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ABSTRACT

COUNTING PROCESSES AND INTEGRATED CONDITIONAL RATES:
A MARTINGALE APPROACH WITH APPLICATION TO DETECTION

Martingale theory, as recently developed by Meyer,
Kunita, Watanabe and Doléans-Dade, is used to study Count-
ing Processes (CP) and their likelihood functions. Here
a CP is a stochastic process having right-continuous sample
paths constant except for randomly located positive jumps
of size one.

First the problem of modeling and description of CP's
is examined. Let (Ft) be an increasing right-continuous
family of o-algebras to which the CP (Nt) is adapted and
suppose that the random variable Nt is a.s finite for each
t. The Doob-Meyer decomposition for supermartingales
associates to the CP (Nt) a unique natural increasing pro-
cess (At) which makes the process (Mt 4 Nt - At) a local
martingale with respect to (Ft). This decomposition (Nt =
Mt + At) is intuitively a decomposition into the part (Mt)
which is not predictable and (At) which can be perfectly
predicted. The process (At) is called the Integrated Con-
ditioﬁal Rate (ICR) of (Nt) with respect to (Ft) for the
following reason: when (Nt) satisfies some sufficient con-

ditions the ICR takes on the form (6t Asdsj, where (At) is
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a non-negative process called the conditional rate, satisfy-

. . -1

ing A, = 1lim E[h ~ (N
t 150 t+h

requires only the weak assumption that Nt is a.s finite for

- Nt)|Ft]; Our approach, however,

each t; there always exists an ICR while in general a con-
ditional rate cannot be defined. Sufficient conditions for
the existence of a conditional rate are presented. |

Based on the character (e.g., totally inaccéssible) of
the stopping times defined by its jumps any CP is shown to
be uniquely decomposable into the sum of a regular CP and
an accessible CP. It is also demonstrated that each class
is completely characterized by continuity properties of the
ICR. CP's with independent increments are uniquely dis-
tinguished by a property of their ICR's:} they are determin-
istic and given by the mean of the CP.

Expressions for probability generating functions and
conditional probabilities P{N. - N_ = n[F_} are derived.
The technique used (a typical martingale approach) can be
specialized to CP's which admit a conditional rate satis-
fying some kind of conditional independence property and
for processes of independent increments. Results in this
last case are well known when the mean of the process is
continuous, but our derivation extends to the general'case.

Likelihood ratios for detecting CP's are computed via
an extension of the three-step technique (the Likelihood
Ratio Representation Theorem, the Girsanov Theorem and the
Innovation Theorem) introduced by Duncan and Kailath in

their works on detecting a stochastic signal in white noise.
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Suppose (Nt) is under the measure Po (resp. P]) a CP with

1

an ICR with respect to the family of o-algebras Fo(resp. F
t t

of the form (ft A? dm‘)(resp.(ft Al dm )) where (AO)(rcsp.
0 S S 0 S S t

(Ai)) is a positive process and m_. a continuous determin-

t
istic increasing function. Then the likelihood function
Ly for the above detection problem and a time of observa-

tion [0,t] is shown to be

where A% = Ei[Ailc(Nu, 0 <uc<t)], i=0,1 (E;():

expectation operator with respect to Pi) and Jn is the time

of nth jump of (Nt). Stochastic integral equations
which allow us to compute the likelihood function Lt re-

cursively are also derived.
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INTRODUCTION

In this thesis we examine the relation between count-
ing processes and martingales and apply the pertinent
results to solve the detection problem for a large class
of counting processes. By a counting process we mean a
process which is a.s zero at the time origin and has a.s
right-continuous sample paths which are constant except
for positive randomly located jumps of size one. Such a
counting process (Nt) can be interpreted as one which
counts starting from the time origin the number of points
of a point process falling in the interval (0,t]. We
think of a point process as a sequence of points randomly
located on the real line.

To fix ideas in their most simple form suppose now
‘for amoment that (Nt) is a counting process of independent
increments and denote its mean EN, , supposed finite for

each t, by m . Then it is easy to see by a direct compu-

tation that the process

(I.1)

is a martingale. If furthermore (Nt) is of Poisson type

with rate At then

Recall also that



The literature (Rubin [R2], Snyder [S1],[S2],[S3],
Clark [C1l] and 1atelkarémaud [B1]) reflects interest in
the case of a counting process, sometimes called extension
of Poisson process, which can be described by a randon
rate. This random rate,also called intensity function, has

the interpretation:

N - N
_ . t+h t
Ae = lim E[ — Ft] (1.2)

where (Ft) is an increasing family of o-algebras to which
(Nt) is adapted. Usually the c-algebra Fe is taken to be
the minimal o-algebra generated by the process (Nt) up to
and at time t. We denote this last c-algebra by Ny - The
approach usually taken in the literature ([S1],[S2],[S3],
[R2]) to describe such a counting process (Nt) is to assume

that the limits

1

lim — [1 - P{N - N, = 0|N,.}]
At—¥0+At t+At t t
= lim 1PN =N, + 1[N} (1.3)
At t+At t t ’
At>0,

exist and are equal. Denote this limit by My o This
process (ut), clearly in the same spirit as the process

(At) defined by (I.2), has the following interpretation:



the probability that the counting process (Nt) has a

jump in the interval (t,t+At] given the past is equal to
Hedt # o(At). The technique to obtain results is then to
examine what is happening in small cells of size At and
take limits. But this limiting procedure is not simple
(the terms o(At) are random!) and for validity requires
numerous purely technical assumptions on the process (ut)
(see, for example, in [R2] conditions (2), (3) and (4)).
This approach has other drawbacks and difficulties. The
existence of counting processes (excluding Poisson pro-
cesses) for which the above limits (I.3) exist and have
all the required properties has never been shown. Also
the specification of the process (ut) may not define a
unique counting process, if indeed any such counting pro-
cess exits. The problem of existence of counting processes
.which admit a random rate as defined by (I.2) has been
treated only lately by Brémaud [B1] in his dissertation,
where a partial answer to this problem is given: the
existence of counting processes which possess a bounded
random rate with respect to the family of o-algebras

generated by the counting process itself is demonstrated

by the use of absolutely continuous changes of measures.
We discuss and extend this technique in Section 3.1, while
in Section 2.5 sufficient conditions for the existence of
a conditional rate are given.

We are interested in the generalization of the above

ideas. The basic mathematical tool involved in this is



the theory of martingales and related processes. This
material may not be familiar to the réader and is reviewed
in Chapter 1 in which also the basic notation used through-
out this thesis is introduced. In Chapter 2 we consider a
counting process (Nt) with the sole assumption that

(i) The random variable Nt is a.s finite for each t.
The Doob-Meyer decomposition for supermartingales then
implies that any such counting process adapted to a right-
continuous increasing family of o-algebras (Ft) can be
uniquely written as a sum [compare with (I.1) in the case

of processes of independent increments]

N, = M, +A (1.4)

where the process (Mt) is a local martingale with respect
to (Ft) and (At) is a natural increasing process. This
process (At), when it has a.s absolutely continuous sample

paths, can be expressed as

t
A, = J Asds (I.5)

where furthermore (xt) satisfied relation (I.2). This
process (xt) is then reasonably called the '"Conditional
Rate'" of the process (Nt) with respect to the family (Ft).
For the process (At) relation (I.5) suggests then the name
"Integrated Conditional Rate'" of (Nt) with respect to (Ft).
This terminology will be used even when, as is usually the
case, a conditional rate does not exist. Observé that this

approach is much more general and goes in the opposite



direction of the one taken in previous works ([R2],[S1],
[S2],[S3]): we begin with a counting process (Nt) satisfy-
ing the very weak assumption (i) and arrive at the notion
of integrated conditional rate, instead of defining by
(I.3) a conditional rate (subject to numerous assumptions)
and then assuming the existence of a hopefully unique count-
ing process corresponding to this conditional rate. Chapter
2 is believed to be the first systematic study of the notion
of integrated conditional rate. In Chapter 3 the likeli-
hood ratio for detecting counting processes is computed.
This is done using the three-step technique introduced
by Kailath [K3] and Duncan [D3] in their works on detection
of a stochastic signal in white noise. These three steps
are the Likelihood Ratio Representation Theorem ([D3],
[B1]), the Girsanov Theorem ([G1],[V1]) and the Innovation
Theorem ([K3]). By this method likelihood ratios for a
large class of counting processes can be found. Stochastic
integral equations which allow us to compute the likelihood
ratio continuously in time by recursive techniques are also
derived. It is also shown how the Girsanov Theorem can be
used to prove the existence of counting processes for which
the integrated conditional rate is in a special form.
Results of this third chapter constitute an extension
of Brémaud's work [B1l]. It should be noted in this connec-
tion that Brémaud's proof of the Likelihood Ratio Representa-
tion Theorem is erroneous. We will show that the errors

cannot be corrected without supplying a missing assumption.



The likelihood ratio formulas presented in Section 3.4
constitute a generalization of the formulas given by
Reiffen and Sherman [R4] and Bar-David [B2] in the context
of Poisson processes, and Skorokhod [S4] in the context

of processes with independent increments.



CHAPTER 1
MATHEMATICAL REVIEW: MARTINGALLES AND RELATED PROCESSES

1.0 INTRODUCTION

We assume the reader to be familiar with measure theory
in gencral and as it applies to the study of probabilities
and stochastic processes. But he may not be acquainted with
concepts such as stopping times, martingales, the Doob-Meyer
decomposition and stochastic integrals, concepts which are
heavily used in this thesis.

Therefore, the main purpose of this chapter is to intro-
duce and explain the mathematical notions necessary for a
good understanding of this study, and to serve as a refer-
ence which will hopefully facilitate the reading. At the
same time, the terminology used throughout this thesis will
be introduced.

The main references for this review chapter are [Ml]
for Sections 1.1 to 1.6, [M1] and [R3] for Section 1.7,
finally [D1] and [M5] for Sections 1.8 and 1.9. Capital

letters are systematically used to denote random variables.

1.1 STOCHASTIC PROCESSES

The standard notation (Q,F,P) is used to denote a prob-
ability space. The set @ is the set of all possible out-
comes of a specified experiment and the sets of the o-alge-
bra F are called events. A measurable map from the measur-

able space (Q,F) into a measurable space (E,E), where E



denotes a o-algebra of subsets of the set E, is called a

random variable. The following notation is also standard:

Definition 1.1.1: If A is any set we define the indicator

function of the set A to be the function given by:
(1 if x € A
1,00 - {

0 otherwise

Now the definition of stochastic processes: ([M1], Def-

inition 2-1IV)

Definition 1.1.2: Let T be an index set. A stochastic

process is a system (Q,F,P, (Xt, t € T)) consisting of
(1) a probability space (Q,F,P) and (2) a family (Xt’
t ¢ T) of random variables defined on (Q,F) with values in

a measurable space (E,E).

The measurable space (E,E) is called the state space of
thé process.

Whenever it causes no ambiguity we will use the simpli-
fied notation (Xt’ teT) or even (Xt).

A stochastic process (Xt) is in particular a mapping
from T x © into E. We denote by Xt(w) the image by this map-
ping of the point (t,w). The random variable Xt(-) (simpli-'
fied notation: Xt) is called the state of the process at
time t and the mappings X (w) of T into E are called traj-

ectories or sample paths (or functions) of the process.



Definition 1.1.3: (see [M1], Definition 5-1V) Lect (Xt,

t € T) and (Yt, t € T) be two stochastic processes defined
on the same probability space (%2,F,P) with values in the

same state space (E,E). The process (Y t € T) is a modi-

-t’

fication of the process (Xt,t e T) if Xt = Yt a.s for each

t e T.

If two processes (Xt) and (Yt) are modifications of
each other then they have the same finite dimensional distri-
butions (i.e.: P{th € Al,...,th € An} = P{Ytl e Ap,oee,
Ytn € An} for every finite system of times tyseeenty and
sets Al""’An of £; in other words (Xt) and (Yt) are equi-
valent processes ([Ml], Definition 3-IV)). This motivates

the fact that, as usually done when dealing with stochastic

processes, we will not distinguish between modifications of

the same process.

In this thesis, the state space will always be the real
line R equipped with its Borel sets B( R)* and the index set

T will be the positive real line R,. From now on we restrict

ourselves to this case. We will deal most of the time with

stochastic processes having a.s right-continuous trajectories.
We call them right-continuous processes fof abbreviation.
If two processes (Xt) and (Yt) are two modifications of
the same process then we write -

Xt = Yt a.s for each t ¢ R (1.1.1)

*The notation B([a,b]) denotes the Borel sets of an interval
[a,b].
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By

X = Y for every t e R, a.s (1.1.2)

we mean

-~

—~—

<
I

Y

¢ = ¢ t e R+} = 1

Condition (1.1.2) obviously implies (1.1.1). The following
Remark shows that the converse is true if the processes

(Xt) and (Yt) are both left or right-continuous.

Remark 1.1.4: Suppose (Xt) and (Yt) are two left or right

continuous modifications of the same process. Then clearly
the set

A= {Xt = Yt’ teQ,}

where Q, denotes the set of positive rational numbers, is

measurable, and
P(A) = 1

For t £ Q,, let t e Q, be a decreasing or increasing
(accordingly to the right or left continuity property of
the two processes (Xt) and (Yt)) sequence converging to t.

For w ¢ A we have
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1.2 STOPPING TIMES

The basic reference for this section is [M1], Chapter
IV and VII.
Let (Q2,F) be a measurable space and let (Ft, t eR,)

be a family of o-subalgebras of F such that one has Fs c Ft

if s < t. We say that (F t e R ) is an increasing family

t’
of o-subalgebras of F and we often use the simplified nota-

tion (@). For each teR, the<j—suba1gebraF%is called the o-alge-
bra of events prior tot. We denoteby F theoc-algebra generated

by the union of the c-algebras Ft and we set:

Ft+ = O Fs

The family (Ft) is said to be right-continuous if Ft = F .

t
for every t ¢ R,.

Definition 1.2.1: (see [M1], Definition 31-IV) Let (Xt)

be a stochastic process defined on a probability space
(2,F,P) and let (Ft) be an increasing family of o-sub-
algebras of F. The process (Xt) is said to be adapted
to the family (Ft) if Xt is Ft-measurable for every

t e R+.

We often take for the o-algebra Ft the o-algebra
o(Xu, 0 < u < t) generated by the process (Xt) up to time
t. If a process (Xt) is adapted to a family (Ft) we must
obviously have the relation Ft > o(Xu, 0 <u<t).

It is convenient to think of the events of F as the

representation of certain phenomena which can occur in a
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certain universe. The o-algebras Ft consist then of the
events that occur prior to the instant t. The Ft-measurable
random variables are hence those which depend only on the
evolution of the universe prior to t. In problems of
detection and filtering, the o-algebra Ft represent, loosely
speaking, the information available up to and at time t on
which our detection's scheme and estimation are based. The
situation where Ft is given by o(X,, 0 < u < t) means then
that the available information at time t is obtained by
observing the process (Xt) up to time t. In the other case
where Ft properly contains O(Xu, 0 < u < t) then we have
more information at our disposition than merely that gener-
ated by the process (Xt).

We will now introduce the very important notion of
stopping times. Suppose an observer watches for the appear-
ance of a specified event and notes the first time T(w) it
océurs. The event {T < t} takes place if and only if the
event we are watching for is produced at least once before
the time t, or at that instant. Therefore the event {T < t}
belongs to the o-algebra of events prior to t. This moti-

vates the following definition: ([M1], Definition 33-1IV)

Definition 1.2.2: Let (Q,F) be a measurable space and let

(Ft) be an increasing family of o-subalgebras of F. A

positive random variable T defined on (Q,F) is said to
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be a stopping time* of the family (Ft) it T satisfics
the following property: the event {T < t} belongs to

Ft for every t e R_.

Remark 1.2.3:(a) We often allowstopping times to take the

value +«

(b) The notion of stopping time depends on the family
(Ft)(but not on a measure).

(c) If the condition {T < t} ¢ Fo for every t e R, is
satisfied and if the family (Ft) is right-continuous then

T is a stopping time (see [M1], 834-1V).

To get some intuitive feeling for stopping times, here
are a couple of examples. In a nuclear reactor, the motion
of a particle may be described by a random walk; the
first time a particle hits an absorbing barrier, e.g., the
shield, is a stopping time. Involved in a betting game you
might decide to limit the risks by adopting the following
strategy: you will stop playing the first time a given gain
or loss is achieved. The time at which this occurs 1s a
stopping time. The two above stopping times are called hit-
ting times (see later Example 1.2.6). Stopping times are a
basic tool in the study of Markov processes and martingales.

To each stopping time T we can associate in the following

*The name "stopping time" ("optional time," "Markov time"
are also used in the literature) comes from the theory of
Markov processes. Generally speaking these were times at
which decisions were taken or where the process was stopped.
A better name, in our opinion, would be '"causal time."
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way a o-algebra which can be interpreted as
the o-algebra of cvents prior to T (sec [M1],

Definition 35-1V):

Definition 1.2.4: Let T be a stopping time of the family

(F We denote by F.. the collection of events Ae F, such

t)' T T

that
AN AT < th e F for every t

We call FT the o-algebra of events prior to T.

It 1s easily verified that these events do constitute a
o-algebra and that if the stopping time is equal to the

constant t, the o-algebra Ft 1s recovered.

Theorem 1.2.5: Let S and T be two stopping times such

that S < T then we have FS c FT.

For the above and other properties of stopping times see [M1],

Chapter 1IV.
In this thesis all stopping times will be of the type

presented in the following example ([M1], § 44-1V).

Examples 1.2.6: Let (Ft) be a right continuous tfamily and

let (Xt) be a right-continuous stochastic process adapted

to the family (Ft). Let B be an open subset of R and define:

inf {s: XS e B} if this set is
~non empty

k +00 otherwise
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We have

= U
{DB <t T rational {Xr ¢ BJ

r ~ t
from the right-continuity of the paths. The cvent on the
left thus belongs to Ft and this implies by Remark 1.2.3 (c)
that DB is a stopping time. This stopping time is called
the first passage time or hitting time of B.
We now give a classification of stopping times which
will be very useful in the rest of this work, in particular

to classify point processes.

Definition 1.2.7: (see [Ml], Definition 42-VII; [D1])

Let T be a stopping time of the family (Ft).

(a) T is said to be totally inaccessible (with respect
to the family (Ft)) if T is nota.s infinite and if for
every increasing sequence (Sn) of stopping times majorized
by T we have P{1lim S, =T, S, <T< = for every n} = 0.

(b) The stopping time T is said to be inaccessible
(with respect to the family GtD if there exists a totally
inaccessible stopping time S such that P{T = S < o} > 0.

(c) A stopping time T is said to be accessible (with
respect to the family (Ft)) if it is not inaccessible.

(d) A stopping time T is said to be predictable (with
respect to the family (Ft)) if there exists an increasing
sequence (Sn) of stopping times which converge a.s to T
and such that for every n one has a.s Sn < T on tHe set

{T > 0}.
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It should be strongly emphasized that all these definitions
depend on the family (Ft) choosen. Clearly predictable
(resp. totally inaccessible) stopping times are accessible
(resp. inaccessible). But in certain circumstances accessible
stopping times are predictable. Before elaborating on this
result we need the following concepts ([M1], Definitions 39

and 40, VII).

Definition 1.2.8: The family (Ft) is said to be free of

times of discontinuity if for every increasing sequence
(Sn) of stopping times

F.o.. VF
(1%m Sn) n Sn

Definition 1.2.9: Let T be a stopping time of a family

(Ft) and let A be an element of FT' By TA we denote the
stopping time

T(w) if weA
T ) -

-+ 00 otherwise

The fact that TA is indeed a stopping time can be

easily verified.

Definition 1.2.10: Let T be a stopping time; T 1is .said to

be a time of discontinuity for the family (F,) if there
exists an event A ¢ FT and an increasing sequence (Sn)

majorized by TA such that the event

{1§m Sn = TA}
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does not belong to the o-algebra X Fo -
“n

It can be verified that the two Definitions 1.2.8 and

1.2.10 are compatible (see § 41-VII of [M1]).

Theorem 1.2.11: (Theorem 45-VII of [M1]) Let T be an

accessible stopping time of a family (Ft) which is not
a time of discontinuity for the family (Ft). Then T 1is

predictable.

We now give some illustrations. In Section 2.4, where
the above concepts are applied to counting processes, it is

t
h occurrence of a

shown in particular that the time of n
Poisson process is a totally inaccessible stopping time with
respect to the family of o-algebras generated by the process
itself. Note that any stopping time with respect to a
family (Ft) is always predictable with respect to the family
(é;) where Gt =F for each t. A stopping time which is a

constant is obviously predictable with respect to any family

of o-algebras. Define now a family (Ft) by

F

¢ {¢,0} 0 <t<1

-
|

{¢,{w1},{w2},9} 1 <t<w

The stopping time

T(w) =
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for any a greater than one is a time of discontinuity for

the family (Ft). To see that define the sequence of

stopping times (s, 4 1 - 1/n). Then S, < T and

{11:';m s, = T} = {wl} ¢ X’an = {¢,0}

This stopping time T is accessible but not predictable.

Finally we give a decomposition result for stopping

times (Theorem 44-VII of [M1]).

Theorem 1.2.12: Let T be a stopping time. There exists an

(essentially unique) partition of the set {T < «} into |
two elements of FT’ A and Al, such that the stopping time

T, is accessible and the stopping time T 1 is totally

A A

inaccessible.

1.3 MEASURABLE PROCESSES

Definition 1.3.1: ([M1], Definition 45-1V) Let (Q,F,P)

ﬁe a probability space, and let (Ft’ t e R,) be an in-
creasing family of o-subalgebras of F. Let (Xt, t gﬁR+)
be a stochastic process. We say that (Xt) is progres-
sively measurable with respect to the family (Ft) if, for
each t e R, the mapping (u,w) - Xu(w) from [0,t] x
into (R,B(R)) is measurable with respect to the c-algebra
B([0,t]) x Ft‘ The process (Xt) is said to be measurable
(without reference to a family of o-algebras) if the map-
ping (t,w) ~ Xt(w) is measurable over the product o-alge-

bra B(R,) x F.
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For a measurable process (Xt) adapted to (Ft) there always
exists a modification which is‘progressively measurable (see
[M1] Theorem 46-1V). We will always deal with processes
with right- (sometimes left-) continuous trajectories. The

following theorem is then what we need ([M1], Theorem 47-1IV).

Theorem 1.3.2: Let (Xt) be a right-continuous stochastic

process adapted to a family (Ft)' The process (Xt) is
then progressively measurable with respect to the family

(Ft). The same conclusion is true for a process with left

continuous paths.

The following notation will be used constantly ([M1], Defini-

tion 48-1V).

Definition1.3.3: Let (Xt)be a measurable stochastic process

_defined on (Q,F,P) and let H be a positive random variable

defined on 9@ . We denote by Xy the random variable X(w)
H(w)

Usually H is a stopping time and is allowed to take the
value +« when (Xt) is a process defined on R, U {=}.

The following theorem is a basic tool when using stopping
times, in particular when studying martingales ([M1],

Theorem 49-1V).

Theorem 1.3.4: Let (Xt) be a prdgressively measurable

process with respect to a family (Ft) and let T be a
stopping time with respect to (Ft) (possibly infinite).

The random variable XT is then FT-measurable.
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We will often encounter the following situation. Let

(T t ¢ R,) be a system of stopping times of a family of

t’
o-algebras (Ft, t € R, ) such that the mappings t » Tt(w)

are increasing and right-continuous. Let (Xt’ t e R ) be
a stochastic process measurable with respect to the family

(F., t eR). The process (Yt = XT ) and the family of
t

t’

o-algebras (Gt = Fp ) are respectively called '"the trans-
t
formed from (Xt) by the system (Tt)” and "the family of

transformed o-algebras." We have ([M1], Theorem 57-1V).

Theorem 1.3.5: The process (Yt) is progressively measurable

with respect to the family (Gt).

1.4 CLASS (D) AND (DL) PROCESSES

The following concepts which are generalizations of
the notion of uniform integrability will be needed later on
when dealing with the Doob-Meyer decomposition of supermart-

ingales.

Definition 1.4.1: ([M1], Definition 17-1IV) Let (Xt, teR,)

be a right-continuous stochastic process adapted to a family
of o-algebras (Ft,tsﬂR;} Define 1 as the collection of all
finite stopping times of the family (Ft) (respectively,Té
the collection of all stoppings times bounded by a positive
constant a). (Xt) is said to belong to the class (D) (res-
pectively belong to the class (D) on the interval [0,a]) if
the collection of random variables XT’ Tert (respectively

T ¢ Ta) is uniformly integrable.
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(Xt) 1s said to belong to the class (DL), (or locally
to the class (D)) if (Xt) belongs to the class (D) on

every interval [0,a], (0 < a < «),

Remark 1.4.2(a): A constant time t is a particular case

of stopping time. Therefore if a process (Xt) belongs to
the class (D), it is a fortiori uniformly integrable. The
converse is not true (for a counter example see [J1]).

(b) Every right-continuous and uniformly integrable
martingale belongs to the class (D) ([M1], Theorem 19-VI).

(c) If (X,) is a process such that X, | < Y. a.s

¢l
and if (Yt) is a process which belongs to the class (D),
then it is éasy to verify that the process (Xt) also be-
longs to the class (D).

(d) The notions of class (D) and (DL) arise in the
context of the Doob-Meyer decomposition of a supermartin-
gale into the dlfference of a martlngale and an increasing
process, but in the continuous parameter case only. While
a supermartingale with discrete index set always admits a
Doob-Meyer deéomposition, such a decomposition exists, in

the continuous parameter case, if and only if the super-

martingale belongs to the class (DL) (see Section 1.7).

1.5 MARTINGALES

In this section every stochastic process is defined
on a fixed probability space (Q,F,P) and adapted to the

same family (Ft, t e R,). We suppose that the probability



22

space (2,F,P) is complete and that the o-algebra FO con-

tains all the P-negligible sets.

Definition 1.5.1: ([M1], Definition 1-V) Let (F t e R,)

t’
be an increasing family of o-subalgebras of F and (Xt,

t e mw) a real-valued process, adapted to the family

(F The process (Xt) is said to be a martingale (res-

t)'
pectively, a supermartingale, a submartingale) with res-
pect to the family (Ft) if

(a) Each random variable Xt is integrable, and

(b) For every pair s,t of R_ such that s < t we have

E(Xt]FS) = X, a.s (respectlvely, < X

Remark 1.5.2(a): This definition is not the most general.

First the index set R, can be in fact any arbitrary set
ordered by a relation <. Secondly, in certain cases the
assumption of integrability of Xt can be weakened (see [N1],
Section 5 of Chapter IV).

(b) Here again the above definition is very much de-
pendent on the family (Ft) choosen.

(c) If (Xt) is a supermartingale then the process (-Xg
is a submartingale, and conversely. Thus theorems need

only be stated for supermartingales (or submartingales).

We will not give here the basic properties and theorems
concerning supermartingales, e.g., fundamental inequalities,
optional sampling theorem, convergence theorem, etc. All

these results and many others can be found, among other
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sources, in [M1], Chapter VI.
The simplest example of a martingale is the following

([M1], § 3-V).

Example 1.5.3: Let (F

e0 T e R, ) be an increasing family
of o-subalgebras of F. For each integrable random variable
X set

X, = EQXIF)

The process (Xt) is then a martingale with respect to

the family (Ft). By Theorem 19-V of [M1], this martingale

is uniformly integrable. Conversly if a martingale (Xt)

is uniformly integrable it follows from the supermartingale
convergence theorem ([M1], Theorem 6-VI) that this martin-

gale can be written in the above form. More precisely

we have: ([M1], Theorem 18-V)

Theorem 1.5.4: Let (Ft) be an increasing family of o-sub-

algebras of F. A process (Xt) is a uniformly integrable
martingale with respect to the family (Ft) if and only

if it can be written in the form

X, = E(XIF)

where X_ is the 1imit a.s and in the mean of Xt as t

goes to infinity.

Most theorems for supermartingales assume the right-
continuity of these supermartingales. The following
theorem gives a necessary and sufficient condition for

the existence of a right-continuous modification
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([M1], Theorem 4-VI)

Theorem 1.5.5: Suppose (Xt) is a supermartingale with

respect to a right-continuous increasing family (Ft).
The supermartingale (Xt) then admits a right-continuous
modification if and only if the mean function E Xt is

right-continuous.

Remark 1.5.6: The mean of a martingale being constant

it follows immediately that any martingale always admits
a right-continuous modification. In accordance with the
fact that we do not distinguish between modifications of

the same process, we will adopt the following convention:

when we speak of a martingale (Xt), we always mean its

right-continuous modification. Consequently all martingales

which appear in this thesis are right-continuous.

The following very useful result does not appear in
our main reference [M1] but in [M3]. Therefore an original
proof of this result will be provided, for easy reference,

in Appendix A.1.

Lemma 1.5.7: Let (Fn, n ¢ N) be an increasing family of

o-subalgebras of F and F_ be the o-algebra generated by
ﬁhe union of the Fn. Let (Fn, n ¢ N) be a sequence of
random variables bounded in absolute value by an inte-
grable random variable G and converging a.s to a random

variable F. Then E(Fn|Fn) converges a.s to E(F|F ).
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1.6 POTENTIALS AND THE RIESZ DECOMPOSITION

The hypotheses of the preceding section will be used

again in this one.

Definition 1.6.1: ([M1l], § 9-VI) Let (Xt) be a right-

continuous supermartingale. We say that (Xt) is a
potential if the random variables Xt are a.s positive

and if 1lim EXt = (.
t—>oo

We have the following theorem ([M1], Theorem 10-VI).

Theorem 1.6.2: (Riesz Decomposition) Let (Xt) be a right-

continuous supermartingale with respect to a right-con-
tinuous increasing family (Ft). The following two con-
ditions are equivalent:
(a) There exists a submartingale (Vt) such that:
) Vt < Xt a.s for each t.

(b) There exists a martingale (Yt) and a potential

(Zt) such that Xt = Yt + 7, a.s for each t e R,.

t

These two processes are then unique up to modification.

Remark 1.6.3(a): The right-continuity property of the

processes involved implies (see Remark 1.1.4)

Xt = Yt + Zt for every t e R, a.s

(b) This decomposition is easily obtained when the
right-continuous supermartingale is uniformly integrable:
by the supermartingale conVergence theorem ([M1], Theorem

6-VI), Xt converges a.s and in the mean to a F_-measurable
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random variable X, . Define the martingale: (Yt =
E(XmlFt)). Then it is easy to verify that (Z, = X, -
E(X&IFt)) is a potential. Furthermore we also have, by

the convergence theorem again:

lim Z = 0
t>o t

(see [M1], § ll—VI).

1.7 DOOB-MEYER DECOMPOSITION

INTRODUCTION

This decomposition of a supermartingale into the
difference of a martingale and a continuous increasing pro-
cess, discovered by Doob in the discrete case and demon-
strated by Meyer in the continuous case, will play a very
important part in our study of point processes. We will
therefore spend some time reviewing the basic concepts and
results behind this decomposition. For a complete account
of this theory see [Ml1] énd [R3]. To fix some ideas let
us first take a look at the discrete case.

Let (Q,F,P) be a probability space and (Fn, n ¢ N) be
an increasing family of o-subalgebras of F. Denote by
(Xn, n ¢ N) a supermartingale relative to the family (Fn)
and define the random variables Yn and An by induction in

the following manner:

Y =X A =0

(0) 0 (0]

Yo=Y+ [Xl'E(Xl!Fo)] Ap =X, - E(XIIFO)

Yo = Y17t [Xn_E(anFn-l)]" A= AL 47 [Xn-le(anFn-l)]
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The following propertics arc casily veriflicd:

(a) Xn = Yn - An for every n.

(b) The process (Yn) is a martingale.

(c) The paths of the process (An) are increasing func-
tions of n.

(d) Ao = 0 and An is Fn_l-measurable for every n, and
integrable.
Any process (Bn) adapted to the family (Fn), and having
sample paths increasing as functions of n and such that B0
= 0 will be called an increasing process. The preceding
contruction shows that every discrete supermartingale (Xn)
is equal to the difference of a martingale and an increas-
ing process. Consider now the uniqueness of such a decompo-
sition. Starting from an increasing process (Bn) and a
martingale (Zn) form the supermartingale (Xn = I, - Bn),
and construct the processes (Yn) and (An) as above. A

simple calculation shows that if B is Fn_l-measurable then

we have: Yo = 7 and

)
L O |
which implies that Yn = Zn and consequently An = Bn' Con-

versly if A, = B, then B, is by construction Fn_l—meaqurable.

Hence A_ = B if and only if B_ is F -measurable. There
n n n n-1 =

thus exists only one decomposition of (Xn) by means of an

increasing process satisfying property (d).

In the continuous case only supermartingales of class

(DL) do have such a decomposition and its uniqueness depends
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on a property of the increasing process (intreasing pro-
cesses having this property are called natural) which is
analogous to, although much more complex thaﬁ, the dis-
Crete case.

We will now define precisely what is meant by a Doob-
Meyer decomposition. Every stochastic process in the re-
mainder of this section is defined on a single complete
probability space (Q,F,P) and adapted to an increasing,

right-continuous family (F t e R,). We suppose that

t,
the o-algebra Fo contains all the P-negligible sets. Super-
martingales and stopping times are always relative to the
above family (Ft). For the following definitions see [M1]

Definitions 3 and 5, VII:

Definition 1.7.1: Let (At, t e R+) be a real-valued

stochastic process, adapted to the family (Ft). We say
that (At) is an increasing process if

(a) The sample paths of (At) are a.s zero for t = 0,
increasing and right-continuous.

(b) The random variables At are integrablc.

We say that the increasing process (At) is integrable if

s%p EAt < ®

Definition 1.7.2: Let (Xt) be a right-continuous super-

martingale. We say that (Xt) admits a Doob-Meyer de-
composition if there exists a (right continuous) martin-
gale (Yt) and an increasing process (At) such that

Xt = Yt - At for every t R,.



Suppose that (At) 1s an integrable increasing process

A

and define the process (Xt = E(AmlFt) - A It 1s easily

t)'
verified that (Xt) is a potential of the class (D) and that
the above expression is a Doob-Meyer decomposition of (Xt)

(note that by our convention E(AwlFt) is a right-continuous

martingale; see Remark 1.5.6). This motivates the following

definition ([M1], Definition 6-VII):

Definition 1.7.3: Let (At) be an integrable increasing

process. The process (E(AmlFt) - A) is called the

potential generated by (At)'

INTEGRATION WITH RESPECT TO AN INCREASING PROCESS
Let (At) be an increasing process and (Xt) be a
measurable process. Since by Theorem 14, Chapter 11 of
[M1] (or Proposition III.1.2 of [N1]) the trajectories
of (Xt) are BGR+) measurable we can consider for each
w e Q the Lebesgue—Stieltjesintégral on R, 1f it exists:
J Xt(w)dAt(w)
0

From Fubini's theorem this integral is an F-measurable
function of w. Now if (Xt) is progressively measurable

with respect to the family (Ft) the process (Yt) defined by:

t
Yt = J XsdAs
0
(where the point t is included in the interval of integra-

tion*) is, if it exists, Ft-measurable for every t ¢ R,

*The notation gb is used for f(a bl
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and has right-continuous paths. It is hence progressively
measurable (see Theorem 1.3.2). Then if T is a stopping-
time the random variable

T
YT = J XSdAS
0

is FT-measurable (Theorem 1.3.4).

UNIQUENESS

As said in the introduction the uniqueness of the Doob;
Meyer decomposition depends on a property of the increas-
ing process, which we now define as ([Ml], Definition 18-

VII).

Definition 1.7.4: Let (At) be an increasing process.

We say that (At) is a natural increasing process if
t t
EJ YSdAS = EJ YS_dAS

for every t ¢ R, and every positive, bounded, right-

continuous martingale (Yt).

Remark 1.7.5(a): The martingale property of a process is

very much dependent on the family (Fto choosen and there-
fore so is the above definition. To be more precise we
should speak of an increasing process as being natural
with respect to a given family (Ft). We will see later
on that the same process can be natural with respect to
one family but not with respect to another one.

(b) If the process (At) is integrable then the condi-



tion is equivalent to ([M1], Theorem 19-VII)

Ef stAs = EJ YS_dAS
0 0

(c) Deterministic 1ncreasing processes are natural
with respect to any family (Ft): From the Fubini's theorem

it follows that

t t
E J stAs = J (EYS)dAS
0 0
and
t t
EJ YS_dAS = J (EYS_)dAS

0 0

Now for a martingale EYS EYS_ (See [M1], Theorem 4-VI)
and the result follows.
(d) Continuous increasing processes are obviously

natural. We can now state the uniqueness Theorem ([M1],

Theorem 21-VII).

Theorem 1.7.6: (Uniqueness) Let (Xt) be a right-continuous

supermartingale. There exists at most one natural in-
creasing process (At) such that the process (Xt + At) is

a martingale.

We reexamine now for an increasing process the property
of being natural. The next theorem gives another characteri-

zation of this property. But first ([M1], Definition 48-

VII and Theorem 49-VII):
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Definition 1.7.7: Let (At) be an increasing process and T

be a stopping time. We say that (At) charges T if
P{A, = Ap-t >0

Theorem 1.7.8: Let (At) be an integrable increasing pro-

cess. Then (At) is natural if and only if the following
two properties are satisfied:

(a) For every sequence of stopping times (Sn) which
increases to a stopping time S, the random variable AS
is measurable with respect to the o-algebra X an.

(b) (At) charges no totally inaccessible stopping

times.

Recall that in the discrete parameter case (see the
Introduction to this section) property (d) for an increasing
process (An is Fn-l measurable) is the condition under
which the Doob-Meyer decomposition is unique. Condition
(a) in the above theorem is clearly the analogue in the
continuous parameter case, of property (d). But condition
(b) above has no equivalent in the discrete cése. From
Definition 1.7.4 the property of being natural has clearly
something to do with the existence of martingales which
would jump at the same times as the increasing process.
Hence in view of Theorems 46 and 47, Chapter VII, of [M1],
condition (b) is not unexpected.

The next result tells us that stopped natural increas-

ing processes are still natural:
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Theorem 1.7.9: Let (At) be a natural increcasing process

and T be a stopping time. Then the increasing process

(At T) is natural with respect to the two families (Ft)

and (FtAT)'

This theorem appears in [M1] (Theorem 19-VII, (3));
but there, it is not clear with respect to which family
(Ft) or (FtAT) the stopped process (AtAT) is natural.

This is why we provide a proof of this result in Appendix

A.2.

The uniqueness theorem and the above result immediately

give us:

Lemma 1.7.10: Suppose (Xt) is a right-continuous super-
martingale with a unique Doob-Meyer decomposition with

_respect to a family (Ft) given by:

where (Yt) is a martingale and (At) a natural increasing
process. Let T be a stopping time. Then the unique
Doob-Meyer decomposition with respect to the family
(FtAT) of the supermartingale (XtAT) (with respect to

(FtAT)) is given by:

Xer = Yoo~ Aot

EXISTENCE

We have seen (Definition 1.7.3) how potentials of the

class (D) can be gencrated by increasing integrable
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processes. The next existence theorem states the converse

result ([M1], Theorem 29-VII)

Theorem 1.7.11: Let (Xt) be a right-continuous potential
of class (D). There then exists an integrable natural,
increasing process (At) which generates (Xt), and this

process is unique.

Since the natural increasing process (At) that generates
a potential (Xt) is uniquely determined by (Xt), the
continuity property of the process (At) follows from a

property of (Xt) ([M1], Definition 33-VII)

Definition 1.7.12: Let (Xt) be a right-continuous super-
martingale of the class (DL). We say that the super-
martingale (Xt) is regular if, for every increasing

- sequence (Tn) of stopping times which converges to a

bounded stopping time T,

T, T

lim EX = EX

n
For example every right-continuous martingale is regular.
A supermartingale which has with some positive probability

a jump at a fixed time t cannot be regular.

Theorem 1.7.13: ([M1], Theorem 37-VII) Let (Xt) be a right-
continuous potential of the class D, and let (At) be the
natural, integrable, increasing process which generates

(X The process (At) is continuous if and only if the

t)'
potential (Xt) is regular.
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We get now the existence theorem for supermartingales
of the class (DL) from the above results for potentials
of the class (D), by using the Riesz decomposition (scc
Theorem 1.6.2). A limiting argument is also involved
here to get the extension from the class (D) to the class

(DL) (see [M1], Theorem 31-VII)

Theorem 1.7.14(a): A right-continuous supermartingale

(Xt) has a Doob-Meyer decomposition

where (Yt) denotes a right-continuous martingale and
(At) an increasing process, if and only if (Xt) belongs
to the class (DL). There then exists such a decomposi-
tion for which the process (At) is natural, and this
decomposition is unique.

(b) The natural increasing process (At) is continuous

if and only if the supermartingale (Xt) is regular.

The following simple remark, a direct consequence of the

uniqueness theorem, is often used later on:

Remark 1.7.15: Let (Xt) be a right-continuous supermartin-

gale of the class (D) and denote its Riesz decomposition

(see Theorem 1.6.2) by:
X, = P_+Y (1.7.1)

where (Pt) denotes a potential and (Yt) a right-continuous

martingale. By Remark 1.6.3(b) the martingale (Yt)



is uniformly integrable (this implies by Remark 1.4.2(b)

that it belongs to the class (D)) and is given by:

Yoo = BT (1.7.2)

The potential (Pt), which is the difference (see (1.7.1))
of two processes of class (D), also belongs to this class
and by the above Theorem 1.7.11 there exists a natural inte-
grable increasing process, say (At), which generates (Pt).

That is (see Definition 1.7.3):

Pt = E(AwlFt) - At (1.7.3)
Introducing the two relations (1.7.2) and (1.7.3) in
(1.7.1) we get:
X, = E(A, * X |F) - A (1.7.4)

The first term in the RHS of Eq. (1.7.4) is a right-continu-
ous martingale and the second term, (At), is by definition

a natural, increasing, integrable process. Relation

(1.7.4) is therefore the unique Doob-Meyer decomposition of

(X,) -

The above is only a summary of results concerning the
Doob-Meyer decomposition. For other facts (e.g., the nat-
ural increasing process (At) can be obtained as the weak
limit of a sequence of absolutely continuous natural in-
creasing processes) we refer the reader to the original

source which is [Ml], Chapter VII, or [R3].
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1.8 SQUARE INTEGRABLE MARTINGALLES

INTRODUCTION

Ito integrals are now well known. Doob also defined
stochastic integrals, in particular with respect to pro-
cesses of independent increments. The generalization of
these concepts to stochastic integration with respect to
local martingales was rendered possible by the Doob-Meyer
decomposition. Doléans-Dade and Meyer on the one hand and
Kunita and Watanabe on the other did the pioneering work
in this area. But their results are not similar and this
has created some confusion. By giving here the following
summary of results (Sections 1.8 and 1.9) we hope to intro-
duce as well as clarify some of the definitions and results
concerning this relatively new and still developing sub-
ject. The basic references for this résumé are [D1] and
[M5] (see also [KZ]).

The basic assumptions of the preceding section (just
above Definition 1.7.1) are used again in this section and
the next one. If ft is a right-continuous function with
left-hand limits we denote the jump of ft at time t by
SIS

Square integrable martingales play an important part

in the theory of stochastic integration and also later on

in this thesis:
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Definition 1.8.1(a): We say that a right-continuous martin-

gale (Xt) is square integrable if we have
l,XZ
b%p, t “~

We denote by MZ(P,Ft) (or simply M2 when it does not
create confusion) the space of all square integrable
martingales (Xt), with respect to the measure P and
family (Ft), such that XO = 0.
The subspace of M2 consisting of the continuous martin-
gales is denoted by Mg.
We equip MZ with a scalar product ((Xt),(Yt)) = BE(X_Y_)
for (Xt) and (Yt) bélonging to MZ

(b) Mi(P,F ) denotes the space of (P,F,) martingales

(X,) such that X = 0 and EX2 < o for each t.
t 0 t

Remark 1.8.2(a): By Theorem 22-11 of [Ml1], a square inte-

grable martingale (Xt) is uniformly integrable and hence

(Theorem 1.5.4) can be expressed as Xt = E(leFt) where
EXOZO < o,

(b) If (X.) ¢ M

t! &

This implies that all the following results stated for

then (Xt a) £ MZ for any constant a.

martingales 1n MZ can be extended to the case of martin-

- 2
vales M.
gales 1n .

Theorem 1.8.3: ([D1], Theorem 1) M2 is a Hilbert space

2
and the subspace Mé is closed in ue
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NATURAL INCREASING PROCESSES ASSOCIATED WITH SQUARE
INTEGRABLE MARTINGALES AND STOCHASTIC INTEGRALS

The following result is a consquence of the Doob-Meyer

decomposition ([M1], § 23-VIII; [D1], Theorem 2).

Theorem 1.8.4: Let (Xt) £ MZ. There exists a unique nat-
ural increasing process denoted (<X>t) such that the pro-

cess (Xi - <X>t) 1s a martingale.

We will say that (<X>t) is the increasing process
associated with the martingale (Xt).

For two stopping times S and T such that S < T we have
the basic relation:

2

2 2 .
E(XT . XS]FS) = E[(XT - XS) IFS] = h(<X>T - <X>S]FS)

More generally if (Xt) and (Yt) are two square inte-

grable martingales we set (see [D1]):

. 1 ) ]
Definition 1.8.5: <X,Y>t = 7(<X+Y>t <X> <Y>t)

t

Remark 1.8.6: It is easy to see that

(a) <X>t = <X,X>t

(b) The process (<X,Y>t) is the difference of two
natural increasing processes.

(c) The process (XtYt - <X,Y>t) is a martingale.

(d) The process (<X,Y>t) is the unique process satis-

fying properties (b) and (c) above.
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We will now define stochastic intégrals with respect
to square integrable martingales. Recall that if ft is a
right-continuous function of bounded variation on the real
line then fb - fa is the integral of df over (a,b], whose
indicator function is left-continuous. It is therefore
natural to start with the integration o lcft-continuous

simple processes:

Definition 1.8.7: (see [M5]) A process (Ht) defined

as follows 1is called a simple process of the family (Ft).
Take some finite subdivision 0 = t, < ty < <ty of
the positive real line R, and suppose that:

(a) HO is FO measurable and bounded

(b) on (ti_l,ti], i=1,...,n, Ht = Hi'where Hi is
Ft measurable and bounded
i-1
(c) after ts ”t = 0.

These simple processes give rise to the class of predict-

able processes ([M5], Definition 1):

Definition 1.8.8: The process (Ht) 1s predictable (with

respect to the family (Ft)) if the function (t,w) - Ht(w)
1s measurable over the o-algebra on R, x Q generated by

all simple processes of the family (Ft).

Definition 1.8.9: ([M5], Definition 2) Let (X,) e Wl

We say that the process (Ht) belongs to the space

L*(X) if (H,) is predictable and
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(o] 2 "
EJ HS d<X>S <
0
We equip the space LZ(X) with the semi norm

) ® 2 1/2 2
TUSTIEINCI IS SRR I g AleS
0 .
Let (Xt) € M2 and (Ht) be a simple process. We define

the stochastic integral by:

HdX. = HX +H (X, - X, ) +--++ H (X, - X )
£ s s o"o 1 tq t, n-t n-1
and we denote this process by ((H-X)t). We observe:

(a) ((H-X)) e W

(0) B([” HgdX)? = E[” HId<Xsg
0 0

) This last property (b) defines a norm preserving
operator from the space of simple processes (which is a
dense subset of LZ(X)) into the space MZ. By applying
the procedure of functional completion we obtain the defi-

nition of stochastic integrals with respect to square inte-

grable martingales ([D1], Theorem 3; [M5], Theorem 1):

Theorem 1.8.10(a): The mapping (Ht) - ((H~X)t) from simple

processes to martingales can be uniquely extended as a
norm preserying operator from LZ(X) to M2

(b) This stochastic integral is uniquely characterized
by the following property: Let (Ht) € LZ(X). For any

(Yt) € M2 we have
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t

<(H.X),Y>t = [ HSd<X,Y>S
0

(c) For almost all w, we have
A(H-X)t = Ht'AXt

DECOMPOSITION OF THE SPACE M2

Definition 1.8.11: ([M5], Definition 4) A stable subspace

S of M2 is a closed subspace of M2 such that (Xt) e S

and (H,) e LZ(X) imply (H-X), € S.

2

Remark 1.8.12: The stable subspace generated by (Xt)re M

is given by {(H-X)t;(Ht) € LZ(X)}

Definition 1.8.13: ([Ml], Definition 26-VIII;, [M5], Defi-

nition 5) Two martingales (Xt) and (Yt) belonging to M2

are said to be orthogonal if <X,Y>t = 0.

Remark 1.8.14: The above definition is equivalent to say-

ing that the process (Xth) is a martingale. If <X,Y>t =0
then by Remark 1.8.6(c) (Xth) is a martingale. Conversly
if (Xth) is a martingale then <X,Y>t is also a martingale;

by Remark 1.8.6(b) and Lemma 1.9.4 we must have <X,Y>t‘5 0.

If S is a stable subspace of MZ, Sl-denote the sub-

space of all square integrable martingales which are ortho-
gonal to S. Now similarly to the projection theorem in

Hilbert space theory we have ([M5], Theorem 2):
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Theorem 1.8.15: Let S be a stable subspace of Mz. Every

(Xt) € MZ can be decomposed uniquely into (Yt + Zt)

with (Y,) e S and (z,) ¢ sl
As an application we have ([D1], Theorem 4; [M5]):

Theorem 1.8.16: Let (Xt) € MZ. Then there exists a unique

decomposition of (Xt) into a sum of two square integrable

Land (x§) ¢ il

. C d C
martingales (Xt) and (Xt) where (Xt) £ MC o

Remark 1.8.17: The martingale (X%) is not simply the pro-
cess having constant sample paths except for jumps which
are the same as those of (Xt). Such a process would not
necessarily be a martingale. Now (see the remark, on p. 90,
following Proposition 3 of [D1]; [M5]) if (Xt) € M2 and

has a.s sample paths of bounded variation on every finite
interval then (Xi) =0, i.e., (Xt) € MiL. In fact Mgi is
the closure in M2 of such martingales of bounded variation.
If (Xt) £ Mz, Meyer calls the process (X%) the compensated

sum of the jumps of (Xt).

QUADRATIC VARIATION PROCESSES AND STOCHASTIC INTEGRALS
The above decomposition (Theorem 1.8.16) allows us
to associate to any square integrable martingale another

increasing process (this one not natural), ([D1], p. 87;

[M5])

Definition 1.8.18(a): Let (Xt) £ MZ. We call quadratic

variation process associated to (Xt) the following
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increasing process:

[X]t 8 <XC>t + Sgt (AXS)2

C . . . .
where <X > 18 the natural increasing process assoclated

with the martingale (Xi) (see Theorem 1.8.4).

(b) If (X.) and (Yf) are two elements of §2 we set:

[X,Y], = (XYl - [XI, - [Y],)

We have ([D1], Theorem 5):

Theorem 1.8.19: The process (Xz - [X]t) is a martingale.

Remark 1.8.20: Recall that (Xi - <X>t) is a martingale.

Hence the process ([X]£ - <X>t) is also a martingale.

Let (Xt) € Mz. The fact that the process (Xi - <X>t)
is" a martingale allowed us to construct a norm preserving
operétor from the space LZ(X) to M2 and to define stochastic
integrals. Similarly we can define a stochastic integral
and construct a norm preserving operator starting this time
from the martingale property of the process (X% —.[X]t).

It turns out (Theorem 6 of [D1]) that the class of inte-
grable stochastic processes and the stochastic integral
associated with the process ([X]t) are the same as those
associated with the process (<X>t). As before we also

have ([D1], Theorem 6; [M5], Theorem 4):
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Theorem 1.8.21: Let (Xt) and (Yt) belong to M2 and (”t)

to LZ(X). Then

(a) I;(f) [H [TAIX, Y ] <o

(b) The stochastic integral ((H.X)t) 1s uniquely

characterized by the property:

t
(00, = | HanY]
0

for every (Yt) € MZ.

\

The interest of the process ([X]t) is that it allows
an extension of stochastic integrals to local martingales
while the process (<X>t) does not. This is the subject of

the next section.

1.9 GENERALIZATIONS OF MARTINGALES

LOCAL MARTINGALES AND STOCHASTIC INTEGRALS

Definition 1.9.1(a): v’ is the class of all finite valued,

right-continuous adapted increasing processes (At) such
that AO =0

(b)y V = v" - v'. v is in fact the space of all right-
continuous, adapted processes having sample paths of
bounded variation on every finite interval, and which are
zero at the time origin.

(c) A" is the subspace of v* consisting of integrable

. . + +
increasing processes and A = A - A,
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Definition 1.9.2(a): ([M6], Definition 4) A right-con-

tinuous adapted process (Xt) is a local martingale if
there exists a sequence of stopping times (Tn) increas-
ing a.s to « such that for every n the process (XtATn)
on {Tn > 0} is a uniformly integrable martingale. |

(b) If the stopped process (XtAT ) is a square inte-
grable martingale then we say that ?Xt) is a square ‘inte-
grable local martingale.

(c) We denote by L(P,Ft) (or simply L) the space of
all local martingales (Xt) such that XO = 0 .

(d) We say that a sequence of stopping times (Tn) Te-
duées the local martingale (Xt) if the stopped process

(X ) is a uniformly integrable martingale.

tATn

Remark 1.9.3(a): The restriction to uniformly integrable

martingales, in the above definition, is not important:
if (Tn) is a sequence of stopping times such that (XtATn) .
is a martingale then the sequence of stopping times
(Rn 8 TnAn) makes the process (XtAR ) a uniformly integrable
martingale. ¥

(b) In the above definitions of spaces, a subscript

¢ indicates the subclass of continuous processes (e.g.,

LC denotes the space of continuous local martingales).

The following result will be most useful later on (compare

with Remark 1.8.17):
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Lemma 1.9.4: Let (Xt) eL.n V. Then

P{Xt = 0{ t e R} = 1

Remark 1.9.5: The proof of this result when (Xt) is a
martingale is given in [F1], Lemma 3.2.1. The extension

to local martingales is trivial. If furthermore the martin-
gale (Xt) belongs to A the above result follows from the
uniqueness of the Doob-Meyer decomposition. In this case
(Xt) can be expressed as a difference (At - Bt) where both
(At) and (Bt) belong to ,{. The process (Yt 4 Xt - At)

is then a supermartingale of the class (D) and thus admits

a unique Doob-Meyer decomposition. But (Xt - At) and

(0 - Bt) are precisely both such a unique decomposition
((At) and (Bt) are both natural because they are continuous).

So we must have (Xt = 0) and (At o Bt).

The extension of Theorem 1.8.16 to local martingales

is given by (see Theorem 7 of [D1]; [M6], Theorem 1):

Theorem 1.9.6: Let (Xt) e L. (Xt) can be written in a

unique way as Xt = Xi + X% where (X%) e L. and (X%) is

such that for every (Yt) € LC the process (X%Yt) e L.

By definition of a square integrable local martingale
(Xt) (Definition 1.9.2(b)) there exists a sequence of stop-
ping times (Tn) increasing a.s to » such that the stopped

process (X? 8 x ) is a square integrable martingale for

t.T
n
each n. Now if (Xt) € Les but 1s not necessarily square
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integrable, we can construct such a sequence of stopping

times as follows. Let

inf {t: |X_ | > n}

¢

o if the above set is empty

Because (Xt) is continuoﬁs, the stopped process (X?) is
bounded by n thus square integrable. Furthermore because
martingales have sample paths which are a.s bounded on every
compact interval (see Theorem 3-VI of [M1]) the above se-
quence (Tn) increases to «». Hence in both of these cases
the process (<Xn>t) makes sense and by the uniqueness of
this process we can uniquely define an increasing natural
process (<X>t) such that (Xtv- <X§t) e L. Now if (Xt)e L
but is not continuous or square ihtegrable, the above is no
longer possible because it is not always true that there
exi;ts a sequence of stopping times (Tn) which will make fhe
stopped process (XtAT ) a square integrable martingale.
Hence it 1s possible 20 extend the definition of the pro-
cess (<X>t) to continuous or square integrable local martin-
gales only; but this, in turn, allow us to extend the defini-
tion of the pfocess ([X]t) (see Definition 1.8.18) to local
martingales (see [D1], p. 98, [M6]). Stochastic integrals
with respect to local martingales can then be defined as in

Theorem 1.8.21.
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Definition 1.9.7(a): Let (Xt) e L. By [X], we denote the

t

quadratic variation process:

X, = XS+ ] (Xg)?

sit

(b) 1f (Xt) and (Yt) both belong to L, we set:

Y], = (Y], - [X], - Y1)

Remark 1.9.8(a): The fact that [X]t is finite follows from
[D1], Theorem 7 (see also [Al]).

(b) The process (Xth - [X,Y]t) e L (see [D1], p. 106).

We now give the results on stochastic integrals with

respect to local martingales ([D1], Section 4, [M6]).

Definition 1.9.9: ([D1], p. 98) H(Ft) denotes the class

.0f all locally bounded predictable (with respect to the
family (Ft)) processes (Ht)’ locally bounded meaning that
there exists a sequence of stopping times (Tn) increasing

to » and a sequence of positive numbers (Mn) such that

|H <1 | < M < ®a.s
To~t {Tn>0} n

Remark 1.9.10(a): (see [D1], remark on p. 100) Let (Ht) be
a right-continuous process with left-hand finite limits.
Then (Ht_) e H.

(b) By Theorem 3-VI of [Ml] every right-continuous
supermartingale (Xt) has sample paths with finite left-hand

limits. Hence the process (Xt_) e H. This result extends



to local-martingales (or semimartingales, defined later .

on).

Theorem 1.9.11: ([D1], Proposition 5; [M6], Theorem 2)

Given (Xt) e L and (Ht) e H there is one and only one

process ((H-X)t) such that

o
JCEOR R R e NG
0
for every (Yt) € L. The stochastic integral ((H-X)t)

belongs to L.

The following very important lemma makes the connection be-
tween stochastic integrals and Stieljes integrals when they

both exist ([D1], Proposition 3; [M6], Lemma 2):

Lemma 1.9.12: If (Xt) e L nV and (Ht) e H the integral
of (Ht) with respect to (Xt) is the same in its stochastic

and Stieltjes definition.

It might be appropriate now to compare the definitions
of Doléans-Dade and Meyer on the one hand and the approach
- of Kunita and Watanabe on the other. There are not the
same. First of all when Kunita and Watanabe speak of a local
martingale (Xt) they mean a square integrable local martin-
gale. This allows them to deal only with the natural in-
creasing process (<X>t). The class of integrable processes
is also different. Instead of the class of locally bounded

predictable processes they use the class Krc which is the
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closure of the class Krc with respect to the seminorm

t
2
(EJ KSd<X>S)1/2
0

for (Kt) € KrC and where

KrC = {(Kt): bounded right-continuous adapted processes
having left-hand limits}

Kunita and Watanabe do not need the notion of pre-
dictability because they assume that the family (Ft) is
free of times of discontinuity. 1In [D1], Doléans-Dade and
Meyer do not assume this last condition. But Meyer does
in [M7] and that allows him to integrate a larger class of

processes.

SEMIMARTINGALES AND THE CHANGE OF VARIABLES FORMULA

Definition 1.9.13(a): A semimartingale is a process (Xt)

which can be written as a sum:

X, = XO + Lt + A

t t

where XO is Fo-measurable, (Lt) e L and (At) e V.
(b) A process (Xt) with values in R™ is a semimartin-

gale if all its components are real semimartingales.

Examples of semimartingales are sub- and supermartin-
gales, and processes of independent increments.
The above decomposition is not unique. The only

intrinsic elements are (1) XO and (2) (LE) (see [D1],



Section 5). The natural increasing process (<LC> 1s hence

¢)
uniquely determined by (Xt). We set:

>

c c c. A c
Xt Lt and <X >t <L >

The stochastic integral ((H.X)t), where (Ht) ¢ H and
(Xt) is a semimartingale with a decomposition Xt = Xo + Lt
+ At.is defined by:

(H-X), = H_-X_ + (H-L), + (H-A),

where ((H°L)t) is a stochastic integral and ((H-A)t) is the
usual Stieltjes integral ft HsdAs' The next theorem, a
generalization of the Itg differentiation formula was first
obtainéd, for locally square integrablé martingales, by
Kunita and Watanabe (see [K1], Theorems 2.2 and 5.1) and
finally for semimartingales by Doléans-Dade and Meyer (see
[B1], Theorem 8; for the most general version of this |

theorem (for martingales taking values in a Hilbert space),

see [K2], Theorem 3):

Theorem 1.9.14: (Change of variables formula) Let (Xt) be

a vector ORn) valued semimartingale (we denote by X; the

ith component of Xt) and F a twice continuously differ-

entiable function of R" into L. Denote by D' the deriva-

th

tion operator with respect to the i~ coordinate. We

then have for each finite t:
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n .
i

t .
F(X,) = F(X)) + J I Dlp(xs_)dxS
0 1=1

DlDJF(XS-)d<X1C,XjC>S

I - s

1
1

. fd o

n . .
+ ] [AF(X)) - ] DlF(xS_)AX;]

s<t 1

1

where the sum sgt [...] in the RHS converges a.s for each
finite t. In particular the process (F(Xt)) is a semi-

martingale.

This formula gives rise to a lot of applications (see
[D1], p. 106; [M6] Theorem 4 on integration by parts, etc.).
We give only one of them, very important, which is the sub-

ject of a paper of Doléans-Dade [D2].

EXPONENTIAL FORMULA

Theorem 1.9.15: Let (Xt) be a semimartingale such that

(a) There exists one and only one semimartingale (Zt)

satisfying the stochastic integral equation:

(b) The solution (Zt) is given by:



-AX

1 S

= I P
Zt = exp(Xt <X >t) Sgt (1 + AXS)e

where the product in the RHS converges a.s for each t.

This theorem itself generates numerous applications,

in particular on multiplicative decomposition of martingales

(see [D2]).



CHAPTER 2

COUNTING PROCESSES AND INTEGRATED CONDITIONAL RATES

2.0 INTRODUCTION

In this chapter we use the Doob-Meyer decomposition to
uniquely decompose any counting process (Nt) for which the
random variable Nt is a.s finite for each t into a sum of a
square integrable local martingale and a natural increas-
ing process. This last process is then called the Inte-
grated Condition Rate as explained in the INTRODUCTION.
After defining counting processes and establishing some
notation in Section 2.1, we define and study the notion of
integrated conditional rate in Section 2.3 (Section 2.2 is
concerned with a preliminary result). In Section 2.4 three
classes of counting processes are defined: regular, access-
ible and predictable counting processes, these latter con-
stituting a subclass of accessible counting_processes. We
show that any counting process can be uniquely decomposed
into the sum of two counting processes which are respectively
regular and accessible. Regular counting processes have,
loosely speaking, totally unexpected times of jump.‘ Poisson
processes are of this type. On the contrary, the times of
jump of an accessible counting process can be predicted with
some chance of success. A counting process which jumps with
some positive probability at given fixed times is an example
of this kind of processes. Properties of integrated condi-

tional rate of counting processes belonging to these three

55
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classes are derived and examples are presented. In Section
2.5 we give sufficient conditions for the existence of a
conditional rate. Counting prbcesses of independent incre-
ments play an important part in solving the detection prob-
lem. These processes are precisely those which have a
deterministic integrated conditional rate and this is the‘
topic of Section 2.6.

Finally in Section 2.7 we obtain, using the change of
variables formula originally due to Ito [I2] and extended
by Doléans-Dade and Meyer [D1], some results related to

probability generating functions.

2.1 BASIC DEFINITIONS AND ASSUMPTIONS

The notation introducted in the previous chapter is
used consistently is this one. As before, the state space
and the index set of all stochastic processes (see Defini-
tion 1.1.2) are respectively given by the real iineﬁR and
its positive part R,. By a continuous (right-continuous,
etc.) process we mean a process with continuous (right-
continuous, etc.) sample paths. We do not distinguish
between modifications of the same process (see Section 1.1);
this allows us in particular to consider only right-contin-
uous martingales (c.f. Remark 1.5.6). If (Xt) and (Yt) are
two right- (or left-) continuous processes which are modi-

fications of each other (i.e., X, = Yt a.s for each t) then

t
we have Xt = Yt a.s for every t (see Remark 1.1.4). Recall

that the notion of martingale is relative to a probability
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measure P and an increasing family of o-algebras (Ft),
while stopping times depend only on the family (Ft) (see
Sections 1.2 and 1.5). We emphasize this by speaking of a
(P,F,) martingale (or simply (Ft) martingale, when only one
probability measure is involved) and of a.(Ft) stopping
time. Every stochastic process in this chapter is defined

on a single probability space (Q,F,P).

Definition 2.1.1: A counting process (Nt) (hereafter
abbreviated CP) is a stochastic process having sample paths
which are zero at the time origin, right-continuous step

functions with positive jumps of size one.

As seen in the INTRODUCTION CP's are naturally asso-
ciated to point processes. If (Nt) is a CP associated to
a point process then observing (Nt) to time t tells us of
the points occurring up to and including t. Note that this
would not be the case had we choosen the sample paths of
(Nt) to be left-continuous (Rubin in [R2] makes this
unnatural left-continuity assumption). With every CP (Nt)
we associate an increasing family (Ft) of g-subalgebras of
F to which (Nt) is adapted (see Definition 1.2.1). Loosely
speaking the ¢g-algebra Ft represents the information to
which we have access at time t (see Section 1.2). In parti-
cular we will denote by Ny & o(Nu, 0 <u< t) the minimal
og-algebra generated by the CP (Nt) up to and at time t.

Numerous results we will be using depend on the right-con-

tinuity of the family (Ft) (e.g., optional sampling theorem,
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existence of right-continuous modifications for supermartin-
gales, etc.). If the family (Ft) to which the CP (Nt) is
adapted does not have this property then we Qill consider
instead, following Meyer [M8], the family (Ft+) (see Section
1.2). This family (Ft+) is by construction right-continp-
ous; the o-algebra Ft is contained in Ft+ so that the CP
(N,) is adapted to this family. Thus we will always assume

in the remainder of this thesis that the family (Ft) is

in fact right-continuous. We also suppose that the proba-

bility space (Q,F,P) is complete and that the o-algebra Fo
contains all the P-negligible sets.
The points in time at which a CP (Nt) jumps are basic

to this study:

Definition 2.1.2: The stopping time:

- J =

inf {t: Nt > n}
A

» if the above set is empty

th

is called the time of n " jump of the CP (Nt)'

The fact that Jn is a stopping time with respect to
any family (Ft) to which the CP (Nt) is adapted can be
easily verified: the set {Jn <t} = {Nt > n} belongs to
Ft for every t (see also Example 1.2.6). 1If (Nt) is a CP
bounded by m then for n > m I is equai to infinity and is
not properly speaking a time of jump of (Nt). But the aboVe

definition has the practical advantage that, when the ran-

dom variable Nt is a.s finite for each t, the sequence (Jn)'
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increases to infinity. For example a given property may be
shown to hold on the interval [O,Jn] for each n (on this
interval the CP (Nt) has the nice behavior of being bounded
by n). Then the fact that the sequence (Jn) increases to
infinity shows that this property holds for all t. Recall
also that the definition of local martingales involves a

sequence of stopping times increasing to infinity.

2.2 A PRELIMINARY RESULT

The following result is basic to the establishment of
the Likelihood Ratio Representation Theorem (Theorem 3.3.1)
given in the next chapter. We state it here because it is
also used in this chapter, although not in its full gener-
ality. This lemma is basically a generalization to super-
martingales of a result on energy for potentials. The known

result is the following:

Lemma 2.2.1: Let (Pt) be a potential of class (D) and

denote by (At) the unique natural integrable increasing
process which generates (Pt) (see Definition 1.7.3 and
Theorem 1.7.11). Then we have the following chain of
inequalities:

Al < 4B(sup PP < 16EA]
t

For a proof of this Lemma see Chapter VII, Section 6
of [M1].

If (Xt) is a supermartingale we denote its positive

and negative part respectively by (X: C Xt v 0) and
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(X% A -(X, A 0)). If (X.) is of class (D) (or even just

uniformly integrable) then by the martingale convergence
theorem ([M1], Theorem 6-VI) there exists an integrable
random variable X_ such that a.s and in the mean X_ =

1%m X.. Define X; A X, v 0 and X_ 2 -(X_ A 0). Then be-
cause the two functions (- v 0) and (* A 0) are continuous

we also have by Theorem 4.6 of [R1]

lim xz = 1lim(X

v0) = (Lim X,v0) = (X_v0) & x7
tro tormw t

Similarly

1im Xt

t>

1}
<
8 1

Now the result

Lemma 2.2.2: Let (Xt) be a supermartingale of the class

(D) with respect to a family (Ft). Denote its unique

Doob-Meyer decomposition by

X, = Y. - A (2.2.1)

where (Yt) is a uniformly integrable martingale and (At)

an integrable natural increasing process. Then:
(a) BAZ < 8[E(sup X)° + E(X))°]
t

(b) E(sup X,)° < B[EA. + E(xD) %)
t

(c) The three following statements are equivalent:

(1) E(sup X;)2 < wand E(X))% <
t o
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(2) E(sup X,)% < o and EXE < o
t

(3) sup EYi < wi,e., (Yt) is a square inte-
t

grable martingale and EAi < ®

Proof: (a) (Xt) being of the class (D), it has the unique

Riesz decomposition (see Remark 1.6.3(b))

Xp = Py + E(X[F) (2.

where (Pt) is a potential of the class (D) and X_ = lim X

to>o
a.s and in the mean. Denote by (Bt) the unique natural

integrable increasing process which generates (Pt) (see

Theorem 1.7.11). By Remark 1.7.15, the relation

X, = E(B, + XmlFt) - B, (2.

2.2)

t

2.3)

is also a unique Doob-Meyer decomposition of (Xt)' Hence

we have (see (2.2.1))

A, = By (2.
Yo = B, + X |F) (2.
Now by Theorem 23-VII of [M1]
2 B ©
EAL = EJ (P, + P -)dA, (2.

0

Using (2.2.2) we get (see also [M1], Theorem 4-VI)

2.4)

2.5)

2.6)
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EAi = E{ J (xt+xt_)dAt - [ [E(leFt) + E(Xoo{Ft_)]dAt }
0 0
Hence

EAZ < Esup(XZ + X;-)A + E[ [E(X_|F )+E(X][F -)1dA, (2.2.7)
0 — t © ol t !t
0
Now sup X, = sup XZ_; the process (At) is natural so that

t t
(see [M1], Theorem 20-VII) the last term in the RHS of

o +

(2.2.7) is equal to 2E6wE(X;]Ft)dAt and by Theorem  16-VII

of [M1]:

EJ E(X [FdA, = E(XA)
0

So from (2.2.7) we have

EAZ < 2B[(sup X} + X))A]
Sup.

and by the Schwarz inequality

o]

(EAl)? < 4B (s Xp + X ) “EAl

Then we finally obtain

2 2

EA° < 4E(sup x; + X))

< < 8[E(sup Xp% + EQX))?
t t

(b) By (2.2.2)

+
X, = P+ E(X_|F) < P+ BOCIF)
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So

E(sup Xt)z < 2{E(sup Pt)2 + E[sup E(XZIFt)]z} (2.2.8)
t t t

By Lemma 2.2.1

2

E(sup P,)° < 4EA? (2.2.9)
t

Now (E(X:|FtD is a positive martingale. Hence by Remark

2-VI of [M1]:

Efsup E(X.|F,)1% < dsup BIEQC|F,)]°
t t
Furthermore by the Jensen inequality
+ 2 +,2
[EQCIFITS < BLOO)“IF,]
so that

E(sup E(X_|F)1° < dsup EELC) PP, - 4B 2
t t
(2.2.10)

Using the two above inequalities (2.2.9) and (2.2.10) in

(2.2.8) we get the desired

CE(sup X% < s[EAl + ECXDY)
t

(c) First we show that (1) e (2)
(1) = (2) If, given a sample path of (Xt), there exists a

time t_ such that X. > 0 then sup X, = sup X, and inf X
0 to— tttt tt
= 0. If not, then Xt < 0 all t, sup XI = 0 and sup X
- t ¢t
-inf X%. Hence we have the relations
t
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+

sup X, = sup X, - inf X, (2.2.11)
¢t ¢ ¢ ¢ t |
(sup X)® = (sup X;)* + (inf X_)° (2.2.12)
t t t t

(X;)2 and this implies from

| A

Also 0 < (inf X))
- t
(2.2.12)

I A

E(sup Xt)z E(sup X;)Z + E(X;)2
t t

and the RHS of this relation is finite by assumption.
Clearly 0 < X: < sup X;. Hence E(X:o)2 is also finite

t
by assumption, 1i.e., EXi is finite. (1) = (2) By (2.2.12)

(sup X;)2 = (sup Xt)z - (inf‘X;)2 < (sup Xt)2
t t t t
and obviously E(X;)Z is finite by assumption. Now we show

that (2) o (3)
(2) = (3) We have (see Eq. (2.2.5))

Y = E(A_+ X_|F

t t)

By (a) and the implication (2) = (1) then
2
EAY < = (2.2.13)

By the Jensen inequality

2

Yo = [E(A, + leFt)]2 < EL(A, * Xm)Z‘Ft]
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Thus

sup EYi < E(A, + x)% < 28A? + 2px?

t h ®
and the RHS of this relation is finite by (2.2.13) and by
assumptioh.

(3) = (2) 1If (Yt) is a square integrable martingale then
in particular EYi < » so that (see (2.2.1))

2

EX < Z(EYi + EAi) < » and by (b) E(sup Xt)2 < o,
t

2.3 INTEGRATED CONDITIONAL RATE

DOOB-MEYER DECOMPOSITION FOR COUNTING PROCESSES
As a direct application to CP's of the Doob-Meyer
decomposition of supermartingales into the sum of a martin-

gale and an increasing process we have (see Section 1.7;

[11]).

Theorem 2.3.1: (Doob-Meyer Decomposition for CP's) Let

(Nt) be a CP adapted to an increasing family‘(Ft).

(a) If for each t e R, Nt is a.s finite then there
exists a unique natural increasing process (At) such
that the process (Mt A Nt - At) is a square integrable
(P,Ft) local martingale. The unique decomposition
(Nt = Mt + At) is called the Doob-Meyer decomposition
for the CP (Nt) with respect to the family (Ft).

(b) If furthermore ENt is finite for each t then the

process (Mt = Nt - At) is a (P,F,) martingale.
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Proof: (a) Let Jn be the time of nth jump of the CP (Nt)
. n A n .
and define (Nt = NtAJn) and (Ft 8 FtAJn)' By assumption Nt
is a.s finite for each t. Hence the sequence of stopping
times (Jn) increases a.s to infinity. Also by construction
the stopped process (Ng) is bounded by n. For t > s we
obviously have
n n

E(-Nt|FS) < -Ns
Thus (—Ng) is a bounded (F?) supermartingale and by the
Doob-Meyer decomposition we can obtain (see Theorem 1.7.14

and Lemma 2.2.2) the unique decomposition:

N o= Mo+ AT | (2.3.1)

where (Mg) is a square integrable (F?) martingale and
(A%) a natural integrable increasing process. Now for
n < m the unique Doob-Meyer decomposition of (N?) with

respect to (F?) is also given by (see Lemma 1.7.10)

m
+ A (2.3.2)
n t”Jn

Therefore comparing (2.3.1) and (2.3.2) we get

m _ n
MtAJn = M
m _ n
AtAJn = A

Hence we can uniquely define for all t an increasing natural

process (At) and a square integrable local martingale (Mt)

by
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Ao
At = At for t < Jn
A n
Mt = Mt for t < Jn
and we clearly have
Nt = Mt + At for every t

This proves part (a).

(b) If ENt is finite for each t then the process (—Nt)
is a right-continuous negative supermartingale. By Theorem
19-VI of [M1], this supermartingale belongs to the class
(DL). Then result (b) follows directly from the Doob-

Meyer decomposition (Theorem 1.7.14). o

INTEGRATED CONDITIONAL RATE: DEFINITION
For every CP (Nt) with N, a.s finite for each t and
adapted to a family (Ft), the uniqueness of the Doob-Meyer

decomposition for this CP (Nt) allows us to propose:

Definition 2.3.2: We will call Integrated Conditional Rate

(hereafter abbreviated ICR) with respect to the family
(Ft) the unique natural increasing process which appears
in the Doob-Meyer decomposition of (Nt) with respect to

the family (Ft).

The terminology "Integrated Conditional Rate'" is moti-
vated by the following (see also the INTRODUCTION): when
the ICR (At) of a CP (Nt) with respect to a family (Ft) is

absolutely continuous (sufficient conditions for that are
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given in Theorem 2.5.1) it can be expressed as

t
At = i Asds (2.3.3)
Furthermore
N - N
- . t+h t
Ae iig E{————H————— Ft] (2.3.4)

so that the process (At) is called the Conditional Rate with
respect to the family (Ft). Expression (2.3.3) is then a
justification for the terminology introduced in Definition
2.3.2, even though a conditional rate does not generally
exist. The existence of CP's which admit a bounded condi-
tional rate with respect to the family of o-algebras gener-
ated by the CP itself is shown in Section 3.1. Also if (Nt)
is a Poisson process (see [P1] Chapter 4) then the notion
of conditional rate with respect to the family of O-alge?
bras generated by.the process itself reduces to the usual
notion of rate.

If the random variéble N¢ is not a.s finite for each
t then the sequence (Jn) of times of jump of (Nt) does not
converge a.s to infinity. Define J 4 lim Jp- By Theorem
42-1V of [M1], J is a stopping time. Fgf t > J, Nt = o
and the best we can do in this case is to consider what 1is
happening on the stochastic interval [0,J) only. If now a
local martingale (Xt) is redefined as being a process such
that there exists a sequence of stopping times (Rn) increas-

ing to J a.s (instead of ) which makes the stopped process
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(XtARn) a uniformly integrable martingale then as above
we can assoclate uniquely to the CP (Nt) an ICR on the
stochastic interval [0,J).

From now on, when speaking of CP (Nt) we always assume
that the random variable (Nt) is a.s finite for each t since
this is clearly the weakest condition under”which we can
define an ICR on the entire positive real line. Note that
this assumption is very weak as it is violated only if the
times of jump of the CP (Nt) considered converge with some
positive probability to a finite time, or, in other words,
that the point process associated with the CP (Nt) contains
with some positive probability a point of accumulation, an
unlikely situation in practice. Hence if (At) is the ICR
of a CP (Nt) with respect to a family (Ft) the process

(N, - A ), that we will systematically denote by (M_), is
t t

t
in the general case a square integrable (Ft) local martin-
gale, and a (Ft) martingale when the mean ENt is finite for
each t. We will see later on (Cofollary 2.4.12) that this

Doob-Meyer decomposition (Nt =M _+ At) is intuitively a

t
decomposition into the part of the CP (Nt) which is not
predictable or expected (this is (Mt)) and the one which
can be perfectly predicted or contains no "surprises"

(this is the' ICR (At))‘ We refer to that as the separating

property of the Doob-Meyer decomposition for CP's.
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EXAMPLES AND FIRST PROPERTIES

Let (Nt) be a CP and denote by (Nt) the family of
o-algebras.generated by (Nt). Let J, be the time of nth
jump. Clearly for each n the stopped process (NtAJn) is
a submartingale with respect to any family (Ft) such that
Ft ) Nt‘ Hence we can define an ICR with respect to any
such family. By definition an ICR is a natural process.
This last property is dependent on the family (Ft) choosen
(see Remark 1.7.5(a)). So we expect the ICR of the CP (Nt)
to be dependent on the family (Ft) considered. That this
is actually the case is demonstrated in Example 2.3.5.
For emphasis we therefore speak of a ”(Ft) ICR." This
Example 2.3.5 is constructed with the help of the two next
Propositions which also constitute our first examples of
ICR's. Let (Nt) be a CP and (At) its (Ft) ICR. The first
example is an extreme case in the sense that the family
(Ft) considered is given for each t by Ft = N_; hence at
each time t, if we think of the available information as
being given by the family (Ft =N), everything is known
about the process (Nt). In other words the CP (Nt) con-
'~ tains no surprises with respect to the family (Ft =N_).

Thus in the light of the separating property of the Doob-

Meyer decomposition the following result was to be expected:

Proposition 2.3.3: The (Ft) ICR (At) of a CP (Nt) where

for each t Ft = N_is given by At = Nt'
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Proof: Let (Tn) be a sequence of stopping times reducing

the local martingale (Mt = N, - At), 1.e., for each n the

t
n A . . . n A
process (Mt = Mt T ) is a uniformly integrable (Ft = Ft T )
. An An
martingale which can be expressed as E(M2|F2) by Theorem

1.5.4. Now:
A n n A
N =F =F =F cF_=F c F, =N
o 0 oATn 0 t tATn t o
i.e., for each t and n, Fg =N_=F Hence we can write
(recall M0 = No - AO = 0):

n _ n,  n, _ PSS ¢ DN s B _
Mp = EQL|Fp) = BOMG[Fo) = MO = M_ = 0

which clearly implies Mt = 0 for each t and hence the result.

Another proof consists in showing directly that the
increasing process (Nt) is natural with respect to the
family (Ft = N_). Now for every sequence of stopping times
(én) incfeasing to a stopping time S the random variable

Ns is clearly ( X FS = N_) measurable. Also every (Ft =

Nw) stopping time R ?s predictable (the sequence of stopping
times (R - 1/n) increases to R). Therefore totally inacces-
ible (Ft = N_) stopping times simply do not exist. Hence
the process (Nt) charges no totally inaccessible stopping
times. The two conditions (a) and (b) of Theorem 1.7.8 are
satisfied and this shows that (Nt) is a natural increasing
process with respect to the family (Ft = N_). Hence

(Nt = 0 + Nt) is the unique Doob-Meyer decomposition of (NtL
i.e., (0) is a uniformly'(Ft = N,) martingale and (At = Nt).

[m}
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The last part of the proof shows that the times of
jump of the CP (Nt) are predictable, We will show later on
(Corollary 2.4.11) that a CP (Nt) has predictable times of
jump with respect to a family (Ft) if and only if its (Ft)
ICR is given by (Nt) itself. The next example of ICR is

about processes of independent increments:

Proposition 2.3.4: Let (Nt) be a CP of independent incre-

ments with a finite mean my for each t. Then the (Nt)

ICR (At) is given by

Proof: For t > s we have

E(N, - mg [N E(N, - Ng[N) +N_ - m

S t

= m, -~-m_+ N -nm
S S

t t

i.e., the process (Nt - mt) is a (Nt) martingale. Further-
more the increasing process m, is natural because it is
deterministic (see Remark 1.7.5(c)). Now (Nt) has the

Doob-Meyer decomposition

N, = (Nt - mt) + m

t t

and the uniqueness requires m, to be the (Nt) ICR. a]

t

We will reexamine CP's of independent increments

later on (Section 2.6) and prove in particular a converse
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result to the above proposition: namely that if a CP (Nt)
has a deterministic (Nt) ICR then it is a process of in-

dependent increments.

Example 2.3.5: The two above results show that for a CP

(Nt) of independent increments with finite mean m,_, the

£
(Nt) ICR is given by my and the (Ft =N) ICR by Ny - This
example illustrates clearly the dependence of ICR's on the
family of conditioning o-algebras.

Given a CP (Nt) and its ICR's with respect to two
distinct families (Ft) and (Gt) such that Ft oY Gt ) Nt’
it is natural to ask how these two ICR's are related. This
is what we examine now. Assume that the CP (Nt) has a fin-
ite mean. We will see that even in this case there is no
simple useful answer to this problem. Denote respectively

by (Ai) and (A7) the ICR of (N_) with respect to the

families (Ft) and (Gt). We know that the processes

F

ne>

(Mt Nt - At) (2.3.5)
and
G b 6
(Mt = Nt At) (2.3.6)

are respectively (Ft) and (Gt) martingales. But it is easy

to show (see Appendix A.3) that the process

(X, = N, -C (2.3.7)

t t t)

where

n=>

(c, = E(MAL|6,)
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is a (Gt) martingale. The process (Ct) is not ne;essarily
increasing and more over may not be natural with'respect

‘to the family (6,). This last point is shown in the follow-
ing example: let (Nt) be a CP of independent increments
with finite mean m_. If we choose Gt = Nt and Ft= N_ then

t
we have seen (Propositions 2.3.3 and 2.3.4) that

G _ Fo_
At = my and At = Nt
But
A F _ _ . G
Ct = E(At|Gt) = E(Nt]Nt) = Nt # At

so that by the uniqueness Theorem 1.7.6 (Ct) cannot be a
natural process. The above shows that the relation

G _ _ F

Ay = C; E(At]Gt)

which seems very plausible at first glance does not hold in
general. What is true is that the process (Ct) is a (Gt)

submartingale: for t > s.
E(C,|6.) = E[E(AT|6,)]6.1 = Eaf6.) > Baf|6) = ¢
t!7s t!7t’/17s tt7s’ = sl”s s

Suppose (Ct) is in fact a right-continuous version of
E(A£|Gt) (the mean ECt = EAE is right continuous so that
such a right-continuous version exists by Theorem 1.5.5).
By Theorem 19-VI of [Ml] this positive submartingale belongs

to the class (DL) and we denote its unique Doob-Meyer

decomposition by

C, = Y, +B (2.3.8)
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where (Yt) is a (Gt) martingale and (Bt) a natural (with
respect to (Gt)) increasing process. Introducing (2.3.8)

in (2.3.7) we get

N = (Xt + Yt) + B

t t

which is, as (2.3.6), the unique ((Bt) is natural) Doob-
Meyer decomposition of (Nt) with respect to Gt' Hence the
relation between (AE) and (Az) is

G _ . F
A = B = EB(A(|G) - Y

t t t

It is also clear that if (A:) is in fact adapted to the

family (Gt) then

In conclusion there is no simple way to related the two
;CR'S (Af) and (Ai) in the general case. But when condi-
tional rates with respect to the two families (Ft) and (Gt)
exist then these two conditional rates are simply related
(see Proposition 2.5.2).

We finish this section by two simple propositions.
The first one shows the intuitive result that a.s no jump
occurs in an interval on which the ICR is a.s constant as

a function of time.

Proposition 2.3.6: Suppose (Nt) is a CP adapted to a
family (Ft) which has an ICR with respect to this family
that is a.s constant as a function of time on the stoch-

astic interval [T,S] (T and S are stopping times, finite
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or not such that T < S a.s). Then (Nt) is a.s constant

as a function of time for t ¢ [T,S].

Proof: Let (Rn) be a squence of stopping times reducing

. A .
the local martingale (Mt = Nt - At) where (At) is the ICR

of (Nt)' The stopped process (Mg 4 Mt R ) is a uniformly
“n

. . . .. A

integrable martingale for each n. Define similarly (Ng =

Nt R ) and (An 4 A The process (An) is clearly also
ARp t t

tARn)'
constant as a function of time for t ¢ [T,S]. The process

(M?) having zero mean we can write:

E(N‘SI-N‘T‘)=E(M‘§-MI;)-E(AIS‘-A’%)=0-0=0
But
Ng - Np > 0 a.s
Thus
‘ Ng = Np a.s
Hence
Ng = lrilmNrsl = 11‘11mer1 = Np a.s .

Proposition 2.3.7: Let (At) be the (Ft) ICR of a.CP(Nt).

Then EN, < = if and only if EA; < o and ENt = EAt’

Proof: (=) If ENt < o then by Theorem 2.3.1(b) the process
(M
EN < o,

t
(=) Let J be the time of nt

>

Nt - At) is a zero mean (Ft) martingale so that EAt =
h jump of (Nt)' Then (see the

4 -
proof of Theorem 2.3.1) the process (MtAJn NtAJn AtAJn)
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is a zero mean martingale. Hence ENt g EAt 7 Further-
~“n ~“n
more At J increases to At as n goes to « (similarly for
““n
Nt 3 ) so that by the monotone convergence theorem
!
ENt = 1lim ENtAJ = lim EAtAJ = EAt < o
n n n n

2.4 REGULAR AND ACCESSIBLE COUNTING PROCESSES

DEFINITION AND DECOMPOSITION
Let (Nt) be a CP adapted to a family (Ft). Denote by
Jn the time of nth jump. It is natural to classify CP's

in terms of the properties of their stopping times Jn

Definition 2.4.1: A CP (Nt) is called respectively regular,

accessible or predictable with respect to the family
(Ft) in accordance with the total inaccessibility,
accessibility or predictability of its times of jump Jn

with respect to this same family (see Definition 1.2.7).

While a process can be none of these, the next theorem
will show that any CP (Nt) can be decomposed uniquely into
the sum of a regular CP and an accessible CP. Here again
these definitions are dependent on the particular family
(Ft) choosen. We will see later on (below Theorem 2.4.7)
that a CP can be regular with respect to one family and
predictable with respect to another.

The term regular was previously used (Definition
1.7.12) to characterize a supermartingale (or submartin-

gale) (Xi) such that for any sequence of stopping times
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(Sn) increasing to a bounded stopping time S we have

1im EXS = EXS
n n

We show by the next Proposition that our terminology is
consistent: regular CP's as in Definition 2.4.1 are also
regular in the above sense (Definition 1.7.12), and con-
versely. On the contrary Rubin [R2] uses the term '"regu-
lar CP" in a different sense. It denotes (if anything) a
CP with a random rate which must possess numerous technical

properties.

Propoéition 2.4.2: Let (Nt) be a CP. Then the three

following statements are equivalent:

(a) The CP (Nt) is regular in the sense of Definition
2.4.1

(b) For any stopping time S such that ENg < « the
process (NtAS) is a regular submartingale in the sense of
Definition 1.7.12.

(c) 1lim ENR

n n
‘times increasing a.s to R and such that ENR < w

= ENR for any sequence of stopping

Proof: Let S be a stopping time such that ENS < » and (Tn)

any sequence of stopping times increasing to T a.s. If

the relation

lim N = N a.s (2.4.1)
2T LS TAS

is verified then by the monotone convergence theorem we

have
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lim EN = EN 2.4.2
am ENp s T.S ( )

Conversely if relation (2.4.2) hold;xwehave E(NTAS_léﬁlNQfS)=O

by the monotone convergence theorem. As the random vari-

able NT g - lim NT g is positive, relation (2.4.1) must

be verified. Hence conditions (2.4.1) and (2.4.2) are
equivalent. We show now that (a) is equivalent to (b).

If (a) is verified then the times of jump of the submartin-
gale (NtAS) are totally inaccessible (the time of nth jump
of (NtAS) is equal to J, on the set {Jn < S} and to =
otherwise). Therefore relation (2.4.1) is verified

and, being equivalent to (2.4.2), (b) follows (see Defini-
tion 1.7.12). Conversely if (b) is true, relation (2.4.2)
is satisfied. Then (2.4.1) holds which implies that the
times of jump of (NtAS) are totally inaccessible (otherwise
we reach a contradiction). By taking S = Iy the time of
n’Ch jump of (Nt), we get that Jn is a totally inaccessible
stopping time. This 1is true for each n so that (a) follows.
We show now that (b) is equivalent to (c). If (b) is true
and (Rn) is any sequence of stopping times increasing a.s

to R and such that ENR < o then (NtAR) is a regular sub-
martingale. In particular (see Definition 1.7.12)

1%m ENRnAR = ENRARfﬂ)that (c) follows. Conversely if (c)

is true and (Tn) is any sequence of stopping times increas-

ing a.s to T then

lim EN = EN
n TnAR TAR

which shows that (Nt R) is a regular submartingale. 0
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Now the announced decomposition result:

Theorem 2.4.3: Let (Nt) be a CP adapted to a family (Ft).

Then there exists two CP's, (NE) and (Ni) which are
respectively regular and accessible with respect to the

above family and such that

NS S
Nt = Nt + Nt for every t

This decomposition is unique.

Remark 2.4.4: The (Ft) ICR of (Nt) is given by

_ T a
At = At + At

where (Ai) and (Ai) are respectively the (Ft) ICR's of

(Ni) and (Ni).

Proof: As usual, denote by Iy the time of nth jump. By

Jﬁ we mean the stopping time (Definition 1.2.9)

Jn if weA

o -otherwise

for A e F By Theorem 44-VII of [M1] there exists for

g
n
each n an essentially unique partition of the set {Jn < o}

into two sets of FJ , A and R, such that the stopping times
n

Jﬁ and Jﬁ are respectively accessible and totally inaccess-

ible. The two CP's

A
N, = )1 A
t s {t>d0)

-
1>

t g {t>J7}
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clearly satisfy the conditions of the theorem. The unique-
ness of this decomposition follows [rom the essentially

uniqueness of the partition of each set {J, < =l O

Example 2.4.5: Take @ = [0,1] and let J1 be a random
variable uniformly distributed on Q. Define the random

variables Jn+1 = J1 +n, for n > 1. Let (Nt) be the CP

having J, as time of nth jump, i.e.,

N = I
t g {tan}

For each m,n > 1, it is trivial to check that the random
. A . . . .
variable T; = Jn + 1 - 1/m is a stopping time with respect

to any family (Ft) such that Ft > N But for each n > 1

£

the sequence (TE) converges to Jn as m goes to ». Hence

+]1
the times of jump Iy for n > 2 are predictable. The time

of jump I being uniformly distributed on Q, is totally
inaccessible by Corollary A.4.2. Thus the decomposition

- N7 a . .
Nt Nt + Nt 1s given by

r o _ a _
N, = I{tZJl} and NP )

n>2

I
{t>J }

In this very simple example the CP (Ni) is in fact pre-
dictable. This is not always the case. If we assume in
the above example that jumps may be skipped independently
of each other with a positive probability then (Ni) and
(Ni) are stiil given as above but the CP (Ni) is no longer

predictable (see Example 2.4.13).
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For clarity we outline now some of the results we are
going to investigate. First regular, then accessible CP's
are studied in detail. In particular we will see that a
CP is regular with respect to a family (Ft) if and only if
its (Ft)FICR is continuous (Theorem 2.4.7); when the family
(Ft) is free of times of discontinuity (Definition 1.2.8)
then accessible CP's are predictable (Proposition 2.4.9).
Predictable CP's are uniquely characterized by the fact
that their ICR is given by the CP itself (Corollary 2.4.11).
In other words predictable CP's are natural processes.
Combining these facts with the above decomposition for
CP's (Theorem 2.4.3) gives, when the family (Ft) is free
of times of discontinuity, the separating property of the
unique Doob-Meyer decomposition for CP's. Namely if
(Nt = Mt + At) is the unique Doob-Meyer decomposition
of (Nt) then the local martingale (Mt) contains only jumps
of size one which take place at totally inaccessible
stopping times while the (Ft) ICR (At) also has jumps of
size one but at predictable stopping times (Corollary
2.4.12). In other words (Mt) represents the part of
‘(Nt) which is unexpected and the ICR (At) the one which
can be perfectly predicted. The case where the family (Ft)
does contain times of discontinuity is more complex. Most
of these results are obtained by studying the different
terms in the equation ANy = AM; + AA; in relation to the
appropriate property of the stopping time T (Theorem

2.4.10).
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REGULAR COUNTING PROCESSES

Let (Nt) be a regular CP with respect to a family
(Ft). By definition the times of jump I of (Nt) are
totally inaccessible. This has the immediate consequence
that the probability a jump occurs at time t is zero.
Because if not there exists a constant a and an m such
that P{Jm = a} > 0. The sequence of stopping times (Rn 4

/

JmA(a-l/n)) is such that,P{lim Rn = Jm < o, Rn < Jm Y n} =
P{Jm = a} > 0 which shows that the time of jump Jm is not
totally inaccessible, a contradiction. Also if T is a (Ft)
stopping time we cannot make with a positive probability a
prediction of any time of jump after T, the prediction

being based on the information available up to and at time

T. More precisely we have:

Proposition 2.4.6: Let (Nt) be a regular CP with respect

to a family (Ft) and T a (Ft) stopping time. Assume
W is a strictly positive FT measurable random variable.

Then for each n
P{T + W = Jn} = 0
i . th .
where.%lls the time of n™" jump of (Nt).

Proof: By contradiction. Assume that for n = n, there
exists W = W, a strictly positive (Ft) measurable random

variable, with

PIT+ W, = J 1 = p>0
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By Theorem 38-IV of [M1l] the random variable

Te = T+ (1 - l/e)WO

is a (Ft) stopping time for each e. This sequence (Te)

is increasing and

P{lim T, = J } = p>0
(S 0

i.e., the time of ngh jump is not totally inaccessible, a

contradiction. . ‘ o

The next theorem is a direct consequence of Proposi-
tion 2.4.2 and a result on the Doob-Meyer decomposition of

regular supermartingales (Theorem 1.7.14).

Theorem 2.4.7: Let (Nt) be a CP adapted to a family (Ft).

Then the (Ft) ICR (At) of (Nt) is continuous if and only

“if the CP (Nt) is regular with respect to this family.

th A

Proof: Let Jn be the n™" time jump and define (N? = Nt J ),
~“n

A

(A A, ), Fooo ).
t tAJn tAJn

of the Doob-Meyer decomposition (A?) is the (F?) ICR of

(F? 4 Note that by the uniqueness
(N?) (see Lemma 1.7.10). By Theorem 1.7.14(b) the process
(A?) is continuous for each n if and only if the CP (Nt) is
regular. The result follows then by taking the 1limit as
the sequence (Jn) increases to ». One uses here the fact

that on any interval [O,to], A, = Ag for sufficiently large

t
n (depending on w). u]
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Examples of regular CP's with respect to the family
(Nt) are,‘by Proposition 2.3.4 and the above Theorem, any
CP's of independent increments with continuous mean, in
particular Poisson processes. Note that these processes
of independent increments with continuous mean are not
regular but predictable if we take the family (Ft =N_)
(see Proposition 2.3.3).

For a regular CP (Nt) with ICR (At) we have just
proved that all the jumps are contained in the local
martingale (Mt = Ny - At)’ But these jumps completely
determined the CP (Nt). This suggests that there is a
direct relation between (Mt) and the ICR (At). This point
is made clear in the following theorem. Recall (see
Sction 1.9, below Theorem 1.9.6; [K1]) that if (Xt) is a
square integrable local martingale then (<X>t) denotes the
unique natural increasing process which makes the process
(Xi - <X>t) a local martingale. Also if (Nt = Mt + At) is
the unique Doob-Meyer decomposition of (Nt) then by Theorem

2.3.1 (Mt) is a square integrable local martingale.

Theorem 2.4.8: Let (Nt) be a regular CP with respect to

a family‘(Ft). Denote by (At) its (Ft) ICR and by (Mt)
the square integrable local martingale'(Nt - At). We
have (a) At = <M>t

(b) If ENt is finite then so is EM%

Property (b) will be used later on to prove a result

on martingale representation, a result essential in solving
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the detection problem for CP's.

Proof: (a) We have Nt = Mt + At (2.4.3)
Let M, = MS + Md where (MC) e L. 1s the unique decomposi-

t t t t C
tion of Theorem 1.9.6. Now relation (2.4.3) shows that
(Mt) e L n V. Consequently (this is an easy extension of

Remark 1.8.17) (M; = 0), (<ME>

0) and the quadratic

variation process (Definition 1.9.7) is given by

M, = Sgt (M) (2.4.4)

But (Nt) is a regular CP and by Theorem 2.4.7 its ICR (At)

is continuous so that AMS = ANS. Now NS is either 0 or 1

hence (aMy)? = (aN)® = aN_ which implies by (2.4.4)

M], = N, (2.4.5)

The two processes (Mi - <M>t) and (M% - [M]t) are local

martingales (see Section 1.9, below Theorem 1.9.6 and

Remark 1.9.8(b)). Thus so is their difference (X,
[M]t - <M>t) and by (2.4.5) we get
N, = X_+ <M> (2.4.6)

t t t
where (Xt) € L. The increasing process (<M>t) is natural
by definition so that relation (2.4.6), as (2.4.3), is the
unique Doob-Meyer decomposition of the CP (Nt). Then we

must have

A = <M>_ and Xt = M

t t t

(b) We have seen above that the process (Mi - [M]t)

€ L or by (2.4.5) (M% - Nt) e L. Let (Tn) be a sequence
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of stopping times reducing this local martingale i.e.,

the process (M2

taT - NtATn) is a uniformly integrable
martingale. In particular
EM . - N, ) = EM -N) = 0
t.T t.T 0 0
n n
Hence
2
EM = EN (2.4.7)
tATn tATn _

Since Mt T converges to Mt’ Fatou's lemma implies
!

2

2 ..
EMt < lim inf EMtAT

n n

and by (2.4.7) and the monotone convergence theorem (Nt T
!

increases to Nt) we get

EM® < 1im inf EM% = lim EN, = EN .

2

£t = n n n n
ACCESSIBLE COUNTING PROCESSES

Theorem 2.4.7, which says that the ICR of a CP is con-

tinuous if and only if this CP is regular, implies that the
ICR (At) of an accessible CP (Nt) is discontinuous. We
could conjecture that the times of jump of the ICR (At)
are the same as those of the accessible CP (Nt). As we
will see this would be true, and we would have in fact
(At = Nt) but for the possible presence of times of dis-
continuity for the family (Ft) considered (see Definitions
1.2.8and 1.2.10). Recall that an accessible (Ft) stopping

time which is not a time of discontinuity for the family

(Ft) is (Ft) predictable (see Theorem 1.2.11). This
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immediately gives us:

Proposition 2.4.9: An accessible CP (Nt) with respect to

a family (Ft) which is free of times of discontinuity

is predictable.

Let (Nt) be any CP with ICR (At). We examine now the
jump AAT in relation to the property of the stopping time
T. We already know that for a regular CP AAT = 0 for any
stopping time T (Theorem 2.4.7). The next result will lead
to a unique characterization of predictable CP's (Corollary

2.4.11) and the separating property of the unique Doob-

Meyer decomposition for CP's (Corollary 2.4.12).

Theorem 2.4.10: Suppose (Nt) is any CP adapted to a family
(Ft). Denote by (At) its (Ft) ICR.

(a) If T is (Ft) predictable then

M, = E(ANTIXFTH)

where (Tn) is any sequence of stopping times increasing
to T. In particular 0 i.AAT <1, and AAT =1 (or 0) a.s
if and only if ANT =1 (or 0) a.s.

(b) If T is (Ft) accessible but not a time of dis-

continuity for (Ft) then

AAT = ANT

(¢c) If T is (Ft) totally inaccessible then AAT = 0.

(d) Let J_ be the time of nth jump of (N,). Then
n t
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if and only if Iy is a predictable (Ft) stopping time.

In particular AAJ =1 if Iy 1s accessible but not a
n
time of discontinuity for the family (Ft).

Proof: (a) (see [M1], § 51-VII) Let Jn be thetime of nth

. : . né né
jump of (Nt), and define (Nt NtAJn)’ (AtA AtAJn)' We
know (Theorem 2.3.1) that the process (M? = NE - AE) is a

square integrable (FtAJ ) martingale. By Remark 1.8.2(a)

this martingale is unifgrmly integrable and by Lemma A.2.1

it is also a (Ft) martingale. Thus for 1 > m and any set

H e FT where (Tm) is a sequence of stopping times increas-
m

ing to T we have

J (Mp - Mg.)dP = J E(Mg - M’,}_|FT )dP = 0
H 1 i 1 m
so that using the relation (M? = N? - Az) one gets
n n _ n _ \n
[ af - Ay = [ of - ¥
H . H *

6

Letting i increase to « one obtains, by the monotone con-

vergence theorem

n _ n
J AATdP = J ANTdP v He FT

H H m

This implies
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E(MAR|Fp ) = E(ANp|Fp ) a.s
m m .

and'taking the 1limit with respect to m, by Lemma 1.5.7
E(AAR] vV F = E(ANR|V F

(sag] ¥ Fp) (8NpIY P )

The process (A?) is natural with respect to the family (Ft)

(Theorem 1.7.9). Then by Theorem 1.7.8!, the random vari-

able AA% is (X FT ) measurable. Thus the above relation
n _
gives
n n
AAT E(ANTlX FT )

m
and by the bounded convergence theorem we get the desired
result letting n go to =,
(b) By Theorem 1.2.11, T is predictable so that part
(a) is applicable. Furthermore FT = X FT (T is not a

m
time of discontinuity of (Ft)). Hence

A, = E(ANTlx Fp ) = E(ANTIFT) = AN

T m

Part (c) is just a restatement of condition (b) of

Theorem 1.7.8 and is given here for completeness.

(d) (<) J, is predictable and AN; = 1 so that by
n
part (a) AAJ =1
n
| n
(=) Assume AA, = 1. Let C_ = AA_ I =1
In t J o3 b e )

The process (C?) is natural because it satisfies the
necessary and sufficient conditions (a) and (b) of Theorem

1.7.8 (if not then the natural process (At) would not
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satisfy these two conditions, a contradiction). By Theorenm

52-VII of [M1] then Ih is a predictable stopping time. o

Corollary 2.4.11: A CP (Nt) with ICR (At) with respect

to a family (Ft) is predictable with respect to this

family if and only if (At = Nt)'
Proof: (=) (Nt) is predictable so by (d) of Theorem 2.4.10

AAJ = 1 for eachn
n

where J is the time of nth jump of (Nt)' This implies

A, > N

t t

In particular for each n

A

tAJn t/\Jn n

M < 0 (2.4.8)

But (Mt J ) is a zero mean martingale so that (2.4.8)
~“n

implies

(¢) If (Nt = At) then AAJ = 1 for each n and by (d) of
: n

Theorem 2.4.10 Jn is a predictable stopping time for each n,

i.e., (N,) is predictable. ‘ 0
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Corollary 2.4.12: Let (Nt) be a CP with (Ft) ICR (At)
and define (M, £ N, - At). Then if the family (Ft) is
free of times of discontinuity

(a) The local martingale (Mt) has only jumps of size
one taking place at (Ft) totally inaccessible stopping
times.

(b) The (Ft) ICR (At) has only jumps of size one at

(Ft) predictable stopping times.
Proof: Let

N, { + N% (2.4.9)
denote the unique decomposition of Theorem 2.4.3 where

(Nz) is a regular CP and (Ni) an accessible CP. Let res-
pectively (A{) and (Ai) be the (F,) ICR of (Nz) and (Ni).
By Theorem 2.4.7, (A{) is continuous so that the local

martingale

M{ 2 Ni - Ai (2.4.10)
has only jumps of size one taking place at totally inaccess-
ible stopping times (namely the times of jump of (Ni)).

By assumption the family (Ft)-is free of times of discon-

tinuity so that by Proposition 2.4.9 (Ni) is a predictable

CP and by Corollary 2.4.11

(2.4.11)

Introducing (2.4.10) in (2.4.9) one gets
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- M r a
N, Me + (A + NY)

which is a unique Doob-Meyer decomposition of (Nt) as,
by (2.4.11), (Ai + N% = Ai + Ai) is a natural increasing
process. But (Nt = Mt'+ At) is also such a unique

decomposition so that one must have

_ T
Mt ‘Mt

Ay = A¢ t
and the result follows. a)

Let (Nt = Mt + A_) denote the unique Doob-Meyer

+)
decomposition of the CP (Nt) with respect to the family

(F When this family (Ft) is free of times of discon-

t)'
tinuity the above Corollary 2.4.12 completely describes
the discontinuities of the local martingale (Mt) and of
the (Ft) ICR (At): either (Mt) or (At) (but not both)
have a discontinuity which is of size one and can only
take place at a time of jump of (Nt). When the family
(Ft) does have times of discontinuity the situation is a
little more complex. Suppose T is a time of discontinuity
for (Ft).‘ Then (see Definitions 1.2.9 and 1.2.10) there
exists an event A ¢ FT and a sequence of stopping times
(Sn) increasing to S such that S i.TA a.s and

{S = TA} ¢ X an

This has the following consequence for auniformly integrable
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(Ft) martingale (Xt = E(XmlFt)): we have (see Theorem

13-VI of [Ml] and Lemma 1.5.7)

]

A .l
= X. - lim X = EX |Fs) - EX |V Fo )
S s oS, wlFs wlV s,

AX

Since the set {S = TA} belongs to FS (Theorem 41-1V of [M1])

but not to V FS it may be that AX. is different from

S
n n
zero with some positive probability on the set {S = Tyl

Hence it is not surprising for a uniformly integrable

martingale to have a jump at a time of discontinuity of

(Ft) and similarly for local martingales. In terms of the
agzéue Doob-Meyer decomposition (Ny = Mt + At) this

- suggests that two situations, which do not occur when

(Ft) is free of times of discontinuity, may now take place.
They will be illustrated in Example 2.4.13.

(a) Let T be a stopping time which is a time of
discontinuity for (Ft) and such that ANT =0 a.s. As
explained above it is likely that AMT will be different
from zero so that both AMT and Ay = -AMp are different
from zero with some positive probability although ANT =0
a.s. By Corollary 2.4.12 this does not happens when T is
not a time of discbntinuity for (Ft). Let TAand.TA, be res-
pectively the accessible and totally inaccessible part of T

(see Theorem1.2.12). By Theorem2.4.10(c), AAT =0 a.s so that
A'

AM., =0a.s. IfnowT‘ispredictable,byTheoran2.4.10(a),AAT =0
A

—3
=

a.s and AMT =0 a.s. Hence AAT and AMT may be both different from
A

zero only if TA is not predictable (TA is of course a time of dis-

continuity’for(Ft), as T has this property).
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(b) Let Jn be the time of nth jump of (Nt) and assume
it is a time of discontinuity for (Ft). Suppose also that
Jn is an accessible stopping time (if not we can decompose
it into its totally inaccessible and accessible parts
(Theorem 1.2.12); on the totally inaccessible part we

already know that (Theorem 2.4.7) M = 0 so that AM; =
n n

1). As before it is likely that AMJ will be different
n
from zero with some positive probability. Now by Theorem

2.4.7 AM_ cannot be one a.s so that both (At) and (Mt)

Jl’l

have a discontinuity at J,+ Recall that this cannot happen
when Jn is not a time of discontinuity for (Ft) as, by

Theorem 2.4.1(b), AAJ =1 a.s so that AMJ = 0 a.s in this
n n

case. That both situations (a) and (b) actually take place

is illustrated in the next example.

Example 2.4.13: Take Q = {wl,wz} with P{wl} = p where

0 < p < 1. Define the following CP (Nt):

0 t <1
1 t>1
N (w,) = 0 t >0

The family (Nt) is then given by
{o,0} for t <1

t (6,10}, (0,},8)  for t > 1
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and the unique time of jump of (Nt) by

J(w) =

This stopping time J is obviously accessible. Observe
also that J is a time of discontinuity for the family
(Nt): (see Definition 1.2.10) (5, 4 1 - 1/n) is an in-

creasing sequence of stopping times, Sn < J for each n and

the set

{w: 1im S_ =J} = {w,} ¢ VN = {¢,0}
1 n 1 n Sn

Denote a (not necessarily unique) Doob-Meyer decomposition

of (Nt) by

N, = M, +A (2.4.12)

where (Mt) is a uniformly integrable martingale ((Nt) is
bounded) and (At) an increasing (not necessarily natural)
process. By Theorem 1.5.4 the martingale (Mt) can be

expressed as

Mt = E(MmlFt)

where M is a random variable measurable with respect to

N o= {¢,{w1},{w2},g}. Furthermore we know that M0 0 so

[ee]

that EM_ = 0. From that it is easy to see that any

martingale (Mt) is given by



97

M () = w=wy , t>]

!
i \b = w, , t>1

2. (L=By (2.4.13)

At(w) B 1-a

| v
=

w = Wy t

=

-b w

1
=
N
+

>

By the uniqueness theorem only one set of values a and b
makes the increasing process (At) natural. These values
are a = 1 - p and b = -p (this choice obviously satisfies

(2.4.13)) as in this case
At = pI[l’m)(t)

is a deterministic hence natural process (see Remark
1.7.5(c)). Hence the ICR of (Nt) with respect to the
family (Nt) is pI[1 m)(t) and the martingale (Mt =

Nt - pI[1 00)(t)) is given by (see Figure 2.4.14):
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Therefore both the ICR pI[1 oo)(t) and the above
)
martingale have a discontinuity at the time of jump J of

(N This - illustrates case (b). As stated above, this

t)'
is a consequence of the fact that the accessible stopping

time J is not predictable and is also a time of discontinu-

ity for (Nt). Also if we define the stopping time T
“1

1 W T,
then

[0 w = wg
A, =

)

w

P w"‘(l)z

even though ANT = 0 for any w. This illustrates case (a).
It 1s easy to check that T is a time of discontinuity for

(Nt) which is accessible but not predictable.
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2.5 CONDITIONAL RATE

In the previous section we have seen that we can
decompose uniquely any CP (Nt) adapted to a family (Ft)
into a sum of two CP's which are respectively regular and
accessible with respect to this family (Ft) (Theorem
2.4.3). Regular CP's relatively to a family (Ft) are

precisely those which have a continuous (Ft) ICR (Theorem 2.4.7).

But a continuous ICR may not have absolutely continuous
sample paths. For example consider a CP of independent
increments with a continuous, but not absolutely continuous
mean.

In the next theorem we give sufficient conditions
under which the ICR (A,) of a CP (N.) with respect to a
family (Ft) is absolutely continuous or in other words
when does a random process (xt) adapted to (Ft) exist such

that we can express the ICR (At) as

t
A, = [ A gds (2.5.1)

Under these conditions, we also have

N, - N
_ . t+h t
‘e = lim E{ ————H—~——’Ft] (2.5.2)

and because of this relation we call the process (At) the
"conditional rate'" of the CP (Nt) with respect to the
family (Ft)' Expression (2.5.1) is then a justification

for the terminology "Integrated Conditional Rate" (ICR)
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introduced in Section 2.3, terminology used even though

a conditional rate does not generally exist. Note also
that if the (Ft) ICR of a CP (Nt) with finite mean is given
by (ft xsds) where (At) is a right-continuous bounded pro-
cessoadapted to the family (Ft) then, the process (Nt -

ft Asds) being a (Ft) martingale (Theorem 2.3.1), we have
0

Asds

tm
—
=
‘—r
+
=
I
=2
+
-
+
——
1

1
E[ L Ft]
t

and by the dominated convergence theorem ((At) is bounded)

g

_ 1 t+h
lim E[ B J xsdlet]

1 t+h
E[lim 5 J x_ds
S
h-0 ¢

h-0

EQue[Fe) = g

so that relation (2.5.2) is also verified in this case.
Although there is a lot of emphasis in the literature

([c1],[B1],[R2],[S1],[S2],[S3]) on CP's which admit con-

ditional rates, the problem of existence of these CP's has

been partially treated, as explained in the INTRODUCTION,

only lately by Brémaud in his dissertation ([B1l]), using

a technique of absolutely continuous change of measure.

We will examine a generalization of this technique but only

in the next chapter on detection, these two problems being

related. This question of existence of CP's with condi-

tional rates is difficult and may in fact not be of great
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importance: for example (and this will be demonstrated in
the next chapter) the solution to the detection problem doces
not require the existence of conditional rates for the CP's in-
volved (but they must be regular). We now give sufficient condi-
tions under which a CP with finite mean does possess a
conditional rate. Note that these conditions are a kind
of conditional version of the conditions which uniquely

define a Poisson counting process (see Chapter 4 of [P1]).

Theorem 2.5.1: 1If for a CP (Nt) with finite mean and
adapted to a family (Ft)

(1) for each t the following limit exists a.s

.1 A
lim + Q (t,h,w) = A (t,w) m=1,2,...
ho 0 h “m m

where Qm(t,h,w) L P{Nt+h - Nt > m[Ft}

(ii1) for almost all w there exists ho(w) > 0 such
that the series ) % Q, (t,h,w) converges uniformly for
m
h ¢ (O,ho(w)] and is bounded by a function a(t,w) such

that ft a(s,w)ds < o for each t. Then
0
(a) The series & - is convergent. Define the pro-
m

A .
cess (A, = £ Xx_). We have the relation:
t m m

Neen — Ng

A = lim E —-—7T-——4Ft] a.s for every t

t h~>0

(b) The (Ft) ICR of (Nt) is given by



Proof: By (i) and (i)

1
h

lim
h~0

R

.1 . v
EQm(t,hpQ =) Lim Q (t,h,w) = )Am(t,m)
m m h->0 m

where the first equality follows by the uniform convergence
on (O,ho(m)] (see Theorem 7.11 of [R1]). Assumption (11)

also implies for almost all w and h < h (w)

% Qult,h,e) < alt,w)h (o) < o

and this is enough to justify the equality

Z m(Qm - Qm+1) = E Q

m
m m

But

= PN - N, = m|Ft}

Qm i Qm+1 t+h t

So that the above relation gives for h < ho(w)
E(N oy - NoJF) = % Q, (t,h,w) (2.5.4)

and by (2.5.3)

. 1 .
A, = lim + ) Q (t,h,w) = 1lim E
h-0 h m "

(b) The CP (Nt) is right-continuous; by Theorem 1.5.5
there exists a right-continuous modification for the sub-
martingale (E(Nt+h|Ft)) (see Definition 27-VII of [Ml])

and we denote by (phAt) a right-continuous modification
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Neanp = Ng
of the process (E(-~—Ef—~—ﬁFt)). We have seen above
that
lim pyA = A a.s
h-+0 h™t t

By (ii) and (2.5.4)

Qm(t:h;‘ﬂ) < a(t)w)

=

0 < Py = ]
' m
for h < ho(“)' Hence the integral

t
J phxsds
0
is well defined for almost all (, and by the dominated
convergence theorem
t t
lim J phxsds = Asds a.s (2.5.0)
h-+0
0
Denote by (At) the (Ft) ICR of (Nt) and define as usual
the martingale [Mt 4 Nt - At). Let ¢ be any positive

constant and define

c 2

Pe

B(AL|Fe) - Ay o (2.5.7

It is easy to check that (Pi) is a potential (see Defini-
tion 1.6.1) and by Theorem 29-VII of [Ml] we know that

for each t
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t c o(L,,L,)
[ 5 E(Pg - PS+hIF )ds ———-——»_A f e (2.5.9%)
0 h~0
Now (AtA = NtAc - MtAc) so that by (2.5.7)
c = -
Py = [E(Ac|Ft) PM TN
where (MtAc) is not only a (FtAc) but also a (Ft) martin-

gale. Hence for s < t and if we choose ¢ > t + h

C

C = -
E(Pg - Ps+h|FS) = E(N_,p NS|FS)
Thus on the one hand by (2.5.8)
t 1 o(L;,L.)
J i EWgyp - NslFg)ds — At

0
and on the other by (2.5.6)
t
1
[ L s
0

h~0

t
o+h - Ng |F )ds 22, J 2 ds
0

so that we must have a.s for each t

t
A, = J‘ rds (2.5.9)

By the right-continuity of the processes involved relation
(2.5.9) is valid for every t a.s (see Remark 1.1.4) and

result (b) follows. 0
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The next result shows that the two conditional rates
of a same CP (Nt) but with respect to two families (Ft)
and (6,) such that F_ 2 G > N_ are related by a simple

expression.

Proposition 2.5.2: Let (Nt) be a CP with finite mean.

Denote its conditional rate with respect to the family
(Ft) by U%). Let (Gt) be another family such that
Nt c Gt C Ft. Then the conditional rate (At) of (Nt)

with respect to (Gt) exists and is given by

A

Ve = E(I6)

Note that this result makes good intuitive sense,
the conditional rate (At) being the best mean square

estimate of the conditional rate (kt).

Proof: Part of this proof is a consequence of the innova-

tion theorem which is given in the next chapter, 1i.e.,
the process (N, - ft ;Sds) is a (6,) martingale. Now
the process (ft Xsds) is increasing, continuous hence
natural (see aemark 1.7.5(d)) and consequently is the

(Gt) ICR of (Nt) by the uniqueness of the Doob-Meyer

decomposition. o

2.6 COUNTING PROCESSES OF INDEPENDENT INCREMENTS

Let (Nt) be a CP of independent increments with finite

mean m, for each t. We have already seen (Proposition

2.3.4) that the (Nt) ICR of (Nt) is given by m . Hence
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this (Nt) ICR is deterministic. Using a technique of
proof due to Kunita and Watanabe [K1] and a result of
Doléans-Dade [D2] we now show that the converse is true.
CP's of independent increments will play an important

part in solving the detection problen.

Theorem 2.6.1: Let (Nt) be a CP with finite mean me for

each t. Denote its (Nt) ICR by (At). Then
(a) (Nt) is a CP of independent increments if and
only if the ICR (At) is deterministic.

(b) If the ICR (At) 1s deterministic then

(c) A CP of independent increments is regular with
respect to the family (Nt) if and only if its means 1is
continuous.

(d) The characteristic function of a CP with independ-
iu(Nt~NS)
ent increments is given by: E e =

u

exp { (¢™ - 1)(my - m) )

1 [{1 + (eiu—l)Am }exp{(1~eiu)AmV} ]
s<v<t v
(2.6.1)

Proof: The "only if" part of (a) is simply a restatement

of Proposition 2.3.4. Now assume that the (Nt) ICR (Ay)

is deterministic. The CP (Nt) is a right-continuous step
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process with AN, being either zero or one so that for

t=>s
LuNt JuNH iuNV 1uN 1uN
e -e T = ) e = 7 (e Ve YV
S<Vit s<v<t
iuANV iuN_
= ) (e - De
s<v<t
iuN
= 7 (e -1De VN
s<v<t
iu t 1uN_ _
= (e - l)J e dN
S

where ) is the sum over the discontinuities of (Nt) in

A
(s,t]. Using the expression (Nt = Mt + At) in the above

gives

iuN¢ iuN
e = e

>

The process (Mt
iuNt_

Nt - At) e A is a martingale by Theorem

2.3.1, |e 1, so that by Proposition 2 of [D1] the

| A

process (ft e 1uNy - dMV) is a martingale. In particular
0
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t iuNV_
E(J e dMVINs) = 0
S

- 1uN _
so that by (2.6.2) (multiplying both sides by e ™)

. N . i
1u(Nt NS) t iu(N.__-N))

Ele NG = 1+(ei“-1)E[f e V.S dA,IN T (2.6.3)

S

We examine now the last term in the RHS. For any set

H ¢ NS one can write by Fubini's Theorem and the definition
of conditional expectations (note that we use here the fact
that At 1s a deterministic function):

t 1u(N,_-N_) t iu(N__-N)
J J e V.S dA dp J J e veos dPdA,

H s s H

t 1u(N__-N)
= J J Ie VoSN JdPdA,
S

S
H

t iu(N.__-N)
_ J { Ele 7 ST |N Jdaap
S

H

(2.6.4)

We also have

t iu(NV_-NS)
J E[J e dAV|NS]dP (2.6.5)
H S

t iu(Nv_—NS)
J e dA_dP
v
S

H
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so that for/any‘H € NS by (2.6.4) and (2.6.5)

J B[JteiU(Nv--NS)dAVIN;]dP _ J

H s » H

t iu(Nv--Nq)
J Lle INS]dAVdI
S
which implies a.s
t iu(N .-N_)
V- s _
E[J e dAVINS]-
s s

t iu(N__-N_)
f Ele 7 °N]dA, (2.6.6)

Introducing the above relation (2.6.6) in (2.6.3) one gets

: t  iu(N.__-N.)
N = 1+(e1u-1)J E[elu v. s INGTdA,  (2.6.7)

S

iu(N_-N_)
E[elu- t.s

Now ((elu-l)At) is a semimartingale which belongs to A.
Then by Theorem 1.9.15 the unique solution of (2.6.7)
is a semimartingale given by

1u(Nt-NS)

Ele N ]

IV

= 1u_1y0a.-A T {[1+(e U-1)aA
TRUE D (AT T (L1 1an, ]

-exp[(l-eiu)AAV]} | (2.6.8)

The RHS of (2.6.8) is a deterministic function and it
follows that (Nt) is a process of independent increments.
‘This shows part (a). We have (Proposition 2.3.7) EA, = m
and part (b) follows trivially. Part (c) results from (a)
and Theorem 2.4.7 and (d) is a restatement of (2.6.8)

where we have used the fact that At = m,. . o
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If we define a non-homogeneous Poisson process (Nt)
as being a CP of independent increments with a character-
iuN .
istic function Ee ° given by exp{(elui)ftksds} where Ay
0

is a nonnegative function called the rate, then we have:

Corollary 2.6.2: A CP (Nt) of independent increments

with finite mean my for each t is a non-homogeneous

Poisson process if and only if the mean m_ is absolutely

t
continuous. The rate Ay is then given by the Radon-

d
Nikodym derivative 7;} .

Proof: By Theorem 2.6.1(d) it is easy to see that
iuN

t iu t
Ee - = exp{(e —1)J ksds}

if and only if

2.7 PROBABILITY GENERATING FUNCTION

PRELIMINARIES

Let (Nt) be a CP with finite mean for each t and
adapted to a family (Ft)' Denote its (Ft) ICR by (At).
Recall that the process (Mt = Ntv_ At) is a (Ft) martin-
gale (Theorem 2.3.1). The conditional probability generat-
ing function y(z,t,s) is defined for t > s by:

(N¢-N)

i

v(z,t,s) = E[z [Fgl = 121 2P {N,-N,= n|F_} (2.7.1)
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~where z is a complex number with |z| < 1 and we have

PIN-Ng = n[Fe} = 55 S y(z,t,s)| (2.7.2)

We can cumpuie Lue pruuabiklity generating function
proceeding exactly as in the proof of Theorem 2.6.1 (let
z = eu) and find (note that (Nt)vis not necessarily of

independent increments):
| t ~(NV_-NS) .
v(z,t,s) = 1+(z—1)E[ J z , dAV|Fs (2.7.3)
: .

The above formula can be generalized to the case
where the jumps‘of the protess (Nt)-are of random size.
This formula would then contain, in place of the term
(z-1), a random quantity whiéh is a function of the random
size jumps AN, and Z; This additional randomness makes
this formula harder to manipulate and practically

useless.

APPLICATION TO COUNTING PROCESSES OF INDEPENDENT INCREMENTS
Suppose now that (Nt) is a process of independent incre-
ments with finite mean m£ énd take F, = Ni. In this case
the (N,) ICR (A.) is given by m_ (Theorem 2.6.1). We
compute noﬁ the pfobability generating function N(z,t,s)
and the probability P{Nt- N = n} . The method used to
~derive these formulas is appealing as’it does not require

the mean m, to be continuous (in this case the formulas

t
are well known). First, one gets the probability
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generating function by letting z = e’ in Theorem 2.6.1(d)

v(z,t,s) = exp{(z-1) (m -m_)}

it (1+(z~1)AmV)exp{(1-z)AmV}
s<v<t

(2.7.4)
For a process of independent increments we clearly have

- N, =n|N3} = P(N_ - N, = n} (2.7.5)

If the mean m_ is continuous we then immediately get

t
using (2.7.2)

1

P{Nt ) Ns =n} = n!

n .
(mt‘- ms) exp[-(mt - ms)] (2.7.6)
This relation motivates the following

Definition 2.7.1: A CP (Nt) of independent increments

with a continuous finite mean is called a Generalized

Poisson process.

If furthermore (Nt) is a non-homogeneous Poisson
process (see the definition above Corollary 2.6.2) with

rate At then we get the well-known formula

1 Jt AVdV]n4eXP['Jt Avdv] (2.7.7)

S S

PN - N = n}

However the interesting case is when the mean m, is

discontinuous. We know that an increasing function finite
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for each t has at most a countable number of jumps in
any finite interval. Denote by (ti,vi= 1,2...) the times

of jump of me in the interval (s,t] and define

at = ) bm, = Y Am (2.7.8)
s<v<t 1 i
and
§¢ = m, -m_ - AF 2.7.9
s t S s (2.7.9)

Formula (2.7.4) can be rewritten with the above relations
in the form
v(z,t,s) #vexp{-Gz}exp{zﬁg} H[1+(z—1)Amt ] (2.7.10)
' i i
We exmine now the infinite product

M1 + (z-1)m, ] (2.7.11)
1 1 '

Observe that: (a) for each n the partial product

fn(z) N [1 + (z-l)Amt_] (2.7.12)

1

n=s
-

1

is analytic on the complex plane and (b) the series

Z I(Z - l)Amt.l

i i
is uniformly convergent in the region |z| < 1. This last
point follows from the Weierstrass test:

|(z - 1)Am_. | < 24m
ti ti
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and because the mean mt is finite for cach t the series

t , ,
Ay = Z Amt. <omgow
i i

is convefgent. Conditions (a) and (b) above imply that
the infinite product (2.7.11) converges uniformly to a

function f(z) which is analytic in the region |z| < 1
(see [H1], Corollary to Theorem 8.6.3; or [D3], Theorem
5.4.8). Hence we can get a Taylor series expansion for

f(z) =1 [1 +'(Z-1)Amt.] in the region |z| < 1.

i i
f£(z) = ] a,z2® = n[l+ (z-1)dm ] (2.7.13)
e i i
We compute now
(n)
d t e
exp{z68 } g a,z ]
noo d(n k) (k) o
= kZO [ ———“E—'(GXP{ZG D——E—[Z a_z ] (2.7.14)
Now
(n-k)
371—1(- (explzst}) = (50K explzsl) (2.7.15)
z

The power series () aeze) is uniformly convergent and can
' e
be differentiated term by term in the region |z| <1 so that

(k) (k)
d e _ d e _ e! e-k
dz [e Ye” ] i g aedz i i Zk Yo (e-k)t ’

(2.7.16)
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Introducing the two above relations (2.7.15) and (2.7.16)

in (2.7.14) we get

(n) t e t
(exp{zés} ) az’) = (exp{ZGS}T.I[h(z-l)Amt 1D
dz™ ' e dz i i
n n t.n-k e! e-k
= ] [k](é )P explz6’} ( I a 27 (2.7.17)
k=0 ) ° ek “(e-k)!

Evaluating (2.7.17) at z = 0, we have (see (2.7.10))

d(n)

akk! (2.7.18)

w(z;t,s)l " = exp{- St} Z } g)n k

dz S k=0

and finally (see (2.7.2))

a
k (Gt)n k

PN, - N, =n} = exp {- 6 } 2 T"'FT_ (2.7.19)

Now if the mean my has only a finite number of jumps j > 1
in the interval (s,t] then the coeffiencts a) are such

that

i~
o
N
o
"
=~

[1 + (z-1)am,_ ]
1 € e=1 te

and can be computed by

(1 - am (2.7.20)

t.)

fs+]
o
"
e

i

For 0 < k < j
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N
1 ‘ k j
% T kT / ‘ (I Ame )[ T (1-Am )]

all permutations q=1 ‘“e_ q=k+1 e
e , q=1,...,j} 1
q
of _
{1, 00ue.... ,j} (2.7.21)
IJI A |
a. = m 2.7.22
S ( )

and finally for k > j, ap = 0.

If j = 0 (continuous case) then g[l + (z-1)Am =1

| | ti]
so that a, = 1 and ay = 0, k > 1 and result (2.7.19)

reduces to (2.7.6) (6: =mg - omg in this case).

We summarize the above results in

Theorem 2.7.2: Let (Nt) be a CP of independent increments
PR A R .

“with finite mean m, = ENt for each t. Let s < t and

denote by ty the (at most countable) times of jump of

m, on the interval (s,t]. Define

A
6: = m_-m_- ) Anm

ES et
(a) If the number of jumps of mg in (s,t] is infinite

then the infinite product

(1 + (z—l)Amt ]
i i

is uniformly convergent in the region |z| < 1 to an

analytic function and we denote by a, the coefficients
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of the Taylor's expansion of the above infinite product.

(b) If the number j of jumps of m, in (s,t] is finite
then the‘coéffi¢iént5'ak'can be computed by formulas
(2.7.20) to (2.7.22). If m, is continuous (j = 0) then

: =v ‘=' » ! t = -
a, =1, a =0, k>1 and §5 = my m .

(c) The probability generating function y(z,t,s) is

given by
p(z,t,s) = eXP{(Z'l)Gz}‘g[l + (z-1)Amg ]
. i
= exp{(Z-l)Gg} g éizi
(d) We have
PN, - N, = n} = exp{-ag}kzo —(—n-?—l—liﬁ(az)n'k

APPLICATION TO COUNTING PROCESSES WITH A CONDITIONAL RATE

Assume now that (Nt) is a CP with finite mean for
each t and for which a conditional rate (At) with respect
to a family (Ft) exists and satisfies the condition

N_. N, .
E(z " A\ IF) = E(z 7 [FOEO[FQ) (2.7.23)

for all v > s. This condition will be discussed later on.

From (2.7.3) we get

t (N__-N))
v(z,t,s) = 1 + (z-1)E z VY STA dv]|F. (2.7.24)
A" S
S
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Now the CP has a finite mean so that (Proposition 2.3.7)

Eft A ds is finite which implies (|z| < 1)
) <

t (N _-N)
EJ |z Y A, dv < e
E

Then by Fubini's Theorem (applied as in the proof of

Theorem 2.6.1) one gets

t (N__.-N)) it (N_--N.)
E[J z V3 \AVIFD = { E[z VY S A Fgldv

S S
Hence by the above relation, (2.7.23) and (2.7.24) one has

t ~
v(z,t,s) = 1+ (z-1) J w(z,v‘,s)kidv (2.7.25)
S

where Ki A E(AVIFS) i.e., (ii) is the best prediction of
‘(AV) based on the past information up to and at time s.
As before, this equation has a unique solution which is a
semimartingale‘(Theorem 1.9.15):

t A

0(z,t,s) = exp{(z-l)J \Sav) (2.7.26)
‘ S
and
_ - ]. tAS n _ t'\s
PIN, - No = n[F } = (] Agdv) exp{-| AJdv} (2.7.27)
S S

It is interesting to note that both these formulas are
identical to the formulas for Poisson processes where we

have substituted for the rate AV the best estimate
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All this is very appealing but is true only if condition
(2.7.23) is satisfied. This condition which can be
rewritten as

(N,--N) (N, -Ng)

E[z é (O, - AJIF =Bz 7 S F B[O |Fg)

(2.7.28)

is difficult to interpret. But if we take s = 0 and
assume Fo = {¢,Q} (this is in particular the case for No)

then the above condition (2.7.23) becomes

N - N

E(z Y a,) = E(z V)EQ,) v >0 (2.7.29)

and is sétisfied if for each t the two randomkvariables
Nt- and Ay are independent. This seems a reasonable
assumption if we think that the value of Nt_ does not
'influence the rate at time t. Then under this condition

£2.7.29) relation (2.7.27) gives

t n t
(j (EA,)dv) exp{-f (Ex,)dv} (2.7.30)

0 0

1

=1} = n!

t

In conclusion what we have done is to use the formula
of change of variables (Theorem 1.9.14) to get an expres-
sion (Eq. (2.7.3)) for the conditional probability gener-
ating function. This expression contains an integral
‘which can under certain circumstances be manipulated so
as to give an integral equation for the conditional proba-
bility generating function. Furthermore this integral

equation has, by Theorem 1.9.15, a unique solution which
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is a semimartingale. This method is particularly suitable
for CPfs of independent increments and can also be applied
to CP's with a random rate which satisfies (2.7.23). But
in general we cannot obtain an integral equation for the

conditional probability generating function.



CHAPTER 3
DETECTION

3.0 INTRODUCTION

In this chapter we examine the detection problem for
CP's by the likelihood ratio technique. This approach is
well known and will not be motivated here. Recall that the
(P,F‘) ICR (At) of a CP (Nf) is the unique natural increas-

ing processwhich makes the process (Mté N, - At) a square

t
integrable ( P, ﬂ)]ﬁoal martingale (Theorem 2.3.1 and Definition
2.3.2) and that this ICR is continuous if and only if the CP is
regular with respect to the family (Ft) (Theorem 2.4.7).

We first obtain the likelihood ratio in the case where
one of the CP's is of independent increments with continu;

ous mean m, while the other has an (Ft) ICR of the form

t
fgt xsdms) where (At) € H(Ft)'is a pbsitive process. Note
that both these CP's are regular. Then taking advantage

of the chain rule for likelihood rétios we extend this
result to the more general case where both ICR's are of
the form (ét Aidms) for i = 0,1. Stochastic integral equa-
tions which allow us to compute the likelihood ratio con-
tinuously in time are also derived. The results described
above are given in the last Section 3.4. The method used
to obtain the likelihood ratio consists in the three steps

procedure introduced by Duncan ([D3],[D4]) and Kailath
[K3]:

122
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Step 1 gives a general description of the likelihood ratio
dPo/dP where P is a measure under which a given CP is of
independent‘increments and PO a measure absolutely continu-

ous with respect to P.
Step 2 is a Girsanov type theorem and
Step 3 is the Innovation Theorem.

In very general terms the Girsanov, respectively the
Innovation Theorem, tells us how to transform local martin-
gales of interest into new processes which are also local
martingales when a change of measure, respéctively a change
of family of o-algebras, is made. These two theorems are
presented in Section 3.1. It is also shown there that the
Girsanov Theorem can be used to prove, under suitable
assumptions, the existence of CP's for which the (Ft) ICR
is of the form (ét ASdAS) where (xt) £ H(Ft) is a nonnega-
tive process and (At) is itself the (Ft) ICR of a CP. Let
now (Nt) be a regular CP‘of independent increments with

- mean my . Recall that the process (Mt S Nt - mt):belongs to
Mg(Nt) (Theorem 2.4.8) where Ny is the minimal o¢-algebra
generated by (Nt) up to and at time t. In Section 3.2 we
show that any martingale in Mf(Nt) can be represented asAa
stochastic integral with respeét to (Mt). This result is
basic to Section 3.3 where the likelihood ratio representa-

tion theorem is demonstrated (this is Step 1).
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In this chapter we deal with a measurable space (Q,F)
on which the probability measures P, Po and P1 are defined.
We denote respectively by E(-), Eo(-) and El(-) the expecta-
tion operator with respect to the‘measures P, Po and Pi'
The‘standard ndtation P, << P means that the measure P
is éb501ute1y continuous with respect to P1 while Py ™ P
indicétes that the two measures are equivalent (i.e.,

Py << P and P << PO). ‘Every stochastic process is defined
on the measurable space (Q;F) equipped with a given prob-
ability measure P, PO or ﬁ . The general assumptions of
the previous chapter (see Section 2.1) are used again in

this one.

3.1 TWO BASIC THEOREMS IN DETECTION

ABSOLUTELY CONTINUOUS CHANGE OF MEASURE: THE GIRSANOV
THEOREM

| The Girsanov theorém is a basic Sfep in finding
likelihood ratios. The version we present here, in the
context of CP's, Will also enable us to create from a
regﬁlar CP with (Ft) ICR (At) other CP's for which the (Ft)
ICR's are of the form (ft ASdAS) where (At) € H(Ft) (c.f.
Definition '1.9.9) is a gonnegative process. The original
version of the Girsanov Theorem dates back to 1960 [Gl] andv
was concerned with Brownian motion. The extension of this
result to the case of local martingales beCame possible
with the new calculus being developed for these latter
processes. We give now the version of Girsanov Theorem

which is appropriate for CP's.
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Theorem 3.1.1:

Under the measure P let (Nt) be a rcgular

CP with respect to a family (Ft). Denote its (P,Ft) ICR
by (At).

and define

Suppose (At) € H(Ft) 1s a nonnegative process

L = [ I A } exp
t Jn

ft (1-As)dAs] (3.1.1)
0

wheret%ldenotes the time of nth jump of (Nt). (By conven-

tion the product ( I Ay ), when empty (e.g., for t = 0),
J <t n
n_.

is set équal to one.)
(a) The process (Lt) is a (P,Ft) local martingale

which is the unique solution of the stochastic integral

equation
t _
L, = 1+ l Lo~ (1) dM (3.1.2)

A
where (Mt = Nt - At) e L.

(b) If (Lt) is a uniformly integrable (P,Ft) martin-

gale define a new measure P, on (Q,F) by

ENOEE J LdP A F
A

where L_ is the limit a.s and in the mean of Lt as t goes

to ». Then the process (Nt - ft ASdAS) is a (PO,F )
.0
local martingale, i.e., the process (ét AsdAs) is the

(Py>F.) ICR of (N.).
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To prove'the above theorem we will need:

Lemma 3.1.2: Let Po be a measure absolutely continuous
with respect to P and define the uniformly;integrable
(P,Ft) martingale (Lt) by

dp
= 9
Lt E[ a» l Ft]
Then the process (Xt), adépted to (Ft)’ is a (PO,Ft)

locdl martingale if and only if the process (LtXt) is a

(P,Ft) local martingale.

Proof of the Lemma: (<) Assume (LtXt) is a (P,Ft) local

martingale and let (Tn) be a sequence of stopping times
reducing (XtLt), i.e., (L?X?) is a uniformly integrable

A :
(P5Ft) martingale for each n where (L? = Lt T ) and
“n

(x® 2 x

14X, ;). Forsct, if (FR A

)
t.T,

_dp dp
E[XPE (35| Fp) - XSE (qp>| Fo) | Fol

n.n nnn=
E(XgLy-XgLg [Fg) = 0

dp dp
n "o .n n "o N, 0
BIE(Xy g [Fe)"E(Xg gp [Fs) [Fg]

n Xn)dpo A
t S Eﬁ—l s

o
n

E[ (X

Hence, by definition of conditional expectations, V A ¢ Fg
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: dp dp
- n_,n, o,.n - n_yny 0 .. _ n_.n
0 JE[(Xt Xg) g5l FldP J(xt Xg) g7 dP J(xt Xg)dP
A A A
which implies
2N NS (I PO
Ed(xt XSIFS) 0

so that (Xt) is a (p ,F,) local martingale. The argument

can be easily reversed. o

Proof of Theorem 3.1.1: (a) This is a direct consequence

of Theorem 1.9.15. The unique solution of (3.1.2), a local
martingale because the process (ft (As—l)dMs) is one (see
0

Theorem 1.9.11), is given by

t
Lt = SEt[lf(As-l)AMs]exp[(1-AS)AMS]exp(£ (As-l)dMs)

The CP (Nt) is regular by assumption so that by Theorem

2.4.7 the ICR (At) is continuous. Thus AMt = ANt = 0 or
1 and the product term 1 (-) is equal to
: s<t '

M [1+(Xx_-1)AN_Jexp[(1-X_)AN_] = T A;exp(l-r;)
s<t S S S S J <t Jn Jn

ot
= T A;)exp] (1-x;)] = m Xx;)exp(]| (1-a)dN)
(J <t Jn i Jngt In Jst In i 003

so that upon introducing the relation Mt N, - At in the

t
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term exp(ft (A,-1)dM,) we get the desired result (3.1.1).
0 :
(b) Because of Lemma 3.1.2 we only have to show that

the process (Lth) is a (P’Ft) local martingale where

A t
Y, &N, J AGdA (3.1.3)
0
Define
T T (3.1.4)
t J <t In .
and
t
X, = exp(([ (1-1,)dA)) (3.1.5)
i.e.,
Ly = FX¢

and apply the formula of change of variables to the product
(FtXth). We get

‘ t t
Lth = FtXth = J XSYs_dFS + J FS_YS_dXS
0 0

t
+ J F__X_dY
-8 S 'S
0

+ 7 [XA(FY_)-X_Y__AF
s<t S S S S S S

- FS_XSAYS] (3.1.7)
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We have

t
J XY, dF = ) XY, AF, (3.1.8)

because (Ft) is a step process. By (3.1.5)

dX, = —XS(AS—I)dAS
so that
t t
J Fo-Yg.dX = —J L Y, (A -1)dA_ (3.1.9)
0 0 v
t .
Also AY = AN, and Yo - N, o= -J XSdAS (see(3.1.3)) hence
0

t t t
f F_X.dY - [ F_ X AY, = J F_.X d(Y -N) = -J LA dA
0 s<t 0 0

(3.1.10)

i . - . x A
Using the relations Ys YS- + ANS, FSANS Fs_ s NS S0

that AF Fs_(ks-l)ANS we obtain

JERTAR

X (FY__ +F_MN_-F_Y_)
S § S S S S S
s<t

XSYS_AFS + XSFSANS

-1) AN
XSYS‘FS"(AS 1) Ns * Xst“ S Ns
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t , t
Sgt XA(FY) = J LY, (A-1)dN, + J L-A AN
= 0 0 '

(3.1.11)

Introducing all the above relations (3.1.8)-(3.1.11) into

(3.1.7) we finally get

t t
LS_YS_(AS-l)dAs - J LS.ASdAs

Lth = -J
' 0 0

t t
+ f LS-YS_(AS-l)dNS + J LS_ASst
0 0

t t
LY = .J L-Y o (A-1)dM + f Lo dgdMg  (3.1.12)
0 0 |

The process (Mt) is (P,Ft) local martingale and the follow-
ing processes belong tovH(Ft):(Lt_) (by (a) (L) is a
local martingale and see Remark 1.9.10(b)), (kf) (by
assumption) and (Yt') (easy to check). Therefore the
above relation (3.1.12) shows that (Lth) is a (P,F.)

local martingale (see Theorem 1.9.11). )

We remark the following. The genefalization of the
original Girsanov Theorem [Gl] was obtained by Brémaud
[B1], Gualtierotti [G2] and us (and maybe others we are

unaware of). By now the most general version has been
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obtained by Van Schuppen and Wong [V1] (1973) who took
good advantage of the work of Doléans-Dade [DZ]. But
their reéult ([v1], Theorem 3.2, see in particular their
comments on p. 10) is incorrect in the sense that they
only assume that the‘process (Lt) is a positive martingale
with EL, = 1. But this is not enough. Alfhough we know
by the supermartingale convergénce theorem that Lt converges
a.s as t goes to « (denote the limit by L_) it is not
true, unless the martingale (Lt) is uniformly integrable,
that the required condition EL_ =1 (i.e., PO(Q) = 1) is
satisfied (by Fatou's lemma we have EL_ < 1). There is no
reason to believe that positive martingales are necessarily
uniformly integrable. In Appendix A.5 we exhibit a dis-
crete positive martingale (Xn), EXn = 1 which is not uni-
formly iﬁtegrable: Elim X, = 0. Brémaud makes the same
error in his dissertat?on (Theorem 2-1-i of [B1l]).

Let'(Nt) be a regular CP with a (P,F_) ICR given by
(At). When the process (Lt) defined by (3.1.1) is a uni-
formly integrable martingale the above theorem shows the
existence Qf CP's which have (Po’Ft) ICR's of the form
(jt ASdAS)-where (xt) € H(Ft) is a nonnegative process.
Ugfortunately this uniform integrability requirement for
.(Lt) seems difficult to meet. By the above theorem

.t
L, = 1+J Lo~ (A -1)dM,
0

and by Proposition 2 of [D1] a sufficient condition for
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(Lt) to be a martingale (not necessarily uniformly inte-

grable) is
t
EJ Lo A1l faM] < o« (3.1.13)
0 - . .
i.e.,
t
EJ LS_lxs—lldAS < 00
0 |
and (3.1.14)
t
- < oo
EJ LS_IAS l]dNS ‘
0
Suppose now that (At) satisfies
Ay 2 € a.s (3.1.15)

where ¢ is a constant such that ¢ > 1. By (3.1.1) then

N

t _ : ’
Lt < c exp(At) (3.1.16)

so that
t Nt t Nt
El LS_|A5-1|dAS < cEc J exp(As)dAS =cEc "[exp (A )-1]
0

(3.1.17)

and

t N
: _ t

EJ L-hg-1laN, < cEN.c ©exp(A,) (3.1.18)
0

Hence if relation (3.1.15) is satisfied and if
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E(N, + 1)cNt exp(A) < (3.1.19)
then condition (3.1.13) is satisfied and (Lt) is a
martingale. This martingale is not necessarily uniformly
integrable and consequently we have to consider finite
intervals [0,a] instead ofIR+. In practice this is the
usual case as we deal with finite observation times. For
any a, we define a new measure P_ on (Q,F) by dPo/dP =L,

and by the above theorem the CP,(Nt é) under this measure

P, has the process (ft“a
0

ASdAS) for (Po’FtAa) ICR. The
condition (3.1.19) is in particular satisfied if (a) the
constant ¢ is equal to one and (b) the (P,Ft) ICR (At) is
boundedva.s by a deterministic function Kt (this last
conditioh'implies by Proposition 2.3.7 that EN, = EAt < Kt
< ), All_these conditions are pretty strong. There is
an important case where condition (3.1.19) is satisfied:
for generalized Poisson processes (i.e., regular CP's of
independent increments with finite mean, see Definition

2.7.1). In this situation the (P,Nt) ICR of (Nt) is given

by m, and (see (2.7.7))

: - _ 1 n
P{Nt =n} = exp(-mt)_ﬁT- (mt)

so that condition (3.1.19) becomes

~ N
1
E(N +1)c t . exp(—mt)g (n+1)c™ o7 (mt)n <
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Furthermore for any increasing deterministic function m,
with m, = 0 there exists a measure P such that the CP (Nt)

is of independent increments with mean m Thus we can

t°
summarize this last result as

Corollary 3.1.3: Let mg be a deterministic increasing

continuous function with m_ = 0. Then for any positive
constant a there exists a measure P0~and a CP (Nt a)

. . ta
for which the (Po’NtAa) ICR is of ﬁhe form (é a Agdm)
where (xt) 5 H(Nt) is a nonnegative uniformly bounded

process (i.,e.,bxt < c, c is a constant).

This shows in particular the existence of uniformly
bounded conditional rates with respect to the family (Nt)

t).

(take my

INNOVATION THEOREM

In the Girsanov Theorem we make a change of measure
‘while keeping the family of o-algebras (Ft) the same. The
Innovation Theorem is concerned with eXactly the re?erse
problem: only one measure P but two families of g-algebras
(Ft) and (Gt)’ Ft > Gy, are considered; how (P,Ft) martin-
gales of interest (e.g., of the type (Nt - gt Asdms) should
be modified to become (P,Gt) martingales is the question
answered by this theorem. This result is of much simpler.

nature than the Girsanov Theorem.

Theorem 3.1.4: Let (Xt) and (Yt) be two processes res-

pectively adapted to the families of g-algebras (Gt)
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and (Ft), where Gt C_Ft’

t .
Suppose (X, - é stms) is
a (P,Ft) martingale, where mt{g V is a deterministic

function with m, = 0. Then if
ot
E£ Y ||dn | < =

the process (Xt - ]t ?sdms) is a (P,G,) martingale, where
0

A

Y, = E(Y.|6,).

Remark 3.1.5: Denote by A the union of all intervals of

R, on which the function m, is constant. Note that the
process (Yt) may be infinite for t ¢ A and that the process
(§t) is then not well defined. The value of the integral
(ét stms)'is not affected if one changes the values of

(Yt) for t ¢ A so that, to avoid the above problem, we

adopt the following convention: for t € A we set (Yt = 1).

Proof: E(Xt - XSIGS)

= E[E(X, - xles)les] (Fg > G)
= E[E(/" v dn,|F)]6,]
S
t
= E(i Yudmu]Gs)
= [* E(Yule)dmu (Fubini's Theorem)
S
t |
= E[E(YulGu)|Gs]dmu (6, > 6,)

S.

- gt E(Y,|6 )dn |6,] ~ (Fubini's Theorem)
M |
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- g(f* Y dn |6) | a
S

The above theorem is in fact only a trivial modifica-
tion of Theorem 1.1 of [B1l] which deals with the function
t and the family o(Xu, 0 < u< t) instead of m and (Gt)
and contains the unnecessary assumption that (Xt - 6txsdms)
is square integrable. We give this theorem here for com-
pleteness and because of the shortness of the proof.
Observe that if (ft Asdms) is the (P,Ft) ICR of a CP (Nt)
with finite mean ghen the above result shows that (étisdmé),
where ;s = E(Asles), is the (P,Gt) ICR of (Nt)' Now by
Lemma A.3.1 we also know that the process (Nt-iﬁ%tksdmsleD

't A
Asdms) and

is a martingale. These two processes, ([
0
(E(ft Asde|Gt)), are different because the first one is
0 .
continuous, thus natural, which is not necessarily true

for the second.

3.2 MARTINGALE REPRESENTATION

Let (Nt) with the measure P carried on (Q,F) be a
Poisson process with rate one. Brémaud ([B1], Lemma 3)
has shown by applying results of Kunita and Watanabe ([K1],
Theorem 4.2) on additive functionals of a Hunt process that
any martingale (Xt) € ME(P,Nt) can be represented as a
stochastic integral with respect to (Mt = N.t - t). An
analogous result for Brownian motions is well known (see

[W1]). Recall also that if (Nt) is a regular CP 'with
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| finite mean and ICR (At) then by Theorem 2.4.8 the martin-
gale (Mt 2 Nt - At) 5 MZ. In this section we extend the
above result to the case where the CP (Ni) 1s not necessar-
ily of Poisson type as above but more generally is a regu-
lar CP of independent increments with finite mean m, .
This is done by making a nonrandom change of time which is

motivated by the following lemma. This is essentially

Theorem 12-VII of [M1].

Lemma 3.2.1: Let ay be a positive right-continuous increas

ing extended real function defined on R,. Define

Vs > t}

finf{t: a, = ag, >

t
tm='\

Lo if the above set is empty

i.e., t _is the first time from which the function a,

_remains constant. For all t ¢ R+ let

(inf{s: a. > t}
c, = \
» if the above set is empty

Then (a) For t> a_ , Ce = 5 otherwise the function c,

t
is finite, right-continuous and increasing
(b)
['inf{t: c, > s}
a. =

o if the above set is empty

(c) If the function ay is finite and continuous, the

function Ct is strictly increasing and
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(d) Suppose a = 0 and let £, be a Borel function‘on

R, such that either éw f;daS or 6” f;das is finite. Then

f fda, = ({ £ ds (3.2.1)
0

Proof: (a) For t > a_ the set {s: a, > t} is empty and

t

0o

c, =oby definition. For t < a; this set is non-empty,

t

decreasing as t increases. Hence the function Cy is finite

and increasing. Suppose that Ct is not right-continuous at

o]

a point t < a Then for any positive ¢ there exists a

£

o]

number h such that

Ci < h «< Ct+€'

This implies, by the definition of c, and the increasing

property of ay that

t < ah

and, ¥ ¢ > 0, a <t +ei.e., ay < t and we have reached a
contradiction. Hence the function Ce is right-continuous.

(b) By definition

C = inf{s: ag > at} >t
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Thus
c > s +g > s for any ¢ > 0
a p—
Ste
Also
¢, > s implies u > inf{t: c . > s}
so that
Ao4e 2 inf{t: c, > s} for any ¢ > 0

and by the right-continuity of a, we thus have

a, > inf{t: Cp > s} _ (3.2.2)

Let t be such that Ce > S5 then by definition of ag, a, < t

so that

a. < inf{t: c, > s} (3.2.3)

- t

Relations (3.2.2) and (3.2.3) prove part (b).

(c) Assume c, is not strictly increasing; then there

t
exists t < ty such that for any t ¢ [to,tl), Ci = Cy =
constant. By relation (b), a. = inf{t: Ci > co} > t1
0
and for any ¢ >0, a. . = inf{t: Ci > co-e} <ty ieen,

(0]

the function a, is not continuous at Cys @ contradiction.

t

Thus the function c, 1s strictly increasing. From that

t
and (b) we get

inf{t: ¢

a > s}
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SO we can write

= 1 - - > ~ =
aCS inf{t: c, > c/} 8

(d) Le_tft be the indicator function of the interval

[0,s], i.e., f_ = I[O S](t). We first show that relation

t
(3.2.1) is verified for this type of function. We have

J ftdat = J I[O,s](t)dat = a
0 0
Now
f I (c,) =1 (t)
“t [0,s]™"t {uic.<s} =
u—
Thus
a_ a_
f dt = [ T, (t)dt
£ Ft ! {uic <s}

"length of the interval {u:c, < s}

inf{t: Cy % s}

where the last equality follows by (b). Hence relation
(3.2.1) is verified in the case where ft is an indicator

function. This implies (see the end of the proof of
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Theorem 12-VII of [M1]) that this relation (3.2.1) is
verified for all bounded Borel functions. The fact thaf
any positive Borel function is the limit of én increasing
sequence'bf bounded Borel fﬁnctions and the monotone con-
vergence theorem show that relation (3.2.1) is true for
any positive Borel functions. If ft is now any Borel func-

tion we apply (3.2.1) to fz and f_ to get the desired

t

‘o 4 0 -
result as the sum é f.da, - é £,
assumption. u]

dat is well defined by

We can now prove the desired result on martingale
representation. Under the measure P let (Nt) be a regular

CP of independent increments with finite mean m Recall

¢

that by Theorem 2.4.8 the martingale (Mt = Nt - mt) €
2

Mg (P,N.) and M>y = mg.

Theorem 3;2.2: Let (Nt) be the CP described just above.

Then any martingale (Xt) 5 ME(P,N ) has the form

. |
X, = J F dM_ (3.2.4)
0

where(Mtﬁ=Nt—1nt) and (Ft) is a process belonging to

H(Nt) and such that

t .
2 .
EJ Fsdms < o for egch t e R, (3.2.5)
-0

Proof: Define t, and c_ as in Lemma 3.2.1 where we now

t

use the continuous mean function my in place of a, (see
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Figure 3.2.3), For each t, c, being a constant is tri-

vially a stopping time. Define N% =N ,M:=M , X* =

Cy t Ct t
. % = ) . .
XC and Nt NC . We obviously have
t t
N% = G(Nu, Oiuict) = o(NCV, ngvipt) = o(Ni, O<v<t)
(3.2.6)

where the last equality follows because c, is strictly
increasing by Lemma 3.2.1(c). Symmetrically for each t

m, is a stopping time and

t

(3.2.7)

Consider now the two following cases

Case 1: t_ is infinite (mt may be finite or infinite)

00

t ) -

o]

and let T* = [0,m

Case 2: t_ is finite (mt is then also finite) and let

[os]

T* = [O,mt ].

We show now that in these two cases (M§) and (X%) are

(N#) martingales with E(M%)2 < » and E(Xg)2 < » for t e T*.

Case 1: By Lemma 3.2.1(a), Cy is finite for t ¢ T* and by
the Optional Sampling Theorem (X%) and (M%) are (N})
martingales. Clearly E(M%)2 and E(X:)Z are finite for

t e T*.
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Case 2: By Proposition 2.3.6 the CP (Nt) 1s a.s constant
as a function of time for t > t_; this implies N, = N,
for t > t_so that the two martingales (Mt) and (Xt) c:n
respectively be expressed as (M. = E(M, |[N,)) and (Xt'=
E(Xt |Nt)); by Theorem 1.5.4 they are'uziformly integrable
and gy the Optional Sampling Theorem we have for t ¢ R,
(although ét = o for t > mtw) that (M = E(MthNi)) and
(X% = E(X, LN%)) belong to ME(N:). For t > m_ , c, ==,
ME = M = ;t and X% =‘X°° = X, . Hence we onl; have to
consider themindex set T*. )

Nowtby Lemma 3.2.1(c) one gets
NP o= MEem, o= ME4t (3.2.8)

t Ct

i.e., by Corollary 2.6.2v(N%) is a Poisson process with
rate one. We have seen just above that (X%)‘is a (N%)
martingéle with E(X,’c‘)2 < o for t ¢ T*. Furthermore (see
(2.3.6)) N: = o(Nﬁ, O<u<t) so that by Lemma 3‘of [B1]

there exists a process (F:) € H(N%) such that for t ¢ T*.

t 2
EJ (Flds < o (3.2.9)
0
and
_ t t
= * E3 = E3 * - * :
X3 J FAAMY = J FAdN J Ftds  (3.2.10)
0 h 0

Define



144

By (3.2.7) the process (Ft) is adapted to (Nt) and in fact
' (Ft) € H(Nt)AsinCe m is a continuous function and (F%)'é
H(N%).

By Lemma 3.2.1(c) and (d) we can write

Cc Cc

t t ©
% o=
J Fsdms J Fmsdms J I{s<ct}(s) F; dms
0 0 0 - S

|
—
8
—
e
w0
A
(@]
(
—
—~
Q
wn
. —
r
=
[l
w
i
OV
i
wn %
[a ¥
w

For t ¢ T*, t < m_ so
. — [o0]

t t ‘
= * .
J FsdmS J Fsds (3.2.11)
0 0 ’

Similarly we get

t ,
EJ Foadm, < (3.2.12)

Also
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t
FdAN_= ) F* AN = )  F*AN
L S S <s<c s S ocwt Y Sy
- "t —
t
= * * .
J FXdNX (3.2.13)
0

where we have used the change of variables s = Cy There-

fore by (3.2.10), (3.2.11) and (3.2.13) we have obtained

t t. t
& = = - - .
Xt = X ﬁ FdN,_ f F_dn J F oM, (5.2.14)
0 0

which shows together with (3.2.12) the desired

result for all t in the range of ¢ If t is not in the

¢
range of c. then t ¢ [t,»t;) where t_ and t, = sup{t:mt=mtv}
0

delimit a flat of m_. We include here case 2 where t, =

t and t; = . Note that ty belongs to the range of Ct
(by right-continuity of Cy» see Lemma 3.2.1(a)); hence

by (3.2.14) (if t; = », X, =X and M, =M, are well

1 o 1 o
defined, see case 2)

(3.2.15)

Let t ¢ [t ,t.). By Proposition 2.3.6, N, = N, a.s so
0’71 t t1
that N, = N, and therefore '
t 't



146

A

——— - - —— - ——— — — (o

p - e —— -

|
l
!
_
|
[
[
_
|
b
[
1

e - - . —— -

(o]

Figure 3.2.3




147

X, = EB(X_ IN,) = EX, IN_.) = X (3.2.16)
t t1 t tl 'c1 tl
Similarly
Mt = Mt (3.2.17)
1
Also
F = F* = F* = F* = F = F
t m m t t
t tl to 1 0
Hence we also have in this case
t 4
J Fdes = J FSdMS = Xt = Xt
0 0 1

where the first equality follows by (3.2.17), the second
by (3.2}15) and the last one by (3.2.16).

We remark the following. If (N,) is now any regular
~CP with (Nt) ICR (At) then we can define a stochastic

change of time by

Cf =

J’inf{s: A, > t}
o if the above set is empty

and using the notation of the theorem we also have that
(N% = M% + t) is a Poisson process with rate one. But now
N: is not necessarily given by o(Nﬁ, O<u<t) (we have

N% b o(Ns, O<u<t)). The (N:) martingale (X:) is not
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necessarily (0(N}, 0 < u < t)) measurable so that we
éannot in this case apply Brémaud's result to express the
martingale (X%) as a stochastig integral with respecf to
(M:)’ i.e., express (Xt) as a stochastic integrél with
respect to (Mt). Later on we will need the apparently

more general result

Coroliary 3.2.4: Let (Nt) be a regular CP of independent

increments with finite mean m.. Suppose T is a (Nt)
stopping time. Then if (Xt) € ME(Nt T) there exists a
process (Ft) € H(Nt) such that ‘

t
2
Ej \Fsdms < for each t e R,
0

Ft = Felieen
and
‘ t
Xt = j Fdes
0

where (Mt = Nt - mt).

Proof: By assumption (Xt) € ME(Nt T) and by Lemma A.2.1

we also have (Xt) € Mg(Nt). Thus by Theorem 3.2.2 there

exists a process (Ft) € H(Nt) such that Eft ngms < o
0 _

and
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For t > T, X = X, so that one can take F = Ft‘I{tiT}

As a consequence of Theorem 3.2.2 we also have

Corollary 3.2.5: Let (Nt) be a regular CP of independent

increments with finite mean m Then the family (Nt)

¢
is free of times of discontinuity.

Proof: By assumption the CP (Nt) is regular so that the

times of jump of (Nt) are totally inaccessible (see

Definition 2.4.1); the mean m_ is continuous by Theorem

t
2.4.7 so that the times of jump of the martingale (Mt 4
Nt - mt) are also totally inaccessible. Let (Sn) be any -
increasing sequence of stopping times. We have to show

that X NSn = Niim sn. Let A be any set belonging to
n

N{im Sn gnd define the bounded martingale
n

X, = E(I,[N,)

By Theorem 3.2.2 there exists a process (Ft) € H(Nt) SO
that | |

t
X, = J F dM_
0

The above relation implies that the times of jump of (Xt)
are totally inaccessible because as we have seen above

those of (Mt) are. Hence
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(3.2.19)

Now by>¢hoice of A

Yins T E(T5INy 5 s I
n n
Also
Xg = E(I)|Ng)
n n
and by Lemma 1.5.7
lim Xo = E(I,| V N.)
n Sn A n Sn
so that (3.2.19) is equivalent to
E(I,|] V N.) = 1, .
A Sn A

whichimpliesthatforanyAeNlhnS thenAeVNS orVNS DNlhnS
n n n “n n n

n

But we have, because Sn is an increasing sequence of stop-

ping times V NS c N1im g So that the desired result
n “n n
n
VN = N_. has been obtained. . o
n Sn, 11mvSn

n
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3.3 LIKELIHOOD RATIO REPRESENTATION

MAIN RESULT

With respect to the measure P* carried on (Q,F) let
(Nt) be a regular (for (Nt)) CP of independent increments
with finite mean m,. Denote by P the restriction of the
measure P* to the c-algebra N, and suppose P0 is another
measure defined on (Q,Nw) which is absolutely continuous
with respect to P. It is thénvmeaningful”to define the

process

dp
L, = E(gpoINg)
which is a uniformly integrable martingale and where
dPO/dP is the limit a.s and in the mean of Lt as t goes
to “’(seevTheorem 1.5.4). Observe that Lt is the likeli-
hood ratio for the interval of observation [0,t] (see
Section 3.4: [D6], Chapter VIII ). The following

theorem gives a description of this martingale.

Theorem 3.3.1: Let (Nt) and (Lt) be the two processes

defined above. Assume that T is a stopping time with

Property (H): There exists an increasing sequence of

stopping times (Tn) such that E(1n L 2 < » for each n

T )
n
and T = 1im Tn a.s.
n .
Then there exists a positive process (F ) ¢ H(Nt) such that

tat
J FsdmS
0

and
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L = [ I Fj
JnitAT n

t/\T
exp(mtAT - J ‘ Fsdms) (3.3.1)
5 |

where.%lis the time of nth jump of (Nt) and the product

term (. T F; ) when empty (i.e., for t.T < J;) is set
JnitAT n

equal to one by convention.

Remark 3.3.2: Let T, T* be two stopping times with

property (H) and (Ft), (F%) their corresponding positive
processes. The continuous parts of (Lt T) and (Lt T,g) are
a.s equal on the set {t < T.T*}. Hence, from (3.3.1), we

have

t T T#®

t.T.T* |
J . FsdmS = J ngms a.s
0 .

0 .

i.e., F_ = Ff a.s on the set {t < T.T*}. Note that the
values of both these integrals are not affected By a change
of the values of (Ft) and (F%) on the intervals of con-
stancy of m, . By our convenfion (Remark'S.l?S), Ft = F§= 1
on these intervals.

| The stopping time T, which is the first time after
which the likelihood ratio (Lt) can behave badly, may take
the value +»., In fact it is desirable for T to be as large
as possible. In the next section where we solve the

detection problem we will identify the process (Ft) when

the measure P is generated by another CP. Brémaud
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(Theorem 5.2.1 of [Bl]) states the above result in the

case where the CP (Nt) is a Poisson process with rate one,
but without assuming property (H). His proof is clearly
wrong and we will see latér on by an ekample that at least
an assumption of the type E(ln'LTn) < o (using the notation
of the above theorem) is necessary to prove the result by
the technique used. We delay a more extensive discussion
and explénation of the above theorem and property (H) as
this can best be achieved by first providing a proof of

this result. This proof, which requires two additional

lemmas is long and for clarity we outline it now:

Step 1: We show that there exists an increasing sequence

of stoppihg times (Sn) converging to T such that (a) the

n=

process (Z?

ln(Lt g )) is a regular supermartingale of
~“n
class (D) and (b) the martingale (Yg) in the Doob-Meyer

decomposition of (Zz) belongs to MZ(P,N This part

tASn)'
will be demonstrated with the help of Lemma 3.3.3 given

below.

Step 2: By Corollary 3.2.4 we then express (Y%) as a
stochastic integral with respect to the martingale (Mt

= Nt - mt) and get

n

t) (3.3.2)

t
LtASn = exp(J GSI{s<Sn}st - B
3 il

where (Bg) e V. and (Gt) € H(Nt). Continuity of (B?)

follows from the regularity of both the CP (Nt) and the
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supermartingale (Z?) and is necessary for the next step.

Step 3: By Lemma 3.3.4 below, the process (Bz) is of

the fofm

PR
B - J (XD (6T (g5 )~ Lldng
0 o

Introducing the above relation in (3.3.2) and showing we

can take the limit we obtain

t.T tT |
| LtAT = exp([ Gsts tmeop - J exp(GS)dmS )
0 0

The final result follows then by letting F = exp(Gt).

Lemma 3.3.3: Let (Ft) be an increasing family of o-alge-

_bras and X_ be a nonnegative integrable random variable
measurable‘with respect to F_. Define the uniformly
“integrable martingale (X.t Z E(leFt))'and thévprocess
(Z4 g 1n Xt). Then | |
(a) The process ((Z:)z) is of class (D).
(b) The two following statements are equivalent
(1) (Zt) is a supermartingale of class (D)
(2) E(In°X ) < ® |
(c) If E(ln’Xw)2 < o then (Zt) is a supermartingale
of class (D). Furthermore the pfocess (Z%) is also of

class (D). In particular for any stopping time T,

2

EZT

< o,



155

Proof: (a) Recall the relation

0 < 1n2 X < 4x for x > 1

Now Z; = 1n(Xt v 1). Hence

+.2

(zp)

= fx v < 4x, v 1) (3.3.3)

On the set {Xt

I A

1}, Z, = 0 and X_ > 0 so that (3.3.3)

implies

+,2
0 < (Zt) < 4Xt

vThis shows that the process ((Z;)z) is of class (D) because
the martingale (Xt) is uniformly integrable and hence of
class (D)‘(see Remark 1.4.2(b) and (c))..

(b) (1) = (2) 1If (Zt) is a supermartingale of class
(D) then so is (-Z;) (see Theorem 6-V of [M1]; Proposition
IV.5.1 of [N1]). Hence (Z;) is a submartingale of class
(D), a fortiori uniformly integrable (see Remark 1.4.2(a)).
So by the supermartingale convergence theorem Z; converges
a.s and in the mean to an integrable random variable, say

Z_, as t goes to ». Now it follows from the continuity

and monotonicity of the logarithm that

- = 1n°X (3.3.4)

(even on the set {X_ = 0}); hence

Eln~X_

I
w3]
N
A
8
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(2) = (1) We have

z; = -In(X, ~ 1) (3.3.5)

By proposition IV.5.1 of [N1], the process (Xt ~ 1) is
a supermartingale (this is in fact a direct cohsequence
of the Jensen inequality). The martingale (Xt) is
uniformly iﬁtegrable, hence so is the supermartingale

(X 1) so that

-t/\

Xe ~ 1 > EQX, ~ 1[F) | (3.3.6)

By assumption and the Jensen  inequality we get

-z = In(Xa1) > In[EXA1[F)] > E[In(X A1) |F]

Z, < E(n"X|F) (3.3.7)

0 t

IA

Now the RHS of (3.3.7) is uniformly integrable (Thedrem
1.5.4) and hence of class (D) (Remafk 1.4.2(b)) so that
the process (Z;) is also of class (D) (Remark 1.4.2(c))
and by Theorem 6-V of [M1] (Z;) is then a positive submar-

tingle of class (D). Now the relation

+

+.2

1
Lo < (" + 7

together with part (a) and Remark 1.4.2(c) show that (Z;}

is of class (D) and consequently so is the process
.(Zt = Z: - Z;). Then by Theorem 6-V of [M1] the process

ln_Xt) is a supermartingale of»claés (D).

ne>

(Z4
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(c) The relation E(ln’Xm)2 < o obviously implies
Eln'Xoo <« . We have just shown above that this last
condition implies that (Z;) is a submartingale of class
(D), hehce.uniformly integréble (Remark 1.4.2(a)). We can

then write (Theorem 13-VI of [M1])

2y < E(zo'o|Ft) (3.3.8)

Now by the Jensen inequality, relations (3.3.4) and (3.3.8)

we have
0 < (2% < B IFO1Y < BIEDPF] = Blan X )2|F,]

where the RHS exists by assumption and is a martingalé of
class (D) (Theorem 1.5.4 and Remark 1.4.2(b)). Thus the
above ihequality shows that the process ((Z;)Z) is of

class (D) (Remark 1.4.2(c)). Then since (Zi = (Z;)2 + (Z;)%,

(Zi) is of class (D) by virtue of part (a). a]

The second lemma is essentially already contained in
Lemma 6.1 of [K1]. Our result is more general in the
sense we.do not require local martingales to be square
integrable nor do we assume the underlying probability
space to be generated by a Hunt process. On the other hand
it is more restrictive as we only consider processes which

belong to V.

Lemma 3.3.4: Let (Nt) be a CP regular with respect to a

family (Ft) and denote its (Ft) ICR by (At). Suppose that



158

the process (Bt) belongs to UC and that’(Ft) is a
predictable (with respect to (Ft)) process. If the

process (Xt) defined by

A (t
Xt = exp(J Fsts - Bt) (3.3.9)
0
- is a local martingale then
, t
, Bt = [ [exp(Fs) - 1]dAS_
0
Proof: Let
Xt = exp Zt (3.3.10)
where
t
Zt = J FstS = Bt (3.3.11)

0 ‘
and apply the change of variables formula (Theorem 1.9.14)
to the RHS of (3.3.10). We get

S

t ' .
X =1+ J Xs_dZ +0 ) [exp(Zs)-exp(ZS_)-exp(Zs_)AZs]
0 <s<t

(3§3712)

By relation (3.3.11):
AZS = FSANs

Thus:

0<§§t [exp(Zs)-exp(Zs_)—exp(ZS-)AZs]



{ Z.. AZ ) - 1 - AZ_]}
O<£it exp(Z,.) [exp(AZ) !

= (X _[exp(F) - 1 - F.]AN.}
ool VLo, JJaN

t t
= J X-[exp(F,) - 1]dN, - J X -F dN, (3.3.13)
0 0 |

Now:
t, t [t ‘ :
f XS_dZS = J XS_FSdNs - | XS_dBS (3.3.14)
0 ’ 0 0

Introducing (3.3.13) and (3.3.14) into (3.3.12) we obtain
t t ‘

X, - 1 = J X, lexp(Fy) - 1]aN, - [ X,-dB, (3.3.15)

0 0

or taking into account the relation

' t t
Xt-1+Wt-Yt = J, Xs.exp(Fs)dAs - f Xs_d(AS+BS) (3.3.16)
0 0

where

=
[}
-+

X__dM
S-S

and
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A t
Yt = J Xs_exp(Fs)dM5
0
The process (Xt_) e H (see Remark 1.9.10(b)) so that thé
process (W) is a local martingale (Theorem 1.9.11).
As we will show later on, the process (Yt) is also a
“local martingale. Thus (3.3.16) implies that the process
t t | |
(f Xs_exp(Fs)dAS - J Xs-d(As+BS)) e l.nv
0

and by Lemma 1.9.4 we must have then:

t ,

Bt = J [exp(Fs) - 1]dAS
0

since the process (Xt) is different from zero (see (3.3.9)),

which is the desired result. To complete the proof we now

show that the process (Yt) is indeed a local martingale. .

Let
(F = F_ . n) : (3.3.17)

so that

~
1]

t
n A n +
Xt exp[f (FS - FS)dNS] v (3.3.18)
' 0

increases to X_ by the monotone convergence theorem.

t
Introducing the expression (3.3.9) of X4 into the above

relation we get
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t

n - 1Il _ - -

Xg = exp[[ (Fg -~ FdNg - B, (3.3.19)
0

Using the change of variables formula as above we find

t t
n _ I n n_ .- _ n
Xy - 1 Vt'*J X -exp (F-F ) dA J X, d(A*B)  (3.3.20)
0 0
where
e b x® F' - F) - 1]dM
+ s-lexp(Fg - F)) ]dM,

0

By Remark 1.9.10(b) the process (Xt_) e H and so does the
process (exp(F? - F;) - 1), by construction. Hence the
procesé (V?) is a local martingale. Let (Um) be a sequence

of stopping times which makes the process (Xt‘) locally

bounded (see Definition 1.9.9). The process'(exp(Fg - F{)
13 is bouhded by n and 0 < X%' < X. so that, for each n,
(Um) is a sequence of stopping times reducing the local
martingale (Vg). Let (Rm) be a sequence of stopping times
reducing the local martingales (Mt), (Xt) and (Wt) an

(Sm) the sequence of stopping times defined by

rs . t
{inf{t: Ié X -d(Ag*B )| > m)

S. =4
m

Lo if the above set is empty

The sequence (Sm) increases a.s to +~ because the process
(ft Xs-d(AS+BS)) e V so that the sequence of stopping times
0

given by (Tm = UmARmASm) also increases a.s to +». Note
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also that, because of the continuity of the procesSes

(Ay) and (B,),

|t
E J Xs_d(As+BS) < m
0
Hence (see (3.3.20) and note, for each n, EV? T " Evg = 0)
t.T t T
m m

n _ n n_.- i n |
2 1-EJ X2 exp (Fo-F_)dA EJ Xg_d(AS*B)

0 0

and by the monotone convergence theorem (recall:
. n -y _ ot _op -
lim (FS—FS) = Fs FS Fs)
n
t, T
m .
E£ Xs,exp(FS)dAS

tAT
m

- BX g <1 EL X,-d(AB) < @ (3.3.21)

where the RHS is finite by construction of the sequence
(Tm). Then (3.3.16) shows that

taT
m .
i EJ Xs_exp(Fs)dMS < o | - (3.3.22)
0

ne=

EYtAT

and consequently (recall Mt = Nt - At)
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t.T t.T
' m

m
EI Xs_exp(Fs)ldMs| =EYtATm-+2EJ Xs_exp(FS)dAS <
0 0

where the last inequality follows by (3.3.21) and (3.3.22).
This and Proposition 2 of [D1] (and the remark following
it) which states that if (Mt) e A is a martingale and if
(C;) is a predictable process such that Eét |Cg 1AM | <
then (6t Cdes) 1s a martingale, finally shows that

(Yt = ét Xs_exp(Fs)dMS) is a local martingale. o

Now we go back to the Proof of Theorem 3.3.1:

Step 1: By definition Ly = E(LwlFt) where L = dpP,/dpP

Define the process Zt 8 1n Li. Recall that (Tn) is an

increasing sequence of stopping times such that E(ln"LT )2
' n
< o for each n, and that T = 1linm Tn' Let (Sn) be any

n

sequence of stopping times with S, < T, a.s. Then we also

have

E(ln"LS )2 < o each n (3.3.23)
n

This follows directly by applying Lemma 3.3.3(c) to the

stopped process (Z = 1n Lt T ). Define now

tATn n

Cos ) n
j inf{t: Lt > e}

L““ if the above set is empty

(Rn) 1s a sequence of stopping times increasing to o
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because (Lt) is a right-continuous martingale and by
Theorem 3-VI of [M1] the sample paths of such a martingale

are a.s bounded on every compact interval. Let

Clearly (Sn) is a sequence of'stoppingvtimes increasing tb

< n A np
T and S < T, each n. Define then L, = Ly s’ I ZtASn

ne>s

“and N? N By relation (3 3.23) we have

tASn

E(ln—Ln)2 < o, The optional sampling theorem and Lemma
3.3.3(c) 1mp1y that (Z ) is a (N ) supermartlngale of class

(D) and for any stopping time Q

EZDH? < o (3.3.24)

Q)
We prove now that the supermartingale (22) is regular. Let

(Vm) be any increasing sequence of stopping times converg-

"ing to a bounded stopping time V. We have (Theoremv13-VI

of [M1])
no
LV = E(LV|NV )
m
By Lemma 1.5.7
lim LY = B}V D) . (3.3.25)
m Vm Vin Vm

By Corollary 3.2.5 the family (Nt) is free of times of
discontinuity. Then obviously the family (Nz) has the

same property so that



165

n
V

VN
m m

and therefore (3.3.25) implies

. n _ n,,n, _ .n
lim L, = E(LV[NV) = L
m m

Consequently (by continuity of the logarithm)

. n n
lim Z = 7
m Vm v

and because (Z?)lis of class (D) we can interchange limit

and expectation operations and finally get

. n
lim EZ = EZ
m Vm

n

v

which precisely means that (Z%) is a regular supermartin-
gale (Definition 1.7.12). Denote now the unique Doob-

Meyer decomposition of (Z?) by
- AR (3.3.26)

where (Y?)'is a uniformly integrable martingale and (Ag)

a continuous natural integrable increasing process (see
Theorem i.7.14(a) and (b)). We want to show now that

(Y%) 3 MZ(P,Nn). By construction of the sequence (Rn) and

the fact that S < R, we have

n
Lt
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which clearly implies

0 < "% < n+ (*zg ¥ (3.3.27)

n

n
t
Hence

]2

sup (217 < 2m? ¢ (Y
t n

and by (3.3.24)

Efsup (‘ZD]% < o (3.3.28)
up (2

Then relations (3.3.24) and (3.3.28) allow us to épply
Lemma 2.2.2(c) to the sﬁpermartingale (Z%) and get the
desired result (Y%) € MZ(P,Ng). In résumé we have ob;ained
an increasing sequence of stopping times (Sn) converging
~to T such that (22 2 ln(LtAS )) is a regular supermaftin-
gale of class (D) and the ma?tingale (Y%) in the Doob-

Meyer decomposition of (22) belongs to'MZ(P,N%).

Step 2: By Corollary 3.2.4 there exists a process (G%)

€ H(N?) such that Eét (Gs)zdmS < o for each t and

¥ o[ GM1 dM (3.3 29)‘v
t s {s<S } s : T

By Lemma 1.7.10 (Y? g A? S ), for m > n, is also as

(3.3.26) a unique Doob-Meyer decomposition of (Z?) so that

we must have
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Hence we can define a process (Gt) by

_An
Gt = Gt for t < Sn
so that
n t '
Y, = J GsI{s<S }dMs V n (3.3.30)
-n
0
Using the relation M, = Nt - m we get
1 t t
Yo J 6T gses 33N - J 65T ges. 1My
0 a 0 -

and we can rewrite (22) as (see (3.3.26))

t
n _ n - S
Ly = exp(Zt) exp(J GsI{s<S }dNS Bt) (3.3.31)
0 -—Il
where
n A t n
Bt = J GsI{siSn}dms + At (3.3.32)
0

' " t A2
Now by Corollary 3.2.4 Eé GsI{sisn}dms < » for each t.

Both the processes (mt) and (Az) are continuous because
respectively the CP (Nt) and the supermartingale (22) are

regular. Hence (B%) e V. so that
Step 3: By Lemma 3.3.4 we must have

t
n = -
Bt = J [eXp(GsI{s§SnP l]dmS

0
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or

=
]

t
2 J [exp (G,) - 1]I{S<Sn}dms | (3.3.33)
and ((Bg) e V)
. |
J exp(GS)I{S<Sn}dms < o (3.3.34)

Introducing (3.3.33) in (3.3.31) we get

ot :
- f exp(GS)I{S<S }dm_} (3.3.35)

Now we take the limit:
LHS of (3.3.35): we can write

'L = E(Lg|N

)
t.S, t.S,”

and by Lemma 1.5.7

lim L = E(L.|V N )

The family (Nt) is free of times of discontinuity (Corollary

3.2.5), i.e., V N =\
) n Vt.s

£ T therefore

lim LtAS = E(LTINtAT) = LtAT »(3.3.36)
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RHS of (3.3.35):

t t
) v . +
lim f GSI{s<S }st = lim J GsI{s<S }st
no =“n nog —-"n

t
- lim f G_I dN
n ) s {s<S }7s

t + t
= J GsI{siT}st - J GsI{s<T}st
0 0 -
where the last equality follows by the monotone convergence

theorem. Hence

- t t.T :
lim J GSI{S<S }st = J Gsts (3.3.37)
n =“n
0
Similarly we get
t t.T '
lim J I{s<S }dms = J dmS = moq (3.3.38)
n =“n
0 .
and
t t.T
lim [ _exp(GS)I{S<S }dms J exp(GS)dms (3.3.39)
oo -0 0

Hence we finally get
t.T t.T ‘
Ly 1= exp{ J GgdNg +m, o - l exp (G )dm_ }
0

or
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{ t/\T }
L = [ II F }exp m - J F_dm
tA.T JnitAT Jn taT ) S s

where we havé defined Fs = exp(Gs) and relation (3.3.34)

implies

t T
J Fsdms < 0
0 _

DISCUSSION OF ASSUMPTIONS

We use the notation introduced in Theorem 3.3.1 and
its proof: Lt = E(dPo/dPth) and Zt = 1n Lt' In this
theorem we assume the existence of a stopping time T with
pererty (H): There exists an increasing sequence of
stopping times (Tn) such that E(ln'LT )2 < o for each n

. n
and T = 1lim Tn a.s. Consider now the weaker condition
n
(H'): There exists an increasing sequence of stopping
times (Tn) such that Eln'LT < o for eachn and T = 1lim Tn
n n
a.s.

By Lemma 3.3.3(b), (H') is a necessary and sufficient

condition for the stopped process (Zt T ) to be a super-
“"n

martingale of class (D) for each n. Thus (H') is the

weakest condition which allows us to carry on the first

part (part (a)) of Step 1. We give now a concrete

example where this assumption (H') is not satisfied.
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Example 3.3.5: Let (Nt) be a Poisson process with constant
rate A. Denote its time of first jump by Jy.  We have
P{Nt = k} = e-)‘t(At)k(k!)_1 and the set equality {J; > t}=
{Nt = 0} so that the probability distribution and the

probability density of J1 are respectively given by

_ I - o1 oo 1 L a-At
FJl(t)—P{Jlgt} 1-P{J >t} = 1-P(N.=0} = 1 - e
= -t
le(t) = e
Define now
dPO
Ly = E( g=INy) (3.3.40)
where
dPO
I = o exp(-A/Jg) (3.3.41)
' dP0
and o is a normalizing constant making E 7 - 1. We want

to show that in this case the random variable ln‘LR is not

integrablé for any choice of stopping time R. To do that

it is enough to consider stopping times R < Jl since by
construction dPO/dP is a (NJ ) measurable random variable
' 1

and hence LR = LJ for R > Jy- Now by Proposition A.4.1
1

any stopping time R < J1 is of the form R ='J1Aa where a

is any positive constant. We have
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dP
j‘aﬁg on the set A = {Jl < a}

Ll = LJlAa =
< o otherwise
Hence
. dPO
In LR < IA In ( 7 ) + IAC In o
so that
dP0 ¢ ‘
Eln LR < EIA 1n(a?—) + 1n oP{A"} (3.3.42)

Now by (3.3.41)"

dPO
In a-P—— = 1n o - }\/Jl

and by introducing the above relation in (3.3.42) we get:

Eln L, < 1n qa - EIA)\/J1 - (3.3.43)

R

Since EI A/Jy = 22 % e Mdt = +w, (3.3.43) shows that

Eln LR = -w, which is the desired result.

Brémaud's Theorem 5.2.i [B1], which consists of
Theorem 3.3.1 in the case where the CP (Nt) is a Poisson
process with rate one, is stated without assumption (H').
The above shows that this is a mistake. In fact the error

in his proof is easy to pinpoint. Define the sequence of

stopping times
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! inf{t: Lt < 1/n or Lt > n}

Lo if the above set is cmpty

Now Brémaud's proof requires the process (1n,LtAV ) Fo

be a bounded supermartingale. But this is not negéssarily
SO as (Vn) may be a time of jump of (Lt) and hence

(LtAVn) may not be bounded (see.above example). At this
point Brémaud follows too closely Duncan's proof of Theorenm
3 [D3]. There the problem of detecting a stochastic
signal in white noise is examined; in this situation the
martingale (Lt) is continuous so that the process

(In LtAVn) is now a bounded supermartingale as required by
the rest of the proof. It may be worth noting that when
(Lt) is continuous our assumptidn (H) is automatically

satisfied by taking

“inf{t: Lt < 1/n}

» if the above set is empty

so that we could recover Duncan's result (Theorem 3, [D3])
by the technique of proof of Theorem 3.3.1.

We now examine assumption (H), which is stronger
than (H'). We have just seen above that (H') is the
weakest assumption which implies that the process (ZtAT )
is a supermartingale of class (D). Now (step 2 of the "

proof) we would like to express, using Corollary 3.2.4,
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the martingale in the Doob-Meyer decomposition of (ZtATn)
as a stochastic integral with respect to the martingale
(M éiNt - mg). Hence this martingale should be square
integfable, which is not necessarily the case as Example
3.3.6 below will show. This is why we need assumption (H)
as it implies (see the proof of Theorem 3.3.1) the
existence of a sequence of stopping times (Sn) increasing
to T and such that the martingale (Y?) in thé Doob-Meyer
decomposition of (ZtASn) is square integrable. Now fhe
converse is also true: if there exists a sequence of
stopping times (Sn) increasing to T and such that the
martingale (Yi) in the Doob-Meyer decomposition of
(ZtASn) is square integrabie then using Lemma 2.2.2(c)

it is easy to show that assumption (H) is satisfied.

Hence property (H) is the weakest assumption under which

step 2 of the proof can be undertaken.

Example 3.3.6: This is a case where (H'), but not (H), is

satisfied. The CP (N,) is as in the previous Example 3.3.5.

We let now

H?g gy exp(-x//jz)

where o is again a normalizing constant which makes

- A A
E dp /dP = 1. As usual Lg = E(d P,/dPIN.) and Z, = In L.
It is easy to show that in this case the random variable
In"L_ is integrable and hence by Lemma 3.3.3(b) the process

(Zt) is a supermartingale of class (D). But for any
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positive stopping time R the random variable (ln’LR)2 is

not integrable, i.e., assumption (H) is not satisfied.
In Conclusion if we could extend Theorem 3.2.2 (on
martingale representation), and consequently Corollary
3.2.4, to non square integrable martingales .then Theorem
3.3.1 could be proved for the wider class of stopping
times T satisfying the weaker assumption (H'). We have
tried to generalize the above Theorem 3.3.1 doing the
followihg. Let Lg = L_+ 1/n and define L? = E(Lgth).
Clearly Lz =L, + 1/n, i.e., L? converges oniformly to
Lt in (t,w). Now we can apply Theorem 3.3.1 to (L%) as
assumption (H) is obviously satisfied and obtain an
expression of the form (3.3.1) for (Lg). The problem
here is_in.taking the limit: we have not been able to
show that this eXpression of (L?) converges to the desired

result.

3.4 DETECTION FORMULAS

INTRODUCTION

The problem of detection by'the‘likelihood ratio
technique is oow considered. Let (Q,F) be a measure space
on which two measures Ps and P, are defined. Suppose that
(Nt) is a CP defined on (Q,F) and denote as usual by Nt
the minimal o-algebra generated by (Nt) up to and at time
t. The notation Ei(-) for i = 0,1 is intended fof the

expectation operator with respect to the measure Pi‘



176

Definition 3.4.1: For a (Nt) stopping time R (possibly

infinite)denotelnrﬁﬁfor i = 0,1 the restriction of the

measure Pi to the o-algebra NR'

We have the inclusion N

then fR << fR
. o] 1

is well defined. We examine now the meaning of this Radon-

R ¢ F so that if Po << Pl

and the Radon-Nikodym derivative df&/dﬁ?

Nikodym derivative. In the case where the stopping time

R is equal to a constant a then N, = Na = o(Nu, O<u<a)

R
so that d?ﬁ/dﬁi is the likelihood ratio for testing the
two hypotheées Hi for 1 = 0,1: P, is the probability
measure on (Q,F),by observations on the CP (Nt) for t < a.
The detection scheme then consists ins—electingH0 or H1
according as d?g/dfi is above or below a given threshold.
Now in the case where R is a stopping time which is not

a constant we know that NR p) O(NuAR’ 0 < u) (this follows

from the fact that N, r is (Np) measurable by Theorem

R
1.3.4) but the reverse inclusion is not necessarily true.
For this reason df&/d?? is not the likelihood ratio for
our detection problem when the time of observation is the
stochastic interval [0,R], as one could have conjectured.
But one can interpret d?ﬁ/d?? asba likelihood ratio if

we assume .that the information accessible to the observer
is NR and not simply O(NuAR’ 0 < u).

Let now L, & dPZ/dPT, i.e., L_ is the likelihood
ratio when the time of observation of the CP (Nt).is the

positive real 1ineﬁR+, and define



177

Then it is easy to see

Lemma 3.4;2:

dPS
— = L
=R R
dPl

Proof: leo NR so that ¥ A ¢ NR we can write

—24dpr, = | —24p PR(A) = PP(A)
=R 1 =R 1 0 o}
dP1 A dP1

and by definition of conditional expectations

p’ [ aP’ .
1 ATl

hence we have the equality

ars dpe
R T | BC ) AP v A e fp
A A
which implies
as
2 = E. (L |N) = L
47 1" xR R

(3.4.1)
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As a result of the likelihood ratio representation and
the Girsanov and Innovation Theorems, an expression for

the martingale (Lt) can be found under suitable circumstances.

LIKELIHOOD RATIO: FIRST RESULT

With the measure P1 carried on (Q,F) we suppose that
(Nt) is a regular CP of independent increments with mean
E{N, = m, . Under the measure P, assume that»(Nt) is a CP
which has an (Ft) ICR of the form (ft Asdms) where (Ft) is
0 .
a family of o-algebras such that Fo 2 Ny and (At) 5 H(Ft)

is a nonnegative process.

Theorem 3.4.3: Let (Nt) be the CP described above. Assume

(a) PO << Pl. Define the uniformly integrable martin-
gale (see (3.4.1))
7
Ly = EpINY)
dp
1 .
(b) The stopping time T is such that there exists
an‘increasing sequence of stopping times (Tn) for which
T = 1lim Tn a.s and E(ln'LT )2 < o for each n.
n n

t
(C) EOJ )\Sdms < ©

0
Then
dngT A t.T .
— = L = [ S A }exp(m . J ca.dm ) (3.4.2)
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A o . - .
where At = EO(At|Nt) and J, 1s the time of nth jump of

(Nt). By convention the product I(-) = 1 for Jl >t . T.

We adopt here the same convention as in Remark 3.1.5,
i.e., we set (At = 1) on the intervals of constancy of my .
Condition (c) then insures that the process (Xt).is well
defined; Recall that the meaning of d?&/df? has been
given in the Introduction to this section. In particular
if t < T so that t ~ T = t then (3.4.2) is the likelihood

ratio for our detection problem when the time of observa-

tion of (Nt) is the interval [0,t].

Proof: By assumption (c) and Proposition 2.3.7 we have
EoNt < © so that by Theorem 2.3.1(b) the process

N, - [t Asdms) is a (P,>Fy) martingale and by the Innova-
, 0 ~ ,
. t . .
tion Theorem 3.1.4 (Nt - é Asdms) is a (PO,Nt) martingale,
where A, = EO(AtINt). Then by the Optional Sampling

Theorem the process

>

(X

t.T .
£ Ne 1 - J rgdm,) (3.4.3)
0

is a (Po’NtAT) martingale. Now by (a) 52 << 51 because
N, ¢ F. Thus the martingale Ly = El(dPo/dPlth) is well
defined. Then by assumption (b) and the likelihood ratio
representation Theorem 3.3.1 there exists a positive

process (F.) ¢ H(Nt) such that

tAT |
f Fan, < = (3.4.4)
O .
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and

t. T
L = [ I F Jexp(m - J F dm ) (3.4.5)

By Girsaﬂbv Theorem 3.1.1(b) (applied to (Nt T)) the pro-
cess

t T | |
N, . - f, Fgm) (3.4.6)
e

ne>

(Y

t.T t.T

is a (Po,Nt.T) local martingéle. Subtracting (3.4.3) from
(3.4.6) one gets that '

t/\T A
Ner - X1 ° J (Ag - Fg)dm.) (3.4.7)
0

is a (PO,Nt T) local martingale. By assumption (c) and

Fubini's Theorem

(3.4.8)
Furthermore mg is continuous (the CP (Nt) is assumed
regular, see Theorem 2.4.7) so that by (3.4.4) and (3.4.8)

the RHS of (3.4.7) belongs to Ve- Hence_(Yt T " Xt T)

e lLnV, and by Lemma 1.9.4, (YtAT - XtAT) is identically

zero a.s which implies Ag = FS. The result then follows

by introducing this relation in (3.4.5). Finally by

- Y t,\T Y t/\T
Lemma 3.4.2, LtAT = dPO /dP1
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GENERALIZATION

We now take advantage of the chain rule for Radon-
Nikodym derivatives to extend the previous result. For
i = 0,1; with the measure Pi carried on (Q,F) suppose that
the CP (N ) has the process (f Aidm ) for (Fi) ICR, Where
(Ft) is a family of o- algebras with F 2 Ny (A%) 5 H(Fi)
is a positive process and m, is an 1ncreas1ng deterministic
function with my = 0.

By Theorem 2.6.1 there exists a measure P which makes

(Nt) a CP of independent increments with mean ENt =M.

Theorem 3.4.4: For i = 0,1 let (N) be, under the measure
Pi; the CP described above. Assume
(a)'Po << P and P~ Pl and define for i = 0,1 the
(P,Nt)bmartingale
i P>

L} = B2

t 2 )

(b) For i = 0,1 the stopping time T' is such that
there exists an increasing sequence of stopping times

(T;) for which T = lim T; a.s and E(ln__Ll.)2

n T
for each n. Let T =T . T

s t i, L
(c) For i = 0,1 E; | Agdm <

0
Then
To
d?EAT _ ‘ AJ t. T SR
=T " i TTE exp[f (AS -As)dmS (3.4.9)
dPlA ' J <t T AJ 0 (
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i A i v . .
where Ay = Ei(kt[Nt) for i = 0,1 and J_ is the time of
nth jump of (Nt). By convention the product II(-) =1
for J; > t.T. |

Remark that this indeed generalizes the preceeding result

with AL = 1.
t

Proof: By the previous Theorem 3.4.3 wevget for i = 0,1

d:ﬁ:/\T [ /\i t/\T /\i
= i A exp (m - J A.dm_ )  (3.4.10)
n— 0
~iA i | | —t.T  =t.T
where \p = Ei(xt]Nt). Now P w Py SO that P v PN
Indeed '
-1
=t T
since NtAT ¢ F; hence
T [ gt T ) gt )
0 - 0 1

and the result follows by a simple computation from

(3.4.10). | N R

INTEGRAL EQUATIONS FOR LIKELIHOOD RATIOS
We show here that the likelihood ratio of our detection
problem can be obtained as the unique solution of a

stochastic integral equation.
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Theorem 3.4.5: The likelihood ratio d?gAT/dPtAT of

1
Theorem 3.4.4 is the unique solution of the following

stochastic integral equation:

. t : .
Zt = 1 + J Zs-dXsAT (3.4.11)
0
where
t “2 t ~1 0
Xt = J ~T ° 1 dNS + J (AS - As)dmS (3.4.12)
0 |*s 0

Proof: By assumption (Ai), i=0,1, is positive (see
above Theorem 3.4.4) and is a.s finite for all t (by condi-
tion (c) of Theorem 3.4.4). Furthermore the process (Nt)
has a finite number of jumps in any finite interval so

that the process (ftAT Kkg/ki)- 1)dN_) e V. The process

_ (ftAT (Ai - Ag)dms) also belongs to this class V by assump-
0

tion (c) of Theorem 3.4.4. Therefore (Xt T) e V is a

semimartingale with <Xc?t T = 0 (see Remark 1.8.17). Then

by Theorem 1.9.15 the unique solution of (3.4.11) is given

by

Z, = exp(X, ) Sgt (1 + 8Xg p)exp(-8X o) (3.4.13)

_ o 20,015
Now AXsAT = (( AS/AS) l)ANsAT and



;\O . AO
hY A
SEt(.) = n [1 +[;% - l]ANS T] exp [ Z - [x% - l]ANS-ﬂ
- s<t A ~ s<t,.T A ~
= s = s
AO N
Ay taT (Ag
= A e[ [ ]y
JpstaT 'AJn 0 As

Substituting the above relation and expression (3.4.12)

in (3.4.13) gives the desired result (compare with (3.4.9))

~0
o N it
b Tt T [ii_']eXp[J (hs = Ag)dnmgj = dpE~T ?
n— " Jn 0 1

Observe that if under the measure Pl the CP (Nt)
is a process of independent increments with mean m, then

1 :

p = P1» Ap = 1 and Eq. (3.4.12) becomes

t .
X, = i (g - DA, - n) (3.4.14)

The process (M, 8 Ny - mt) is a (P,Nt) martingale. ‘Hence
‘(3.4.14) shows that the process (XtAT) is a local mértin—
gale. This in turn implies by (3.4.11) that the process
(Zt) is a local martingale. This is consistent with what
we have seen in the previous section (Theorem 3.4.3) since
in this case Z = LtAT = El(d?:/dﬁTthAT), i.e. (Z,) is in
fact a uniformly integrable martingale. 1In the more

general case the likelihood ratio (Zt = d?g“T/d?;AT) is



185

not necessarily a local martingale.

In application Eqs. (3.4.11) and (3.4.12) give a way
of implementing the computation of the likelihood ratio
continuously in time. They represent recursive equations
if one also obtains the best estimates (Xi) in a recursive
way. The block diagram of this implementation is given

in Figure 3.4.6.
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i i

MINIMUM MINIMUM
MEAN MEAN
SQUARE ‘ SQUARE
ESTIMATOR ESTIMATOR
0 1
A M
LIKELIHOOD
FUNCTION:
}\ )dm - _t/\T —t/\T
S s Zt = dPo _/dPl
DIVIDER
> / <

Figufe 3.4.6




CONCLUSION

We'mention here--for future research--some of the
problems which have not been solved in this dissertation.

In Chapter 2 (Chapter 1 is a mathematical review)
Counting Processes (CP) and their Integrated Conditional
Rates (ICR) were examined. It was shown that, given a
CP (Nt) adapted to a right-continuous increasing family
of o-algebras (Ft) and for which--sole assumption--the
random variable Ny is a.s finite for each t, there always
exists a (Ft) ICR and this ICR is unique (Theorem 2.3.1
and Definition 2.3.2). . Now given a natural increasing
process (At) with respect to a family (Ft), there does not
always exist a CP (Nt) adapted to (Ft) and for which (At)
is the (Ft) ICR (e.g., take (At = 21[0,1)(t)), see Corollary
2.4.11), " Hence the following problem:

(1) Find necessary.and sufficient conditionsvfor'a
natural increasing process (At) to be the ICR of a CP (Nt)'
Then the question arises:

(2) If (At) is a natural increasing process which is

the ICR of a CP (Nt)’ when is this CP unique?

If the process (At) is continuous then the two above
problems can be reformulated as (see Theorem 2.4.8):

(1') Find necessary and sufficient conditions for
(At) to be the natural increasing process associated witha

square integrable local martingale (Mt) (i.e., At = <M>t)

187
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such that the process (Mt + At) is a CP.

(2') Do there exist two distinct square integrable
local martingales, (Mt) and (M%), to which is associated
the same natural increasing process‘At = <M>t = <M*>t and
such that both (Mt + At) and (M% + At) are CP's?

In Section 2.5 we give sufficient conditions for the
existence of conditional rates. It is obviouslybdesirable
to find: |

(3) Necessary conditions for the existence of condi-
tional rates.

In Chapter 3 the Girsanov Théorem was used to prove
the existence of CP's with (Ft) ICR's of the form
(gt AsdAs) where the processes (At) and (Ai) ((At) € H(Ft)
is a nonnegative process and (At) is itself the ICR of a
given CP) were such that the process (Lt) (see Theorem
3.1.1) was a martingale (which had to be uniformly inte-
grable if one wanted to consider the positive real line
instead of finite time intervals). Some strong conditions
on (At).and (A,) which insured that (L) was a martingale -
were provided (Chapter 3, p. 133). Weaker conditions
might be obtained. Hence: |

(4) Find necessary and sufficient conditions on the
processes (At) and (At) for which the process (L#) (see

Theorem 3.1.1) is a martingale, or a uniformly integrable

martingale,
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The detection probleﬁ for a large class of CP's was
solved. The generality of the method was limited mainly
by the scope of the Martingale Representation Theorem (a
basic step in proving the Likelihood Ratio Representation
Theorem) which was demonstrated in the context of CP's of
independent increments. Hence

(5) Find a larger class of CP's for which the Martin-
gale Representation Theorem is still valid.

Finally, the likelihood ratio was obtained as a function
of the best estimates (ii), i = 0,1 (Theorems 3.4.4 and
3.4.5). Thus to get a complete solution to the detection
problem |

(6) Recursive equations to compute (X%) should be

obtained.



APPENDIX

APPENDIX A.1

The following lemma does not appear in our main
reference [M1] but in [M3]. For ease of reference we pro-
vide here an original proof, due to Prof. F. J. Beutler,

of this result.

Lemma 1.5.7: Let (Fn, n ¢ N) be an increasing fémily of

o-subalgebras of F and F_ be the c-algebra generated by
the union of the Fn. Let (Fn, n ¢ N) be a sequence of
random variables bounded in absolute value by an inte-
~grable random variable G and converging a.s to a random
variable F. Then E(Fn|Fn) converges a.s to E(F|F_).
Proof of Lemma 1.5.7: Let U = inf Fn and Vi, = sup Fn.

. n>m n>m
The sequences (Um) and (Vm) are, respectively, increasing

and decreasing, and both converge to F. We also have for

n > m:

which implies

E(UmIFn) < E(Fn|Fn) < E(Vm|Fn)
Fix m and let n tend to infinity. By the supermartingale
convergence theorem (Theorem 6-VI of [M1]), the uniformly

integrable martingale E(Uman) tends to E(Um|Fm). Similarly

for E(V_|F ). Thus we get the following chain of

190
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inequalities:

E(U_|F,) < IhtjnfE(Fn|Fn)jilhifupE(Fann) < E(V |F)

Letting m go to infinity we have by the monotone conver-

gence theorem:

E(F|F ) < 1imﬂhrfE(Fn|Fn) < 1imnsup E(F [F) < E(F|F)

which implies the result. u]

APPENDIX A.2

The proof of Theorem 1.7.9 will be clearer if we show

first the following simple result:

Lemma A.2.1: Let (Ft) be a right-continuous increasing

family of og-algebras and T be a (Ft) stopping time.
Suppose (Xt) is a (Ft T) local martingale (resp. martin-
.gale). Then (Xt) is also a (Ft) local martingale (resp.

martingale).

Proof: First we show that the lemma is true when (Xt) is
a uniformly integrable (Ft T) martingale. By Theorem 1.5.4

(Xt) can be expressed in this case as

X, = BQXG|F

t .1

Define now the uniformly integrable (Ft) martingale
Yt = E(XTIFt)

It suffices to show Yt = X In the first place

£
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Yoor = BQqlFe p) = X,

SO Yt = X, on the set {t < T}. Now T v t is a.stqpping'

t
time (see Theorem 36-IV of [M1]) such that T v t > T.

Hence

Y = B@X

Tvt T[FTvt) ¥

= X

X = EQplFirye)ar) T

Tvt

This shows Xt = Yt on the set {t > T} and the lemma is
verified for uniformly integrable martingale. Finally if
(Xt) is a local (FtAT) martingale, let (Tn).be a sequence
of stopping times reducing (X¢), i.e., (XtATn) is a uni-

formly integrable (F ) martingale. Then the above

tA T AT

. n v

shows that (X, ¢ ) is also a uniformly integrable (Ft)
~'n

martingale, i.e., (Xt) is a (Ft) local martingale. 0

Note that the above result is a kind of converse to
the Optional Sampling Theorem since this latter implies
that if (Yt) is a (Ft) martingale then»(YtAT) is a (FtAT)
martingale.

We now go back to Theorem 1.7.9. ThiS theorem appears
in [M1] (Theorem 19-VII) but there is a gap in the proof

which is supplemented by the above lemma.

Theorem 1.7.9: Let (At) be a natural increasing process

and T be a stopping time. Then the increasing process

(At T) is natural with respect to the two families
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(Ft) and (FtAT)'

Proof: If (Yt) is a bounded positive (Ft) martingale then
. . oA .

by the optional sampling theorem (Yt = YtAT) is a (FtAT)

martingale. By Lemma A.2.1 (Yt) is also a (Ft) martingale

so that by definition of a natural process (Definition

1.7.4)

t.T t.T
EJ YSdA = EJ Ys_dAS
0 0

The LHS of the above expression can be rewritten as

AT t -
EJ stA .= EJ stAsAT

s
0
and likewise for the RHS. Hence (At T) is natural with

respect to (Ft)’ Finally since

t t
SRR TV L

0
for any bounded (Ft) martingale, it holds in particular
for bounded (Ft T) martingales, since the latter are also

(Ft) martingales by Lemma A.2.1. This shoWs that (At'T)

is natural with respect to‘(Ft T)
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APPENDIX A.3

Lemma A.3.1: Let (Nt) be a CP with finite mean and (Nt)

the family of o-algebras gemerated by (N.). Suppose

(Ft) and'(Gt) are two families of o—algebras such that
Fe oy
define the process

> G, 2N Denote by (A,) the (F.) ICR of (N.) and

A
Ct = E(AtIGt) - (A.3.1)
Then the process (Nt - Ct) is a (Gt) martingale.

Proof: We can write for t > s

E(Nt - Ct|Gs) = E[Nt - E(Atht)le] (by (A.3.1))

= E(N; - At|Gs) (Gt > Gs)

= E[E(N; - AtlFs)IGs] (Fg J'Gs)

= BE(Ng - As|Gs) | ((Nt-At) is a (Ft)
martingale by
Theorem 2.3.1)

= Ng - Cg (Ng is (Gs) measur -
able and by (A.3.1))

which shows the result. | _ a]

APPENDIX A.4

Proposition A.4.1: Let (Nt) be a CP and J1 its time of

first jump. Let R be any (N,) stopping time such that

R < J; a.s. Then R is of the form

1
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where ¢ is some nonnegative constant.

Corollary A.4.2: Let J; be as in the above Proposition.

Then J1 is totally inaccessible with respect to the

family (Nt) if and only if
P{Jl =a} = 0
for any nonnegative constant a.

Proof of Proposition A.4.1: The g-algebra N, is given by

{$,Q} so that either R = 0 a.s or R # 0 a.s. In the case
where R = 0 a.s the proposition is trivially Verifiéd SO
suppose thét R # 0 a.s and define the positive number

c = sup{e: P{R > e} > 0}. For any 0 < b < ¢, the set

{R > b}, which belongs to the o-algebra Nb (see Theorem
41-IV of [M1]), is a set of positive measures and up to
sets ofvmeasure zero {R > b} c {J1 > b} since R < J, a.s.
Now the set {Jl > b} = {Nb = 0} is an atom (for a defini-
tion see [H2]) of Nb so that one must have modulo sets of
measure zero {R > b} = {J1 > b} for any 0 < b < ¢. This
implies R = J1 a.s on the set {R < c}, and proves the result
in the case where c is infinite. When c is finite

P{R > d} = 0 for any d > ¢ so that R = ¢ a.s on the set

{R > c}. , o
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| Proof of Corollary A.4.2: (=) By contradiction: if

there exists an a such that P{J1 = a} = p > 0 then let

(Sn = (a-l/n)AJl). We have P{lim Sn = Jq, S. < Jl} >p >0

n
which shows that Jq is not tota?ly inaccessible, a contra-
diction. f
(c)‘By Proposition A.4.1 any increasing sequence of stop-
ping times inferior or equal to J; a.s is of the form
Sn = JlAan a.s where a, is any increasing sequence of

numbers. Let a 2 lim a . Then
: n

P{lim Sn = Jl, Sn < Jl} < P{J1 =a} = 0

that is: Jl is totally inaccessible. u]

APPENDIX A.5

We give here an example of a positive discrete martin-
gale which is not uniformly integrable. Let Q@ = [0,1)
and P be the Lebesgue measure on [0,1). Let Fo = {¢,0}
and F be the o-algebra generated by the disjoint sets

' Ag, m = 0,...,3n-1 where

AI‘; = m.3 % m1).3h
Define
X, = 1
and
n
x. = 3"
! (W
(37-1)/2

We have
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n+l n+l }

(3 P{A =1
3"1.1y/2
JnE(Xn+1|Fn)dP:=Jnxn+1dp= for m = (3"-1)/2
Am | Am
0 otherwise
and
1 ifm = (3"-1)/2
J o X,dP -
Am 0 otherwise

which implies E(Xn+1|Fn) = X,, i.e., (X)) is a positive
martingale with EX, = 1. By the supermartingale conVer-
gence theorem the limit X_ = lim X, exists a.s. In this
case we clearly have X_ = 0 a.g so that X # E(leFn) =0
which shows, by Theorem 1.5.4, that (Xn) is not uniformly

iﬁtegrable,
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