
The Fundamental Solution 
for the Axially Symmetric Wave Equation 

ALBERT E HEINS 

Communicated by M.M. SCHIFFER 

I. Introduction 

We propose to discuss here the relation between the standard free space 
functions of Green for the axially symmetric Helmholtz equation in three 
dimensions and two others which have appeared explicitly or implicitly in recent 
years [-2, 6]. We have already stated the advantage of such alternate forms for 
axially symmetric potential theory [-3] and first summarize the formulations 
which lead to them. 

The Helmholtz equation in three dimensions 

a2q ~ a2q ~ a24 ~ -2 -  
+ a ~ r + a z 2  +k  ~ = o  #x 2 

has the fundamental solution ei~~ where 

CO = {(X - -  r ..{_ (y  - -  ~1)2 "b (Z --  ~)2 }1/2 

This solution satisfies a radiation condition for k real; that is, it is asymptotic to 

an outward going spherical wave when ] /x  2 + y2 + z 2 __+ oo. If we now write this 
equation in cylindrical coordinates about the x axis by putting y = g cos0 and z 
=gs in  0, 0<0<2zr ,  we get 

~2q~ , (~2~) 1 c~b 1 02~b ,2 , ^ 

Each Fourier coefficient of the fundamental solution satisfies the equation 

a2q~n azq~n l aq~ n n 2 
c~x 2 + ~g2-q-g Og g 2(Onq-k24)n=O 

where 4~.(x, g) is either 

1 2,~ elk,,, - !  4rt cosn0 co dO 
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or 
l 2~ ikeo 

! s innoeco dO. 

U p o n  introducing ~/= h cos O' and ~ = h sin 0', the cosine te rm becomes  

1 2~r . n e i k / ( x _ ( ) 2 + h 2 + g 2 _ 2 h g c o s ( O _ O , ) . ~  
, c o s , , ~ ,  . . . . . . . . . . . .  ~ - a t , .  

/ ( X  -- ~)2 + h 2 + g2  _ 2hg cos ( 0 -  0 ) 

This in turn may  be simplified by writing 

cos n O = cos n( O - O') cos n O' - sin n( O - O') sin n O' 

and observing that  since n is an integer we may  use symmet ry  to simplify the 
integral  to 

COS nO t 2ff cik]/(x-~)2 +h 2 + g 2 -  2 h g c o s ~  

47t |a 0 c ~  +h2 + g 2 _ 2 h g c o s ~ t d ~ t "  

The sine te rm differs f rom the cosine te rm by the rep lacement  of  cosn0 '  by 
sin n 0'. 

The  subst i tut ion (9 , (x ,g )=(hg)"A. (x ,  g)* enables us to write the equat ion  for 
~n as 

02A,, t3eA. ( 2 n + l )  t3A. 
~X2 ~ 2 g  2 -~ g Og 4-kEA,,=O 

At the same time, an identity due to Jacob i**  states that  if s = cos ~,, then 

cos(n arc coss) ( - ) "  d"(1 -$2) n-�89 
-- /1~0.  

] / l _ s  2 1.3 ... ( 2 n -  1) ds" ' - 

Then with the subst i tut ion s - c o s  qJ, we can write 

1 21t eikV(x--O2+h2+gZ--2hgeos~9 
A,(x ,  g) 

47z(hg)" ~Jo cos n~O ]/(x - 0 2 + h e + g2 = 2gh cos ~, 
aO, 

and this may  be t ransformed by n integrat ion by parts  to give us a first a l ternate  
form, for the Four ier  coefficient qS,, namely  

i k  2 n + l  
A,(x ,  g) = 2" + 3 J sin2" tp HC,~ ~ (k ~o)/(k ~o)" + ~ d ~b, 

F(n + �89 0 

* We have introduced the factor hg rather than g in order to simplify some 
subsequent expressions which will be derived. 

** C.G.J. Jacobi, J. f'tir Math. 15 (1836), 3. This and related results are discussed in 
"Aufgaben und Lehrs~itze aus der Analysis" by G. POLYA and G. SZEGO, Springer- 
Verlag, (1964), pp. 75 and 76. 
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--o) kco where 0 - 0 '  has been replaced by @ in the definition of to. n , + ~ (  ) is a Hankel 
function of the first kind, of order n + �89 

The factor sin2"~ , suggests that it might be possible to reinterpret this first 
alternate form in a space of 2 n + 3  dimensions by the following device. As we 
shall see in the next paragraph, there is a transformation from a Euclidean space 
of (2n+3)  dimensions to one which preserves one Euclidean coordinate and 
transforms the remaining ones to those of the "spherical t y p e " - t h a t  is, to those 
which depend on a radial vector which is a function of the conventional 
magnitude of a vector and 2 n + l  angles which will be defined in the next 
paragraph (incidentally, we note that this radial vector is perpendicular to the 
one Euclidean coordinate and therefore this new coordinate system may be 
viewed as a " 2 n + 3  dimensional cylindrical coordinate system"). The Jacobian 
of this transformation contains a factor which depends on a specific angle in the 
transformation, this factor being precisely the sine term which we have in our 
alternate form for q~,. We shall therefore examine the Helmholtz equation in a 
space of m = 2 n + 3  dimensions in terms of these new coordinates and seek 
angularly independent fundamental solutions. Once we have invoked the ra- 
diation condition and normalized its source strength, it will be possible to show 
that this fundamental solution is the first alternate form. This procedure therefore 
relates the nth Fourier coefficient of the three dimensional fundamental solution 
with the angularly independent fundamental solution in a space of 2 n + 3  
dimensions. 

In an m dimensional Euclidean space we have the Helmholtz equation 

(1.1) ~ 02~b ' 
i= 1 ~X/2 -t- k2 (~ ~ 0  

where k is the same constant which we used in the three dimensional case. We 
transform the Euclidean coordinates x i, i=  1 . . . . .  m, to "cylindrical coordinates" 
by the transformation 

X 1 = r c o s  01 

x 2=rsinO 1 cos 0 2 

x,,_ 2 = r s i n  01 ... cos Ore_ 2 

x,~_ i = r s i n  01 ... sin Ore_ 2 

Xra ~ X m 
where 

1 ,2t 1/2 
r= x ; O<Oi<rc, i = l . . . m - 3 ;  0~0m_2~27~ ; 

1 i = 1  ) 

and m>3.*  Solutions of equation (1.1) which are independent of the angles 01 
will satisfy the partial differential equation 

•2 (1~ }" m -  2 8q~ 8 2 4) -2 
(1.2) 

~r 2 7 G + Y~-~ + k  
4=0 

* This transformation is not in the same form which was used in I-3]. There are also 
some misprints in [3]. 
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Clearly if m = 2 n + 3 ,  r=g ,  and xm=x, the functions q) and A, will satisfy the 
same differential equation. We shall refer to equation (1.2)as the axially sym- 
metric wave equation in m dimensions. 

It is now possible to give an obvious form of a free space Green's function 
(not unique) by recalling that the "spherically symmetric" form of equation (1.1) 
is 

m - l  d(a d2~b + t-k2q5 =0  
(1.3) dp 2 p dp 

where p = ~ x~ . This ordinary differential equation has two linearly inde- 
i=1 

pendent solutions 

m - 2  m - 2  
(1.4) Jm-z(kp)/(kp) 2 and Ym-2(kp)/(kp) 2 

2 2 

where J,"-2 and Y~-2 are the customary symbols for the Bessel function of the 
2 2 

first and second kind respectively. For m> 3, the first solution is regular in the 
neighborhood of p = 0  and the second solution is O(p 2 - ' )  in this neighborhood. 
Now since either of the solutions (1.4) satisfy equation (1.1), so do 

m - 2  m - 2  

(1.4a) j, ,_z(kpl)/(kpl) 2 and ym-2(kpO/(kpO 2 
2 2 

where p l = ( ~  (xi-~i)211/2. Observe that while the functions in (1.4)are 
\ i=1  / 

spherically symmetric about the origin, those in (1.4a) are not if a single ~i #0.  It 
is from these latter functions that we form the axially symmetric ones. First we 
fix the source point at (31,0 . . . . .  ~m), SO that Pl then becomes 

[(x,, _ ~,,)2 + r  2 + ~ _2r~a COS01] 1/2 

where 01 is the angle between the m -  1 dimensional vectors k---(x~ . . . . .  Xm- 1) 
and ~=(~1,...,0)*. Note also that 01 is the first angle of our coordinate 
transformation. 

How then do we extract axially symmetric fundamental solutions from the 
functions (1.4a)? We recall that (1.2) was written under the assumption that q) 
was independent of the angles 01. Had we retained the 0 derivatives, this 
equation would have the form [7] 

c~2q54m--2cqq5 __t~24 ) 
0r 2 r ~-r F ~x2 q-A4 q-kaq5 =0  (1.2a) 

where A is an operator defined by 

2 _0 , am 
t i=1 •Oi ti OOi 

* The choice of 01 in reference [3] is inadequate. 
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and is self-adjoint on the unit  hypersphere,  center at the origin, in a space of m 
- 1 dimensions.  Here  tl = 1, t 2 = sin 2 01, ... ,  t "_  2 = sin2 01 ... sin 2 0m_ 3 and 

t = sinm- 3 01 sinm-402 ... sin Ore_ 3 . 

The part ial  differential equat ion 

A Z + q ( q + m - 2 ) Z = O ,  q = O  . . . . .  

which arises f rom the separa t ion  of variables of  (1.2a) and invokes regulari ty 
condi t ions which gives the separa t ion  constant  its special form, has solutions 

Zq(01 . . . . .  Om 2), q=O,  1 . . . .  

which form a comple te  and or thogona l  set over  the m - 1  dimensional  unit 
sphere. There  is one Zq, namely  that  cor responding to q = 0  which is constant ,  
independent  of  the angles 0 i. The  set of  functions Zq is called the set of  
hyperspher ica l  functions.* For  m = 3  these are the sets {cosz01} and {sin z01}, z 
=0 ,  1 . . . .  while for m = 4 they are the regular  spherical harmonic .  In this sense, 
we are using a general izat ion of some e lementary  o r thogona l  functions. 

N o w  it is known that  since the functions (1.4a) are analytic in 01 if x"4:  ~,, 
or r4:~1, we m a y  expand them in a series of  hyperspherical  functions [7]. 
Tha t  is, 

A Y"-  2 ( k p l ) +  B J , , -  z (kp l  ) 
_ _  2 2 - =  ~ Ap(xm,~", r ~ I ) Z  p 

(kpO 2 p=o ' 

where Zp are the hyperspher ical  functions which depend in general on 
01 . . . . .  0"_2:  in par t icular  Z o is constant.  But since the Zp's are o r thogona l  on 
the m - 2  dimensional  unit hypersphere,  

where 

ZpZq  d~'~=O, q+p 

dO = s i n " -  3 01.. . sin 0,,_ 3 dO1 ... dO"_ 2. 

The expression for d(2 is valid for m >  3 and does not contain any negat ive 
exponents.  The  coefficients of  Z o in the expansion is the axially symmet r ic  
solution, that  is, the solut ion independent  of  the angles 01, . . . ,  0,,_ 2 and has the 
form 

A Y,,- 2 (kp l) + B J " -  2 (kp l) 

(1.5) ~ 2 . , - 2  2 d~2 
0Ore , (kpl)  2 

* See [7] for a brief but usable account of these functions. A more complete account 
appears in "Fonctions Hyperg6om6trique et Hypersph6riques", P. APPELL and J. KAMP6 
de Feriet (1926). 
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The normalizing constant of the Z 0 has been absorbed into the constants A and 
B. These constants will be determined by two specific requirements in the next 
paragraph. 

For subsequent convenience, we shall normalize (1.5) as we do in classical 
potential theory by requiring that the "flow" from the point (~1, 0 . . . .  0, ~m) over 
a sphere be unity. That is, 

and hence 

LimL  p,~o e ~p~ (kpO/(kpO~- dO= -1 

A = - 2 -  (m + 2)/2 ( k 2 / r c ) ( m  - 2)/2. 

The constant B remains arbitrary under this condition. We can determine it, 
however, by demanding that (1.5) be an "outward going spherical wave", that is, 
satisfy a radiation condition for Im k > 0, Re k > 0. Since 

and 

/ 2  \1/2 ( V~ 4)+O(kpl)_3/2 J~(kpl)=~-~pl) cos kpi 2 

y~(kpl)=~Tpi)[2 \l/2sin(kp I vrc2 4) +0(kD1)-3/2 

as kpi--+oo, we may choose B = - i A  and the desired exponential behavior is 
obtained. (1.5) then becomes 

ik m-2 m-2 
(1.5a) ,.+ m ~ "'m-Et4(1) (kPi)/(kpO~dO 

22 1 n~-- * oa~_ 1 2 

and this in turn can be reduced to 

(1.5b) 
r~ m - - 2  

ik "-2 ~sin,,_ 3 01H~)_2 (kpO/(kpO~-dO, 
2~ o 2 

which is again A,(x, g). 
We shall now replace x=, ~=,g, ~ and 0 i by x, a, r, b and 0 respectively. 

Since (1.5b) is a solution of (1.2) provided m is merely greater than 2 (to insure 
the convergence of the integral in (1.5b) when x 4= a and r + b), its relation to the 
coordinate transformation may be omitted. This provides us, in the terminology 
of A. Weinstein, a fundamental solution of equation (1.2) in a space of m > 2 
dimensions where m is no longer an integer. 

Henceforth we write ( m - 2 ) / 2  = c~ > 0 and have for (1.5b) 

(1.5c) 
ik 2~ 

2~+ 1 F(c0 o i sin2~- 1 H~l)(kPl)/(kPl) ~' dO. 
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We mention two useful properties of (1.5c). I f  R = / x  2 +r  2 and R--* oo, (1.5c) is 
asymptotic to 

U -  1/2 2at- 3/2 

R,+ 1/2 ] /7  
e i ( k r ~  - e t n / 2  - ~r/4). 

A second property deals with the behavior of (1.5c) in the neighborhood of the 
point x =a,  r = b. Here we see from the properties of the Hankel function that 
(1.5c) is of the order 

- In 1/(x - a )  2 q- ( r  - b)2/21t r2L 

The logarithmic factor indicates that the Green's function in space of "2c~+2" 
dimensions enjoys an important property of the classical two dimensional one. 

We shall next derive two forms which are alternatives to (1.5c). That is, we 
shall show that we may write (1.5c) as 

H~')[k l / ( x - a  + ir cos 0) 2 +b  2] dO 
(1.5d) i k r l -=  !s in=OJ~_l(krs inO) 

4 [(x - a + ir cos 0) 2 + b 2 ]  a/2 

b > r  or 

(1.5e) i k b'  -~ j~ sin ~ OJ~_l (k b sin 0) H~"[k  1/(x - a + i b cos 0) 2 + r 2 ] d 0 
4 o [ ( x - a + i b  cos 0)2 + r2] ~/2 

r > b, where we have now replaced x,, by x and ~m by a. These in turn, may be 
cast into the complex form used by VEKUA [7] in the regular case (m =2). They 
may be described as representations which are analogous to the one Riemann 
found in the study of the corresponding hyperbolic partial differential equation, 
although in this case the equation is singular. As a byproduct of this develop- 
ment, we will derive the case m = 2 via the correspondence principle. Finally, we 
remark that there is something to be gained in keeping the Green's function in 
evidence, since it does point to some mathematical restrictions which we shall 
discuss in Section V [3]. 

II. The Derivation of the Singular Parts of the Identities 
(1.5d) and (1.50 

In order to derive the identities (1.5d) and (1.5e), we shall make use of two 
identities which were derived in [3]. There we observed that for x 4= a, r ~= b, the 
partial differential equation 

c~2q~ , c~2q5 2c~ c~q5 
~-vv-  4 - 0  (~>0) 

~x:  r ~r o r -  
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had a fundamental solution with the following alternative, but equivalent, 
forms: 

1 ~. sin2~ 10dO 
(2.1) 2~  o j [ ( x - a )  2 + r  2 +b  2 - 2 r b  cos O] ~ 

1 i sin2~-lOdO 
2rc o [ ( x - a + i r c o s  0) 2 +b2] ~ 

1 ~. sin2~ -1 0  dO 
(2.1 b) 2n- o j [ ( x - a - i b  cos 0) 2 +r2]  ~" 

It is from these that we can build the fundamental solution of equation (1.2) for 
the case a is not an even positive integer. If a is an even positive integer, there 
are terms with logarithmic character which appear in the evaluation of (1.2), 
(1.2a) and (1.2b). In order to avoid the complications which such terms will 
present to us, we have made the assumption that a is not positive and even and 
show later that we can obtain the fundamental solution of (1.2) for a=2 n ,  n 
=1 . . . .  as a limiting case. The case a = 0  can be handled by means of the 
correspondence principle [6]. 

We recall that (see [5]) 

e - z J _ ~ ( P l )  H,1)(kpO=iJ~(kpl)~ -'~'~ " k 
sin an 

so that the singular part of the fundamental solution of (1.5d) is 

k �9 - i sina~-1 0 J-~(kpl) dO. 
(2.2) 2~+ 1 F ( a )  sin an o P~ 

Now 

J " ( k p l ) = , =  0 a! F ( a +  1 - e )  

and hence (2.2) becomes 

1 
( - )~  p ~ - 2 ,  sin2~ - 10dO. 

a! F ( a + l - a )  (2.3) 2F(a) sin arc ,=o o 

We shall now show that (2.3) can be written as an integral of the product of two 
Bessel functions, one of which is of the order a - 1  and argument kr sin 0, while 
the other is of the order - a  and argument k [ ( x -  a + ir cos 0)2+ b 2] 1/2. There is 
a second integral of the same form with r and b interchanged. 

We shall first examine the integral for or--0 in (2.3) and observe that it may 
be replaced by (2.1a) and (2.1b). We shall only work with (2.1a) since (2.1b) is 
found from (2.1a) by interchanging r and b.[Since replacing (2.1) by (2.1a) does 
not involve any change in the quantity x -  a, we shall omit the quantity a in this 
part of our work]. 

We next examine that second term 

~p~-2~ sin2~- 1 0 dO 
0 
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and observe that this may be obtained from the term a = 0  by an integration 
over the variable x with the additional weight factor x. To make use of this idea, 
we begin by considering the identity 

sin2= - 10 dO 
i t  d [ !  [/.2 _~_ r 2 ~ b ~ 2 - r b c o s  O1 ~ o 

(2.4) _ i t d t !  ~ sin2, - a 0 dO 
0 [(t+ircosO)2+b2] ~" 

We may write the right side in the form 

x 
isin2~_lOdO ! ( t+ircosO-ircosO) dt 
o [(t + ir cos 0) 2 + b2] ~ 

- i sin2=-I 0 dO s 
0 2(1-~) t[x+irc~176 

_ i r i d t i  sin2=-lOc~ 

Now since ~ > 0, we may integrate the inner integral by parts to show that the 
right side of (2.4) is, for b > r 

i sinZ=-lOdO +b211_ = r 2 
o 2(1 - ~ )  {[(x+ir cos 0) 2 - ( b  2 - cos 2 O) 1-~} 

7t +~ r 2sin2,+lOdO 
0 2~ {[(x + i r  cosO)2+bZ]-=-(b2-rZ cos 20)-~}. 

But by direct calculation the left integral of (2.4) also equals 

sin2, - 1 0 dO 
i 2 ( 1 - c  0 {(x2+r2+b2-2rb c~  c~  
0 

the first part of this being of course essentially the desired integral. 
Now we shall show that the terms independent of x in the last two displays 

cancel; that is we shall derive the identity, 

i sin2~ - 1 0 
o 2 ( 1 - ~ )  (rZ+b2-2rbc~ 

sin 2~ 1 0 
(2.5) - o j ~ i C ~ j  (b2 - r 2  cos: O) 1-~ dO 

sin2,+ 1 0 
+ i r2 ( b2 - r2 cos2 0)-~ d O, r2/b 2 < 1. 

o 2~ 

To this end, we note that if we put 2=r2/b 2, the right side of (2.5) becomes 

bZ-Z~sin:~-lO 1 - 2 c ~ 1 7 6  sin20 dO. 
o 1-c~ 
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The substitution cos 2 0 = t reduces this last integral* to 

b 2 - ~ + _ ~ 2 ,  F(1/2) F(cQ [F(c~_ - 1, 1/2,1_~ ~ + 1/2, 2) -~ 2F (c~, 1/2,~+1/2c~ + 3/2, 2)j] 

where F is the hypergeometric function. This in turn simplifies to 

b 2 - 2= F(1/2) F(c0 
(2.6) F(c~ - 1, - 1/2, ~ + 1/2, )~), 2 < 1. 

(1 -~ )  F(~ + 1/2) 

If we now examine the integral 

i sin2~ - 10(r 2 + b  2 - 2 r b  cos 0) 1 -~e 
o 2(1 -cQ dO 

we find that it may be transformed into 

(r+b)2-2~22~-i 1 [ 4rbt  ]1-~ 
(2.7) ( l - a )  0~ [ t ( 1 - t ) ] ' - t  t l  ( r - ~ 2  j dt 

upon using the substitution t =cos 2 2" The quadratic transformation of GOUR- 

SAT [1] transforms (2.7) into (2.6) and we have therefore derived (2.5). This being 
done, our earlier calculation then yields the result 

sin 2~- ~ 0 
i ( x 2 + r 2 + b Z - 2 r b c o s O )  1 ~dO 

2(1-~)  0 

(2.8) - i sin2~ - t 0 b 2] 1 o ~ l ~ i  [ (x+irc~  -~dO 

+~ r2 sin2~+t 0 
o 2o~ [(x+ircosO)2+b2]-~dO, r /b<l .  

This is our required expression for the second term (a = 1) in (2.3). 
The derivation of the identity (2.8) indicates how we may derive the 

following identity, which provides us with the conversion for a general term. Let 
Pl = (  X2 +r2  +b2 - 2 r b  cos0) 1/2 and P2 = [(X-q- ir cos 0) 2 q-b2] 1/2. We claim that 

(2.9) i P2"- 2~ sin2~- l O dO 
o F(n + 1 - ~) 

r2J p2n- 2 j -  2~ sin2=+ 2 j -  1 0 dO 
=F(~) n, i ~ )L<I. 

o j = o (n - j ) !  j! r(c~ +j) r(n  + 1 --j--  ~)' 

We have of course already proved (2.9) for n = 0  and 1, and an induction 
argument will now show that it is true for any positive integer. 

We proceed as we did in the case n = l  by multiplying (2.9) by x and 
integrating with respect to x from 0 to x. We will find that n is replaced by n + 1 
in (2.9) and there are terms from the lower limit of integration just as in the case 

* L.V. AHLFORS Complex Analysis, McGraw-Hill, (1966), p. 309. 
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n = 1. These latter terms are independent  of  x and we will demons t ra t e  that  the 
one on the left side is equal  to the sum on the right side. This will imply, as in 
the case n = 1, that  the t e rm dependent  on x on the left side is equal to the sum 
of those dependent  on x on the right side. 

We therefore have to show that  

(2.10) i (rZ +b2-2rbc~ 
o F(n + 1 - o:) 

= F(e) n! ~ r2J(b2 - r2 c~ 0)" - i -~ sin 2 �9 + 2j - 1 0 d 0 

i= o o (n - j ) !  j! r (~  +j)  r (n  + 1 - j  - ~ ' '~ < 1. 

The left side of  (2.10) m a y  be conver ted  into a te rm whose dependence  on 2 is 
given by the quadra t ic  t r ans format ion  of  Goursa t ;  we get in this way 

b2. 2 C(a) r (1/2)  
F(a-n ,  1/2-n,  ~ +  1/2, 2), 2 < 1 .  

F(1 + n - ~) F(~ + 1/2) 

N o w  we shall examine the right side of  (2.10).With the substi tut ions used for the 
case n = 1, we get 

E i I t dr, 

n 

F(1/2) F(~)n! b 2"-2~ ~ 2JF(~+j-n ,  1/2, ~ + j +  1/2, 2) 
j= o (n-j)!  j! F(n + 1 - j -  ~) F(~ +j + 1/2)'  

where F is the hypergeomet r ic  function.* U p o n  using the power  series expansion 
of the hypergeomet r ic  function abou t  2 = 0, we get 

b2n-2c'F(a) n! s ing~  ~ ~, r(~+j+a-n)F(1/2+a)(- ) .~+"2 ,i+" 

The double  sum can be writ ten as 

o r  

(2.11) 

Y, ~ r(~-n+a)r(1/2+a-J)(-)J+"'~'~ 
j=o , ,= j  F ( a + a + l / 2 ) ( n - j ) ! j ! ( a - j ) !  

~ F(~-n+a)F(1 /2+a-J ) ( - )J+" 'U 
j= 0 , =j F(~ + a + 1/2) (n - j ) !  ( a - j ) !  j !  

+ ~ ~ F(~-n+a) F(1/2+a-J)(-)~+"2~ 
j~o ~=.+1 F(~+a+ 1/2)(n-j)!j! (a- j)!  

F(~ + a + 1/2) ( n - j ) !  j !  ( a - j ) !  a = O  j = O  

+ ~ , ~ r ( ~ - n + a )  ~ r ( 1 / 2 + a - j ) ( - )  j+" 
~=.+ 1 F ( o ~ + a +  1/2) (n- j ) ! j !  (a- j)!  j = 0  

* A H L F O R S ,  loc. cit. 
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We shall now show that  the finite sums in (2.11) can be evaluated and 
therefore verify the identity in (2.10). The second sum 

~ F(1/2+~ a>_n+l 
j = 0 (YI--j) ! j! (a--j)! 

can be evaluated by the following elementary method. We multiply this sum by 
0 - n + 1/2 and obtain 

F(3/2 + o - j ) ( - )  j "~' r(1/2 +a-j)(-)J_= 
j=o (n - j ) I j ! (a - j ) !  j=o ( n - j - 1 ) ! J ! ( a - J )  ! - ( ~  g(~ 

The upper  index in the second sum is now n - 1  because the term j = n vanishes. 
U p o n  shifting the index in the second sum and combining it with the first term 
we get 

~, F(a- j+3 /2 ) ( - )  ~ (a-n+l/2)g(o,n)  
~=o (n-j)! j! ( 0 + 1 - j )  0 + 1  

-g (a  + 1, n) 

F r o m  this we can derive immediately 

and since 

we have finally 

For  the first sum 

r (1 /2  - n + a) 
g(a, n )=  g(0, n) 

F ( 1 / 2 -  n) a!  

g(0, n) = F(1/2)/n! 

r ( l / 2  - n + a) r (1/2)  
g(a, n)= 

F(1/2-n) aI n! 

F(1 /2+a-J ) ( - ) J  
j = o (n-j)!  j! (a - j ) !  

we note that it can be written as 

F(1/2 + a - J ) ( -  )J 
j= o (n-j)!  j l (a- j ) !  

~<n  

since all terms from j = a + 1 to j = n vanish and therefore this sum is still g(a, n). 
It follows therefore that if (2.11) is written in the nota t ion of  the hypergeometr ic  
function, we get 

r(1/2) 
F(~-n,  1/2-n, ~ + 1/2, 2). 

sin na  F ( a +  1/2) F(1 - ~ + n )  n! 

b 2n-2~ IV'(Ct) n! s i n n a  
U p o n  inserting the factor preceding the double sum, we see 

n 
that  the right and left sides agree for r/b < 1. 
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With the derivation of  (2.10) we have proved (2.9) and we can now express 
(2.3) as 

1 r  2~ r2Sp2~-zs-2, sin2~+2s-1 0 
2 sin 7t~ = i=0 (rr- j)! j !  C(~+j)! C ( a + l  - c ~ - j ) "  

But this may  be rewritten as 

2 sinn:  !dOj = o 

(~)2tr 2j- 2ct s i n 2 ~ +  2 j  - 1 0 (_)~ r2J p2.- 

(a - j )  ! j!  r(c~ +j)  r(t7 + 1 - c~ - j )  

from which we recognize, after putt ing a - j  = tr' that  this may be rewritten as 

1 ~ ~ (_)J r2Jsin2=+2J-lO 

2 sin nc~ !dOse= o F(~ +j) . '=o  

(_ r, p o,-2, 

tr'! F(tr' + 1 - ~ )  

The infinite series may  be identified as Bessel functions of  order c~-1 and - 
respectively and we finally have 

k 
(2.12) 4 sin ~z  ! J~-l(krsinO) J-~(kp2)rl-~p2~sin~OdO 

- k= i sin2=- 1 0 J_~(kpx ) p l  ~ dO 
2~+ 1 sin c~n o 

c~ > 0. Since we have derived this subject to the restriction r < b, we also have the 
identity 

(2.12a) 
k r~ J~- 1 (kr sin J ~  (k ]/b 2 - r z cos 2 O) r 1 -~ sin ~ 0 d 0 

O) 
4 sin ~r~ Jo (b E - r 2 cos 2 O) ~/2 

_ k ~' ~s in2~_lOJ_~(k] / r2+b2-2rbcosO)  dO 
2~+ 1 sin c~rc o (r z + b  2 - 2 r b  cos 0y/2 

We also note that if we start with (2.1b) and replace P2 by p 3 = [ x + i b  cos0) 2 
+r2] 1/2, an identity similar to (2.12) is derived with r and b interchanged. For  
r>b, (2.12a) merely involves the interchange of  r and b. 

III. The Derivation of the Regular Part of the Identities 
(l.5d) and (l.5e) 

The regular part  of  (1.5c) is 

- k~  e-i~n ~ sin2~_ l O j~(kpl) Pl~ d 0 
2 ~+1 F(ct) sin c~rc o 
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which, in view of the power series expansion of the Bessel function, can be 
written as 

p2~ sin2~ 1 0 dO. 
(3.1) 22~+ 1F(cr sin c~ ~=0 at F ( a + l + e )  o 

For the time being we shall omit the numerical constants before the summation 
sign. We note that p2~ is a polynomial in x, r, b and cos 0 and furthermore, it is 
simple to verify that 

(3.2) i p2 sin2~-i 0 dO i p2 sin2=-1 0 dO r 2 i 
= +__ sin2~+l 0d0. 

o c~+l o e + l  c~ o 

On the surface it appears that (3.2) may be used to derive alternate forms of the 
integrals in (3.1). Unfortunately, the situation is somewhat different from that in 
Section II, although much of the machinery carries over. If we multiply equation 
by x and integrate from 0 to x, we get after some simplification 

1 i p4sin2~-lOdO_ 1 i p22sin2~-lOdO 
o F ( ~ - ~ + ~  - 4  o r ( ~ ) r ( ~ + 2 )  
(~+2)r  z ~ p2 sin2~+l OdO 1 ~ (re +b 2 -  2rbcosO)2sin 2~- x OdO (3.3) 

4 2 J +4  ] - -  o ~ - ~ 1 )  ? ( - e ~ )  o r(~) r(~ + 2) 

1 ~(b e - r  ecos 20) zsin 2" -10d0  re(c~+2)~(b 2 - r  2cos 20) sin a '+10d0  

4 o j F(~) F(~ +2) 2 o J 7 F ( ~ i ) F ( ~ 7 ~  

Now the last three terms on the right side of this equation simplify to 

~t 

(e+2) r4 !sin2=+3OdO 
4r(~ + 1) F(c~ + 2) 

so that equation (3.3) becomes 

1 i p 4 s i n 2 ~ - l O d O  1 ip~sin2=-lOdO r2 
(3.3a) ~ o F ( ~ ( ~ + ~  - 4 0  +2 o i 

p~ sin2~+ 10 dO 
F(e+  1) r(~ + 2) 

r4 i sin2=+ 3 0 dO. 
4F(~+ 1) F(~+2) o 

This situation contrasts the results in Section II where the terms from the lower 
limit of integration combined to vanish. 

Having been guided by this special case, we can now derive the following 
identity which we will need in our subsequent integrations. We claim that 

(3.4) 

1 i (r2+b2-2rbc~ OdO 
o F(~)F(~+n+ 1) 

-- ~ --r2 O)n-JsinZ~+ZJ-lo _ r2ji  (b 2 COS 2 dO 
= o o j! (n - j )  ! F(~ +j) F(~ + 1 + n - j )  
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In order to demonstrate this relation, we simply expand (b 2 - r  2 cos 2 O) n-j and 
evaluate the integrals. After some minor simplification we will obtain the left side of 
(3.4). Indeed we have from the right side of (3.4) that 

n ~ n - j  ( __ )ab2n-2 j -2ar2~rcos2aOs in2~+2j - lOd  0 

r2J ~ ~" a! j ! (n- j -a)!F(e+j)F(c~+l+n-j )  
, = 0  0 ~ = 0  

~ "-J r 2 j + 2 ~ ( - ) ~ b 2 n - 2 j - 2 a F ( a + l / 2 )  

aEo j=o = a!j!(n- j -a)!F(ct+l+n-j)F(c~+j+a+l/2)  

and upon replacing j + a by 7 we get 

r2 ' ( - )~+Jb2"-2 'F(7  - j +  1/2) 

~ j ! (?- j ) ! (n-?)!V(e+l  +n-j)V(e+?+ 1/2) j = o  ~ = j  

or finally, upon interchanging the order of summation, 

r2 Y ( - )Y + J b 2n- 27 F(]/ --j + 1/2) 

(3.5) ~' ~ jr(? --j)'(n-- ?)' r(c~ + 1 + n - j )  F(~ + 7 + 1/2)" ~ , = 0  j = O  �9 �9 

In a fashion which we made familiar in Section II, it is possible to evaluate the sum 
over the index j. 

To this end, we put 

(-yF(?-j+I/2) 
h(7) = , ~  o j! (7-j~.T ~ + n--j) 

and multiply both sides of this equation by (7 + 1 / 2 - n - ~ ) .  From this we get 

(7+ 1 / 2 - n - ~ )  
h(7 + 1) = h(7) 

(7+1) 

and therefore 

( 1 / 2 - n -  cO... ( 7 -  1 / 2 -  n -  c 0 F(1/2) 
h(? )  = 

~! F(c~+ 1 +n) 

if ? > 0  and h(O)=F(1/2)/F(a+ 1 +n). Hence (3.5) reduces to 

( -yb2"2 'h(~  = bZ"F(1/2) F(-n ,  1/2-n-~,~+1/2,2) 
~=o(n-y)!F(c~+ 7+ l/2 ) n!F(oc+ l +n) F(~ + 1/2) 

where F is the customary notation for the hypergeometric function and (k/b) 2 = •. 
This last expression is precisely the left side of (3.4) when the quadratic transforma- 
tion of GOURSAT is applied to the integral on the left side. 

Now we will show that 

(3.6) 
1 i Pz"sin2"-~OdO " ~ P~n-2Jsin2~+2j-lOdO 

o l + n - j l  
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This is true for n = 0, 1 and 2 and we proceed by induction. Let us multiply (3.6) by x 
and integrate from 0 to x. Then we have 

(3.7) 

1 i [P2xn+2-(r2+bZ-2rbc~ 
2(n+ 1)! 0 F(cOF(e+n+l) 

= r 2~ 5 [p~.-2j+2 _ (b  2 _r2  cos 2 0).-~+ 1] sin2~+e~-10dO 

a=o o 2 j ! ( n - j + l ) ! r ( ~ + j ) V ( e + l + n - j )  
n +j x-" r2a+ 2-- '~0  J0 7 [p2n-~.~)iF(~j_wl~(~l~j)2J__(b2__r2 C~ s in2~ + 2j+l OdO 

and the right side may be simplified to 

(0~ + 1 "+" l'l) ~ 1,2J 7 [p2n- 2j+2 _(b 2 _r2 cos 20)n- j+ 1] sinZ= + 2j-a 0 dO 
2 j=o/-' J o j!(n+l-j)!F(c~+j)F(o~+2+n-j)  

But with the aid of the identity (3.4) we may reduce (3.7) to 

i n+--~Xo i P2n+2-ZJsin2=+2J-lOdO 1 p2n+2 sin2=-I OdO 1 
-- r2J j!(n+l-j)!F(o~+j)F(ct+n+2-j)  2 ( n + l ) !  o F(~)F(~+n+2) 2 j= 

Hence if(3.6) is true for some positive integer n, it is also true for n + 1 and therefore 
the usual induction argument demonstrates that it is true for all positive integers n. 
If we now examine (3.1) by the same methods we employed in Section II, we find 

(3.8) 
i p[~J~(kpl ) sin2~ - 10dO 
0 

[2\~- 1 
=rl-=~ ~) isin'OJ'(kp2)J=-l(krsinO)pz~dOo 

From (2.12) and (3.8) we then get (1.5d) and (1.5e) follows from (1.5d) by 
interchanging r and b. We shall discuss the properties of these representations for 
the fundamental solution in the following section. 

I V .  T h e  c a s e  m = 2 

The case m = 2 cannot be derived by the methods which we have employed in 
Sections II  and III. We observe that we cannot use the axially symmetric solution 
for Laplace's equation in this case, since its integral representation diverges. We 
could employ the correspondence principle to write the odd part  of the 
fundamental solution in the case m - 2  (~ = 0) in terms of the fundamental solution 
for m = 4  (~= 1). Rather than do this which will lead us into some unnecessary 
numerical work, we will go directly to (1.5c, d, e) and show that (1.5c) can be 
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evaluated. We have for r < b 

(4.1) 

i k ! sin 01H(11) (kp~)/p~ dO 1 
4 

ik ,~ ----! 4 sin 0 Jo(k r sin 0) 
H(~ u [k 1/(x - a  + ir cos 0) 2 + b 2 ] dO 

[ ( x - a + i r  cos 0) 2 +b2] 1/2 

The left side of equat ion (4.1) may be integrated directly to give 

i 
4rb- {H(~ [ k r  + ( r -  b)2] -H~~ +( r  + b)2]}" 

Tha t  is, equat ion (4.1) becomes 

(4.2) 

i 
{H~o j) [ k l / ~  + ( r - b )  2 -H~o 1) [k l / (x  - a )  e +( r  + b) 2 ] 

_irbk4 !sinOJ~ 
HI  1) [k ] / (x  - a + ir cos 0) 2 + b 2 ] dO 

[(x - a  + ir c o s  0) 2 -Jv b 2] 1/2 

the odd fundamental  solution in the case m = 2. 
In order  to find the even fundamental  solution for the case m = 2 ,  we 

differentiate equat ion (4.2) partially with respect to r and integrate with respect to b. 
Then we get after some integration by parts, 

(4.3) 

i 
{H~o ~) [k ] / (x  - a) 2 + (r - b) 2 ] + H~o u [k ] / (x  - a) 2 + (r + b) 2 ] } 

i 
=4 { u~~ [k l / ( x - a  + ir)Z :k ~ ]  -[- H(o 1, [k / ( x  - a -  ir) 2 +b2]}  

i r k 
.[ J1 (k r sin O) H~J ) [k b/(x - a + i r cos 0) 2 + b 2 ] dO. 

4 b 

It can be easily demonst ra ted  that  there is no contr ibut ion from the integration 
operation,  once we account  for the behavior  of the left and right sides for (a 2 
+ b2)~/2~ oo. There is also a second representat ion for the right side of  (4.3) when 
[rl > [b[ which is found by interchanging b and r. Equat ion (4.3) then supplies us with 
the even part  of the fundamental  solution in the case m = 2, al though we should 
ment ion that  the left side is well known. 

If we add equat ions (4.1) and (4.3) and divide by 2, we have the fundamental  
solution in the case ~ - -0  in the entire x, r plane. Observe that the restrictions r < b  
and r > b, which arose in our  earlier work, arose from the restrictions r2<  b 2 and 
r 2 > b  2. Now, since we can deal with the entire plane, these condit ions become 
[r[ < [b[ and [rJ > [b[. We also note  the parallelism of  the representat ions (4.1) and 
(4.3) with the non-characteris t ic  representat ion in the hyperbolic  case. This last 
remark becomes evident when we write cos 0 =  t in (4.1) and (4.3) [4]. 
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V. Final Comments 

We observed that the representations (1.5d) and (1.5e) for the fundamental 
solution of the axially-symmetric wave equation are dependent on the inequalities 
r > b and r < b. It is from these forms that we may recognize that some of the integral 
equations derived for exterior axially-symmetric boundary value problems by 
analytic continuation of axis data may be given directly from these representations. 
There may be, however, some further transformations necessary to bring this to 
pass. Suffice it to say at this point that the method of analytic continuation depends 
on the use of a representation whose restrictions we do not fully understand in the 
context of these exterior boundary value problems [2]. It has also been discussed in 
terms of an Ansatz by various writers in the case ~ = 0 and 1/2. We shall discuss the 
formulation of these integral equations in a subsequent paper and show there that 
the representation (1.5d) and (1.5e) lead to useful equations which nevertheless 
are not of the classical form. 

Then, there is the issue that we may encounter divergent integrals, if we try to 
form integral equations with (1.5d) and (1.5e) for c~> 1. For ~ =  1/2, there are no 
such problems. In the case k = 0, c~ > 1, it is possible to carry out some integration by 
parts to eliminate this difficulty [3]. We have not been able to do this in the case of 
the wave equation. Until this issure is clarified, we will not be able to examine the 
higher harmonics. 
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