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1. Introduction 

Let ~ be a family of compact subsets of the Euclidean plane IR 2, and let J 
denote the group of all translations of R E. We shall consider here the Pompeiu 
problem for the family ~, namely, to determine when the only continuous function 
f on ~2 such that 

(1) ~ f ( x ) d x = O  for all z ~ J  and P ~  
~(P) 

is the zero function. (Here dx denotes Lebesgue measure on IR2.) In this note we 
solve this problem when the family ~ consists of rectangles. In particular, we 
will prove the following result. 

Theorem 1. Suppose ~ is a finite family of squares with sides parallel to the 
coordinate axes. Then f -O is the only continuous solution of equation (1) if and 
only if ~ contains three squares of side length al, a2, a 3 such that alia2, a2/a3, a3/a 1 
are irrational. 

Thus for "most" choices of three squares /]1, P2, P3 the validity of (1) for 
-- {P~, P2, P3} implies f ---0. 

The Pompeiu problem has an extensive history which we will not discuss 
here. The reader is referred to the paper [13] of L. ZALCMAN for an excellent 
account of the problem, including the "two-circles theorem" of Delsarte for 
harmonic functions, which is the motivation for our Theorem 1. We do mention, 
however, the following equivalent formulation of the Pompeiu problem, which is 
known as the Morera problem: Suppose all the sets P of the family ~ have "nice" 
boundaries (say piecewise smooth, so that the Green theorem can be applied to 
change integrations from P to OP). When is it true that the only continuous func- 
tions f such that 

(2) ~ f(z)dz=O for all z e J  and P E ~  
~(OP) 

are entire analytic functions (here dz = dx + idy is the usual complex differential)? 
We refer to [1], Section 4, especially Theorem 4.1, or to [13] for the proof of 
the equivalence of the Pompeiu and Morera problems. (Note that the Pompeiu 
and Morera problems in I-1] are formulated in the different (and nonequivalent) 
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form in which the group J of translations of IR2 is replaced by the larger group 
2" of all rigid motions of 1112 . This does not however, change the equivalence 
of the Pompeiu and Morera problems in the form stated here.) Thus the following 
theorem is a consequence of Theorem 1. 

Theorem 2. Suppose ~ is a finite family of squares with sides parallel to the 
coordinate axes. Then solutions of (2) must be entire analytic functions if and only 
if ~ contains three squares of side length al, a2, a 3 such that alia2, aE/a3, aa/a 1 
are irrational. 

The Pompeiu problem is a special case of the spectral synthesis problem 
formulated by L. SCHWARTZ in [-12]. To state this problem, note first that if Xe 
is the characteristic function of the set Pe~ ,  and f ( x ) = f ( - x ) ,  then (1) can be 
written as the system of homogeneous convolution equations 

(3) ( f .  gp)(y)= ~ f ( x - y )dx=O for all yeFx 2 and Pc~ .  
P 

It is easy to see (by smoothing f )  that the system of equations (3) has a nontrivial 
solution f if and only if there exists a nontrivial solution f in the space r 
of all infinitely differentiable functions on IRE. The spectral synthesis problem of 
SCHWARTZ for a collection ~ of distributions of compact support on lR n (i.e. 
~cr  is to show that each function feg(iR") satisfying 

(4) f .  #--0  for all # e ~  

must be a limit in 8(JR") of linear combinations of exponential-polynomial solu- 
tions of (4), that is solutions of the form 

p (x) exp (iz. x) = p (x) exp [i(z 1 �9 x 1 + . . .  + z,. x,)] 

where z = (z 1 . . . . .  z~) e C n and p is a polynomial. In particular, if spectral synthesis 
holds for the collection ~//, then (4) has a nontrivial solution if and only if there is 
an exponential solution of (4). Equivalently, if 

p (z) =/~ (exp (i z. x)) 

is the Fourier transform of #eS'(iR"), then we readily check that (4) has an ex- 
ponential solution if and only if the functions {/~(z): peq/} have a common zero. 
If P c 1112 is a rectangle with center at (0, 0) and sides parallel to the coordinate 
axes of length 2 a, 2 b, respectively, then 

(5) 2e(zl'z2) = i i eimx'+z2x2)dx, dx2 =4sinazl sinbz2 
--b --a Z 1 Z 2  

Thus, the common zeros of 2p, PE~, are easy to compute if # is a family of such 
rectangles, and this provides a proof of the "only if" part of Theorem 1. In fact, 
the condition "ajaj irrational" in Theorem 1, is clearly equivalent to the assertion 
that the 2p, PE~, have no common zeros in I~ 2. Thus, the "if" part of Theorem 1 
is proved provided we show that spectral synthesis holds for any collection 
q / c  W(IR 2) which contains a distribution # of compact support of the form # = )~e, 
where P is a rectangle (P=Z~, means # ( f ) =  ~f(x)dx for feN(IR2)). 

P 
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SCHWARTZ proved in [12] that every collection q /o f  distributions of compact 
support in IR 1 (i.e. q /cg ' (R1))  admits spectral synthesis. For q/cg'(P,n), n > l ,  
various special cases have been proved, see e.g. [1], [2], [31 [7], [9], [10], [13], 
[14]. However, D.I. Gum~vICH [4] recently produced a nice example which shows 
that, in general, spectral synthesis fails when n>  1. Thus, the positive results 
which can be obtained must require special hypotheses on the family q/. 

To prove our positive result, we will use the well-known equivalence of the 
spectral synthesis problem with the problem of closed ideals in the algebra 
d~'(lR")={/)(z):/~eg'(lR")}. By the Paley-Wiener-Schwartz Theorem, d~'(IR ") is 
identified as the space of all entire functions F on ~;" such that 

[F(z)l < A(1 + [z[) n exp(C [Imz[), 

where A , B ,  C are constants (depending on F) and I m z = ( I m z  1 . . . .  ,Imz,)eIR" 
is the imaginary part of z. The space ~'(IR") carries a natural topology (see e.g. 
[2], Chapter 5). For an ideal Icd '( lR"),  let Iio c denote the ideal of functions in 
d'(lR") which are locally in I, i.e. Fe1~or if FE~'(IR") and, for each ze(E", the germ 
of F at z belongs to the ideal generated by the germs of the functions in I in the 
local ring (9 z of germs of holomorphic functions at z (c.f. [5], Chapter 6) Clearly, 
I ~ lion. The closed ideals problem, for which the example of GUREVlCH provides 
a counterexample, is to show that 

I closed <e. I =  Ilo ~. 

If I =  I(~//)c#(IR") is the ideal generated by {~:/~ e ~//} for a collection q/~6~'(lR"), 
then it is true that 

(6) spectral synthesis holds for q/ r I(q/)= I(J//)loc. 

We refer to [1], Proposition 2.4, for a discussion and proof of this equivalence. 
Finally, we are able to state our main result. 

Theorem 3. Let  I be a closed ideal in g'(IR2). I f  I contains a function F which is 
not identically zero, but whose zero set in •2 is a union o f  complex lines, then I = Ilo c. 

In view of the equivalence (6), the observation following (4), and the compu- 
tation (5) of the Fourier transform of the characteristic function of a rectangle, 
Theorem 3 implies the "if" part of Theorem 1. Theorem 3 also implies that 
when the family ~ in equations (1) contains one product set, then there is a non- 
trivial solution of the equation (1) if and only if the Fourier transforms )~p(zl, Z2) , 

P ~ ,  have a common zero in C 2. 
In Section 2 of the paper, we will give the proof of Theorem 3. At the end of 

the section, we also remark on the analogous theorem for n > 3. 

2. Proof of Theorem 3 

The proof consists of several lemmas, each of which allows a reduction of the 
problem to the (known) one-variable case or carries out an argument used in the 
one-variable case. We will change notation slightly and denote the function F 
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in Theorem 3 by f Write the hyperplanes in the zero set of f as 

Oj" Z=Cj,  

where 0~= (0il, 0~2)e1~ 2, cr~(E , [0j[ 2 = [0rxJ 2 + [0j2[ 2, and 0 i - z =  Oilz 1 + Or2z 2 . We 
may assume f(0)4=0; i.e. cj ~0 ,  by translating coordinates if necessary. Define 

(7) ~(z) = 1 - (0j. z)/c r. 

Thus each Or(z ) divides f in ~(IR1). Also there is a Hadamard  factorization of  
f, as follows. Assume that each hyperplane 0 r �9 z = c r in the zero set of f is listed 
with its corresponding multiplicity. That  is, if f vanishes to order  p on the hyper- 
plane, then the corresponding 0j, c r are repeated p times in the sequences {0r}, {cr}, 

j = l , 2  . . . . .  

Lemma 1. For some a=(al ,  a2)e(~ 2, w e  have 

oo 
f ( z ) =  exp(a �9 z) l~ ~(z) exp [(0j. z)/cr]. 

j = l  

Proof. The p roof  may be given by essentially repeating the p roof  of Hadamard ' s  
factorization theorem in one variable (it is also a consequence of P. LELONG'S 
representat ion for entire functions of finite order  [8], p. 394). The main point  
is to show that the infinite product  is an entire function (of exponential  type, 
or even just of order  1) with the same zeros as f, so their quot ient  must be an entire 
function of order  1 with no zeros; i.e. exp(a ,  z) for some aell~ 2. 

The next lemma allows us to reduce the theorem to the case when/1o c = ~'(IR2). 

Lemma  2. Let J =  {hEff'(~,2): h .  Iloc c ] } .  Then 
(i) J is a closed ideal in ~'(IR2); 

(ii) J ~ I ;  
(iii) J = ~'(IR 2) ,r I =/1o ~ ; 

(iv) Jloc = ff'(lR2). 

Proof.  The assertions (i)-(iii) are all rout ine to check. To prove (iv), let z 0 ~ ~2. 
We construct  heff '(IR 2) with h(zo):#O and h. Ilo~=I. To this end, consider the 
(finitely many) factors o f f  given in (7) which vanish at z o. After relabeling, we may 
assume that :1 . . . .  , : , ,  are the ones of these factors which divide every ge l ,  listed 
with corresponding multiplicities (if there are no such factors, this step can be 
omitted). Define m 

p (z) = I ]  fj(z) (p = 1 if there are no factors) 
j = l  

If gE~'(1R 2) and p divides g near z o, then g/p is entire and g/p~' ( IR2) .  
Consider the ideal I * = ( 1 / p ) l =  {g/p: g e l }  in g'(lR2). We claim that z o is at 

most  an isolated common  zero of I*. If not, then the common zeros of the functions 
in I* near z o must be a variety of dimension 1 and codimension 1. Thus there 
exists an analytic function 7 near z 0 such that y(Zo)=0 and 7 divides every function 
in I*. Then 7 also divides f /p~ l* .  Hence 7 must  be, up to a factor which is non- 
vanishing near z o, a product  of the functions in (7). We may therefore assume that 
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? is a product of finitely many of the factors (j which vanish at z 0. Then G/TE~'(~,~ 2) 
for every GEl*, so actually YP divides every gEL contrary to the definition of p. 
Thus no such ? exists, and z o is at most an isolated common zero of the functions 
in I*. 

We next use Theorem 2.7 of [6], p, 228. According to this result, there exists 
an he~'(lR 2) such that h(zo)+-O a n d  h[I*]locCI*. But [I*]toc=(1/p)Iloc, so 
h I to ~ = h p [I*]1o~ c p I * =  I. Thus h ~ J, which completes the proof of the lemma. 

Lemma 3. Let I, f be as in Theorem 3. I f  also Iioc ~6r then 

f (z) /gj(z)d,  j=  1, 2 . . . . .  

Proof. We drop the subscript j throughout the proof. Let V= {ze ~z: ((z)= 0}. 
Let i: V~ ~2 be the inclusion mapping, so that i* g = g o i restricts functions on C 2 
to V. Then from Theorem 4.1 of [2], p. 98, or Theorem 4.4.3 of [5], p. 94, we see 
that i ,~,(~2) is equal to the set of all analytic functions 7 on V such that for some 
A, B > 0 we have 

I7(z)[ < A exp(Bp(z)), ze V, 

where p (z) = log(1 + I z[ 2) + I Im z l. It is also easy to see from the growth condition 
for V that i* ~'(IR 2) is isomorphic to either the ring of entire functions of exponential 
type in one complex variable, or to ~'(P,,) = ~r That is, if we make a suitable 
affine change of coordinates (zl, z2)<--~(ft, (2), for example, 

~1 =#(z)=azl  +bz2 +c 

then V has the equation ~, =0  and the functions i*g are functions of (z. Since 
( l a t 2 + l b t Z ) z l = a ( , - b ( z - ~ c  and ( lalZ+rbl2)z2=b(,+a(z-bC,  we see that 
(i* P)((2) is bounded above and below by a constant times 

(8) l og ( l+  [~2[) + IIm b(2[ + IIm a(2[" 

If a/b is real, then i* J'(IR 2) is isomorphic to ~'(IR). If a/b is not real, then i*p((z ) 
is bounded above and below by a constant multiple of I(zl, so that i*ox~'(]R 2) is 
isomorphic to the space of entire functions of exponential type in one complex 
variable. 

In either case, it is known that, for any ideal/" in i*~'(IR2), we have 7e~o~ 
if and only if there exists a sequence of functions ? , e i  such that ?, ~ V in i* ~'(IR z) 
(see e.g. [3] or [9]). This means that ~,, ~ ), uniformly on compact subsets of V and 

(9) [7,(z)l__<A exp (Bp(z)), zeV, 

for some constants A, B independent of n. To complete the proof of the lemma, 
we have from 11o c = ~(IR:) that [i* I],o~ = i* J'(IR2), so 1 E [i*I]lo~. Thus there exists 
a g, e l  such that 7 ,~  i*g, converges to 1 in i*J'(lRZ). In particular, the estimate 
(9) holds. Then, again by Theorem 4.1 of [2], p. 98, or Theorem 4.4.3 of [5], 
p. 94, there exists an h, ~S'(IR z) such that i* h, = 7, and 

Ih,(z) I ~A '  exp (B'p(z)), zelE 2, 
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and some A', B' independent of n. After possibly passing to a subsequence, we 
may assume h , ~ h  in ~'(IR2). Then i ' h=  l i m i * h , = l ,  so E(z) divides 1 - h  in 
ff'(1R2). Thus "-'~ 

f / {  = [(1 - h)/f] ,  f + h (f/f) 61 + hf/d. 

Therefore f / E e l  if hf / (6I .  However, hf /d=l imh,  f / (  and I is closed, so we need 
only prove h , f / f 6 I .  Since 

h, f / {  = [(h, - g,)/d] f +  g, [f / f]  

and g,6I,  f61,  and (h,-g.)/(6~'(IR2), we see that h , f / ( 6 I  which completes 
the proof. 

Lemma 4. Let I, f be as in Theorem 3, and assume also that r 2 I,o c = 8  (IR ). Then 
I=d'(lR2). 

Proof. The proof is a repetition of the main step in SCHWARTZ'S proof of the 
same theorem in d'(lR); see, e.g. [12] or [10]. We will prove 

(10) O ' f 6 I  for all ~=(~q, ~2), 

00t I + 0r 

where D ' =  i - ' ' - ~ 2 -  To see that the lemma follows from (10), let T6g'(IR 2) ~t I st 2 �9 
0 Z  1 0 Z  2 

__ 0tl g2 be such that T = f  Then D~fis the Fourier transform of x T - x  I x 2 T(xI,x2). 
It is well-known that the closure of the linear span of x~T contains at least one 
3-function, say 6,, a61R 2 (see [12]). Then c~,=exp(ia, z) is in the closure of the 
linear span of the D~f6 I, so exp(i a.  z)61 and I = g'(IR2). 

We next outline the proof of (10). By Lemma 1, 

f(z) = exp(a �9 z) ]--[ fj(z) exp [(0j. z)/ej] 
j = l  

so by logarithmic differentiation 

Of = al f +  ~ [0j1/c2] " [Oj. z] [ f (z) / f  j(z)]. (11) Ozl j = l  

Now each term on the right hand side of (11) belongs to I by Lemma 3. Further- 
more, by the argument given in [10], the series converges in ~,(R2). Therefore 
Of/Ozl el ,  and similarly Of/Oz2eI. 

To see that D ' f 6 I  for higher order derivatives o f f  differentiate both sides of 
(11) the appropriate number of times. The series converges to D ' f  in ~'(IR2). 
Each term fj(z) = (Oj. z) f(z)/Ej(z) belongs to I and its zero set is a union of hyper- 
planes. Thus, Of/Ozg6I by what we just proved. Therefore all second order 
derivatives of f belong to L Continuing in this fashion, the proof of(10) is concluded. 

Proof of Theorem 3. By (iv) and (ii) of Lemma 2, and by Lemma 4, we have 
J=~'(IR2). Hence, by (iii) of Lemma 2, we see that 1=11o ~. 

Remarks. In the case when n > 3 and r " Ilo r = g (IR), the same proof will work, 
except that we must assume that in each linear variety V the constant function 1 
is a limit of functions g,6I. When n=3,  for example, this will be the case if i*(I) 
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[with i: V---, ~ 3 ]  contains a function whose  zero set in V is a union of hyperplanes. 
Thus,  if we assume 

(*) 1 is a closed ideal in ~'(IR3), I1oc=~'(IR3), and f l , f2~I  each have a union of 
hyperplanes as their zero sets, 

and if further f~ is not  - 0  on any hyperplane on which f~ = 0, i+j ,  then I = ~'(IR3). 
By induction,  then, and a slight modification of Lemma 2, we obtain the fol lowing 
result. 

Theorem 4. Let I be a closed ideal in ~'(1R n) which contains functions fl ,  ..., f s  
such that 

(i) the zero set of each fi is a union of hyperplanes, and 
(ii) the set of common zeros of f l ,  . . . ,  fN is discrete. 

Then I = Iloc. 

Note. This work was supported in part by NSF Grants MPS 75-06977 and GP 67328. 
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