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1. Introduction

In this paper we consider multidimensional nonlinear problems of optimization
of the Lagrange type involving a cost functional expressed by means of integrals
on a fixed domain G in Euclidian space E*, vZ1, and on its boundary G, and
also involving state equations, which usually are partial differential equations,
in G and on 0 G, and controls both in G (distributed controls) and on d G (boundary
controls), while our state variable x is an element of a topological space S. The
state equations, both in G and on 8G, are written in terms of abstract functional
analysis and hence may represent partial differential equations or more general
functional relations. The state equations, both in G and on 6G, may be written
ineither “strong” or “weak ” form, the latter being customary in the theory of partial
differential equations. This paper extends to the present situation the method
and ideas of previous papers by CEsaRri [3abc], and particularly of [3e].

Let G be a fixed bounded open set in E”, v=1, and let I" be a given closed
subset of 0 G on which we have a hyperarea measure u. To simplify our exposition,
let S be a Banach space of elements x, and let &, .4, £, A be operators on S,
not necessarily linear, with values in the following spaces:

Z:S-(Ly(G)Y, F:S-(L, (DY,
M:S>(L(G)Y, H:S—(L (DY,

where r, s, ¥’ and s’ are given positive integers. (See Remark 4 of § 4, and analogous
remarks in §§ 5 and 6 for a more general situation.)
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For every t=(t, ..., t") in the closure of G, let A(z) be a nonempty closed
subset of the y-space E°. Let A be the set of all (7, ¥) such that tecl(G) and
y=0", ..., y)e A(t). For every (¢, y)e A, let U(t, y) be a nonempty subset of the
u-space E™, u=(u', ..., u™). We define analogous sets on a closed subset I' of G
as follows. For every terl, let B(t) be a nonempty closed subset of the j-space
ES, =, ..., 5). Let B be the set of all (¢, y) with teI’ and peB(t). For every
(¢, D)eB, let V(t, ¥) be a nonempty subset of the v-space E™, v=(v?, ..., v™).

We consider the problem of finding an element x of .S, a measurable control
vector u(t)=(u', ...,u™), te G, and a y-measurable control vector v(t) = (v*, ..., v™),
terl’, that minimize the cost functional

I[x,u,v] =£f0(t, (Ax)(D), u(t))dt+ljgo (t, (X)), v(@®))dp, (1.1)

subject to the state equations

(L)O=f(t,(Mx)(t), u(®)) a.e.inG, (1.2)
(X)) =g(t, (A x)(®,v(t)) p-a.e. onl, (1.3)

and the constraints
(Ax)(t)e A(t), u(@eU(t,(#x)(1)) a.e. inG, (1.4)
(x)(®eB(®), vM)eV(,(Ax)(1)) pae onl. (1.5

Here u(¢) is said to be a distributed control, and v(¢) a boundary control.
The state equation (1.2) usually represents a system of partial differential
equations, and (1.3) usually represents boundary data, or boundary controls but
may just as well be a system of partial differential equations and related constraints
and controls on the boundary. The state equations (1.2) and (1.3) are said to
be written in the strong form. We shall consider in § 6 also the problem of mini-
mizing the cost functional (1.1) when (1.2) and (1.3) are written in the correspond-
ing weak form, as is customary in the theory of partial differential equations. The cor-
responding results are framed in the present general theory with no extra effort.

2. Preliminaries

In order to state our lower closure and existence theorems, we will use C. B.
Morrey’s definition of a regular transformation of class K from his paper [8a].

Let X and Y be subsets of a Euclidean space E¥, v=1. A transformation
x=x(y) of Y onto X is said to be of class K provided it is one-to-one and con-
tinuous, and the functions x=x(y) and y=y(x) satisfy uniform Lipschitz con-
ditions on each compact subset of X and Y, respectively. In addition, the trans-
formation is said to be regular if the functions x(y) and y(x) satisfy uniform
Lipschitz conditions on the whole of X and Y, respectively. For the concept of
bounded open subset of E” of class K in the sense of C. B. MORREY, we refer to
his paper [8a]. The closure of such a set is often called a region of class Kin E”.
Briefly, a region of class K, or K, in £” is a compact manifold with boundary
with respect to regular transformations of class X, or K,. Analogous definitions
hold for transformations and regions of class K;, I=>1.
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In stating our theorems we shall use the notations of § 1 and the properties of
set-valued functions. Also, given a point (¢,, yo)€A4 and a number 6> 0, we denote
by N;(t,, yo) the set of all points (£, y)e 4 at a distance <35 from (#y, yo).

For every (f, y)eA let Q(t, y) be a subset of the z-space E™*?, z=(2°, ..., z").
We say that the sets Q(z, ) have KURATOWSKI’S upper semicontinuity property
[6], or property (U), at the point (¢,, y,)eA4 provided

Q(t09 y0)= DOCIQ(tO, Yos 8)
where
Q(to, Yoo 8)‘—" U Q(t, y)

(t, )€ Ne(to, yo)

We say that the sets Q(¢, y) have property (Q), or the modified upper semi-
continuity property [3a], at (¢,, yo)€ A4, provided

Q(th y0)= DOCI co Q(tO’ Yos 8)'
We say that the sets Q (¢, ¥) have property (U) or (Q) in A if they have that property
at every point (¢, yo)€4. Sets having property (U) are closed, and sets having
property (Q) are closed and convex. It has been found useful to introduce also
intermediate properties Q(p), 0L p=<r+1, of variable sets (D. E. CowLEs [4a]).
Let p be any integer, 0<p=<r+ 1. We say that the sets Q (¢, y) have property
Q(p) at the point (¢,, yo)€A provided for every

0o _1 r+1 r+1
z9=(29, Zg, ---» 2o JEE ",

Qto, yo)n{z=(2% ..., 2NeE ! |Zl=2},i=p, ..., 7}
=) () clco(Q(te, Yo, e)m{zeE’“Ilzi—zB[gﬁ, i=p,..,r}).

£>08>0

For p=r+1 we understand that the sets in braces in the first and second members
of this relation coincide with E”. We note also that if the sets Q (¢, y) have property
Q(p) at the point (Z,, yo)€A, then for every

2o=(20, 28, ..., 25" e EH!
the set
O(to, yo) N {zeE™* Y Zi=z},i=p, ..., 1}
is closed and convex, since it is the intersection of sets having the same property.
Thus, for any two points

21 =(Z?, ey Zq_la 26, ey ZB)EQ(tO’ yO)’
Zz=(ng s Zg_l’ Z’(;s e ZB)GQ(tm J’o),

the points a z, +(1 —«) z, also belong to Q(%y, yo), 0=a=<1. Sets possessing this
(partial) convexity property will be said to be p-convex.

(2.i) For any integer p, 0= p <r, property Q (p+ 1) implies property Q(p). Also,
property Q(r+1) holds if and only if property (Q) holds, and property Q(0) holds
if and only if property (U) holds.

210
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For a proof of this statement, and of statement (2.ii) below, see COWLES [4a].

For every point (¢, y)e A, let Q(t, y) be a subset of E™*1, r>0. We say that the
sets Q(t,y) have the *“‘upper set property” on A provided (t, y)eAd, zo=
(20, 205 ---» 20)€Q(1, ), Zo=(E6; 25, ..., Zo)e E™™* with 23228 implies Z,€Q(2, ).

(2.ii) If the sets Q(t, y) have the upper set property on A and also the property
(U), then the same sets have property Q(1) on A.

It was proved in [3fi] that property (Q) is essentially an extension to Lagrange
problems of the seminormality condition often used for free problems. This con-
dition (Q), and variants, will be used in the lower closure and existence theorems
below. In a number of these theorems property (Q) and variants can be relaxed
or dropped. In particular this occur for linear problems, and for problems with
Jos /> &0, g possessing suitable bounds. These modifications can be readily ob-
tained within the present approach. We shall discuss these cases in detail in
subsequent papers.

3. A Lower Closure Theorem

Let G be a bounded measurable subset of E£*, v21, and let 4G denote the
boundary of G.

LetI;,j=1, ..., N, be subsets of dG, each of which is the image under a regular
transformatlon t I of classKofa bounded open mterval Rjof EY~*. Let I'beaclosed

subset of U ;» and let u be a measure defined on U I;. For each j=1, ..., N,
j=1 =1

we assume that if e is a subset of I';, measurable w1th respect to u, then E= t"(e)
is measurable with respect to Lebesgue (v—1)-dimensional measure || on Rj.
Also, we assume that the converse is true, so that measurable sets on I; and R}
correspond under ¢;. Finally, we assume that there is a constant K> 1 such that
if e=1;(E) is u-measurable, then

K ' E|Sp(@=KE|, 3.1

independently of j=1, ..., N, and e. Since u induces a measure on each set R]
via the transformation ¢;, we may define J;(7), 7R}, as the function in L, (R})
which satisfies the relations

uyE)=[ I, dr (3.2)

for every measurable subset E of R}, j=1, ..., N. Thus J;(7) is defined almost
everywhere in Rj and K~'<J (1)=K a.e. in R;. This situation actually occurs
when G is an open bounded set of class K in E" (see § 2) and u is the usual hyper-
area measure defined on I'=0G. This is the situation we shall consider in all
examples below. Nevertheless, u could be a different measure with the properties
set forth above. Actually, for the general theorems of § 3, 4, 5, 6, I need not even
be a subset of G, but only the union of parts I; in a Euclidean space, each I}
being the image of an interval under a regular transformation of class K, and u
may be any measure on I with the properties stated above. Also, we could consider
functionals (1.1) which are sums of integrals on parts of different dimensions,
as indeed indicated in (1.1).
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As mentioned in the introduction, for every tecl G we denote by A(¢t) a
nonempty closed subset of the y-space E°, y=(y',...,»%). Let 4 be the set of
all points (¢, y) with tecl G and ye A(¢). For every (¢, y)e A let U(¢, y) be a non-
empty subset of the u-space E™, u=(u', ..., u™). Let M be the set of all (¢, y, )
eE"x E*x E™ such that (7, y)eAd and ueU(¢, y). For every tel, let B(t)bea
nonempty closed subset of the y-space E¥, =(3!, ..., *). Let B be the set of
all (¢, ) with tel’ and JeB(t). For every (¢, y)eB,let V(¢, §) be a nonempty
closed subset of the v-space E™, v=(v!,...,v™). Let M be the set of all (¢, J, v)
€E*x E¥ x E™ with (¢, $)eB and veV(t, 3).

Let f(2, y, W)= (fo,/)=(fo f15 .--»J;) be a continuous (r+ 1)-vector function
on M, and for every (¢, y)e 4 let Q(¢, y) denote the set
é(t5 y)= {2_—_(20, Z)=(Zoa le cees Z'.)EEH-1 | Zoéfo(ts Vs u)a Z=f(t, Y, u)a ueU(t, y)}'

Let §(t' ¥, 0)=(g0, 8)=(80> 1> -- ,g,) be a continuous (r'+ 1)-vector function
on M, and, for every (¢, §)eB, let R(t ) denote the set

fi(t, PN={z=(%2)=("%z", ..., z")eE"“I 2°2g,(t, y,0), z=g(t, y, v), veV(2, Y)}.

We consider here the functional
Iy, y,u,v]= é fo(t, y(®,u(®))d+ Ij go(t, y(0), v(®))d . (3.3)

In the lower closure theorem below we shall deal with sequences of functions all
defined on G and I':

z()=(z%, ..., 2", z()=(2}, ..., Z}),
yO=0" 5 D=k s YD
w (=, ...,ul), teG k=1,2,..,
z(=( ..., 2"), 2= ..., 25),
yO=0"% 7)) @=L )
(=0, ..., o), telk=1,2,...

(3.4)

(3.i)) Lower Closure Theorem. Let G be bounded and measurable, A, B, M, M
closed, fo(t, y, w), f(t, y, W)=(f1, ..., f,) continuous on M, g,(t, J, v), g(t ¥, v)=
(815 --+» &) continuous on M, and assume that for some integers p, g, 0=p=r,
0Lp &7, the sets Q(t ¥) have property Q(p+1) on A and the sets R(t ¥) have
property Q(p’ +1) on B. Let us assume that there are functions Y (1)=0, teG,
Vel ,(G) and l/l(t)>0 tel, IZGL (I, such that fo(t y, Wy —y(t) for all
(1, y, W)eM, and g,(t, y, )= — ll;(t) for all (¢, 9, v)eM. Let us assume that the
functions Z'(t), zL (), Y (), yi(t), i=1, ..., r, j=1,...,5, are in L(G), that the
functions (t) are measurable on G, l=1, ey M, that fo(t, (), u, (1)L, (G),
and that

n®ed®, w MUt y(®),  zD=£(t, yi(®), ue(®) (3.5)
a.einG, k=1,2,....
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Let us assume that the functions 2(t), 2L (t), ¥/ (), $i@), i=1, ..., r,j=1, ..., ',
are in L,(I'), that the functions vi(t) are measurable in I, I=1,...,m', that
go(t Pi(2), v, (t))eL, (I'), and that

y(DeB®, v (DeV(t, i ®), Z()=gi(t, . (), v () (3.6)

u-a.e.onl’, k=1,2,....
Finally, let us assume that as k— oo we have

zi ()2 (1) weakly in L{(G), i=1,..,p,

i (=2 (t) stronglyin Li(G), i=p+1,..,r,
Y-y (@) stronglyin L{(G), j=1,..,s,

Zi ()= z'(f) weakly in L, (I), i=1,..,p,
Zi()-2'(t) stronglyinL (), i=p' +1,..,7,

Yi@-y () stronglyinLy(I), j=1,...,s,
and
klimI[yks Yio s U] =g < + 0.

Then y(t)eA(t) a.e. in G, $(f)eB(t) p-a.e. on I', and there are measurable
Sunctions u(t)=@’, ..., ™), teG, and p-measurable functions v(t)=(", ..., v™),
tel’, such that

So(t, y(@), u(M)eL,(G),  go(t, y (1), v(D)eL, (D),
and such that

u@®eU(t, y(0), Z'@O=f(t y@®),u(®), i=1,..,r, a.e.onG,

v(DeV(tL,y(®), zZO=g(ty®,v(®), i=1,..,r, pa.eonl,
and
I[y’ .)?7 u, U]éaO'
The proof of this lower closure theorem has been given by CEsAri [3cde]
for go=g=0, and by CowLEs [4b] along the same lines in the situation above.

Remark. In applications it often occurs that the sets U and V are fixed and
compact, or, alternatively, that U(z, y), ¥ (¢, ¥) are compact, equibounded, and
have property (U) in A4 and B, respectively. If £, f, gq, & are continuous, the sets
Q (t,»), R(t, §) certainly are compact and have property (U) in 4 and B, respectively;
if convex, also property (@) (see [3a]); and if p-convex, property Q(p) (see [4a)).
On the other hand, if the closed sets U(z, y), ¥ (¢, §) are unbounded, and f, f,
as well as go, g, are continuous and satisfy suitable growth conditions on the
closed sets M, M , then the sets Q(¢, ¥), R(z, y), if convex, necessarily satisfy con-
dition (Q) (see [3b]).

4. An Existence Theorem for Optimization Problems
with State Equations in the Strong Form

In this section we shall use mainly the notations of § 3. For the sake of simpli-
city we shall denote by T the family of all measurable m-vector functions u(¢)=
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(!, ...,u™), teG, and by T the family of all pu-measurable m’-vector functions
v(®) =@, ..., v™), tel.

Again for the sake of simplicity, let S be a Banach space of elements x, and
let &, #, #, A be operators, not necessarily linear, as described in § 1, that is,
L:S>(Li (@), #:S—(L(G)Y, F: S>(L (D), A S—(L,(IN). We shall
discuss here the problem of optimization (1.1-5) of § 1.

A triple (x, u, v) is said to be admissible (for the problem (1.1-5)) provided
xeS, ueT, veT, So(t, (M x) (@), u(®))eL, (G), go(t, (A x)(r), v(£))eL (') and
relations (1.2-5) hold.

A class 2 of admissible triples is said to be closed if the following occurs:
if (g, uy, V)R, k=1,2, ..., x,—x weakly in S as k— c0,

Hm I [xg, uy, v, ]=a< + 0,

k- ©

and there are admissible triples (x, u, v) such that I[x, u, v]<a, then there is also
some triple (x, i, 0)eQ, with I[x, i, 7] L a.

For a class Q of admissible triples we denote by {x}, the subset of S defined by
{x}q={xeS|(x, u, v)eQ for some ueT, ve]o‘}.
Note that for
xeS, then z(H=(z',...,z)=(Lx)(He(L(G)Y;

we shall denote by z'(?)= (£ x)(¢), teG, the i** component of & x. Analogously,

yO=0" ., Y= ) ()e(Ly (G,
2=, ..., 2)=(Fx) (e(L (D)),

yO=0" ..., )= %) (De(L (D),
and we set

Y(@O=(xY 1), teG, j=1,..,s;
Z=(F X)), tel, i=1,...,r;
V(= x)(t), tel, j=1,..,5"

If p, p" are any two integers, 0Sp<r, 0<p’'<r’, we shall denote by (C,,)
the following closure property of the operators &, .#, %, A ":

(C,,’) For every sequence x, x;, k=1, 2, ..., of elements xeS, x,e{x}o=S,
with x, —»x weakly in S, there is some subsequence [k,;] such that, as 1— co,
we have

(Zx,)—(Lx) weaklyin L,(G), i=1,...,p,
(Zx,)>(Lx) stronglyinL,(G), i=p+1,..,r,
(M x,Y—>(MxY stronglyin L,(G), j=1,...,s,
(Fx, )= (Fx) weaklyin L, (I), i=1,..,p,
(Fx,)>(Fx) stronglyin L (), i=p'+1,..,7r,
(A x, Y= (A xy stronglyin L, (I, j=1,...,s,

4.1)
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(4.0) Existence Theorem. Let G be bounded and measurable, A, B, M, M closed,
fo(t Y, u) f(t y’ u) (f19 f) continuous on M go(t }3, U) g(t f: U) (g19 9 gr)
continuous on M, and assume that, for given integers p, p s 0Zpsr, 0Zp' </,
the sets Q(t ) have property Q(p+1) on A, and the sets R(t, §) have property
Q(p +1) on B. Let us assume that there are functions y(£)=0, teG, YyeL(G), and
lll(t)>0 tel, tﬁeLl (), such that Solt, y, W= —y(t) for all (¢, y,uyeM, and
gt ¥, v)= —lp(t) forall(t, ¥, v)eM Let Q be a nonempty closed class of admissible
triples (x, u, v) such that the set {x}, is weakly sequentially relatively compact,
and let us assume that the operators £, M, #, A satisfy the closure property (C, ).
Then the functional (1.1), or I[x, u, v}, has an absolute minimum in Q.

In view of statements (2.i) and (2.ii), note that for p=r we actually require
above that the sets Q(t ») have property (Q), and for p=0 we actually require
that the sets Q(t ¥) have property (U). Analogously, for p’=r’ we actually require
that the sets R(t, ¥) have property (Q); for p’=0 we require that the sets R(z, )
have property (U). In general, for 0<p<r, 0<p'</¥, properties Q(p+1) and
Q(p’+1) represent intermediate requirements.

Proof. Let i be the infimum of I[x, u, v] in the class Q. Then i is finite, and we
consider a minimizing sequence of I in Q, that is, a sequence

(xk, uk, vk), k=1, 2, ceey
of admissible triples, all in ©, with
I[x, up, v ]—>i as k—oo.

Since the set {x}, is weakly sequentially relatively compact, there is some element
xe S and some subsequence of [x,] which is weakly convergent to x. For the sake
of simplicity we denote such a sequence by [k], and thus x, —» x weaklyin S. As a
consequence, there is a subsequence [k;] for which the convergence relations (4.1)
hold. We shall denote this subsequence again by [k]. By using the notations

zO=(Zx) (1), »nO=(Ax)®, zO=(Lx)®), yO=(Lx)®, 1eG,
Z®M=CFx) D, FO=AXx)®), ZO=(F)W, yO=(x)(), tel,
we see that relations (1.2-5) imply

n®ed®), w®OeU(L, n®), z®=£fi(t y(®, u (D)

a.e. in G, i=1,...,r,and

f’k(t)EB(t)9 Uk(t)EV(t, Jgk(t))’ Z;.c(t)= gi(ts j}k(t)s Uk(t))

p-ae. on I', i=1,..,r, k=1,2,.... In addition, zi—2z' weakly in L,(G),
i=1,..,p, zi =2 strongly in L,(G), i=p+1, ...,r, -y strongly in L,(G),
j=1,.,8 -2 weakly in L,(I), i=1,..,p’, Z—Z' strongly in L,(I),
i=p'+1,...,r, H{—J strongly in L,(I), j=1, ..., s'. Finally, the sets Q(z, y)
satisfy property Q(p+1) on 4, and the sets R (¢, §) satisfy property Q(p’+1) on B.
We can now apply the lower closure theorem (3.i). Then, y(t)= (4 x)(t)e A(t)
a.e. in G, y(#)=(X x)()eB(t) p-a.e. on I', and there are elements ueT and veT
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such that

u(eU(t, y(®), ZO=ft y®,u(), i=1,..,r, a.e.inG,
v(eV(tLy(®), ZO=gt y®,v(®), i=1,..,r, paeonl, 42
fo(t’ y(t)a u(t))ELl (G)’ £o (t’ .f’(t)s v(t))ELl (F)’ 1 [JC, u, U] éi,

that is, the triple (x, u, v) is admissible. Since Q is a closed class of admissible
triples, in Q there are some admissible triples (x, i, 7) such that I[x, &, 7]<1i, and
relations (4.2) hold also for u, v replaced by #, . Since i is the infimum of I in Q,
we have I[x, i, ] =i, and finally I[x, @, 7]=i.

Remark 1. Theorem (4.i) holds even if we replace the cost functional (1.1) by
another analogous one with an added term J[x], provided we know that J[x] is
lower semicontinuous functional on S with respect to weak convergence on S.
That is, we need only require of J that x, — x weakly in S implies

lim J [x,]2 J [x].

Remark 2. In both Theorems (3.i)) and (4.i) we could have assumed that G
and I' are each made up of a finite number of components on each of which
there is a distinct system of state equations.

Remark 3. In the existence theorem (4.i), in verifying that the closure hypoth-
esis (C,,) is satisfied, it is often convenient to restrict Q to the subclass Q, of
all triples (x, u, v)e 2 such that I[x, u, v]< M for M sufficiently large. For instance,
if i denotes the infimum of I[x, u, v] in Q, we may take M=i+1.

Remark 4. In the existence theorem (4.0)) we have assumed, for the sake of
simplicity, that S is a Banach space, and we have used the weak topology in S.
This is indeed the most common situation in applications. More generally, we
could consider instead any topological space (S, 6), that is, any space .S with a
chosen topology o. In particular, S need not be linear. Accordingly, then, we
should have to require in the context of the closure property (C,,) that xeS,
Xy€{x}o, X, — x in (S, o) implies the convergences in L, stated in(C,,). Also,
accordingly, we should have to require in the Existence Theorem (4.i) that the
set {x}, is sequentially relatively compact in (S, ¢); that is, any sequence of
elements of {x}, contains a subsequence which is convergent in the topology o
of S. Actually, (S, o) does not need to be even a topological space, but only a set
S with a definition ¢ of convergence of sequences (a Fréchet space L) (see, e.g.,
[10], p. 16). Examples where the underlying spaces are not Banach spaces and
not even linear ones will occur in § 6. See also Remark 7 below.

Remark 5. Of particular interest is the case where the element x of an admis-
sible triple (x, u, v) uniquely determines the controls u and v. That is, (x, u, v),
(x, i1, v) admissible implies =i a.e. in G, and v=47 p-a.e. on I'. In this situation,
the lower closure theorem (3.i) reduces to a lower semicontinuity theorem, and
corresponding particular existence theorems could have been obtained by a
standard lower semicontinuity argument. This holds, for instance, for free problems
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of the calculus of variations and other problems. For instance, let us consider
the free problem of the minimum of the multiple integral

I[x]= g fo(t, x(), Px(1))dt,
with
x(®)=(x', ..., x"), teGeE', Vx()=(x'/at,i=1,..,nj=1,...,v)),

given Dirichlet boundary data on ¢ G, or some suitable part I" of dG. Here G is a
bounded open connected subset of E” of class K. We may take for S the Sobolev
space S=W,(G), 1<p=< oo, and then Vx(f)=u(t), that is, u is uniquely deter-
mined by x. We assume that f; is a continuous function in M=clG x E"x E"",
with fu = — (¢) for some y 20, yeL, (G). Note that

Mx=x, M:S>(L(G), Lx=Vx, £L:S-(L,(G)",
r=m=nv, s=n, f=u, U=E" (go=0,A4=0).

Also, Q is now a closed class of elements xe.S (or pairs (x, ) with xS, u=Fx),
with x satisfying the given boundary data, and

Jo(t, x(2), Vx())eL,(G).

If
xeS, xe{x}oc=S, k=1,2,.., x,—x weaklyin S,
limI[x,]=a,
k-

then ¥ x,—» ¥ x weakly in (L,(G))"", 4 x,—.# x strongly in (L,(G))", and the
lower closure theorem guarantees, under the needed requirements, that /[x]<a.

Remark 6. As mentioned in the remark at the end of § 3, if U and V are fixed
compact sets (or U(t, y), V(t, ¥) are compact, equibounded, and have property
(U)), then the sets Q~(t, », ﬁ(t, ¥) certainly have property (U) and, if convex,
have property (Q) (see [3a]). Also, an analogous statement holds for the inter-
mediate properties Q(p) in the sense that, if p-convex, then they have property

Q(p) (see [4a]).

Remark 7. The case v=1, g,=0, g=0, has been considered by CesARrI in [3e].
The case v=1 has been considered by CEsar1 in [3a]. For v=1, the underlying
space in [3a] is the metric space S, of all continuous vector functions

x(O)=(x", ..., x")

on arbitrary finite intervals a<t<b. If x(¢), agt<h, and y(t), cSt<d, are any
two elements of S, the distance function p(x, y) is defined by

p=la—c|+|b—d|+max|x()—y()],

where max is taken in — oo <t< + 00, and x and y are defined by continuity and
constancy outside of their original intervals. The actual space S is then a subset
of Sy, namely, the set of all xe S,, x(¢), t, £¢=t,, which are absolutely continuous,
and we take in S the topology induced by the one in Sy; in other words, S is now
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a metric space with metric p, and S is not linear (see Remark 4 above). We are
now concerned with the problem of the minimum of an integral

t
Ix, u]= [ fo(t, x(1), u(D))dt,
151
with state equations and constraints

X' (O=1(t, x(1), u(1)),
x(Ded(t), u(DeU(t, x(®),

in a closed class Q of pairs
x(), u(®), t;,St=t,, xe8, ueT,

satisfying these relations, x satisfying also given boundary conditions, and such
that

Jo (t’ x(1), u(t))EZq ([t1, £2D)-

Also, we have here {x},=S< S,

Mx=x, M:S—L{, Lx=x', ¥:S-L,.
1f
xeS, xe{x}o, k=1,2,..., x,~>x in the metric p,

then & x, — % x in the sense that

[(Zx)dt~[(Zx)dt
I I

as k- oo for every interval I. A lower closure theorem analogous to (3.i) was
proved in [3a] for these particular modes of convergence. Alternatively, we could

take in S the metric
+ o

p=la—cl+|b=dl+ [ Ix'()—y'()ldt,

take # x=x with 4: S—L,, ¥ x=x" with &Z: § - L,, and then the lower closure
theorem (3.i) would apply, and consequently the existence theorem (4.i) would
also apply with the Remarks 3 and 4.

Example 1. The following example, mentioned by FICHERA [5], illustrates the
existence theorem (4.i). In this example the particular situation depicted in
Remark 5 occurs, and therefore our lower closure theorem (3.i) reduces to a
lower semicontinuity theorem (which includes Fichera’s lower semicontinuity
theorem). Let G be a bounded open subset of E" of class K, v=1 (see § 2). Let u
be the hyperarea measure defined on the boundary I'=3G of G. Let W}(G) be
a Sobolev space on G for real p, 1<p< + 0, and integral /, 1</< + o0, with
the usual norm

Il =lxly@= 3 ID°xl,= ¥ (JID*x(01d0)'",
MES a[sl G
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where D*x denotes the generalized partial derivative of x in G of order
a=(0y,...,0,), and [a|=o;++a,.

Let X, be the linear subset of W,(G) made up of all functions x which are con-
tinuous on GuU G, together with their partial derivatives of all orders. If ted G,
let (4" x)(t) denote the vector

(A x)O)=@x,yPx, ..., yPx' 1)

where yf denotes the boundary values of f and Vx/, 0<j</—1, denotes the
vector of all partial derivatives D*x of order |a|=j. Let 5" denote the total number
of components of the vector (" x)(¢). For given real-valued functions

a,(t), tedG, with laf=I, a,eL_(0G),
let (# x)(¢) denote the real-valued function

#x)®O= ) a,()yD*x(t), 1edG.
Ja]=1

a|=

Finally, let S be the completion of X, with respect to the norm
lxll = lxllwt o)+ 1F Xl 1, 26) -

From Sobolev space theory we know that 2" x is defined on S. From the fact that
S is the completion of X, with respect to the norm above we conclude that ¢ x
also is defined on S.

We are concerned with the problem of the minimum in S of the functional
I[x]= aj; go(t, (A x) (1), (Fx) () dp, 43)

where g, is a given continuous function on the closed set M=0GxE*x E'.

This problem is immediately reducible to the form (1.1-5) by taking

Lx=0, Mx=0, f=0,
by taking
B(t)=E* forevery tel =4G,
and
V(t, y)=E' forevery (, y)eB=0G x E*.

Thus there are no constraints on the control variable v, or veV=E!. We now
have a problem of the type (1.1-5) in which the functional to be minimized is

I1[x,v] =rIgo(t, (' x) (1), v(D))dp,

and the state equations (on the boundary) are

(Fx)()=v(t), p-a.e.onl'=0G.
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In the present situation, and in terms of th_e notations of §§ 3 and 4, we have
r=s=m=0, 5’ as above, ¥ =m’'=1. The sets R are

R(t, $)={Z=(%, 2)eE*| 22 go(t, §, v), z=veE"}
= {(29 U)EE2 I Eggo(t, .}3’ U)s UEE‘}’

and thus they are convex if and only if g, (¢, ¥, v) is convex in v for every
(t, )eB=0G x E*.

Finally, if we assume that there is some real-valued continuous function
®({), 0+ o0, with \
gO(t’ .;’ U);@(lvl) fOl' all (t’}o)’ D)EM,

D> +00 as (=400, 4.4

then we know (CESARI [3b]) that the sets ﬁ(t, ) satisfy property (Q) on B. Note
that, if u=Min &({), 0= {< + o0, then relation g, (¢, ¥, v)= —',Z’(l‘) holds for all
(¢, §, v)eM with W= —|ul|, a constant.

If p>1, then for any sequence of elements x, x;, k=1, 2, ..., of § with x;,—>x
weakly in S as k— oo, certainly there is a subsequence [k,] such that £ x;, - Fx
weakly in L,(0G) and A x,, » X x strongly in(L,(0G))" as 4 — co. We may take

y@O=x)®), »@O=(Hx)(1), teG,
and

z(O=v(®)=(FX)®), z,(O=v,(O)=(Fx)(), 1€dG, k=1,2,....

By lower closure theorem (3.i) with p=r=0, p’=r'=1, we derive now the fol-
lowing lower semicontinuity theorem concerning the integral I[x]:

@) If go(t, y, v) is continuous on M=0GxE* xE* and convex in v for every
(t, )eB=0G x E*,

if there is a real-valued continuous function @ ({), 0<{> + oo such that (4.4) holds,
then the functional I1{x] is lower semicontinuous in S.
By lower semicontinuous we mean here that, if x, x,eS, k=1,2, ..., x;,—>x
weakly in S as k— o0, and
limI[x]=a<+ 0,
k=
then I[x]Za.
The growth condition (4.4) can be disregarded in (a) if we know that the
sets R(t, §) satisfy property (Q) on B, and that

gt ¥, v)= —J(t) for all (1, y, v)e]\ol and some 1520, ﬁeLl(aG).

Also we note that under the assumed hypotheses go(z, (o x)(t), (# (x))(2)) is
certainly p-measurable on dG and = —lp(t) with l;eL(G). Thus the functional
I[x], or (4.3), is always defined in S, either finite, or + c0.

Let Qy be any nonempty closed class of elements xeS with ||x|| <N and
I[x] finite. If i denotes the infimum of I{x] in Q, then because go= —V, i is
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finite, and in the search of the minimum of I[x] in Q,, we can restrict ourselves
to the subclass Qy, of all xeQy with I[x]<i+1. If p>1, any such class Qy_ is
obviously weakly compact in the topology of S. In particular, the class Qy, of all
x| =N, I[x]<i+1, is also weakly closed in the same topology. From (4.0) we
may now derive the following assertion of existence:

(b) Under the conditions of (a) with 1<p< + 0, the functional I[x] has an
absolute minimum in any nonempty closed class Q.

As in (a), the growth condition (4.4) can be disregarded if we know that the
sets R(t, y) have property (Q) on B, and that

g0(,y, )2~ (1) forsome §¥20, yeL,(3G).

The following variants of the problem above may be of interest. Let ' denote
the number of partial derivatives of order /, or D*x with |a|=/, and let £ x now
denote the operator (in X;) S x=(D%x, |a|{=I). Let us consider the space S’
obtained as the completion of X, with the norm

x| = | ;ﬂ”D“x ”L,,(aG)-

Now v is a r'-vector; and g, (¢, y, v) denotes a continuous real-valued function on
M=0Gx E* x E". Let us consider the corresponding integral I[x], or (4.3), with
the new definition of #x and g,. We still assume that a growth condition (4.4)
holds. Again o"x and £ x are defined on ', and statement (a) is valid without
changes. If Qy is any closed nonempty class of elements xeS’ with [[|x]|'£N,
then also statement (b) holds without changes for 1 <p< + 0.

Let us retain now the last definition of .# x and g, and assume that p=1. Let i
still denote the infimum of 7[x] in the class Qy, and let Qj, be the class of all xeQy
with I[x]£i+1. The growth condition (4.4) guarantees, by standard arguments
(see, e.g., E. J. MCSHANE, Integration, 1947, p. 176), that the r' components of
(Fx)(t), tedG, with xeQy, are equiabsolutely integrable on 0G. Then, even for
p=1, statement (b) also holds, but the growth condition cannot be removed.

Finally, let us consider the case where g, satisfies a growth condition (4.4) and
also a relation of the form

|1Scgo(t, s v)+o(r)  for all (1, 3, v)eM,

some constant ¢=0, and a function Y, €L, (6G). Now let 2 be any nonempty
closed class of elements xeS” with I[x]< + 0. If i denotes the infimum of I[x]
in Q, let Q, denote as usual the subclass of all xe @ with I[x]<i+ 1. Then [|x||'SN
for all elements xeQ, and some constant N. Then existence theorem (b) holds
in Q for p=1 provided the growth condition (4.4) holds and

I¥1=cgolt, ¥, v)+o(h).

Example 2. Let G be a connected bounded open subset of the {#-plane E2.
We take G to be of class K, sothat the usualarc-length measuresisdefinedonI'=4G.
We are concerned with the minimum of the functional

I[x’ u, U] =£jf0(c: n, X, x;’ x,,, u) dCdﬂ +6£ go(c, 1,7 X, ?x;, Yx,,, U)dS, (45)



Multidimensional Problems of Optimization 335

with state equations

Xeo+ Xy, =f(E 1, X, Xg5 Xy, 1) a.e.in G,
4.6
a(l,m)yx+bl, Myx+cmyx,=g,nyx,yx,7%,v) s-a.e ondG (4.6)
and constraints
u(C’ ”)EU(Cs Ny X, X, xﬂ) a.e. in G,
“.7n

v(l,meV({,n,7x,yx;,7x,) s-a.e.on 0G.

Here yh denotes the boundary values of 4. This problem is immediately written
in the form (1.1-5) by taking

FX=X+x Mx=(X, X7, X,),

nn

Ix=ayx+byx;teyx,, HAx=(yx,yXyx,),

r=r'=1, s=s'=3. We take for S the Sobolev space S=W2(G), p>1, and we
assume that the given functions g, b, ¢ are of class L, (0G). Note that (£ x)({, n)
could be the normal derivative of x at ({,)ed G if only a=0, and b, ¢ the direction
cosines of the normal to 0G at ({, n) (s-a.e. on G). Also, we take A({, n)=E3,
B({,n)=E?>; hence A=(cl G)x E3, B=(0G) x E>.
For the sake of simplicity we assume m=m’=1, so that, if
y=(y1’ y2’ y3)6E3’ )3=(.§1’5;2’.§3)EE3’

then U({,n,y) denotes a subset of E! for every ({,n,y)ed, and V({, 5, §) a
subset of E* for every ({, 1, })eB.

Finally, if M, M are the corresponding sets,
Mc(clG)xE*xE', Mc(3G)xE*xE!,

then f,, f are real-valued continuous functions on M, and g,, g are real-valued
. . ) .
continuous functions on M. We consider here the sets

O, »={E DeE* 122 fo(C,n, v, w), 2= 1, y, w), ueU (1, y)}

R, 1, 9)={G DeE* |22 g0(L, 1, 5, 0), 2=8 (L, 1, 5, 0), V(L 1, )}

for every ({, 1, ¥)e A and for every ({, 1, $)€ B, respectively.

We note that if x, —»x weakly in S=W}?(G), then there is certainly a sub-
sequence [k,] such that

Lx,~>Zx  weakly in L,(G),
Mx,,—Mx  strongly in (L,(G))’,
FIx,,—»Fx  strongly in L, (0G),
A Xy, —»HA'x  strongly in L, (6G).

An admissible triple is now a triple (x, , v) with xe W2(G), u measurable on G,
v s-measurable on 0G, satisfying (4.6), (4.7), and such that

fO(Ca n, X, x;s xrp u)ELl (G) and 8o (C’ 1, 7X, )’x;, qu’ U)ELl (aG)
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From (4.i) with p=r=1, p’=0, we can now derive the following statement of
existence:

(c) Let G be connected, bounded, open and of class K in E2, let M, M be closed,
let fo, [ be real-valued and continuous on M, and g,, g real-valued and continuous
on M, and assume that the sets Q (&, n, y) satisfy property (Q) on A=(cl G) x E® and
the sets R({, 1, ¥) satisfy property (U) on B=(0G) x E3. Let us assume that there
are functions

Ym0, yeL,(G) and ¥ 20, JeL,(3G)
such that

fO(C’ n, Y, u).Z_ _'/’(Ca 17),
gO(Ca 1, .}39 U)g _';(Ca 7’)

for all (¢, n,y,w)eM and (,1,y, v)e]\gl , respectively. Let £ be any closed non-
empty class of admissible triples (x, u, v) for which the set {x}q is norm bounded in
W2 (G), p>1; that is, there is a constant N such that (x, u, v)eQ implies || x| w2(G)
<N Then the cost functional (4.5) has an absolute minimum in Q.

Remark 8. Many examples of optimization problems with distributed and
boundary controls and state equations in the strong form are of the same
general form of Example 2 above. The equation (&£ x)(#)=f(t, (A x)(¢), u(t)),
teG, is a partial differential equation (or a system), and the equation
(I x)(@)=g(t, (X x)(2), v(?)), t€0G, represents a certain set of constraints on
the boundary values of the state variables. The conditions of theorem (4.i) are
usually satisfied with p=r and p'=0; that is, we require property (Q) on the sets
QO and property (U) on the sets R. One more example is in ([4a], Section 5,
Example 1). In this connection, Remark 6 may be relevant.

Example 3. In this example we wish to illustrate the use of the intermediate
properties Q(p). Let us consider the problem of minimizing the cost functional

I[x, uy, ty, 0] ={[ (x*+x}+x2+ui+ui(l—u,)*)d{dn+ frx—12ds,
G r

with differential equations

Xget+ Xgg=Uy, X+ X,=U,, a.e. in G,

yX;=cosv,  yx,=sinv, s-a.e.onl'=0G

where G=[({, n)|{>+n*>1], I is the boundary of G, where yx, yXg yX, denote
the boundary values of x, x;, x,, and the control functions u,, u,, v have their
values (u,, u)e U=E? veV=E!. We wish to minimize I in a class Q of systems
(x, uy, uy, v) with u,, u, measurable in G, v measurable on I', x any element of
the Sobolev class WZ(G) satisfying all relations above, satisfying an inequality
lxegll2+ 1xgpll 2+ Xl = M, and for which I is finite. Here the constant M is
assumed sufficiently large so that Q is not empty. We may well consider only those
elements of Q for which /< N for some constant N. Here we have £, =20, 2,20,
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and we can take =0, l}=0. Also, we have

Ex=(xg+Xyp X +%,), Mx=(X,X,X%,), Ix=(yx,7X%,), Hx=yx,

r=2, s=3, r=2 s=1, m=2, m'=1.

Then, for any sequence [x,] of elements xe{x},, certainly there is a subsequence,
say still [k] for the sake of simplicity, with x, — x weakly in S= W#(G) for some
x€ S, and

(Zx)'=(Lx)!  weakly in L,(G),

(£x)*—>(£x)*> strongly in L,(G),
M- MX strongly in (L,(G))%,
Ix,—»Ix strongly in (L,(I")?,
A X A X strongly in L, (I).

We consider here the sets

Q(yl’ y29 y3)=[(zo9 zla Zz)lZogyi+y§+y§+u%+u§(l—u2)29

Zl =u1, Zz=u2, (ul, uz)eEz],
R()=[(z° 2%, z%) | 2° 2 (y—1)%, z! =cosv, z* =sin v, veE'].

The sets O < E* have property 0(2), the sets R< E? have property Q(1), and all
have property (U), or Q(0). They are not convex, and do not have, therefore,
property (Q) (precisely, the sets 0 do not have property Q(3), and the sets R have
neither property Q(2) nor property Q(3)) Nevertheless, the existence theorem (4.i)
applies with p=1, p’=0, and the problem under consideration has an absolute
minimum in Q.

5. Another Existence Theorem for Optimization Problems
with State Equations in the Strong Form

We now consider the case where the operators ., #, S, A themselves
depend on xeS and on suitable components of the controls, instead of depending
on x alone as in § 4. Thus the theorem we shall prove here is, for practical purposes,
more general than theorem (4.i). Nevertheless, we shall prove it as a corollary
of theorem (4.i).

We shall consider here additional spaces of distributed and boundary controls,
T and f‘, with elements ueT and vei‘, respectively, both T and T being given
Banach spaces. (See Remark 1 after theorem (5.i) for a more general situation.)

It may happen that u and v are vector functions
u(=@"*, ..., u"), teG, and o()=0"*1,...,0™), tel,

and in this case the control #'=(u, ) is an m-vector function on G, and 9= (v, v)
is an m’-vector function on I'. In any case, we write our controls as @=(u, u)
and 5=(v, v).

22 Arch. Rational Mech. Anal., Vol. 46
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We are concerned here with the problem of minimizing a functional

L%, 1,0, 8]= o 0, (4 e ) @), w (O)dt+ [ o6, (o (e, )@, 0D) - (5.1)

subject to the state equations

(L W)=, (A (x, W), u(®) a.e.inG, (5.2)
(L) =gt (4 (x,0))(1),v(f)) p-ae.onT, (5.3)
and the constraints
(M (x, W) (DA, u(OeU(t, (#(x, w)®) ae.inG, (5.4)
(A (x, ))(eB(), v(DeV(t, (A (x,v))(1)) pae onl. (5.5

Asin §1, G is a fixed bounded open set in E*, v=1, and I' a given closed
subset of G on which we have a hyperarea measure u. Let S, 7, T be Banach
spaces of elements x, u, v, and let &£, #, #, A be operators on Sx T, Sx ’i‘,
not necessarily linear, with values in the following spaces:

Z:SxT(Ly(G), F:SxT-(L, DY,
M:SXT—(Ly (G, H:SxT-(L (D)

where r, 5, ', 8’ are given positive integers.
Let A(t), 4, U(t, y), M and B(¢), B, V(t, ), M be the sets defined in §§1and 3,

Mc(clG)xESxE", McI'xE xE™, U(,y)<E", V(,)<E";
let

fo(t’ Y, u)’ f(t5 Vs u)=(f15 ’fr)
be defined on M, and

go(ta .;a v): g(t’ .f’a U)=(g1’ s gr’)

be defined on M. Let 0 (¢, y)<E™! be the sets defined in § 3 for every (¢, y)e 4,
and let R(¢, $)< E"” ! be the analogous sets also defined in §3 for every (¢, y)eB.

As in § 4, we denote by T the set of all measurable m-vector functions
u(H=@w?, ...,u™), 1eG,
and by T the set of all measurable m’-vector functions
v(H=(v", ..., v™), tel.

A triple (x, @, ¥), or system (x, u, u; v, v), is saoid to be admissible (for the
problem (5.1-5)) provided xeS, ueT, veT, ueT, vel,

Jo(t, (A (x, w))(®), u())eL1(G),  golt, (A (x, v))(D), v())eL, (1),
and relations (5.2-5) hold.
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A class Q of admissible systems is said to be closed if the following occurs: if

(s Uy Uy, U, 0)ER,  k=1,2, ...,
x;—x weaklyin S,
u,—~u weaklyin T,
v,—~v  weakly in T as k> 00,

Lim I [x;, uy, #, 03, 0] =a < + oo,
k— w0

and there are admissible systems (x, u, u, v, v) such that I[x, u, u, v, v]<a, then
there are also systems (x, #, #, 0, v)eQ with I[x, 4, u, 7, v]<a.

For a class Q of admissible system (x, u, u, v, v) we denote by {x}q, {u}e,
{v}, the sets defined as {x}, in § 4.

If p, p’ are any two integers, 0Sp<r, 0<p’<r’, we denote by (C,,) the
following closure property of the operators &, #, £, A :

(C‘:P')o For every sequence x, u, v, X;, U, v, k=1,2, ..., of elements xeS,
ueT, vel,

xelxlacS, welulocT,  ve{vloct,
with
x—x  weakly in S,
uw,—~u weaklyin T,
v,—v  weakly in 10‘,
there is some subsequence [k;] such that, as 4 — oo, we have
(&L (0 m))=(ZL (x, w)) weaklyin L;(G), i=1,...,p,
(& (% w)) > (L (x,w)) stronglyin L, (G), i=p+1,...,7,
(A (x, )Y = (M (x, )Y stronglyin L,(G), j=1,...,s,
(F G )= (F(x, ) weaklyin L, (), i=1,...,p,
(F (i 00)) = (F (%, 0)) stronglyin L (), i=p'+1,...,7,
(A (xro v2,)Y = (H (x, )Y stronglyin L, (I), j=1,...,5".
(5.i) Existence Theorem. Let G be bounded and measurable, A, B, M, M closed,

fO(t’ Y, u)’f(t’ Y u)=(f1’ ,fr)

continuous on M,
gO(t’ y’ U), g(t’ Y, U)=(g1, veey gr’)
continuous on M , and assume that for given integers
p,p’s 0=p<r, 0=p'sr,

the sets Q(t, ¥) have property Q(p+1) on A, and the sets ﬁ(t, $) have property
Q(p'+1) on B. Let us assume that there are functions

¥(1)20, teG, yeL,(G), and Y ()20, tel, yeL, (),
22
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such that

fO(tay9 u)g_‘//(t) for all (ta Vs u)eM,
and

go(t, Y, 0)2 =Y(t)  for all (1, y, v)eM.

Let Q be a nonempty closed class of admissible systems (x, u, u, v, v) such that
{x}as {8} {v} are weakly sequentially relatively compact, and let us assume that
the operators &, M, S, A" satisfy the closure property (C,,). Then the functional
(5.1) has an absolute minimum in Q.

Proof. Apply the existence theorem (4.i) with S replaced by Sx T x T and x
replaced by (x, u, v).

Remark 1. Considerations similar to those of Remarks 1-6 after the existence
theorem (4.i) apply here as well. In particular, S, T, and T need not be Banach
spaces with the weak topology, but only topological spaces @, o), (T, 1), (T ?),
that is, spaces S, T T for which certain topologies o, 1, € have been chosen. Also,
the spaces S, T, T need not be linear spaces. Accordingly, in the existence theorem
(5.0) we shall require that the convergence x,— x in (S, 6), u,—u in (T, ), and
v, -0 in (T %) imply the convergence in L,(G) and L,(I) stated in (C; ). Ac-
cordingly, we shall require in (5.i) that the sets {x}o, {u}q, {v}o are sequentially

relatively compact in (S, o), (T, 1), (T %), respectively. Examples of these situations
will occur in § 6.

Example 1 (a problem of evolution in strong form). Let G be a subset of the
tt-space E**1, 1=(7}, ..., 1"), of the form G=(0, T)x G’, where G’ is an open
bounded connected subset of EY of class X;. Thus, v+1 replaces v, and I'=0G is
made up of three parts

F1={0}XCIG’, F2=[0,T]X3G', r3={T}XC1G’.

On I'; and I'; we have the Lebesgue v-dimensional measure, or | |, (and we shall
use the symbol dt in integration). In I, we have the product measure o=| |, x
of the one-dimensional measure on [0, T'] and of the hyperarea u on theboundary
0G’ of G’ (and we shall use the symbol d¢ du in integration). Given a function x
in G, we shall denote by yx the boundary values of x on I'=0G, andspecifically
we shall denote by y,x the boundary values of x on I, i=1, 2, 3. We shall denote
by T, T the families of all measurable functions on G, I, i=1, 2, 3, respectively.

We shall denote by S.(G), 1<p<+, /21, the space of all real-valued
functions x(t, 1), (¢, 1)eG such that dx/d¢ and all

D:x’a_—-(al’-'-’“v)a 0-§|a|§l,

exist as generalized derivatives, and are all in L,(G). We shall make S}(G) a
Banach space by means of the norm

Wl =Ixlse=(10x/2tPdtde) "+ ¥ (§ID%x|Pdedz).
G

oslelst G

These spaces S, (G) have been studied by J. P. AuBIN [1], who has proved weak
compactness properties similar to those for the Sobolev spaces. Each element
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xeSL (G) possesses boundary values

’))IxELp(Fl)’ 'Y3xELp(F3) on F15F3
respectively, and all
y2DixeL, (), O0<|a|<I-1, only.

We are concerned with the minimum of a functional
I[x, u,u, 05,05, 03] = [ fo(t, 7, (A x) (8, 7), u(t, 7)) dtd
G

+IJ 8o (t’ T, (Xx) (t, T), Uy (t7 T)) dtdﬂ"'rj 8o (T’ (‘%’X) (Ta T)’ U3 (T))dt’

with state equations (in the strong form)

Lx,u)(t,)=f(t,7,(Ax)(t,7),u(t,7)) a.e.inG,
F(x,0)(t,0)=g(t, v, (X x)(t,7),v,(t,7)) oc-a.e.only,
and constraints
(A x)(t,1)edAt,7), u(t,0)eU(t,1,(#Ax)(t,7)) a.e.inG,
(A x)(1,7)€B,y (8, 7), v,(t, VeV, (t, 7, (X x)(t,7)) o-a.e.only,
(A x) (T, ©)eB;5 (1), 03(DeVs(1, (X x)(T,7))  a.e.onT;.

On I we have actually the further control y, x= v, (7), with v, (t)eL,(I}), that is,
the initial values y, x are arbitrary. In other words, y, x is free (in L,(I3)). The
optimal elements xe S=S.(G) will determine the optimal initial values

v, (D=7, xeL,(I}).
We take now xeS=SL(G), ueT, v,eTy, vseTs, and ueT, v,eT,, where T
and T, are weakly closed subsets of L (G) and L,(I,), respectively, and both are

norm bounded (in the norms of L,(G) and L (I3)). Above A, A", &, S are
operators, not necessarily linear, say

M:S>(L (G, H:S->(LD), L:SxT-(L,G), F:SxTo-(L, I

We assume that

X=X weakly in S,
u,—u weakly in L (G),
V0, weakly in L (I,)

implies that
M M X strongly in (L, (G))",

A x> A x strongly in (L, (I))’,
&L (%, )~ L (x,u) weaklyin (L,(G)),
F (X, 02)>F (x, v,) weaklyin L, (I,).

Theorem (5.1) now applies easily.
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For instance, we can take r=r'=1, m=m'=1, T=0, p=¢g=2, [=2, and

Lx=0x/3t—Y 3*x)(@7)?,
i=1

F(x,v)= Zv:lai(t, )72 (0x/07)+v,(t, T)y, x(2, 7).

Here T, <L, (I3,), and the coefficients a; are given elements of L, (I,).
For instance, we may also take
Mx=(x,V.x), s=v+1,
H x=0x[0n, s'=1, onl,; HA'x=x, s'=1, onl;,
fo=t+ 2+ X2+ Vx> +|u|-1= -1,
f=t+Y P +x+Y 0x/otr +u+2"1u],
i i

go=(0x/0n)*+v320 onT,, ge=x*—1=—1 onlj,
g=x(0x/0n)+v, onI,,
v3=0, A=E"*!, B,=E', B;=E', U=E", v,=E*, V;={0}, and choose for Q the
set of all admissible systems x, u, u, v,, v, v3 With ||x[s36)< N for a sufficiently
large N.

Example 2. Using the same notatlons asin Example 1 above, we may take here

xeS=S2(G), ueT, vzeTz, v3eT3, and ueT, vzeTZ, where T, T are weakly closed
subsets of L,(G) and L,(I}), respectively, and both are norm bounded (in the
norms of L,(G) and L, (Fz)). Here #, A4, &£, # are operators, not necessarily
linear, say

M S—+(L1 (G))s, A S—»(LI(FZ))S', Z:Sx T—+(L1(G))', F:Sx f‘2—>(L1(I“2))".
We assume that

X=X weaklyin S,
u,—u weakly in L, (G),
0,0, weakly in L, (I3)

implies that
M x> M X strongly in (L, (G))’,

A Xy— X strongly in (L, (I;))",
&L (%, )~ L (x,u) weaklyin (L, (G)Y,
I (% 030~ F (%, v,) weaklyin (L, (I3))".
Theorem (5.i) now applies.

For instance, we may take r=r'=1, m=m'=1, T={0}, and

Lx=0x/ot+x(gradx)—b Y 8°x/07'2,
=1

(5, = 3 (6 D72 O3f08) 330, )7 %0,
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Here T, <L, (I3), the coefficients a; are given elements of L,(I},), and 6>0is a
given constant. We can take ., X1, f,, f, 2o, £ as in Example 1.

6. An Existence Theorem for Optimization Problems
with State Equations in the Weak Form

We shall now consider the case, mentioned in § 1, where the equations of
state (1.2), (1.3) are written in the weak form as is customary in partial differential
equation theory.

We shall use the general notation of the previous sections. In addition, let W
denote a normed space of test functions w=(w,, w,), where

wle(Lq(G))', W;,G(Lq(['))”, and pl4q7'=1,

with 1<p< 4+, 1£g<+00, and let the usual conventions hold. We shall
assume that the norms |w, ||, of w; in (L,(G)Y and [lw,]|, of w, in (L(I'))" are
connected with the norm {|w|y4 of w=(w,, w,) in W by a relation of the form

Iwillg+ w2l , =K [Iwlly (6.1)

where K is a constant. We shall denote by W* the dual space of W. We shall
deal here with only three operators, .4, o as in § 5, and ¢ replacing both &
and £:

M:SXT~(Ly(G), H:SxT-(L (D), FSxTxT-W*

For every xeS, ueT, uel, ve?o“, vef, we consider now the operator £, or
h(x,u, u,v, v), h: W— E!, defined by

hw= g St (A (x, w) (), u®) wy (D dt+ J g(t, (A (x, ) (1), o) w2 (D d

where fw, and gw, denote inner products in E” and E", respectively.

Instead of state equations(5.2), (5.3) we shall now consider a single stateequation
in the weak form

F=h, 6.2)
that is,

Fw=hw forall weW 6.3
or, specifically,

I (x, u, v) (wy, wy)= é [ (A (x, W) (), u@®) wi (D) dt

+ {86 O (1, 0) O, o)W 64

for all (w,, w,)eW.

Note that relation (6.1) implies

(LG x (Ly(D) =W,
(L, (@) x (L, (D)) =w*,
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and, as mentioned, #: Sx I'x T— W*. In most applications, however, we shall
have
Z: 5x Tx T(L,(G)) x (L, (D)) = W*,

and the actual determination of W* will be irrelevant.

We understand here that the present single equation of state (6.3) is the weak
form of equations of state (5.2), (5.3). In other words, in any particular situation ¢
and W must be chosen so that any solution of the equations (5.2), (5.3) (strong
form) is necessarily a solution of (6.3).

Thus we are interested here in the problem of minimizing of the functional

I{x,u,u,v,v]= ({ Solt, (A (x, w)) (1), u(t)) dt+ ,5 2 (t, (X (x, ) (1), v())dp, (6.5)

with state equation (in the weak form)

Fw=hw forall weW, (6.6)
and constraints

(A (x, w)) (eA®), u()eU(t,(H#(x,u))(t)) a.e. inG, 6.7
(o (x, ) (DeB®), v(eV(t, (A (x,0))(1)) pac.onl. (6.8)

In the present situation we shall require a suitable growth condition, condi-
tion (H):
(H) For p=1 we assume that, given ¢> 0, there are functions ¢,=0, ¢,€L, (G),
and §,20, ,eL, (I, such that
lf(ts Y, u) I é ¢e(t)+8f0(t’ Vs u) fOI' all (t9 3 2) u)eM,
|g(t, 5, )| <S¢ (D+ego(t, $,v)  forall (1, 5, v)eM.
If p>1 we assume that there are functions ¢, =0, ¢o€L,(G), and 50 20, $0 eL, (),
and constants a>0, b>0, such that
£y, WP Sdo(D+afo(t,y,u) forall (z, y, u)eM,
|8(t 3, )P Sdo()+bgo(t, $,v)  forall (1, 5, v)eM.

This condition, for p=1, has been systematically used by CEsARI [3be] as a
suitable extension of previous more restrictive growth hypotheses used by TONELLI
and MCSHANE.

A triple (x, @, D), or system (x, «, », v, v), is now said to be admissible provided
xS, ueT, ueT, ve]o‘, velo", relations (6.6), (6.7), (6.8) hold,

fO (t, ("” (x’ u)) (t)’ u(t))ELl (G)9 go (ts ('9{‘ (x, v)) (t)a U(t)) ELl (F)

Also, we require that

£t (# (x, w) (), u(®)e(L,(G))
g(t, (o (x, W) (), v())e(L, (D))"

and that
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In the existence theorem below, however, this last requirement will be a con-
sequence of property (H). We shall now consider nonempty closed classes Q of
admissible systems (x, u, u, v, v), where the definition of closedness is analogous
to the ones in §§ 4 and 5.

Finally, we shall need the following closure property (C) of the operators
M, A, F
(C) For every sequence x, #, v, X;, My, ¥, k=1,2,..., of elements xeS§,
ueT, vef‘, .
xe{x}pcS, wmelulocT, ve{v}pcT,
with
x,—x weaklyin S,

u,—~u weaklyinT,
v,—ov weaklyin f‘,
there is some subsequence [k;] such that, as 1 — o0, we have
M (X, )~ M (x, u) stronglyin (L, (G))’,
H (X, 0,) = (x,0) stronglyin (L, (1)),
F Xy Uy, 0, )W F(x, u,0)w  for every weW. (6.9)

The hypothesis concerning ¢ above can be reworded by saying that

j(xkp’ ukp’ ”k,)_’j(x’ u, I))
in the weak star topology on W*,

(6.i) Existence Theorem. Let G be bounded and measurable, A, B, M, M closed,
S, y, u), f(t, y, W=(f1s 1)

continuous on M,
go(t’ ;” v), g(t! .f’a U)=(g1a ceey gr’)

continuous on M, and assume that the sets Q(t y) have property (Q) on A, and
the sets R(t ¥) have property (Q) on B. Let us assume that there are functions

lll(t)gos t€G3 WELI(G)’ and 'ﬁ(f)ég, tEF, WELI(F)’
such that

fo(t,y, W)z =y (1)  for all (1, y, u)eM,
and

2t y,0)2 —!/;(t) forall (1, y, v)el\r?.

Let us assume that relation (6.1) holds, and that growth condition (H) is satisfied.
Let Q be a nonempty closed class of admissible systems (x, u, u, v, v) such that
{x}a, {u}q, {v}q are weakly sequentially relatively compact, and let us assume that
the operators M, A, F# satisfy closure property (C) above. Then the functional (6.5),
or I[x, u, u, v, v}, has an absolute minimum in Q.
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Proof. As usual let i be the infimum of I[x, u, u, v, v] in the class Q. Since
Jfo= -, 802 —J and Q is nonempty, i is finite. Let

(xk’ Up, Wys Uy vk)’ k= 13 2, (REE)
be a sequence with
I[ X, g, uy, 0y, 9]0 as k—o0,

and we may well assume that
P<I[X4 e W O, 0 | S E+KT <41, k=1,2,....

Since we have assumed that the sets {x},, {u}q, {v}, are weakly sequentially
relatively compact, there is a subsequence, say still [k] for the sake og simplicity,
such that x, — x weakly in S, u, —u weakly in T, v, — v weakly in T as k— o0.
We may even assume that the subsequence has been so chosen that limit relations
(6.9) hold. Let

zk(t) =f(t, "”(xlu uk) (t)a uk(t))s IGG,
Z(D=g(t, H (x ) (D, v (D),  tel, k=1,2, ...
By the growth condition (H) and
I[x g, g, g, 0, ]<i+1  forall k,

we see that, if p> 1, the functions z,(¢) and Z,(¢), k=1, 2, ..., are equibounded in
the norms of (L,(G))" and (L,(I'))", respectively. If p=1 it follows from an argu-
ment of CesaRrI [3be] that the same functions z,(¢) and Z,(¢) are equiabsolutely
integrable in G and I', respectively. In any case, there exists a subsequence, say
still [k] for the sake of simplicity, and elements

z(t), teG, ze(L,(G)Y, and z(1), tel, ze(L, (D),
such that
z—z weakly in (L,(G))
and
zy—z weaklyin (L,(D)".
In other words,
ft, A (x, w) (1), w())—>z(t) weaklyin (L,(G))',

g(t, A (x4, v) (1), 0 (1))~ 2 (1) weakly in (L, (D))", (6.10)
as k — oo, while
lim I]x, uy, w, v, 0] =1, 6.11)
k=
(A (30, w))(DeA®),  u (HeU(t, (A (x, w))(®)) a.e.inG, 6.12)

(o (% v))DEB(D, v, (DeV(L, (A (%4, v))()) p-a.e.onl.
If w=(w,, w,) is any element of W then by relation (6.1) we know that
w1€(L(G)) and w,e(L,(D)";

hence
Gj"zk(t)wl(t)dt—»GIZ(t)wl(t)dt, rj"fk(t) Wy (t)du-+r12°(t) wy(Ddp
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as k — oo. Finally, by the definition of the operator 4, we have
(%X, s Uiy O D) W [ 2() Wy (D A+ [Z(D)w, (D dp (6.13)
G r

as k — o0, for every w=(w,, w,)€ W. By hypothesis we have also
F(Xi W, V) W I (X, w, D) W (6.14)
as k — o0, again for every we W. Here each system
(X Upeo Ups Vs ), k=1,2, ...,

is admissible; hence the first members of (6.13) and (6.14) are equal for every
we W. From (6.13) and (6.14) by comparison we obtain

Fx,u,v)w= [z(O)w ()dt+ [Z()w,(f)du (6.15)
G r
for every we W.

Now relations (6.9), (6.10), (6.11), (6.12) showo that we can apply the lower
closure theorem (3.i) with S replaced by SxTx T and with p=r, p'=r'. Here
the sets Q(¢, y) have property (Q) on 4, hence property Q(r+ 1) by force of (1.i).
Analogously, the sets R(¢, §) have property (Q) on B, hence property Q(r' +1).
We conclude that

(#(x,w)()eA(t) a.e.inG,
that
(A#(x,))(eB() p-ae.onl,

and that there are elements ueT, ve T'such that
u(eU(t, (A(x,w)®), z@O=f( (A(x,w)®),u()) ae.inG,
v(DeV(t, (A (x, v))(D), z(t)= g(t, (K (x,0))(®),v(?)) p-ae.onl,
So(t, (A (x, w)(®), u(H)eL,(G),
go(t: (A (x, ©))(1), v(O))e L (1),
I{x,u,u,v,v]<i. (6.16)
Relations (6.15) and (6.16) show, by comparison, that
Flx,u,)w=h(x,u,u,v,0)w forall weW.

Thus, the system (x, u, u, v, v) is admissible, and since Q is closed, there is some
admissible system
(x,@,u,0,v) inQ with I[x,#,u,bv]si.

The same system belongs to Q, and
I[x,u,u,v,v]2i.
Thus, I=1i, and the existence theorem (6.i) is thereby proved.

Remark 1. Remarks 1-6 of §4 and Remark 1 of § 5 apply to the present
theorem as well.



348 L. Cesarl & D. E. CowLEs:

Example. Let G be an open bounded connected subset of E¥, vz 1, of class K.
We are concerned with the minimum of a functional

Ix, u]={ fo(t, x(®), Vx (1), u(t)) dt, 6.17)
G
with state equations which we wish to be a weak form of
Y 2 x[(31)2 =f(t, x(1), Vx (1), u (D), (6.18)
i=1
and with constraints
x(DeA(®), u®eU(t, x(1). (6.19)

Here x and u are functions on G. Thus, g,=0, we have no boundary condition
on x, we can take g=0, # =0, # =0, and need make no references to I', B, V, M.

By introducing the increased control #(¢)=(u!, ..., «', u), we have the equiv-
alent problem of minimizing the integral

I[x,u]= (;[ Solt, x (1), () dt,

with differential equations (6.18) and

6x/6ti=f,-=ui, i=1,..,v,
and constraints
x(NeA(t), u(®eE"xU(t, x(1)).
We shall think of W as simply being
(CT@G)Y* with w=(®,0)eW,
o=(0'...,0"0) and o,..., 0", 0eCT(G).
As a weak form of the present system of differential equations we now take
Y f@xjot) (@' ®)dt—| Y (x/0t)(0w/0t)dt
i=1G Gi=1 v (6.20)
= é F{t, x(®, ﬁ(t))w(t)dt+izl Gj u' (1) (o' () dt

for all
B=(0", ..., 0", 0)e(CE(G)) L.

It is easy to verify that any (strong) solution x, u of the original system of equations,
say
xeW2(G), ueT,

is certainly a solution of (6.20). Instead, we take
xeS=W}(G), ueTl, p=1,

or, equivalently, xe S= W{(G) and # measurable in G. Note that in the present
problem we have the further control yx=1wv(¢) with v(t)eL, (I') on the boundary
I'=0G of G, that is, the boundary values yx of x are arbitrary. In other words,
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yx is free (in L, (I)). The optimal element x € S will determine the optimal boundary
values v(t)=yxeL,(I'). We shall take in W=(C§(G))'*" the topology defined
by the norm

| @ |lw=Max|w(t)|+ i Max |dw/dt' |+ zv: Max | w'(?)].
i=1 i=1

We have here r=v+1, and if we denote by ||&|, the norm of & as an element
of (L‘,o (@) x W2 (G, then ||@|l,, =||@|y for every element G W. Also

(Lo Q) 2(Lo (@) x Wy (G)2 W,  (Li(G)Y W™,
and relation (6.1) holds with K=1 since

“ @ ”(Lm(G))"é I @ "w =| @ "W-

Also, the operator # defined by the first member of (6.20) has the expected
property
F:S>(Ly(G)Y W™

Now, if x, x,€eS=W{(G), k=1,2, ..., and

x,—x weakly in S=W}(G),
then
0x,/0t—»0x/0t as k->oo weaklyin L,(G), i=1,...,v;

hence (# x,) @— (# x) & for every &e(L, @) x W1 (G), and then certainly for
every @e W=(Cg (G))’**. Thus, the hypothesis required on # in (6.i) is satisfied.
Also note that #x=x, #:S—-L,(G), s=1. Here

A(NcE', AcE™', ueU(,y)<E', ueU(t,y)=E'xU(t,y),

and thus M < E?**2 is the set of all (¢, y, #) with
teclG, yeA(t), ueU(t, y)=E'xU(t,y).
Let £, (¢, y, @), f(t, y, u) be real-valued continuous on M. For
Z=(Z,..,2"), u=@', .., u",u),
let O(t, ) be the subsets of E**2 defined by
0(t, )=[(2" 2, 2)| 2° 2 fo(t, y, W), 2= (t, y, W), Z'=ut", 51U (1, y)]
=[(2% 2, 2)|12°2 fo(t, y, Z, u), z=f(t, y, Z,u), ueU(t, y), ZEE"].

We assume that the sets 0(z, y) have property (Q) in 4. We shall assume that
there is some function Y20, YL, (G) such that £, (¢, ¥, W)= —y (f) for all teG.
Weshallalsoassume that growthcondition (H)holdsfor fyandf, f, ..., f, withp=1,
and f; =u!, ..., f,=u".

A pair (x, u) is here admissible provided xe Wi (G), u is measurable in G,
x()ed(®), u(®eU(t, x(f)) a.e.inG,
Sfo(t, x(@, #())eL(G), ¥ =0x[0t}, i=1, ..., v,
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and relation (6.20) holds for every @eW. Note that hypothesis (H) (for p=1)
certainly assures that also (¢, x(¢), u(t)eL,(G).

We shall take for Q a nonempty closed class of admissible pairs (x, ¥) such
that {x}, is weakly sequentially compact in W (G), and also such that if

xeWi(G), xe{x}g, k=1,2,...,

x;—x  weakly in W (G),
then
x,—x strongly in L, (G),

(that is, # x, —>.# x in L,(G)). Existence theorem (6.i) now guarantees that the
functional (6.17) with state equations (6.20) (in the weak form) and constraints
(6.19) has an absolute minimum in Q.

For instance, we may take
A()=E', Mx=x, M:S-L,(G), U=E',
fo=1tPG*+|Px*+u?), f=—1+u+2""|ul,
and we may take for Q the class of all admissible pairs (x, ) with
xeS=W}(G), ueT.

Here « is a fixed number, 0<a<v.

First we have to prove that f, f, satisfy condition (H), that is, f, f, satisfy a
growth condition (g). Since G is bounded, there is a constant ¢>0 such that
|t]| £ ¢ for all teG. Now, for every e>0, the function

Y (=¢""[1]7+1
is L-integrable in G, and

27 ulg|u+27 ul|£3/2) |ul.
Either (3/2) |u|=¢~ ! |¢|™% and then

IF1SGD)ul+1=3/2)|u| " u® + 10/ el 1] u® + 1=y () + (/) e fo;
or
G2)lulse™ 177,
and then again

f1=¢.(0+9/4) fo.

An analogous statement holds for each function f;=14, i=1, ..., v. We denote
by Q, the class of all admissible pairs x, u with I[x, u] < M, for sufficiently large
M, so that Q, is not empty.

Let us prove now that the class {x},, is sequentially relatively compact in
W1(G). It is enough to prove that for (x, u)e 2, the functions

2M=Ix(®|+ Y |ox/or], teG,
i=1
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are equiabsolutely integrable in G. Indeed, either @=¢~! [¢| ™% and then
&= P* e[t (v+ D (X +|Px 1)U, (D +e(v+ 1) fo,
or <e”!|t|7% and then again

2=y, (D+e(v+ 1) fo.

Thus &, f, satisfy a growth condition (g), and again the functions & are equi-
absolutely integrable in G.

Finally, the functions &(¢) being equiabsolutely integrable in G, we conclude
from Sobolev space theory that x, — x weakly in W (G) implies x,, — x strongly
in L, (G) for a suitable subsequence [k;,].

7. Application to Problems of Optimization with an Evolution Equation
in Weak Form

In this section we apply Theorem (6.i) to problems of optimization with an
evolution equation in the weak form.

Example. We are using here the notations of § 5. We are concerned with the
problem of minimizing the functional

I[x,u, vy, v5,05]= | fo(t, 7, x(2, 1), (FPx)(t, ©), u(t, v))dtd
G

+ [ 20l (030 (®), 03 @) dr, @.1)

with a state equation (concerning G and I;) which will be a suitable weak form
of the system of equations

dx/0t— z Px)07 ) =f(t, 7, x(t, ), 7x)(t, 1) u(t, 1)) inG,  (1.2)
i=1

Ox[on+v,(t, 1) y,x(t,7)=0 onl), (7.3)

and constraints
x(t,7)ed(t, 1), u(t,v)eU(t,1,x(t,7)) a.e.inG, (7.9
(y3x)(0)eB(1), v3(1)eV(r, (y3x)(z)) a.e.onlj. (1.5)

Here x, u: G- E*', v,: I, > E!, vy: I; > E*, denote real-valued functions,
x state variable, u, v,, v3 controls. In other words, we are interested in the deter-
mination of a function x (¢, 7) in G (in particular, of its initial values, say v, (1)=
x(0, 7) on I), and of controls u(t, 7) in G, v,(2, 7) on I, v4(t) on I3, such that
the functional (7.1) has its minimum value, under constraints (7.4), (7.5), and a
suitable weak form of state equations (7.2), (7.3).

By introducing the increased control #é(t, )= (u!, ...,u"*!, ), we have the
equivalent problem of the minimum of the integral

I[x’ 17, Uy, U3, U3] = Ifo(ta 7, X(t, T)’ a(t’ ‘E))dth
G

+ rj 8o (T’ (y3x)(z), v3 (T)) dr,
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with differential equations
ox/ot—Y 8*x/(87') =f(t, 7, x(t, ), u(t,7)) in G,
i=1

oxfon+uv,(t, 1)y, x(t,7)=0 on I, (7.6)
axlot'=fi=u', i=1,...,v, Ox/ot=u"*' in G,

with constraints (7.4), (7.5), and ¥'eE?, i=1, ..., v+1.
We take for W the space of all pairs w=(®, y®), with

vt+1

o=@, ..., "), o'eCP@G), i=1,..,v+1, weC?(lG).
Then, y®=(0, ..., 0, y»). As a weak form of (7.6) we take the equation

Zv: (0x/07) (w07 dtdT+ f@x/otyo(t,1)dtdr
G

i=

+ f vy (4, 7). x(1, D)y (1, 1) dtdp

+2 f@xjo) (s, 'c)dtd1+_[(6x/6t)w"+1(t ndtdt  (1.7)

i=1G6

= .ff(" 7, x(t, 1), #(t, D) o(t, V) dtdr

IIM+

_[u @t D)o’ 1)dtde
16

for all
o=, ..., 0" ", 0)e(CF(G)) ! x C*(cl G).

Here # w, or #(x, v,) w, that is, the operator #, is defined by the first member of
(7.7). It is easy to verify that any strong solution x, u, v, of (7.2), (7.3), say with

x'eS%  uel, v,eL(Iy),

is certainly a solution of (7.7) for all we W.
We shall take here

xeS=W;(G), p>1, ueT, vzef'z

with f‘z a weakly closed subset of L,(I), 1/p+1/g=1, which is bounded in the
norm of L (I;). We take in W the topology defined by the norm

I wllw=ll(@, @)l =Max |e(t, 7)| + Max | dw/dt]|
+ Y, Max|dw/d7'|+ ¥ Max|w'(t, 7)|
i=1 i=1

where all Max are taken in ¢l G. With r=v+2 we have

v
10l zo@y + 7@l S lolwye +Ivele, o+ igl 1o,
<G4+ (T Wl
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From this we deduce
W W, (G)x L(I) x (W (G))* =(L(G®)) x L(I),

and that relation (6.1) holds with K=|G|/94|I'|*/4.

Wehavehere xeS=W, (G), M x=x, M: S—L,(G), Xx=p,x,4: S—L,(I3),
s=5=1. Also x,—x weakly in S implies .# x,—.# x strongly in L,(G), y,x,
— 7, x strongly in L,(I3), #x,— A x strongly in L,(I';), dx,/0t—0x/0t, 0x,/0T
—dx[oT weakly in L,(G), i=1, ..., v. Furthermore, if v;, v,4, k=1,2,..., are
elements of T, =L, (I},), with v,, — v, weakly in L,(I}), then the products v,,
(y,x) converge weakly in L, (I';) to v, (y, x). Finally, from the definition of ¢ (x, v,)
we conclude that

F (X ) Wwo F(x, 0)w as k—oo

for every we W as requested.
For any (¢, 1)e G we have

A(t,71)cE', AcE*?, ﬁef](t, 7, )=E"* "'xU(t,1,y)<E*2

Now M is the set of all
E2 vt4

(t, 1, y,0)e
with .
(t,)eclG=clG' x[0,T], yed(t, 1), ueU(t,1,y).
Let
fo(t, %, ) ﬁ)a f(t, ), ﬁ)
be real-valued continuous functions on M. Let Q(t, 7, ¥) be the subsets of E**3
defined by

Qt, 1, 1) =[(2% 2, Z)| 2° 2 fo (1, %, y, W), 2=1 (1, 7, y, B), Z' =v/', ueU (1, 7, y)]

=[(ZO,Z,Z)|Zogfo(t,‘t,y,z,u),Z=f(t,1,',y,Z,u)’ueU(t’T,y)’ZeE"+1]
where
Z=(Z',..,2"*Y, and u=(@',....u""%,u),

and let us assume that these sets have property (Q) in 4. Also, in harmony with
(6.1), we assume that there is a function ¥ (¢, 1) =0, Y €L, (G) with

folt, .y, Z,w=z—y@, 1) forall (¢, 1,y Z, weM,
and that there is a constant ¢>0 and a function

WO (t’ T)_Z_O’ ‘I/OGLI (G)

v+1

If(t’ Y, Z’ u)lp+'=zllui|p§ l/lO(t’ T)+af0

such that

for all (¢, 7, y, Z, u)e M (condition (H)).

For any (T, t)el3, that is, tecl G/, let B(1)cE! be a given set, let B E**!
be the set of all (t, §) with tecl G’, ye B(7), and for every (z, y)e B let ¥V (z, §) be
a given subset of E. Then, let M be the set of all (z, §, v;)eE**2 with (1, §)eB,

23 Arch. Rational Mech. Anal.,, Vol. 46
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v3€V (1, ), and let g, (7, ¥, v3) be real-valued and continuous on M. We assume
that there is a real-valued function /5 (1) =0, 3L, (G") with g, (z, §,v3) = — 5 (7)
for all (z, J, vs)el\ol . Here g=0, hence the corresponding sets R are half straight
lines, and certainly convex. We assume that these sets R (7, y) satisfy property (U)
on B. The corresponding condition (H) is trivially satisfied. On I'; we have both
£=0, g,=0, and no further discussion is needed.

A system (x, 4, v,, v3) is here admiossible provided xe S=W}(G), ii is measur-
able in G, v; is measurable in I3, v,€T, c L (I3),

fO (t> 7, X(t, T)’ (Vx) (t’ T)’ u(ta T))ELI (G),
8o (T, 73 %(2), v3 (T))EL1 (I3),

equations 0x/0t'=u, i=1,...,v, 8x'/0t=u’*! hold in G, relations (7.4), (7.5)
hold, and (7.7) holds for all we W. Because of hypothesis (H), then certainly

f(t, 1, x(1, 1), (Fx) (1, 1), u(t, ©))eL,(G).

We shall take for 2 a nonempty closed class of admissible systems, such that the
set {x}q is bounded in the norm of W}(G). Theorem (6.i) now guarantees that the
functional (7.1) with state equations (7.7) (in the weak form) and constraints (7.4),
(7.5) has an absolute minimum in Q.

For instance, we may take p=g=2,
fo=t*+1t P+ x>+ |Px > +u?,
f=—=1+t+|t[+x+u+2""ul,
go=(1+17|7[)x"+(1+|xD]vs],
U=E', V;=E', Th=[veL,(Iy)|lv,],<1].

Then condition (H) (for p=2) is satisfied since f2<2+6f,. Also, we can take
for Q the class of all admissible systems x, u, v,, v5. If i denotes the infimum of 7
in Q, and Q, the subclass of all (x, #)e 2 with IS i+ 1, then the set {x}o, is certainly
bounded in the norm of W1(G).

This research was partially supported by AFOSR Research Project No. 69-1662.
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