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1. Introduction 

In this paper we consider multidimensional nonlinear problems of optimization 
of the Lagrange type involving a cost functional expressed by means of integrals 
on a fixed domain G in Euclidian space E v, v >  1, and on its boundary OG, and 
also involving state equations, which usually are partial differential equations, 
in G and on 0 G, and controls both in G (distributed controls) and on 0 G (boundary 
controls), while our state variable x is an element of a topological space S. The 
state equations, both in G and on d G, are written in terms of abstract functional 
analysis and hence may represent partial differential equations or more general 
functional relations. The state equations, both in G and on O G, may be written 
in ei ther" s t rong" or " w e a k "  form, the latter being customary in the theory of partial 
differential equations. This paper extends to the present situation the method 
and ideas of previous papers by CESARI [3abe],  and particularly of [3e]. 

Let G be a fixed bounded open set in E v, v > 1, and let F be a given closed 
subset of a G on which we have a hyperarea measure p. To simplify our exposition, 
let S be a Banach space of elements x, and let .~, .A/, J ,  ~ be operators on S, 
not necessarily linear, with values in the following spaces: 

.oq': S ~ ( L I ( G ) f ,  ~r S--,(L,(F))", 
~t: S-.(LI(G)) s, ~ :  S-- , ( t , (r ) )  ~', 

where r, s, r' and s' are given positive integers. (See Remark  4 of w 4, and analogous 
remarks in w167 5 and 6 for a more general situation.) 
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For  every t = ( t  1, ..., t v) in the closure of G, let A(t) be a nonempty closed 
subset of the y-space E s. Let A be the set of all (t, y) such that t~cl(G) and 
y = ( y l ,  .-., yS)eA(t). For every (t, y)~A, let U(t, y) be a nonempty subset of the 
u-space E ~', u=  (u 1 . . . .  , urn). We define analogous sets on a closed subset F of ~ G 
as follows. For  every t~F, let B(t) be a nonempty closed subset of the jS-space 
E ~', )~=051, ---, )~s'). Let B be the set of all (t,)5) with teF and ~ B ( t ) .  For  every 
(t,)5)~B, let V(t, ~) be a nonempty subset of the v-space E m', v=(v 1, ..., vm'). 

We consider the problem of finding an element x of S, a measurable control 
vector u (t) = (u 1 . . . .  , u'~), t e G, and a/~-measurable control vector v (t) = (v 1, ..., vm'), 
teF, that minimize the cost functional 

I[x, u, v] = S fo(t, (J/gx)(t), u(t))dt+ S go(t, (aY'x)(t), v(t))dl2, (1.1) 
G F 

subject to the state equations 

(Lex)(t)=f(t,(dCx)(t),u(t)) a.e. in G, (1.2) 

(Jx)(t)=g(t, (3~'x)(t), v(t)) #-a.e. on F, (1.3) 

and the constraints 

(Jgx)(t)zA(t), u(t)zU(t,(~Cgx)(t)) a.e. in G, (1.4) 

(3fx)(t)zB(t), v(t)~ V(t, (Jfx)(t)) /z-a.e. on F. (1.5) 

Here u(t) is said to be a distributed control, and v(t) a boundary control. 
The state equation (1.2) usually represents a system of partial differential 
equations, and (1.3) usually represents boundary data, or boundary controls but 
may just as well be a system of partial differential equations and related constraints 
and controls on the boundary. The state equations (1.2) and (1.3) are said to 
be written in the strong form. We shall consider in w 6 also the problem of mini- 
mizing the cost functional (1.1) when (1.2) and (1.3) are written in the correspond- 
ing weak form, as is customary in the theory of partial differential equations. The cor- 
responding results are framed in the present general theory with no extra effort. 

2. Preliminaries 

In order to state our lower closure and existence theorems, we will use C. B. 
MORREV'S definition of a regular transformation of class K from his paper [8 a]. 

Let X and Y be subsets of a Euclidean space E v, v > 1. A transformation 
x=x(y)  of Y onto X is said to be of class K provided it is one-to-one and con- 
tinuous, and the functions x=x(y)  and y=y(x) satisfy uniform Lipschitz con- 
ditions on each compact subset of X and Y, respectively. In addition, the trans- 
formation is said to be regular if the functions x(y) and y(x) satisfy uniform 
Lipschitz conditions on the whole of X and Y, respectively. For  the concept of 
bounded open subset of E v of class K in the sense of C. B. MORREV, we refer to 
his paper [8 a]. The closure of such a set is often called a region of class K in E v. 
Briefly, a region of class K, or K1, in E ~ is a compact manifold with boundary 
with respect to regular transformations of class K, or K1. Analogous definitions 
hold for transformations and regions of class K~, l>  1. 
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In stating our theorems we shall use the notations of w 1 and the properties of 
set-valued functions. Also, given a point (to, yo)~A and a number 6 >0,  we denote 
by N~(to, Yo) the set of all points (t, y)eA at a distance <6  from (to, Yo). 

For  every (fi y)sA let Q(t, y) be a subset of the z-space E "+1, z = ( z  ~ . . . . .  z'). 
We say that the sets Q (t, y) have KURATOWSKI'S upper semicontinuity property 
[6], or property (U), at the point (to, yo)~A provided 

Q (to, yo) = A cl Q (to, yo, e) 
8 > 0  

where 

Q(to, yo, 8)= U Q(t, y). 
( t ,  y ) e  N ~ ( t o ,  YO) 

We say that the sets Q(t, y) have property (Q), or the modified upper semi- 
continuity property [3a], at (to, yo)eA, provided 

Q(to, yo) = N cl co Q(to, yo, e). 
e > O  

We say that the sets Q (t, y) have property (U) or (Q) in A if they have that property 
at every point (to, yo)eA. Sets having property (U) are closed, and sets having 
property (Q) are closed and convex. It has been found useful to introduce also 
intermediate properties Q (p), 0 < p < r + 1, of variable sets (D. E. COWLES [4 a]). 

Let p be any integer, 0__< p __< r + 1. We say that the sets Q (t, y) have property 
Q (p) at the point (to, yo)~A provided for every 

o 1 z~+I)~E,+I, 
Z O  ~ ' ( Z o ~  ZO~ . . .  , 

Q(to, yo)C~{z=(z ~ , z g e E ' + l l  i . . . ,  Z=Zo, i = p , . . . , r }  

= N N cl co (~(t0,  yo, ~) ~ { z ~ E  '§ II z ' -  z~ I =< 8, i = p  . . . . .  r)), 
e > 0 # > 0  

For p = r + 1 we understand that the sets in braces in the first and second members 
of this relation coincide with E ' .  We note also that if the sets Q(t, y) have property 
Q(p) at the point (t o, yo)~A, then for every 

Zo = (z ~ ~o ~ . . . . .  z;  § 1)~E "§ 
the set 

Q(to, Yo)C~ {z~E,+ l i i z = z  0 , i = p , . . . ,  r} 

is closed and convex, since it is the intersection of sets having the same property. 
Thus, for any two points 

zl =(z  o, ~p-1 ~p Z~o)~Q(to, yo), � 9  , "~1 , "~0 ,  � 9  , 

z2=(z o, .o-1 .o Zo)fQ(to, yo), � 9  �9 , z" 2 , z 'O~ �9 � 9  , 

the points ~ z 1 + ( 1 - ~ )  z z also belong to Q(to, yo), 0_<ct_< 1. Sets possessing this 
(partial) convexity property will be said to be p-convex�9 

(2.i) For any integer p, O< p<r, property Q(p+ 1) implies property Q(p). Also, 
property Q(r + 1) holds if and only if property (Q) holds, and property Q(0) holds 
if and only if property (U) holds�9 
2 1 "  
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For  a proof of this statement, and of statement (2.ii) below, see COWLES [4a]. 

For  every point (t, y)eA,  let Q(t, y) be a subset of E r+ 1, r>0 .  We say that the 
sets Q(t,y)  have the "upper  set proper ty"  on A provided ( t ,y )eA,  Zo = 
(z ~ Zlo, ..., z'o)~Q(t, y), ~o=(~ '~ Zlo . . . .  , Z'o)~E "+1 with Zo-~176 implies ~o~Q(t, y). 

(2.ii) I f  the sets Q (t, y) have the upper set property on A and also the property 
(U), then the same sets have property Q(1) on A. 

It was proved in [3fi] that property (Q) is essentially an extension to Lagrange 
problems of the seminormality condition often used for free problems. This con- 
dition (Q), and variants, will be used in the lower closure and existence theorems 
below. In a number of these theorems property (Q) and variants can be relaxed 
or dropped. In particular this occur for linear problems, and for problems with 

fo, f ,  go, g possessing suitable bounds. These modifications can be readily ob- 
tained within the present approach. We shall discuss these cases in detail in 
subsequent papers. 

3. A Lower Closure Theorem 

Let G be a bounded measurable subset of E v, v~  1, and let t~G denote the 
boundary of G. 

Let Fj, j =  1 . . . . .  N, be subsets of dG, each of which is the image under a regular 
transformation tj of class K of a bounded open interval Rj of E v- 1. Let F be a closed 

N N 

subset of U Fj, and let # be a measure defined on U Fj. For  each j =  1 . . . .  , N, 
j = 1  j = 1  

we assume that if e is a subset of Fj, measurable with respect to p, then E =  t71(e) 
is measurable with respect to Lebesgue (v-1)-dimensional measure II on Rj. 
Also, we assume that the converse is true, so that measurable sets on Fj and Rj 
correspond under t i. Finally, we assume that there is a constant K >  1 such that 
if e= tj(E) is It-measurable, then 

g -1 IEI <it(e)<=K IEI, (3.1) 

independently of j =  1 . . . .  , N, and e. Since tit induces a measure on each set R~ 
via the transformation tj, we may define Jj(r) ,  zeR}, as the function in L1 (Rj) 
which satisfies the relations 

It(ti(E)) = ~ Jj(z) d~ (3.2) 
E 

for every measurable subset E of Rj, j =  1 . . . .  , N. Thus Jj(~) is defined almost 
everywhere in Rj and K-:<<_Jj(z)<=K a.e. in Rj. This situation actually occurs 
when G is an open bounded set of class K in E v (see w 2) and tit is the usual hyper- 
area measure defined on F=c3G. This is the situation we shall consider in all 
examples below. Nevertheless, tit could be a different measure with the properties 
set forth above. Actually, for the general theorems of w 3, 4, 5, 6, F need not even 
be a subset of ~9 G, but only the union of parts Fj in a Euclidean space, each Fj 
being the image of an interval under a regular transformation of class K, and tit 
may be any measure on F with the properties stated above. Also, we could consider 
functionals (1.1) which are sums of integrals on parts of different dimensions, 
as indeed indicated in (1.1). 
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As mentioned in the introduction, for every tecl  G we denote by A(t)  a 
nonempty closed subset of the y-space E s, y = ( y l  . . . .  ,y~). Let A be the set of 
all points (t, y) with tr G and yeA( t ) .  For  every (t, y )eA  let U(t, y) be a non- 
empty subset of the u-space E ' ,  u=(u 1, ..., u"). Let M be the set of all (t, y, u) 
e E  ~ x E ~ x E "  such that (t, y ) eA  and ue U(t, y). For every t~F, let B(t)  be a 
nonempty closed subset of the 33-space E s', 33=(331 . . . .  ,33~'). Let B be the set of 
all (t, 33) with t eF  and 33r For every (t, 33)eB, let V(t, 33) be a nonempty 
closed subset of the v-space E"', v=(v I .... ,v"). Let 2~ be the set of all (t, 33, v) 
EE ~ x E ~' • Em' with (t, 33)eB and ve V(t, 33). 

Let f( t ,  y, u) = (fo, f )  = ( fo , f l ,  z ' " f , )  be a continuous ( r+  1)-vector function 
on M, and for every (t, y ) eA  let Q(t, y) denote the set 

Q(t, y) = {~ = (z ~ z) = (z ~ z 1 . . . . .  z,)r 1[ z o >-fo (t, y, u), z =f( t ,  y, u), u eU(t, y)}. 

Let g(t, ~, v)=(go, g)=(go,  gl, ..., gr') be a continuous (r'+ 1)-vector function 
on ]iV/, and, for every (t, 33)~B, let/~(t,  33) denote the set 

�9 ' ' ,  , ' ~ o o o R ( t , ) ) = { ~ = ( z ~ 1 7 6  l, z r ) eEr+t l z~  

We consider here the functional 

I [ y , • , u , v ]=  S fo( t , y ( t ) ,u ( t ) )d t+ Sgo(t,~(t) ,v(t))d#. (3.3) 
G F 

In the lower closure theorem below we shall deal with sequences of functions all 
defined on G and F: 

z( t )=(z  I . . . .  , z'), Zk(t)=(ZXk . . . . .  Z~), 

y ( t )=(y  I . . . . .  y ~ ) ,  yk(t)=(yXk, ..., y~), 

Uk(t)=(Utk, ..., U'~), teG, k= 1, 2, ..., 
o o I o . - . o  1 z ( t ) = ( z ,  or, . . . .  . . . ~ ,  Z ) ,  ~  zk(t)=(Zk, zk), 
o o I ~ o . ~ . o I ~  

y( t )=(y  . . . . .  Y ), yk(t)=(Yk .. . . .  Yk), 
. . . ,  " '  v k ), t eF, k = 1, 2, .... 

(3.4) 

(3.i) Lower Closure Theorem. Let G be bounded and measurable, A, B, M, ~4 
closed, fo(t, y, u), f ( t ,  y, u ) = ( f l  . . . . .  fr) continuous on M, go(t, 3 3, v), g(t, 33, v)= 
(gl . . . . .  gr,) continuous on Ir and assume that for some integers p, p', O<<_p<r, 
O<p'<r' ,  the sets Q(t, y) have property Q ( p + l )  on A and the sets R(t, 33) have 
property Q ( p ' + l )  on B. Let us assume that there are functions ~k(t)>=O, t~G, 
~OeLt(G) and ~(t)>=O, t~r, ~eLl(r), such that f o ( t , y ,u )>=-~( t )  for all 
(t ,y,  u)eM, and go(t, 33, v)> - ~ ( t )  for all (t, 33, v)eIr Let us assume that the 
functions zi(t), z~(t), yS(t), ysk(t), i=1  . . . . .  r, j = l  . . . .  ,s,  are in LI(G), that the 
functions Ulk(t) are measurable on G, l= 1 . . . .  , m, that fo(t, yk(t), uk(t))~Ll (G), 
and that 

yk(t)eA(t), uk(t)eU(t, Yk(t)), z~(t)=f,(t, yk(t), Uk(t)) (3.5) 

a.e. inG, k = l , 2  . . . . .  
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�9 oi  o l  o j  Let  us assume that the functions z ( t ), r', j =  1, s ,  Zk(t), y (t), ; l ( t ) ,  i= 1 . . . .  , ..., 
are in LI (F) ,  that the functions v~(t) are measurable in F, l=1,  . . . ,m ' ,  that 
go(t, ) k ( t ) ,  Vk(t))eL1 (F), and that 

o o Zk(t ) = gi(t, yk(t), Vk(t)) (3.6) yk(t)~B(t) ,  Vk(t)~V(t, yk(t)), oi o 

iz-a.e, on F, k = 1 , 2  . . . . .  

Finally, let us assume that as k-- ,  ~ we have 

z~ ( t )~z i ( t )  weakly  in L l  (G), i=1  . . . . .  p, 

z~(t)-~zi(t)  strongly in L l (G) ,  i = p + l  . . . . .  r, 

y~(t)--*yJ(t) s trongly in L1 (G), j = 1 . . . . .  s, 

~(t)--,~t(t) weakly  in L 1 (F), i=  1 . . . . .  p', 

~ k ( t ) ~ i ( t )  strongly in LI (F) ,  i = p ' +  1, ..., r', 
oj. _ o j . .  

y k ( t ) ~ y  (t) s t r o n g l y i n L x ( F ) ,  j = l  . . . .  , s ,  
and 

lim I [Yk, )~k, Uk, Vk] = ao < + o0. 
k.--b oo 

Then y ( t ) ~ A ( t )  a.e. in G, ; ( i ) ~ B ( t )  #-a.e. on F, and there are measurable 
functions u( t )=  (u s . . . . .  urn), leG,  and p-measurable functions v( t )  = (v ~ . . . .  , vm'), 
t eF,  such that 

fo(t ,  y(t) ,  u (t))eL x (G), go(t, ~(t), v( t ) )~L 1 (F), 
and such that 

u ( t ) e U ( t , y ( t ) ) ,  z ' ( O = f i ( t , y ( t ) , u ( t ) ) ,  i = l , . . . , r ,  a.e. onG,  

v ( t )~V( t , ; ( t ) ) ,  ~ i ( t )=g i ( t , ; ( t ) , v ( t ) ) ,  i = l , . . . , r ' ,  p-a.e, onF ,  
and 

l[y, ~, u, v] < ao . 

The proof of this lower closure theorem has been given by CnSARI [3cde] 
for g o = g = 0 ,  and by COWLES [4b] along the same lines in the situation above. 

Remark. In applications it often occurs that the sets U and V are fixed and 
compact, or, alternatively, that U(t, y), V(t,  ~) are compact, equibounded, and 
have property (U) in A and B, respectively. Iffo,  f ,  go, g are continuous, the sets 
0 (t, y), R (t,)~) certainly are compact and have property (U) in A and B, respectively; 
if convex, also property (Q) (see [3a]); and if p-convex, property Q(p) (see [4a]). 
On the other hand, if the closed sets U(t, y), V(t, ~) are unbounded, and fo, f ,  
as well as go, g, are continuous and satisfy suitable growth conditions on the 
closed sets M, M, then the sets Q (t, y), R (t, y), if convex, necessarily saUsfy con- 
dition (Q) (see [3 b]). 

4. An Existence Theorem for Optimization Problems 
with State Equations in the Strong Form 

In this section we shall use mainly the notations of w 3. For the sake of simpli- 
city we shall denote by T the family of all measurable m-vector functions u ( t ) =  
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(u ~, ..., ur"), teG,  and by 2~ the family of all #-measurable m'-vector functions 
v ( t ) = ( v  ~ . . . .  , W),  t e r .  

Again for the sake of simplicity, let S be a Banach space of elements x, and 
let ~ ,  ,g ,  ~', ~ be operators, not necessarily linear, as described in w 1, that is, 
~ :  S ~ ( L ~ ( G ) f ,  ~ ' :  S~(L~(G))  ~, J :  S ~ ( L ~ ( F ) ) " ,  ~ff : S ~ ( L ~ ( F ) )  ~'. We shall 
discuss here the problem of optimization (1.1-5) of w 1. 

A triple (x, u, v) is said to be admissible (for the problem (1.1-5)) provided 
x e S ,  ueT,  w ~ ,  fo(t ,  (Jgx) ( t ) ,  u( t))eL~(G),  go(t, (~"x)(t), v(t))eL~(r) and 
relations (1.2-5) hold. 

A class f2 of admissible triples is said to be closed if the following occurs: 
if (Xk, Uk, Vk)eO, k = l ,  2 . . . . .  X k ~ X  weakly in S as k--. oo, 

lim I [ x k, u~, Vk] = a <  + 0% 
k"* oo 

and there are admissible triples (x, u, v) such that I[x, u, v] < a, then there is also 
some triple (x, ~, ~) e f2, with I[x, ~, ~] < a. 

For a class f2 of admissible triples we denote by {x)u the subset of S defined by 

{x}~ = {xeS l ( x ,  u, v)ef2 for some u eT, veT}. 
Note that for 

xeS ,  then z ( t ) = ( z  1 . . . . .  z ' ) = ( ~ x ) ( t ) e ( L i ( G ) f ;  

we shall denote by zi( t )= ( ~ x ) i ( t ) ,  t eG,  the i th component of ~ x .  Analogously, 

and we set 

y (t) = (y 1, ..., yr) = (..1[ x) (t) e (L, (G))', 
o . .  . o  1 z(O=(z . . . . .  ~/)=(Jx) (t)z(Ll (r))", 
o o 1 y (t) = (y , . . . ,  13 s') = (~e" x) (t) e (L1 (F)y ,  

yJ(t)=(JCx)J(t) ,  t~G, j =  1, ..., s; 

~ ( t ) = ( j x ) i ( t ) ,  t~F,  i=1  . . . . .  r'; 

~J(t)=(oT'x)J(t), t~F,  j =  1, . . . ,  s'. 

If p, p' are any two integers, O<p<r ,  O<p'<r ' ,  we shall denote by (Coo,) 
the following closure property of the operators ~ ,  J [ ,  J ,  :,T': 

(Cop,) For every sequence x, x k, k = l ,  2 . . . .  , of elements x e S ,  Xke{X}acS ,  
with x k ~ x weakly in S, there is some subsequence [ka] such that, as 2 ~ 0% 
we have 

( ~ x j ~ ( . ~ x ) '  

( ~ x J - - , (  ~ x)' 

(~g xJ - - , (~C  x) ~ 

( J x J ~ ( J x ) '  

(Jxj~(Jx) '  

weakly in L1 (G), 

strongly in L 1 (G), 

strongly in L1 (G), 

weakly in L 1 (F), 

strongly in L 1 (F), 

strongly in L 1 (F), 

i=1  . . . . .  p, 

i = p + 1, ..., r, 

j = 1, ..., s, 

i = 1 . . . . .  p', 

i = p' + 1, ..., r', 

j =  1 . . . .  , s', 

(4.1) 
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(4.i) Existence Theorem. Let G be bounded and measurable, A, B, M, ~/I closed, 
fo(t ,  y, u) , f ( t ,  y, u ) = ( f  1 . . . . .  f~) continuous on M, go(t, ~, v), g(t, ~, v)=(g  I .... , g,,) 
continuous on ]~I, and assume that, for given integers p, p ' , O < p < r ,  O<p'<r ' ,  
the sets Q(t, y) have property QCO+ 1) on A, and the sets R(t,  ~) have property 
Q Co'+ 1) on B. Let us assume that there are functions ~ ( t )> O, t z G, ~k eLl(G),  and 

o 

~k(t)>O, t eF, ~ e L I ( F  ), such that f o ( t , y , u ) > - ~ ( t )  for all ( t , y , u ) ~ M ,  and 
o ~ o . . go ( t, y, v )_  - ~ ( t ) for all ( t, y, v) ~ M. Let f2 be a nonempty closed class o f  admtsstble 

triples (x, u, v) such that the set {x}a is weakly sequentially relatively compact, 
and let us assume that the operators Lz', J[, J ,  :r satisfy the closure property (Cpp,). 
Then the functional (1.1), or 1Ix, u, v], has an absolute minimum in f2. 

In view of statements (2.i) and (2.ii), note that for p = r  we actually require 
above that the sets (~ (t, y) have property (Q), and for p = 0 we actually require 
that the sets Q(t, y) have property (U). Analogously, for p' = r '  we actually require 
that the sets/~ (t, ~) have property (Q); for p ' =  0 we require that the sets R (t, ~) 
have property (U). In general, for O<p<r,  O<p'<r ' ,  properties QCO+I) and 
QCO'+ 1) represent intermediate requirements. 

Proof. Let i be the infimum of I[x, u, v] in the class f2. Then i is finite, and we 
consider a minimizing sequence of I in I2, that is, a sequence 

(Xk, Uk, Vk), k = 1, 2 . . . . .  

of admissible triples, all in g2, with 

I[xk, Uk, Vk]--'i as k--,oo. 

Since the set {x}~ is weakly sequentially relatively compact, there is some element 
x e S  and some subsequence of [Xk] which is weakly convergent to x. For the sake 
of simplicity we denote such a sequence by [k], and thus x k --, x weakly in S. As a 
consequence, there is a subsequence [kx] for which the convergence relations (4.1) 
hold. We shall denote this subsequence again by [k]. By using the notations 

Zk(t)=(~X~)(t) ,  yk(t)=(..gXk)(t), z ( t )=(Lex) ( t ) ,  y ( t )=( . l / x ) ( t ) ,  teG, 

~(t)=(~'x~) (t), 33k(t)=(~xk) (t), ~(t)=(Yx) (t), 33(0=(~x) (t), ter, 

we see that relations (1.2-5) imply 

Uk(t)~U(t, yk(t)), z~(t) =f~(t, yk(t), Uk(t)) y~(t)~A(t), 

a.e. in G, i=1 . . . .  , r, and 

Yk(t)eB(t), v~(0~v(t, L(t)), 
p-a.e, on F, i= l . . . . .  r', k =  l, 2 . . . . .  In 
i= l . . . .  , p, Ztk ~ Z i strongly in LI (G), i = p +  l . . . .  , r, y~k--~ y i strongly in LI (G ), 

oi " o i  o i  j =  1 . . . . .  s, z k - ,  ~' weakly in L1 (F), i= 1 . . . . .  p', Z k' '+ Z strongly in L 1 (F), 
oj oj S t  i = p ' + l  . . . .  ,r ' ,  y k ~ y  strongly in L I ( F ) , f f = I  . . . . .  Finally, the sets Q(t ,y)  

satisfy property QCO + 1) on A, and the sets R(t,  ~) satisfy property QCO'+ 1) on B. 
We can now apply the lower closure theorem (3.i). Then, y ( t ) = ( d l x ) ( t ) ~ A ( t )  
a.e. in G, ; ( t ) = ( 3 f ' x ) ( t ) e B ( t )  p-a.e, on F, and there are elements u e T  and v ~  

z~(t)= gi(t, yk(t), Vk(t)) 

addition, z~ ~ z i weakly in L 1 (G), 
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such that 

u(t)EU(t, y(t)), z~(t)=fi(t, y(t), u(t)), i= 1,..., r, a.e. in G, 

v(t)~V(t, ~(t)), ~'(t) = g,(t, )3(0, v(t)), i=  1,...,  r', /~-a. e. on F, (4.2) 

fo(t, y(t), u(t))~Ll(G), go(t, )(t), v(t))eLl(r) ,  I[x,  u, v] <i; 

that is, the triple (x, u, v) is admissible. Since ~2 is a closed class of admissible 
triples, in t2 there are some admissible triples (x, ~, ~) such that I[x, ~, ~] <= i, and 
relations (4.2) hold also for u, v replaced by fi, ~. Since i is the infimum of I in t2, 
we have I[x, ~, ~]>=i, and finally I[x, ~, ~]=i. 

Remark 1. Theorem (4.i) holds even if we replace the cost functional (1.1) by 
another analogous one with an added term J[x], provided we know that J[x] is 
lower semicontinuous functional on S with respect to weak convergence on S. 
That is, we need only require of J that Xk --~ X weakly in S implies 

lira J [Xk] > J [x]. 
k~oo 

Remark 2. In both Theorems (3.i) and (4.i) we could have assumed that G 
and F are each made up of a finite number of components on each of which 
there is a distinct system of state equations. 

Remark3. In the existence theorem (4.i), in verifying that the closure hypoth- 
esis (Coo,) is satisfied, it is often convenient to restrict ~ to the subclass Qo of 
all triples (x, u, v) ~ ~ such that I[x, u, v] < M for M sufficiently large. For instance, 
if i denotes the infimum of I[x, u, v] in ~, we may take M =  i + 1. 

Remark 4. In the existence theorem (4.i) we have assumed, for the sake of 
simplicity, that S is a Banach space, and we have used the weak topology in S. 
This is indeed the most common situation in applications. More generally, we 
could consider instead any topological space (S, a), that is, any space S with a 
chosen topology a. In particular, S need not be linear. Accordingly, then, we 
should have to require in the context of the closure property (Coo,) that x~S, 
Xk~{X}a, X k ~ X  in (S, ~) implies the convergences in L 1 stated in (Co o,). Also, 
accordingly, we should have to require in the Existence Theorem (4.i) that the 
set {x}~ is sequentially relatively compact in (S, o-); that is, any sequence of 
elements of {x}~ contains a subsequence which is convergent in the topology a 
of S. Actually, (S, a) does not need to be even a topological space, but only a set 
S with a definition a of convergence of sequences (a Fr6chet space L) (see, e.g., 
[10], p. 16). Examples where the underlying spaces are not Banach spaces and 
not even linear ones will occur in w 6. See also Remark 7 below. 

Remark 5. Of particular interest is the case where the element x of an admis- 
sible triple (x, u, v) uniquely determines the controls u and v. That is, (x, u, v), 
(x, ~, 0) admissible implies u=~  a.e. in G, and v=~/~-a.e, on F. In this situation, 
the lower closure theorem (3.i) reduces to a lower semicontinuity theorem, and 
corresponding particular existence theorems could have been obtained by a 
standard lower semicontinuity argument. This holds, for instance, for free problems 
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of the calculus of variations and other problems. For  instance, let us consider 
the free problem of the minimum of the multiple integral 

with 

I [ x ] -  j fo(t, x(t), Vx(t))dt, 
G 

x(t)=(xl,...,x"), t eGcE ~, Vx(t)=(axr i=l  ..... n, j=l, . . . ,v)) ,  

given Dirichlet boundary data on c9 G, or some suitable part F of 0 G. Here G is a 
bounded open connected subset of E ~ of class K. We may take for S the Sobolev 
space S =  W~(G), l < p < o o ,  and then Vx(t)=u(t), that is, u is uniquely deter- 
mined by x. We assume that fo is a continuous function in M = c l  G x E " x  E "v, 
w i th fo>  -~9(t)  for some ~,>0, r Note that 

 Ux=x, S-+(L.(G))",  ex=W, ae: S- . (L.(G))  

r=m=nv,  s=n, f=u,  U=E "~ (go=0, JT'=0). 

Also, ~2 is now a closed class of elements x e S  (or pairs (x, u) with xES, u= Vx), 
with x satisfying the given boundary data, and 

fo(t, x(t), Vx(t))eL1 (G). 
If 

xES, Xke{X}a~S, k = l , 2  . . . .  , Xk--+X weakly inS ,  

lim l[Xk] = a, 
k--* ao 

then --q'Xk--+ .~q'X weakly in (Lp(C)) "v, ~xk--,.~/x strongly in (Lp(G))", and the 
lower closure theorem guarantees, under the needed requirements, that I[x] < a. 

Remark 6. As mentioned in the remark at the end of w 3, if U and V are fixed 
compact sets (or U(t, y), V(t, ~) are compact, equibounded, and have property 
(U)), then the sets Q(t,y), -R(t, )~) certainly have property (U) and, if convex, 
have property (Q) (see [3a]). Also, an analogous statement holds for the inter- 
mediate properties Q(p) in the sense that, if p-convex, then they have property 
Q(p) (see [4a]). 

Remark 7. The case v > 1, go = 0, g = 0, has been considered by CESAm in [3 e]. 
The case v = 1 has been considered by CESARI in [3 a]. For  v=  1, the underlying 
space in [3 a] is the metric space So of all continuous vector functions 

x( t )=(x  1 . . . . .  x") 

on arbitrary finite intervals a<t<b. If x(t), a<t<b, and y(t), e<t<d, are any 
two elements of So, the distance function p (x, y) is defined by 

p =]a -c l+]b -d l+ma x lx ( t ) - y ( t ) J ,  

where max is taken in - oo < t<  + m, and x and y are defined by continuity and 
constancy outside of their original intervals. The actual space S is then a subset 
of So, namely, the set of all x e S o, x (t), t ~ < t < t 2 , which are absolutely continuous, 
and we take in S the topology induced by the one in So; in other words, S is now 
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a metric space with metric p, and S is not linear (see Remark 4 above). We are 
now concerned with the problem of the minimum of an integral 

t2 

l[x,  u] = [. fo(t, x(O, u(t))d t, 
t l  

with state equations and constraints 

x' (t) =f(t, x (t), u (t)), 

x(t)~A(t), u(t)~U(t, x(t)), 

in a closed class f2 of pairs 

x(t), u(t), q < t<t  2, x~S, ueT, 

satisfying these relations, x satisfying also given boundary conditions, and such 
that 

fo(t, x(t), u(t))eL, ([t,, t2]). 

Also, we have here {x}acSr o, 

dgx=x,  s/l: S~L~, &ax=x', s S--*L1. 
If 

xeS, xke{x}~, k = l , 2  .... , Xk~X in the metricp,  

then s ~ .LeX in the sense that 

S(~xk) d t ~ S ( ~ x ) d t  
I I 

as k ~  ~ for every interval L A lower closure theorem analogous to (3.i) was 
proved in [3 a] for these particular modes of convergence. Alternatively, we could 
take in S the metric 

+oo 

p = [ a - c l + l b - d l +  ~ Ix ' ( t ) -y ' ( t ) ldt ,  
- ct) 

take Jg x = x with dr': S--* L1, s162 x = x' with La: S ~ L1, and then the lower closure 
theorem (3.i) would apply, and consequently the existence theorem (4.i) would 
also apply with the Remarks 3 and 4. 

Example 1. The following example, mentioned by FICrmRA [5], illustrates the 
existence theorem (4.i). In this example the particular situation depicted in 
Remark 5 occurs, and therefore our lower closure theorem (3.i) reduces to a 
lower semicontinuity theorem (which includes Fichera's lower semicontinuity 
theorem). Let G be a bounded open subset of E v of class K, v > 1 (see w 2). Let ~t 
be the hyperarea measure defined on the boundary F =  0 G of G. Let WJ(G) be 
a Sobolev space on G for real p, 1-<p< +0% and integral l, 1 < l <  + ~ ,  with 
the usual norm 

Itxll=l[xllw,,(~)= ~ [ID~xllp = ~ ($lD~x(t)l~dt) 1/~, 
i~l_<t I~l__<l G 
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where D~x denotes the generalized partial derivative of x in G of order 

=(0q . . . . .  ~v), and I~1 =0q + . . .  +0~v. 

Let X o be the linear subset of W~(G) made up of all functions x which are con- 
tinuous on G u a G, together with their partial derivatives of all orders. If tea G, 
let (:~fx)(t) denote the vector 

(a"f'x) (t)--(yx, ~ Vx ..... Y VxZ- x) 

where ~f  denotes the boundary values of f and Vx J, O<j<=l-1, denotes the 
vector of all partial derivatives D'x of order [a[ =j .  Let s' denote the total number 
of components of the vector (~g'x)(t). For given real-valued functions 

a,(t), teOG, with [g[=l ,  a,6L (aG), 

let (Jx)(t)  denote the real-valued function 

(oCx)(t)= ~ a~(t)yD'x(t), tEOG. 
I~1 =t 

Finally, let S be the completion of Xo with respect to the norm 

Illxlll = Ilxllw'~(G)+ llJxllLp<~). 

From Sobolev space theory we know that ~ x  is defined on S. From the fact that 
S is the completion of X o with respect to the norm above we conclude that J x  
also is defined on S. 

We are concerned with the problem of the minimum in S of the functional 

I[x] = S go( t, (gf x) (0, (d~x) (t)) dlt, (4.3) 

where go is a given continuous function on the closed set )~/=0G x E~'x E ~. 

This problem is immediately reducible to the form (1.1-5) by taking 

s176 ~ ' x = 0 ,  f = 0 ,  
by taking 

B(t)=E s' for every t~F=OG, 
and 

V(t, ~)=E 1 for every (t, ~)~B = aG • E ''. 

Thus there are no constraints on the control variable v, or ve V=E ~. We now 
have a problem of the type (1.1-5) in which the functional to be minimized is 

I Ix, v] = J" go (t, (o,Y" x) (t), v (t))d/~, 
r 

and the state equations (on the boundary) are 

(Jx)(t)=v(t),  /t-a. e. on F=c3G. 
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In the present situation, and in terms of the notations of ~ 3 and 4, we have 
r = s =  m =0, s' as above, r' =m'= 1. The sets/~ are 

~ ( t ,  ~ - ~ 2 o o y )={z=(z ,  z)eE Iz>=go(t, y, v), z = v e E  l} 
o 2 o o 

--{(z, v)eE [z>=go(t, y, v), veE1}, 

and thus they are convex if and only if go (t,)~, v) is convex in v for every 

(t, ~)eB=OG x E ~'. 

Finally, if we assume that there is 
(0,  0__< ( + oo, with 

go(t, f,, v)>q'(Ivl) 

some real-valued continuous function 

o o 

for all (t, y, v)eM, 

as ( ~  + 0% (4.4) 

then we know (CESARI [3 b]) that the sets/~ (t, ~) satisfy property (Q) on B. Note 

that, if ~t=Min ~ ( 0 ,  0<  ~< + 0% then relation go(t, ~, v)>= - ~ ( t )  holds for all 
(t, ; ,  v )e~ /wi th  ~ =  -[~t[, a constant. 

If p >  1, then for any sequence of elements x, XR, k =  1, 2 . . . . .  of S with Xk --~ X 
weakly in S as k-~ oo, certainly there is a subsequence [kx] such that JXkx--~ J x  
weakly in Lp (a G) and ~ Xkx ~ 3ff X strongly in (Lp (a G)) s' as 2 ~ oo. We may take 

y(t)=(3~rx)(t), yk(t)=(3ff Xk)(t), teG, 
and 

z(t)-=v(t)=(Jx)(t) ,  Zk(t)=vk(t)=(JXk)(t), teOG, k= 1, 2, . . . .  

By lower closure theorem (3.i) with p = r = 0 ,  p '=r '=  1, we derive now the fol- 
lowing lower semicontinuity theorem concerning the integral I[x]: 

(a) I f  go(t,y,  v) is continuous on ~ l = a G  x ES'x E 1 and convex in v for every 

(t, ~)eB=OG x E s', 

i f  there is a real-valued continuous function ~ ( 0 ,  O< (>  + oo such that (4.4) holds, 
then the functional I[x] is lower semicontinuous in S. 

By lower semicontinuous we mean here that, if x, XkeS, k=  1, 2 . . . . .  xk -~x  
weakly in S as k ~ oo, and 

lira I [xk] = a < + oo, 
k - ~ o 0  

then I[x] ~ a. 

The growth condition (4.4) can be disregarded in (a) if we know that the 
sets/~ (t, ; )  satisfy property (Q) on B, and that 

g o ( t , ~ , v ) > - ~ ( t )  f o r a l l ( t ,  j3, v)e/~ andsome ~ > 0 ,  ~eLI(BG ). 

Also we note that under the assumed hypotheses go(t, (:~rx)(t), (J(x))( t))  is 
certainly #-measurable on dG and __>-~(t) with ~eL(G). Thus the functional 
I[x], or (4.3), is always defined in S, either finite, or + oo. 

Let g2 N be any nonempty closed class of elements x e S  with IIIxlll < N  and 
I[x] finite. If i denotes the infimum of I[x] in t2 N, then because go = - ~ ,  i is 
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finite, and in the search of the minimum of I[x] in ON, we can restrict ourselves 
to the subclass f2No of all x~f2 N with I[x]<i+ 1. If p >  1, any such class f2~r o is 
obviously weakly compact in the topology of S. In particular, the class f2No of all 
IIIxrll __<N, I[x]<= i+1 ,  is also weakly closed in the same topology. From (4.i) we 
may now derive the following assertion of existence: 

(b) Under the conditions of (a) with l < p <  +oo,  the functional 1Ix] has an 
absolute minimum in any nonempty closed class O N. 

As in (a), the growth condition (4.4) can be disregarded if we know that the 
sets/~ (t, y) have property (Q) on B, and that 

go(t,y,v)>-_-~(t) fo rsome ~ > 0 ,  ~Lx(~G). 

The following variants of the problem above may be of interest. Let r '  denote 
the number of partial derivatives of order l, or D~x with I~[=/,  and let J x  now 
denote the operator (in Xo) Jx=(D'x ,  1~[=/). Let us consider the space S' 
obtained as the completion of Xo with the norm 

III x Ill'= ~ IlD~x IIL,(om. 
I~l_-<t 

NOW v is a r '-vector, and go (t, y, v) denotes a continuous real-valued function on 
/1~/= O G x ES'x E" .  Let us consider the corresponding integral l[x], or (4.3), with 
the new definition of J x  and go. We still assume that a growth condition (4.4) 
holds. Again .,Y'x and J x  are defined on S', and statement (a) is valid without 
changes. If f2~v is any closed nonempty class of elements xeS'  with II[xlll'__<g, 
then also statement (b) holds without changes for 1 <p  < + at. 

Let us retain now the last definition of J x  and go and assume t h a t p =  1. Let i 
still denote the infimum of I[x] in the class f2~v, and let f2~v0 be the class of all x~f2~v 
with l[x]< i +  1. The growth condition (4.4) guarantees, by standard arguments 
(see, e.g., E. J. McSrIAN~, Integration, 1947, p. 176), that the r' components of 
(Jx)(t), t~aG, with xeI2~ 0 are equiabsolutely integrable on aG. Then, even for 
p = 1, statement (b) also holds, but the growth condition cannot be removed. 

Finally, let us consider the case where go satisfies a growth condition (4.4) and 
also a relation of the form 

o o o 

1331 =cgo(t, y, v)+~ko(t ) for all (t, y, v)eM, 

some constant c>0 ,  and a function OoeLl(dG). Now let I2 be any nonempty 
closed class of elements xeS' with I [x ]<  + oo. If i denotes the infimum of I[x] 
in f2, let f2 o denote as usual the subclass of all xef2 with 1Ix] < i + 1. Then I[lxlll'_< N 
for all elements xef2 o and some constant N. Then existence theorem (b) holds 
in f2 f o r p =  1 provided the growth condition (4.4) holds and 

1331<Cgo(t, 33, v)+Oo(t). 
Example 2. Let G be a connected bounded open subset of the (t/-plane E 2. 

We take G to be of class K, so that the usual arc-lengthmeasuresis defined on F = 0 G. 
We are concerned with the minimum of the functional 

I[x,u,v]=IIfo((,~,x,x~,x~,u)cl~d~+ I go((,~,Tx, Tx~,Tx~,v)ds, (4.5) 
G OG 
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with state equations 
xr162 rl, x, x;, x,, u) a.e. in G, 

a((,rl)~x+b(~,~l)~,xr Tx,~,x~,~,x,,v) s-a.e, on OG (4.6) 

and constraints 
u(~,~)eU(~,rl, x ,xr  a.e. in G, 

v(~, t/)eV(~, ~/, 7x, 7xr ~x,) s-a.e, on OG. (4.7) 

Here 7h denotes the boundary values of h. This problem is immediately written 
in the form (1.1-5) by taking 

~ x  = x~ + x,, .  .Alx = (x. x~. x,). 

J x = a T x + b ~ x ~ + c ~ x , ,  ~rx=(~x,?x~,~x,~), 

r = r ' = l ,  s = s ' = 3 .  We take for S the Sobolev space S=W2(G) ,  p > l ,  and we 
assume that the given functions a, b, c are of class L~ (0G). Note that ( J x ) ( ( ,  r/) 
could be the normal derivative of x at (~, r/)~0 G if only a = 0, and b, c the direction 
cosines of the normal to OG at (~, r/) (s-a.e. on OG). Also, we take A((, r / )=E a, 
B(~, r/) = E 3 ; hence A = (cl G) x E 3, B =  (t~ G) x E 3. 

For the sake of simplicity we assume m = m ' =  1, so that, if 

y=(y~, y2, y3)EE3 ' )~_(.~1, ~ Y , ~3)~E3, 

then U((, t/,y) denotes a subset of E ~ for every ((, ~/, y)~A, and V((, t/, )~) a 
subset of E ~ for every ((, t/, )~)eB. 

Finally, if M, ~ / a r e  the corresponding sets, 

M c ( c l G )  x E 3 x E  ~, IVI=(OG) x E a x E  ~, 

then fo,  f are real-valued continuous functions on M, and go, g are real-valued 
continuous functions on ~/. We consider here the sets 

Q((, r/, y) = {(z, z)eE2 l z=fo( ( ,  rl, y, u), z= f ( ( ,  '1, Y, u), ueU ((, rl, y)} 
o o o o o 

R((, r/, y )=  {(z, z)~E2 l z > go((, rl, y, v), z=  g((, ~, y, v), veV((,  r l, 33)} 

for every ((, r/, y)~A and for every ((, r/, )~)eB, respectively. 

We note that if Xk ~ X  weakly in S=  W 2 (G), then there is certainly a sub- 
sequence [k~] such that 

~Xk~--* ~ X  

./gx,x~,Atx 

JXk.~"'~ JX  

J f  Xk z---* ,)fiX 

weakly in Lp(G), 

strongly in (Lp(G)) 3, 

strongly in L1 (OG), 

strongly in L1 (3G). 

An admissible triple is now a triple (x, u, v) with x~ W2(G), u measurable on G, 
v s-measurable on 0 G, satisfying (4.6), (4.7), and such that 

f o (~ .~ .x . x r  ) and go((.tl .~x. Txr 



336 L. CESARI & D. E. COWLES" 

From (4.i) with p = r = 1, p' = 0, we can now derive the following statement of 
existence: 

(c) Let G be connected, bounded, open and of  class K in E 2, let M, ff/I be closed, 
let fo, f be real-valued and continuous on M, and go, g real-valued and continuous 
on fit, and assume that the sets Q. ((, ~l, y) satisfy properiy (Q) on A = (cl G) x E a and 
the sets R (~, rl, ~) satisfy property (U) on B= (8 G)x E 3. Let us assume that there 
are functions 

o o 

~((,~l)>O, OEL1(G) and 0(~,~)>__0, ~L~(OG) 
such that 

fo((, n, y, u)__> -~ (~ ,  n), 
o ~ o 

go ((, ~/, Y, v)= - ~  ((, r/) 

for all ((, rl, y, u)eM and ((, r l, ~, v)eI~l, respectively. Let f2 be any closed non- 
empty class of  admissible triples (x, u, v)for which the set {x}o is norm bounded in 
W~(G), p >  1; that is, there is a constant N such that (x, u, v)ef2 implies IIxllw~<G) 
< N. Then the cost functional (4.5) has an absolute minimum in I2. 

Remark 8. Many examples of optimization problems with distributed and 
boundary controls and state equations in the strong form are of the same 
general form of Example 2 above. The equation ( .~x) ( t )=f ( t ,  ( . l lx)(t) ,  u(t)), 
t~G, is a partial differential equation (or a system), and the equation 
( Jx ) ( t )=g( t ,  (:~ffx)(t), v(t)), t~OG, represents a certain set of constraints on 
the boundary values of the state variables. The conditions of theorem (4.i)are 
usually satisfied with p = r and p' =0 ;  that is, we require property (Q) on the sets 
Q and property (U) on the sets R. One more example is in ([4a], Section 5, 
Example 1). In this connection, Remark 6 may be relevant. 

Example 3. In this example we wish to illustrate the use of the intermediate 
properties Q (p). Let us consider the problem of minimizing the cost functional 

I[x ,  u,, u2, v] =SS (x2 + x~ + xff +u2 +u2(1-u2)Z)d~ d~l+ j'(7 x -  1) 2 ds, 
G F 

with differential equations 

xr162 xr 2, a.e. in G, 

?xr  ?x ,=s inv ,  s-a.e, on F=~G 

where G =  [((, r/)l ~2§ >1], F is the boundary of G, where 7x, ?xr ?x~ denote 
the boundary values of x, x;, x~, and the control functions ul, u2, v have their 
values ( u ,  u2)~ U= E 2, w V= E ~. We wish to minimize I in a class I2 of systems 
(x, u~, u2, v) with ul, u2 measurable in G, v measurable on F, x any element of 
the Sobolev class W2(G) satisfying all relations above, satisfying an inequality 
Ilxggll2§ and for which I is finite. Here the constant M is 
assumed sufficiently large so that f2 is not empty. We may well consider only those 
elements of O for which I=< N for some constant N. Here we have fo > 0, go > 0, 
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and we can take ~k = 0, ~ = 0. Also, we have 

. ~ x = ( x ~ + x , , , x g + x , ) ,  v /Cx=(x,x~,x+),  

r=2 ,  s=3 ,  r ' =2 ,  s ' = l ,  

Jx=(rx~, ?x~), •x=rx, 
m=2,  m ' = l .  

Then, for any sequence [xk] of elements xe{x}a, certainly there is a subsequence, 
say still [k] for the sake of simplicity, with xt--+ x weakly in S =  W2 2 (G) for some 
xeS ,  and 

(,~Xk) 1 ""t' (t~X) 1 

(,~Xk)2 ---~ (.~X) 2 

./-r X k ~ .t[X 

J X k  ~ J X  

.~f'Xk ~ ~F X 

We consider here the sets 

weakly in L 2 (G), 

strongly in L 2 (G), 

strongly in (L 2 (G)) 3, 

strongly in (L2 (F)) 2, 

strongly in L 2 (F). 

Z 0 >  2ji - 2 Q(Yl, Y2, Y3)=[( z~ zl, z2) l =Yl Y2+y2+u2+u2(1-/,/2) 2, 
Z1----'Ul' Z2 = / / 2 '  (Ul '  U2)EE2],  

/~(y) = [(z ~ z l, z2) l z ~ > (y  - 1) 2 , z 1 =cos  v, z 2 =sin v, r e E l ] .  

The sets ( ~ c E  3 have property Q(2), the s e t s / i c E  3 have property Q(1), and all 
have property (U), or Q(0). They are not convex, and do not have, therefore, 
property (Q) (precisely, the sets Q do not have property Q (3), and the sets/~ have 
neither property Q (2) nor property Q (3)). Nevertheless, the existence theorem (4.i) 
applies with p = 1, p'---0, and the problem under consideration has an absolute 
minimum in f2. 

5. Another Existence Theorem for Optimization Problems 
with State Equations in the Strong Form 

We now consider the case where the operators .La, ./t', ~ ,  S themselves 
depend on x e S  and on suitable components of the controls, instead of depending 
on x alone as in w 4. Thus the theorem we shall prove here is, for practical purposes, 
more general than theorem (4.i). Nevertheless, we shall prove it as a corollary 
of theorem (4.i). 

We shall consider here additional spaces of distributed and boundary controls, 
T and T, with elements , e T  and vel ' ,  respectively, both T and 1" being given 
Banach spaces. (See Remark 1 after theorem (5.i) for a more general situation.) 

It may happen t h a t ,  and v are vector functions 

u ( t ) = ( u  m+~, . . . ,  u~), teG, and v ( O = ( v  m'+l . . . . .  v~'), t eF,  

and in this case the control if= (u, u) is an ~-vector function on G, and ~= (v, v) 
is an ~ '-vector  function on F. In any case, we write our controls as if= (u, u) 
and ~'= (v, ~). 

22 Arch. Rational Mech. Anal., Vol. 46 
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We are concerned here with the problem of minimizing a functional 

I Ix, u, u, v, v] = ~ fo (t, (./r u))(t), u (t)) d t + J go (t, (JT'(x, v))(t), v (t)) d#  (5.1) 
G F 

subject to the state equations 

(.~q'(x, u))(t)=f(t,  (J / (x ,  u))(t), u(t)) a.e. in G, (5.2) 

(~'(x, v))(t)= g(t, (3C(x, r))(t), v(t)) /~-a.e. on F, (5.3) 

and the constraints 

(vg(x, u))(t)~A(t), u(t)eU(t,(~g(x,u))(t))  a.e. in G, (5.4) 

(JT'(x, ~))(t)~B(t), v(t)~V(t, (.~ff(x, v))(t)) #-a.e. on F. (5.5) 

As in w 1, G is a fixed bounded open set in E v, v > 1, and F a given closed 

subset of a G on which we have a hyperarea measure/~. Let S, T, ~" be Banach 
o 

spaces of elements x, u, v, and let A ~ Jr J ,  o*ff be operators on S x T, S x T, 
not necessarily linear, with values in the following spaces: 

o �9 
~ :  s •  T-,(LI(G)) r, J :  s •  T--,(LI(r)) ' ,  

o s ~ :  Sxr- , (L,(G))  s, ~ :  SxT--,(L~(F)) s 

where r, s, r', s' are given positive integers. 

Let A ( t ), A, U ( t, y), M and B ( t ), B, V ( t, ~), I(/I be the sets defined in w167 1 and 3, 

M c ( c l G ) x E S x E  s, I ~ I ~ F x E ~ ' x E  s', U ( t , y ) ~ E  s, V(t, y ) r  ~ ,n,; 
let 

fo(t, y, u), f ( t ,  y, u ) = ( f  l . . . . .  f,) 
be defined on M, and 

go(t, Y, v), g(t, ~, v)=(gl, .. . ,  gr') 

be defined on ~ .  Let (~ (t, y) ~ E ~ + ~ be the sets defined in w 3 for every (t, y) ~ A, 
and let/~ ( t , ) ) c  E T M  be the analogous sets also defined in w 3 for every (t, ; ) e  B. 

As in w 4, we denote by T the set of all measurable m-vector functions 

u ( t )=(u  1, ..., uS), t~G, 

and by T the set of all measurable m'-vector functions 

/ ) ( t ) = ( r  1 ,  . . . ,  u s ' ) ,  t ~ f .  

A triple (x, if, ~), or system (x, u, u; v, v), is said to be admissible (for the 
o o 

problem (5.1-5)) provided x~ S, u ~ T, v ~ T, u ~ T, v ~ T, 

fo(t, (r u))(t), u(O)~LI(G), go(t, (~(x ,  v))(t), v(t))~L~(F), 

and relations (5.2-5) hold. 
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A class f2 of admissible systems is said to be closed if the following occurs: if 

(Xk, Uk, Uk, Vk, Vk) ~ ~2, k = 1, 2, . . . ,  

x~-~x weakly in S, 

Uk-~U weakly in T, 

vk-~v weakly in ~" as k-~ov, 

lim I [xk, uk, uk, vk, vk] = a < + oo, 
k--~ oo 

and there are admissible systems (x, u, u, v, v) such that I[x, u, u, v, v]<__a, then 
there are also systems (x, u, u, v, ~ 2  with I[x, ~, -~, ~, ~]<=a. 

For a class ~2 of admissible system (x, u, u, v, v) we denote by {x}a, {u},, 
{v}a the sets defined as {x}a in w 4. 

If p, p' are any two integers, O<=p<=r, O<=p'<=r', we denote by (C~p,) the 
following closure property of the operators ~ ,  ~ ' ,  J ,  ~ :  

(C~r ~ For  every sequence x, u, v, xk, uk, vk, k =  1, 2, ..., of elements x~S,  
ueT, w:l ,  

o 

with 
weakly in S, 

weakly in T, 
o 

weakly in T, 

that, as , ~  oo, we have 

weakly in L 1 (G), i = 1 . . . . .  p, 

strongly in L 1 (G), i = p + 1 . . . . .  r, 

strongly in L1 (G), j = 1 . . . . .  s, 

weakly in L1 (F), i = 1, . . . ,  p', 

stronglyin L~(F), i=p'  + l, ..., r', 

j = 1 . . . . .  s'. 

(5.i) Existence Theorem. Let G be bounded and measurable, A, B, M, ~I closed, 

fo(t, y, u) , f( t ,  y, u)=(f~, ...,f,) 
continuous on M, 

o o 

go(t, y, v), g(t, y, v) =(g l  . . . . .  g,,) 

continuous on if/l, and assume that for given integers 

p,p' ,  O<p<r,  O<p'<r' ,  

the sets Q(t,y) have property Q ( p + l )  on A, and the sets R(t, ~) have property 
Q ( p ' +  1) on B. Let us assume that there are functions 

o o 

~b(t)>O, t~G, ~eLx(G),  and ~b(t)>=O, ter ,  r 
2 2 *  

Xk-..-~ X 

Uk-..-~ ~ 

Vk.--~ V 

there is some subsequence [k~] such 

v))' 
v j - . ( J ( x ,  v))' 

(X'(Xk., Vk.))J~(X'(X, r)) j strongly in L 1 (F), 
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such that 
fo(t, y, u)~ -~k(t) for all (t, y, u)eM, 

and 
go(t, } ,v)> - ~ ( t )  for all (t, ~, v)~Ir 

Let 12 be a nonempty closed class of admissible systems (x, u, u, v, v) such that 
{x}~, {u}a, {v}~ are weakly sequentially relatively compact; and let us assume that 
the operators ~ ,  .1[, ~r ~ satisfy the closure property (C~p,). Then the functional 
(5.1) has an absolute minimum in g2. 

Proof. Apply the existence theorem (4.i) with S replaced by S x T x 7" and x 
replaced by (x, u, v). 

Remark 1. Considerations similar to those of Remarks 1-6 after the existence 
theorem (4.i) apply here as well. In particular, S, T, and ~" need not be Banach 
spaces with the weak topology, but only topological spaces (S, o), (T, z), (7", ~), 
that is, spaces S, T, ~" for which certain topologies a, z, ~ have been chosen. Also, 
the spaces S, T, ~" need not be linear spaces. Accordingly, in the existence theorem 
(5.i) we shall require that the convergence Xk--~ X in (S, o), Uk ~ U in (T, z), and 
Vk'-* V in (7", ~) imply the convergence in L1 (G) and L~ (F) stated in (C~p,). Ac- 
cordingly, we shall require in (5.i) that the sets {x}~, {u}a, {v}u are sequentially 

O O 

relatively compact in (S, o), (T, T), (T, z), respectwely. Examples of these situations 
will occur in w 6. 

Example 1 (a problem of evolution in strong form). Let G be a subset of the 
tx-space E v+l, T=(z 1 . . . .  , xv), of the form G=(0,  T )x  G', where G' is an open 
bounded connected subset of E ~ of class K z. Thus, v + 1 replaces v, and F = ~ G is 
made up of three parts 

r~ ={0} x el a ' ,  r2=[O,T]xOa',  r3={T}  x c l a ' .  

On F~ and F 3 we have the Lebesgue v-dimensional measure, or II, (and we shall 
use the symbol dz in integration). In/ '2 we have the product measure o = I ]1 x/z 
of the one-dimensional measure on [0, T] and of the hyperarea/z on theboundary 
O G' of G' (and we shall use the symbol dt dlt in integration). Given a function x 
in G, we shall denote by 7 x the boundary values of x on F = 0 G, and specifically 
we shall denote by y~x the boundary values of x on F i, i=  1, 2, 3. We shall denote 

O 

by T, Ti the families of all measurable functions on G, Ft, i=  1, 2, 3, respectively. 
We shall denote by S~(G), l < p < + o o ,  l>1 ,  the space of all real-valued 

functions x(t, ~), (t, z)eG such that Ox[dt and all 

D~x,~=(~l . . . . .  ~,), 0<l~l<l, 
exist as generalized derivatives, and are all in Lo(G). We shall make S~(G) a 
Banach space by means of the norm 

Ilxll=llxllsg<6)=(~10x/Otl~176 E (~lD~,xlOdtdz) i l l  

These spaces S~(G) have been studied by J. P. AtJBIN [1], who has proved weak 
compactness properties similar to those for the Sobolev spaces. Each element 
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xeS~(G) possesses boundary values 

?lxeLp(ro, 73XeLp(r3) on 1"1,1"3 
respectively, and all 

~2D~x~Lp(F2), O<]al<l-1,  o n F  2. 

We are concerned with the minimum of a functional 

I [x, u, u, v2, v2, v3] = ~ fo (t, z, (..r162 x) (t, z), u (t, z)) d t dz 
G 

+ S go (t, z, (Of" x) (t, ~), v2 (t, z)) d t d # + ~ go (T, (3f'x) (T, z), v a (~)) d z, 
F2 Fa 

with state equations (in the strong form) 

.o~(x, u) (t, z)=f(t, z, (.ttx) (t, z), u(t, z)) a.e. in G, 

,,r v2)(t,z)=g(t,z,(:~f'x)(t,z),v2(t,'r)) a-a.e, onF2, 

and constraints 

(~tx) (t, 0~A(t, O, 

(:,Y" x) (t, z)eB2 (t, z), 

( ~ x )  (r, ~)~B3 (0, 

u( t, x)~U (t, z, (dg x) (t, "c)) 

v2(t, T)~V2 (t, ~, (o~x)(t, T)) 

v a (~)~ V~ (~, ( ~  x) (T, ~)) 

a.e. in G, 

a-a. e. on I"2, 
a.e. o n F  a. 

On F1 we have actually the further control 71 x =  vl (z), with vl (T)~Lp(FO, that is, 
the initial values Yl x are arbitrary. In other words, ?t x is free (in Lp(F1)). The 
optimal elements x~S= St(G) will determine the optimal initial values 

vl (0 = 71 x e L , ( r l ) .  
o 0 0 

We take now xeS=S~(G), ueT, vzeT2, v3eT3, and ueT, v2~T2, where T 
O 

and T 2 are weakly closed subsets of Lq (G) and L~ (F2), respectively, and both are 
norm bounded (in the norms of Lq(G) and Lq(F2)). Above .A(, :r ~ ,  or are 
operators, not necessarily linear, say 

O , 

~ :  s • r-~(L,(~))', : :  s • r : . ( L , ( G ) ) ' .  J/t: S~(Lp(G))', :Of: S-~(Lp(r))  ~', 

We assume that 
Xk"*X weakly in S, 

Uk-* u weakly in Lq (G), 

v2 k~v2 weakly in Lq (F2) 

~/[Xk~Clx strongly in (L 1 (G)) ~, 

:;g'Xk~'g'X strongly in (L 1 (F)) ~, 

.oq'(xk, Uk)--*-oq'(X, U) weakly in (L1 (G))", 

•(Xk, V2k)~C(X, V2) weakly in L1 (F2)". 

implies that 

Theorem (5.1) now applies easily. 
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For instance, we can take r=r'= 1, m=m'= 1, T--0, p = q - - 2 ,  l=2 ,  and 
v 

.oq'x=ax/t~t- ~ O2X/(~Ti) 2, 
i = 1  

J (x, v2) = ~ a i(t, "0 Ye (8 x/a z i) + v2 (t, z) ~2 x (t, z). 
i = 1  

Here Tz cL2(Fe), and the coefficients at are given elements of Le (/'2). 
For instance, we may also take 

.lCx=(x, ~x), s=v+l,  

aY'x=dx/On, s ' = l ,  onF2; ~ffx=x, s ' = l ,  onF3, 

fo=tZ + l~lE+ x2 + l Kxl2 + l u [ - l  > - l ,  

f =  t + ~ z i + x + ~  Ox/t3zi+u + 2  -1 l u 1, 
i i 

go=(ax/an)2+v2>=O o n F  2, g o = x 2 - 1 = > - I  onF3, 

g=x(ax/an)+v2 on Fz, 

v a = 0, A = E v + 1, B2 = El ,  B3 = El ,  U =  E 1, v2 = E 1, Va = {0}, and choose for f2 the 
set of all admissible systems x, u, u, v2, vz, v a with Ilxll s~ (a)_-< N for a sufficiently 
large N. 

Example 2. Using the same notations as in Example 1 above, we may take here 
xeS=S](G),  u6T, v2eT2, va~ 7"a, and u~T, v2eT2, where T, ~'2 are weakly closed 
subsets of L 2 (G) and L 2 (F2), respectively, and both are norm bounded (in the 
norms of L2 (G) and L 2 (/2))' Here ./-/, .r Aa, j are operators, not necessarily 
linear, say 

o �9 

~ :  S-,(LI(r~)) ~', ~e: s•  T~(LI(G)) r, ~r Sx  rz~(Ll(rz))'. ,1l: S-~(L 1 (G)) ~, 

We assume that 

implies that 

xk-~x weakly in S, 

Uk~ U weakly in L 2 (G),  

v2 k--~v2 weakly in L 2 (/"2) 

,t1 Xk~..r X strongly in (L 1 (G)) s, 

.r strongly in (L 1 (F2)) s', 

~(Xk, Uk)~ LP (X, U) weakly in (L1 ( G)) r, 

d~(Xk, V2k)~,f(X, V2) weakly in (L1 (F2)) r'. 

Theorem (5.i) now applies. 
For instance, we may take r=r'= 1, m=m'= 1, T= {0}, and 

v 

.LP x=ax/~t  + x(gradx)-b ~ 02 X/~'r i2, 
i = 1  

J (x, v2) = ~ ai (t, "r ~2 (t3 x/t3 t i) + v2 (t, "r) T2 x (t, r 
i = l  
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Here T2cL2(F2), the coefficients al are given elements of L2(F2), and b > 0  is a 
given constant. We can take .// ,  ~4f, fo, f ,  go, g as in Example 1. 

6. An Existence Theorem for Optimization Problems 
with State Equations in the Weak Form 

We shall now consider the case, mentioned in w I, where the equations of 
state (1.2), (1.3) are written in the weak form as is customary in partial differential 
equation theory. 

We shall use the general notation of the previous sections. In addition, let W 
denote a normed space of test functions w= (wl, w2), where 

wte(Lq(G)) r, w2e(L~(/'))" , and p - l + q - l = l ,  

with 1 < p <  + 0% 1 < q <  + o0, and let the usual conventions hold. We shall 
assume that the norms IIw~llq ofwx in (Lq(G))" and Ilw2llq of w2 in (L~(F))" are 
connected with the norm II wll.. of w= (w,, w2) in W by a relation of the form 

Ilwt I1~ + llw2llq<K Ilwllw (6.1) 

where K is a constant. We shall denote by W* the dual space of IV. We shall 
deal here with only three operators, J r ,  X" as in w 5, and J replacing both .W 
and J :  

,/#:SxT--*(LI(G))', ~:Sx~-~(L~(F))  s', J:SxTx:~-- ,W*.  
o o 

For every xeS ,  ueT, acT, veT, veT, we consider now the operator h, or 
h(x, u, a, v, v), h: W--* E t, defined by 

h w = If(t ,  (~r (x, a)) (t), u (t)) wx (t) d t + I g (t, (3ff (x, v)) (0, v (t)) w 2 (t) d# 
G F 

wherefwl  and gw2 denote inner products in E '  and E" ,  respectively. 

Instead of state equations (5.2), (5.3) we shall now consider a single state equation 
in the weak form 

J = h ,  
that is, 

J w = h w  for all weW 
or, specifically, 

J ( x ,  u, v)(wl, w2)= I f( t ,  (~r (x, u)) (t), u ( t)) w t (t) d t 
G 

+ f g(t, v))(O, v(t)) w2(t) dl, 
F 

for all (w t, w2)e W. 

Note that relation (6.1) implies 

(L,(G))" x (L,( r ) )"  = W, 

(L,(G))" x (L,(F))" = w*, 

(6.2) 

(6.3) 

(6.4) 
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O 

and, as mentioned, J :  S x T• T ~  W*. In most applications, however, we shall 
have 

O 1" J: S x Tx T---,(Lp(G)) x (L~(r))" ~ w*, 

and the actual determination of W* will be irrelevant. 
We understand here that the present single equation of state (6.3) is the weak 

form of equations of state (5.2), (5.3). In other words, in any particular situation J 
and W must be chosen so that any solution of the equations (5.2), (5.3) (strong 
form) is necessarily a solution of (6.3). 

Thus we are interested here in the problem of minimizing of the functional 

I Ix, u, u, v, v] = ~ fo (t, (..g(x, u)) (t), u (t)) d t+ ~ go (t, (.Yf (x, v)) (t), v (t)) d#, (6.5) 
G r 

with state equation (in the weak form) 

J w =  hw for all weW, (6.6) 
and constraints 

(.//(x, u))(t)eA(t), u(t)EU(t, (./t'(x, u)) (t)) a.e. in G, (6.7) 

(~(x,v))(t)~B(t), o(t)EV(t,(~(x,v))(O) #-a.e. on r .  (6.8) 

In the present situation we shall require a suitable growth condition, condi- 
tion (H): 

(H) For p = 1 we assume that, given e > 0, there are functions $~ > 0, ~b, ELx (G), 
and ~ ,~0 ,  ~,ELI (F), such that 

If(t,y,u)l<ck~(t)+~fo(t,y,u) for all (t,y,u)eM, 
0 0 

[g(t,~,,v)l<q~,(t)+ego(t,y,v) for all (t,~,v)E~l. 

Ifp > 1 we assume that there are functions tko > 0, ~o EL1 (G), and ~o => 0, ~o EL1 (F), 
and constants a > 0, b > 0, such that 

[f(t,y,u)[P<~bo(t)+afo(t,y,u) for all (t,y,u)eM, 
o O P< o o o o 

Ig(t,y )l =Cko(t)+bgo(t,Y, v) forall  (t,y,v)eM. 

This condition, for p =  1, has been systematically used by CESARI [3be] as a 
suitable extension of previous more restrictive growth hypotheses used by TONELLI 
and MCSrlANE. 

A triple (x, if, ~) ,or  system (x, u, u, v, v), is now said to be admissible provided 
xES, uET, uET, veT, veT, relations (6.6), (6.7), (6.8) hold, 

fo(t, (..r162 (x, u)) (t), u(t))eLl(G), go(t, (~r (x, v)) (t), v(t))ELl(F). 

Also, we require that 
f(t, (Jl  (x, u)) (t), u(t))~(Lp(G))" 

and that 
g(t, u))(0, 
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In the existence theorem below, however, this last requirement will be a con- 
sequence of property (H). We shall now consider nonempty closed classes [2 of 
admissible systems (x, u, u, v, v), where the definition of closedness is analogous 
to the ones in ~ 4 and 5. 

Finally, we shall need the following closure property (C) of the operators 
~ ' ,  X , J :  

(C) For every sequence x, u, v, x k, uk, vk, k = l ,  2 . . . .  , of elements x~S,  
O 

u T, vET, 

with 
Xk-*X weakly in S, 

Uk~U weaklyin T, 
o 

vk~v weakly in T, 

there is some subsequence [k~] such that, as 2 ~ oo, we have 

~r uk~)--}dC(x, u) strongly in (L1 (G)) ~, 

o~f'(xk~, vk~)~f ' (x ,  v) strongly in (L1 (F)) r 

J(xk~, uk~, vk~) w~,,C(x, u, v) w for every wEW. 

The hypothesis concerning J above can be reworded by saying that 

(6.9) 

such that 

and 

fo (t, y, u), f ( t ,  y, u) = ( f l  . . . . .  f~) 
continuous on M, 

o o 

go(t, y, v), g(t, y, v )=(g  t . . . . .  g,.) 

continuous on I~I, and assume that the sets Q(t, y) have property (Q) on A, and 
the sets R(t, ~) have property (Q) on B. Let us assume that there are functions 

~(t)>O, t~G, ~k~LI(G), and (b(t)>=O, tEr, ~ e L l ( r  ), 

fo(t, y, u)>--_ -~b(t) for all (t, y, u)~M, 

g o ( t , ~ , v ) > - ~ ( t )  fora l l  (t,)3, v)6lt,l. 

Let us assume that relation (6.1) holds, and that growth condition (H) is satisfied. 
Let  f2 be a nonempty closed class of  admissible systems (x, u, u, v, v) such that 
{x}u, {u}a, {v}u are weakly sequentially relatively compact, and let us assumethat 
the operators ./[, ~", J satisfy closure property (C) above. Then the functional (6.5), 
or I[x, u, u, v, v], has an absolute minimum in f2. 

in the weak star topology on W*. 

(6.i) Existence Theorem. Let G be bounded and measurable, A, B, M, J~4 closed, 
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Proof. As usual let i be the infimum of I[x, u, u, v, v] in the class f2. Since 
fo > -~b, go > - ~  and g2 is nonempty, i is finite. Let 

(Xk,  Uk, Uk, Vk, Vk) , k =  1, 2 . . . . .  

be a sequence with 
I[Xk, Uk, Uk, ok, Vk]--'i as k---,oo, 

and we may well assume that 

i<I[Xk, Uk, Uk, Vk, V k ] < i + k - l < i + l ,  k = l , 2  . . . . .  

Since we have assumed that the sets {x}u, {u}o, {v}a are weakly sequentially 
relatively compact, there is a subsequence, say still [k] for the sake of simplicity, 
such that Xk ---' X weakly in S, Uk --' U weakly in T, Vk --* V weakly in T as k ~ ~ .  
We may even assume that the subsequence has been so chosen that limit relations 
(6.9) hold. Let 

zk(t)=f(t  , ~r Uk) (t), Uk(t)) , tEG, 

z~ g(t, ~(x~, vk) (t), v~(t)), ter, k= 1, 2 .... .  

By the growth condition (H) and 

I [XR, Uk, UR, Vk, Vk] _--< i + 1 for all k, 

we see that, if p >  1, the functions gk(t) and ~,k(t), k =  1, 2 . . . . .  are equibounded in 
the norms of (Lp(G))" and (Lp(F))", respectively, if p =  1 it follows from an argu- 
ment of CESARI [3be] that the same functions 2k(t ) and ~k(t) are equiabsolutely 
integrable in G and F, respectively. In any case, there exists a subsequence, say 
still [k] for the sake of simplicity, and elements 

z(t), teG, ze(Lp(G))', and ~(t), teF, ~.e(Lp(F)f', 
such that 

and 

In other words, 

Zk--"Z weakly in (Ln(G))" 

o o Zk~ Z weakly in (L,(r))". 

f ( t ,  ~r162 (xk, Uk) (t), uk(t))--~ z(t) weakly in (Lp(G))', 

g(t, ~" (Xk, Vk) (t), Vk(t))~ ~(t) weakly in (Lp(F))", (6.10) 
as k ~ 0% while 

lim I [Xk, Uk, Uk, Vk, Vk] = i, (6.11) 
k"." oo 

(..r162 Uk))(t)eA(t), Uk(t)eU(t, (Jg(Xk, Uk))(t)) a.e. in G, 

(oYF(Xk, Vk))(t)eB(t), Vk(t)~V(t, (gF(Xk, Vk))(t)) /~-a. e. on F. (6.12) 

If w=(w~, w2) is any element of W then by relation (6.1) we know that 

wI~(Lq(G))" and w2e(Lq(F))"; 
hence 

Szk(t)wl(t)dt---,Sz(t)wl(t)dt,  S~k(t)Wz(t)d#---,S~(t)w2(t)dp 
G G F r 
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as k ~ oo. Finally, by the definition of the operator h, we have 

h(Xk, Uk, Uk, Vk, Vk)W~ Sz( t )wl ( t )d t+ S'~(t)wz(t)dl~ (6.13) 
G F 

as k ~ 0% for every w= (wl, w2)e W. By hypothesis we have also 

J(XR, Uk, Vk) W~J(X,  U, V) W (6.14) 

as k-~ 0% again for every we IV. Here each system 

(Xk, Uk, UR, Vk, Vk), k = 1, 2 . . . . .  

is admissible; hence the first members of (6.13) and (6.14) are equal for every 
we W. From (6.13) and (6.14) by comparison we obtain 

J(x ,  u, v) w= ~ z(t) wx (t)dt + J ~.(t) w2(t)dl~ (6.15) 
G F 

for every we IV. 

Now relations (6.9), (6.10), (6.11), (6.12) show that we can apply the lower 
closure theorem (3.i) with S replaced by S x  Tx ~" and with p=r,  p'=r' .  Here 
the sets Q(t, y) have property (Q) on A, hence property Q(r+ 1) by force of (1.i). 
Analogously, the sets R(t, ~,) have property (Q) on B, hence property Q( r '+  1). 
We conclude that 

(..//(x, u))(t)eA(t) a.e. in G, 
that 

(Jf'(x, v))(t)eB(t) #-a.e. on F, 

and that there are elements ueT, ve 7"such that 

u(t)eU(t, (~r u))(t)), z( t )=f( t ,  (d/(x, u))(t), u(t)) a.e. in G, 

v(t)eV(t, (;U(x, v))(t)), ~(t)= g(t, (Jg'(x, v))(t), v(t)) /t-a.e. o n  r, 

fo (t, (.r162 u))(t), u (t))eL~ (G), 

go(t, ( u~"(x, v) )( t), v( t) )e L, ( F), 

I[x,  u, u, v, v ]< i .  (6.16) 

Relations (6.15) and (6.16) show, by comparison, that 

J(x ,  u, v)w=h(x ,  u, u, v, v)w for all weW. 

Thus, the system (x, u, u, v, v) is admissible, and since ~ is closed, there is some 
admissible system 

(x,~,fi, O,~) i n ~  with I[x,~,~,~,~]<=i. 

The same system belongs to Q, and 

I[x,  u, u, v, v]>__i. 

Thus, I =  i, and the existence theorem (6.i) is thereby proved. 

Remark 1. Remarks 1-6 of w 4 and Remark 1 of w 5 apply to the present 
theorem as well. 
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Example. Let G be an open bounded connected subset of E ~, v ~ 1, of class K. 
We are concerned with the minimum of a functional 

I[x, u] = ~ fo(t, x(t), IZx (t), u(t))dt, (6.17) 
G 

with state equations which we wish to be a weak form of 

~, O2x/( Ot')z=f(t, x(t), Vx(t), u(t)), (6.18) 
i = 1  

and with constraints 
x(t)eA(t), u(t)eU(t, x(0).  (6.19) 

Here x and u are functions on G. Thus, go =0,  we have no boundary condition 
on x, we can take g =  0, J = 0, ~ = 0, and need make no references to F, B, V, ~/. 

By introducing the increased control ~ ( t )=  (ul, ..., u v, u), we have the equiv- 
alent problem of minimizing the integral 

I[x, u] = S fo(t, x(t), ~(t))dt, 
G 

with differential equations (6.18) and 

ax/at~=fi=u i, i=1  . . . . .  v, 
and constraints 

x(t)~A(t), ~(t)eE ~ x U(t, x(t)). 

We shall think of W as simply being 

(C~(G)f § with w=(tS, 0)~W, 

t~=(o21,...,o2~,o2) and o21 . . . . .  o2v, o2eC~(G). 

As a weak form of the present system of differential equations we now take 

~ (0 x/O t') (o2'(t)) d t - ~ ~, (O x/O t') (~ o2/0 t') d t 
~=1 ~ ~ ~=t (6.20) 

= ~ f(t,  x (t), ?~ (t)) co (t) a t + ~ ~ u'(t) (o2' (t)) d t 
G t = 1  a 

for all 
= (0 , '  . . . . .  o2", o2) (c  

It is easy to verify that any (strong) solution x, u of the original system of equations, 
say 

u T, 

is certainly a solution of (6.20). Instead, we take 

xES=WtI(G), u~T, p = l ,  

or, equivalently, x e S =  Wt~ (G) and ~ measurable in G. Note that in the present 
problem we have the further control ~,x= v(t) with v(t)eL1 (F) on the boundary 
F=t~G of G, that is, the boundary values yx  of x are arbitrary. In other words, 
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~, x is free (in L 1 (F)). The optimal element x e S will determine the optimal boundary 
values v (t) = ~ x e L  1 (F). We shall take in W= (C~ (G)) v + 1 the topology defined 
by the norm 

v 

II ~3 It w = Max ]co(t)[+ ~ Max l a o~/O t~l + ~ Max I o;(t) I. 
l = l  i = l  

We have here r=v+l ,  and if we denote by tl&ll~ the norm of (3 as an clement 
of (L~o (G)) x W~(G), then II~l[~ = II~ll~, for every element (3e W. Also 

(L~(G))'=(L~(G))'• W~(G)=W, (Lt(G))" ~W*, 

and relation (6.1) holds with K= 1 since 

II r3 fl~L.(o))-----If ~ II ~ = II ~ IIw. 

Also, the operator J defined by the first member of (6.20) has the expected 
property 

J :  S~(L,(G))" ~ W*. 

Now, if x, xkeS= W~ (G), k -  1, 2 . . . . .  and 

xk---, x weakly in S= W~ ( G), 
then 

axk/at*~ax/at ~ as k~oo weaklyinLt(G), i---1 . . . . .  v; 

hence ( J x ~ ) ~ - ~  ( i x ) r  for every ~e(Loo (G))~ x W~ (G), and then certainly for 
every ~ e W =  (C~ ~ (G)) * + 1. Thus, the hypothesis required on ~ in (6.i) is satisfied. 
Also note that d t x = x ,  ..g: S ~ L 1  (G), s =  1. Here 

A( t )~E 1, A r  ~+1, ueU(t, y ) r  t, ~eU(t, y)=E ~ x U(t, y), 

and thus M c E  2~+2 is the set of all (t, y, ~) with 

tecl  G, yeA(t), he(J(t, y ) = E ~ x  U(t, y). 

Letfo( t ,  y, ~), f(t ,  y, u) be real-valued continuous on M. For 

Z=(ZI,  ... , Z~), ~=(u t , . . . , u  v,u), 

let (~(t, y) be the subsets of E ~+2 defined by 

(~(t, y) = [(z ~ z, Z) l z~ fo(t, y, ~), z=f( t ,  y, ~), Z'=u', ~ ( J  (t, y)] 

=[ (z  ~ z, Z) l z~ y, Z, u), z=f( t ,  y, Z,u), ueU (t, y), ZeE*]. 

We assume that the sets Q(t, y) have property (Q) in A. We shall assume that 
there is some function $ ~ 0, ~,eL1 (G) such that fo (t, y, u) ~ - ~, (t) for all te  G. 
We shall also assume that growth condition (H) holds fo r fo  and f,  f t  . . . . .  f~ with p = 1, 
and f l  = u t . . . . .  f~ = u ~. 

A pair (x, u) is here admissible provided xe  W~ (G), u is measurable in G, 

x(t)eA(O, u(t)eU(t, x(t)) a.e. in G, 

fo(t, x(t), ~(t))eLl (G),u*=ax/at ~, i= 1 .. . . .  v, 
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and relation (6.20) holds for every t~eW. Note that hypothesis (H) (for p = l )  
certainly assures that also f( t ,  x(t), u(t)eL 1 (G). 

We shall take for f2 a nonempty closed class of admissible pairs (x, u) such 
that {x}u is weakly sequentially compact in W~ (G), and also such that if 

then 

xeW#(G), Xke(X}o, k = 1 , 2  . . . . .  

Xk--* X weakly in Wtl ( G), 

Xk"*X strongly in L 1 (G), 

(that is, .gXk--*J/lX in L 1 (G)). Existence theorem (6.i) now guarantees that the 
functional (6.17) with state equations (6.20) (in the weak form) and constraints 
(6.19) has an absolute minimum in f2. 

For instance, we may take 

A(t)=E 1, ..~Ix=x, ..g: S~LI(G), U = E  1, 

fo=[t[a(x2+[Vxl2+u2), f = - l + u + 2 - 1 l u [ ,  

and we may take for f2 the class of all admissible pairs (x, u) with 

xeS=W~(G), ueT. 

Here ct is a fixed number, 0 < ct < v. 

First we have to prove that f ,  fo satisfy condition (H), that is, f ,  fo satisfy a 
growth condition (e). Since G is bounded, there is a constant c > 0  such that 
]tl < c  for all teG. Now, for every e>0,  the function 

ff ,( t)=e -1 I t t - ~ + l  
is L-integrable in G, and 

2 -l lul__<lu+2 -llull<=(3/2) lul . 

Either (3/2) [ u ] > e- 1 I t I - % and then 

[fl  < (3/2) I u I + 1 = (3/2) I u l- 1 u 2 + 1 -< (9/4) el t l ~ u 2 -t- 1 < ~,(t) + (9/4) efo; 
or  

(3/2) lul<e -1 Itl-% 
and then again 

[fl  _< ~ ( t )  + (9/4) e f  o. 

An analogous statement holds for each functionf~= u s, i=  1 . . . . .  v. We denote 
by t2 o the class of all admissible pairs x, u with I[x, u]~M o for sufficiently large 
Mo so that f2 o is not empty. 

Let us prove now that the class {x}t,o is sequentially relatively compact in 
W~ (G). It is enough to prove that for (x, u)eg2 o the functions 

O(t)=lx(t)l+ ~ lOx/Ot~l, teG, 
l= l  
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are equiabsolutely integrable in G. Indeed, either ~ >  s-  ~ [tl -~, and then 

r  ~ -  1 ~ 2 < e  Itl~(v+ 1)(x2+lVxl2)<@~(t)+s(v+ 1)fo, 

or q~ < e-  1 ] t ] - ~, and then again 

~@~(t)+e(v+l) fo.  

Thus ~, fo satisfy a growth condition (s), and again the functions ~ are equi- 
absolutely integrable in G. 

Finally, the functions ~( t )  being equiabsolutely integrable in G, we conclude 
from Sobolev space theory that Xk ~ X weakly in W~ (G) implies Xk~ ~ X strongly 
in L~ (G) for a suitable subsequence [kx]. 

7. Application to Problems of Optimization with an Evolution Equation 
in Weak Form 

In this section we apply Theorem (6.i) to problems of optimization with an 
evolution equation in the weak form. 

Example. We are using here the notations of w 5. We are concerned with the 
problem of minimizing the functional 

I[x, u, v 1, v2, v3] = I fo(t, z, x(t, z), (Vx)(t, z), u(t, z))dt dz 
G 

+ S go( z, (?sx)(~), va(z))dz, (7.1) 
F3 

with a state equation (concerning G and rz) which will be a suitable weak form 
of the system of equations 

x/d t - ~ 02 x/(~ T')2 =f(t, "c, x (t, z), (Vx) (t, z), u (t, z)) in G, (7.2) 
i = 1  

6qx/an+v2(t, "c)y2 x(t , z )=0  on F 2, (7.3) 
and constraints 

x(t,r u(t,r x(t,z)) a.e. in G, (7.4) 

(?3x)(z)eB(z), v3(z)eV(z, (?3x)(z)) a.e. on F3. (7.5) 

Here x, u: G-~E 1, v2: F2~E 1, va: Fa-~E 1, denote real-valued functions, 
x state variable, u, v2, va controls. In other words, we are interested in the deter- 
mination of a function x(t, ~) in G (in particular, of its initial values, say vl (z)= 
x(0, ~) on F1), and of controls u(t, z) in G, v2(t, z) on F2, vs(z) on F3, such that 
the functional (7.1) has its minimum value, under constraints (7.4), (7.5), and a 
suitable weak form of state equations (7.2), (7.3). 

By introducing the increased control ~(t, z )=(u  ~ . . . . .  u v+l, u), we have the 
equivalent problem of the minimum of the integral 

l[x, fi, va, v2, vs] = S fo(t, z, x(t, z), ~(t, z))dtd~ 
G 

+ j" go (z, x)(O, v (O) 
F3 



for all 

352 L. CESARI & D. E. COWLeS: 

with differential equations 

Ox/Ot-- ~ 02X/(O'~t) 2 =f(t, r x(t,'c), fi(t, r in G, 
l = l  

Ox/On+v2(t,~)r2x(t,z)=O on F2, (7.6) 

Ox/O~l=fl=u ~, i=1  . . . . .  v, Ox/at=u "+x in G, 

with constraints (7.4), (7.5), and u~EE 1, i=  1, ..., v+ 1. 

We take for W the space of all pairs w = (~, ~ r with 

c~ =(co 1, ..., r cotEC~(G), i=1,  . . . ,  v + l ,  co~ C~~ G). 

Then, yr ..., 0, ~co). As a weak form of (7.6) we take the equation 

u 

5 ~ (~9 x18 T') (&o/c9 ~') d t d ~ + S (c9 x/a t) co (t, T) d t d 
G i = l  G 

+ S v2(t, ~)~2 x(t, ~)y2 co(t, "c)dtd# 
F2 

i + I.(Ox/O~i)cot(t, z)dtd~+ S(Ox/Ot)co'+X(t, ~)dtd~ (7.7) 
i = 1  G G 

= ~.f(t, ~, x(t, ~), r,(t, ,))co(t, z ) a t a ,  
G 
v + l  

+ ~, Su'(t,~)cJ(t,z)dtd$ 
/=1  G 

(~ = (col, . . . ,  co" + 1, co) e (C~ ~ (G))" + 1 x C~~ (el G). 

Here J w, or J ( x ,  e2) w, that is, the operator J ,  is defined by the first member of 
(7.7). It is easy to verify that any strong solution x, u, v2 of (7.2), (7.3), say with 

X ' E S  2 , uET~ 1~2 E Z q  (IF'2), 

is certainly a solution of (7.7) for all we IV. 

We shall take here 

xES=W~(6), p>l. uET. v2~/~2 
with T2 a weakly closed subset of L~(F2), lip+ 1/q= 1, which is bounded in the 
norm of Lq (F2). We take in W the topology defined by the norm 

II w I1,. = I1((~. rc~)ll --- Max Ico(t, ~)1 + Max ] 8co/d t l 
v 

+ ~ Max I&o/dx~l + ~ Max Icon(t, $)l 
i=1 i=1 

where all Max are taken in el G. With r = v + 2 we have 

I[~olI(L.(G)),'-I- II'~O]IL.(I') ~ _ ]lcollW~(G) q" IITco[IL.(I')-I- ~., llco~[tL,(m 
1=1 

_-<(IGI 1/~ + I/'1 ~/~) Ilwll w. 
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From this we deduce 

W r W) (G) x Lq (F) • (Wq (G)f +1 = (Lq (G)f • Lq (r), 

and that relation (6.1) holds with K =  I G I 1/~ + I F I 1/L 
W e h a v e h e r e x e S =  W~ (G), J t  x =  x, J/C: S--. Lp(G), 3Fx=~a x, ~i" : S ~ Lp(F3), 

s = s ' = l .  Also Xk--*X weakly in S implies J t X k ~ l x  strongly in Lp(G), ~2x k 
--* T2 x strongly in Lp(F2), ~X k  --*JFX strongly in Lp(F3), aXk/a t ~ ax/a t, aXk/a z l 
-- ,ax/az ~ weakly in Lp(G), i=1,  ..., v. Furthermore, if r2, r2k, k =  1, 2 ... .  , are 

o 
elements of T2=L~(F2), with r2k--* V2 weakly in Lr then the products e2, 
(~2Xk) converge weakly in L~ (F2) to v2 (?2 x). Finally, from the definition of J (x, r2) 
we conclude that 

~(Xk, V2R)W--~J(X, V2)W as k--*~o 

for every we W as requested. 
For any (t, z )eG we have 

A ( t , z ) c E  1, A ~ E  v+2, 

Now M is the set of all 

with 

Let 

~ etJ(t, z, y ) = E  ~+1 x U(t, ~, y ) ~ E  ~+2. 

(t, "c, y, u )eE 2v+4 

(t, z)ecl G=c l  G' x ['0, T], yeA(t ,  z), i~ze(Y(t, ~, y). 

fo (t, z, y, ~), f ( t ,  z, y, ?t) 

be real-valued continuous functions on M. Let Q(t, z, y) be the subsets of E ~+a 
defined by 

Q(t, z, y ) =  [(z ~ z, Z)l z~  fo(t, z, y, ~), z= f ( t ,  z, y, ?t), Z i=u  ', ?teU (t, z, y)] 

= [-(z ~ z, Z) lz ~ >fo (t, z, y, Z, u), z =f( t ,  % y, Z, u), u eU(t,  z, y), ZeE  "+ 1] 
where 

Z = ( Z  1 . . . . .  Z'+I),  and ~=(u  1, . . . ,u  ~+~,u), 

and let us assume that these sets have property (Q) in A. Also, in harmony with 
(6.0, we assume that there is a function if(t, z)__>0, ~beL1 (G) with 

fo(t ,  z, y, Z, u)> -~b(t, z) for all (t, % y, Z, u)eM, 

and that there is a constant a > 0 and a function 

~0(t, x)>=0, ~oeLl(G) 
such that 

v + l  

If(t, ~, y, Z, u)lP + ~ lu~l~ < r "c) +afo 
i = 1  

for all (t, z, y, Z, u)e M (condition (H)). 
For any (T, z)eF3, that is, zecl  G', let B ( z ) c E  1 be a given set, let B ~ E  v+l 

be the set of all (% 3~) with zecl  G', )~eB(z), and for every (z,)~)eB let E(z, .~) be 
a given subset of E 1. Then, let ~ be the set of all (z,)~, v3)eE v+2 with (z, 3~)eB, 

23 Arch. Rational  Mech. Anal., Vol. 46 
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v a e V(v, 3~), and let go (z, 3~, v3) be real-valued and continuous on/~/. We assume 
that there is a real-valued function ~3 (z) = > 0, ~k 3 eL1 (G') with go (T, y,~ v3) => - ~ba (x) 
for all (~,)~, v3)e/r Here g=0 ,  hence the corresponding sets R are half straight 
lines, and certainly convex. We assume that these sets R (T, ; )  satisfyproperty (U) 
on B. The corresponding condition (H) is trivially satisfied. On /'1 we have both 
g =  0, go = 0, and no further discussion is needed. 

A system (x, if, v2, v3) is here admissible provided x e S =  W~ (G), ~ is measur- 
o 

able in G, v3 is measurable in F3, v2eT2=Lq(F2), 

fo(t, z, x(t, z), (Vx) (t, z), u(t, z))eL1 (G), 

go (z, Ya x (z), v 3 (z)) eL1 (Fa), 

equations Oxi/Oz~=u ~, i=1 . . . . .  v, Oxi/at=u ~+1 hold in G, relations (7.4), (7.5) 
hold, and (7.7) holds for all we W. Because of hypothesis (H), then certainly 

f ( t ,  ~, x(t, z), (Vx) (t, ~), u(t, z))eLp(G). 

We shall take for s a nonempty closed class of admissible systems, such that the 
set {x}s~ is bounded in the norm of W)(G). Theorem (6.0 now guarantees that the 
functional (7.1) with state equations (7.7) (in the weak form) and constraints (7.4), 
(7.5) has an absolute minimum in s 

For instance, we may take p = q = 2, 

fo=t2-l-lzl2-bxZ-k] VX ] 2 -~- u 2, 

f = - l + t + l z [ + x + u + 2  -1 ]u[, 

go=(l + tElzl2)xE +(l +lxD[va[, 

v = E  1, v~=E 1, r:=[v~eL~(rg[ IIv21h=<l]. 

Then condition (H) (for p = 2 )  is satisfied since f2  =<2+ 6fo. Also, we can take 
for ~ the class of all admissible systems x, u, v2, v a. If i denotes the infimum of I 
in Q, and s the subclass of all (x, u)e(2 with I=< i +  1, then the set {x}a o is certainly 
bounded in the norm of W2 x (G). 

This research was partially supported by AFOSR Research Project No. 69-1662. 
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