U,)  

___ ' _(Ut--U )+ 2(Um--U.)=Mt 

(6) Var u o, ~ (c, . )  _-< M ~. 

Next by considering Fig. 4 we see that ~ is monotonically decreasing along 
t =e,  so that 

(7) Var ~,h(C, . )~_gt(Ut)-gt(U,)=M2. 

Now let ( ~ ,  ~ )  and (~2,5P2) be any two points in the # t -SP  plane and let 
,~v---v(gt~,~)-v(~e,~2), au=u(~,~l ) -U(~e,~) ,  a g = ~ - ~ ,  a ~ =  
~ t - ~ 2 .  Then 

A v= vg(~x, ~)A~+va~(~, ~ )A~  

Au=u~(~.-~) ~ y + u~(~, ~)zl~,  

where ~ and "~ are between ~ and ~2, r/and ~ are between ~ t  and ~2 .  It follows 
that 

(8) - (a ~ )  [ v ~ ( ~ ,  ~) u,(~, ~ ) -  u (~ ,  ~) v~,(~, ~)] .  

Hence we see from (6), (7) and the uniform boundedness of Uo, 4, that if u~ ~ 0 
in B, then we can obtain an estimate of the form 

(9) Var v.,~(c, .) ~ M 3 , 
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t = {n+l)h 

L I ?"" I 
t=nh 

Fig. 9 
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Fig. 10 

V 

and (9) together with (6) implies (5). To show that u~:#0, we observe that if T 
is the mapping T: (u, v) --,(~, 6a), then T is a C 1 bijection, 

~v 1 - ~v u 

so that u~ = [ d T [ - ~ .  Now the left eigenvectors of dF are (~ , ,  ~v), ( ~ ,  ~ ) ,  
and none of these are parallel to the u or v axes (see [7] or [8]). Therefore ~ is 
never zero and so u~ is never zero. This completes the proof of the theorem in 
Case A, a shock wave overtakes a rarefaction wave. 

Let us next consider Case B where a forward rarefaction wave overtakes a 
forward shock wave. Here again we shall distinguish two subcases: i) strong 
shock wave (Y(UI)>SP(Ur)) and ii) weak shock wave (5~(Ur)_->~(UI)); see 
Fig. 8. Let us first consider case i). We fix mesh lengths h and k and assume that 
at time t=nh the solution in the x - t  plane in the strip nh<t<(n+ 1)h is of the 
form shown in Fig. 9, that is, finitely-many forward rarefaction waves, followed 
by finitely many back shock-forward rarefaction waves, followed by a back-front 
shock. We shall also assume that the corresponding solution in the u - v  plane is 
of the form given by Fig. 10. 

It is easy to see from the considerations in Case A that in the x - t  plane the 
solution in the strip (n+ 1)h<t<=(n+2)h is of the same form as in Fig. 9. More- 
over, it is also easy to check that the corresponding solution in the u - v  plane is 
of the same form as in Fig. 10. Furthermore, these two statements are also valid 
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Fig. 11 

in the degenerate cases of waves of zero strength. Thus one can easily verify the 
induction step in this case. 

Let us now turn to case ii). Here the results are similar. We again assume that 
the approximating solutions in the x - t  plane are of the form given in Fig. 9. 
The solution in the u - v  plane is of the form (excluding trivial cases) given by 
Fig. 11. Here again, one can show that these diagrams "propagate" ,  i.e. that the 
solutions in the strip (n+ 1)h<t<(n+2)h are of the same form. 

In order to prove that there is a convergent subsequence of approximate 
solutions one again obtains estimates of the form (5) by the techniques used 
above. We leave these details to the reader. 

We conclude this paper by remarking that our methods could be extended 
to more general data of the form (2), although the details would be quite tedious. 

C. MOLm~ was supported in part by the Office 'of Naval Research, Contract NR044-377, 
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