
A Model for Harmonics on Stringed Instruments 

A .  BAMBERGER, J.  RAUCH & M .  TAYLOR 

Communicated by J. SERRIN 

1. Introduction 

We propose a model to explain the playing of  "harmonics" on stringed 
instruments. The interesting phenomenon here is that placing a finger lightly 
at one of  the nodes of the low frequency harmonics seems to force the string to 
play a note that sounds like a superposition of  those normal modes with nodes 
at the location of  the finger. For  example, if the finger is placed 1/4 the way down 
the string the note that is heard is two octaves above the fundamental (Figure 1). 

Fig. 1 

Pressing hard at that place on the string would yield a note with fundamental 
much lower (see Figure 2). With care one can play harmonics 4 or 5 octaves above 
the fundamental. It is very striking for example to hear a fat bass string play 
these shrill high tones vibrating along their entire length. A second aspect is that 
if the finger is placed at a point which is not a node of a low frequency normal node, 
the observed sound is a rapidly dying thud. 

Fig. 2 

The problem we pose is to construct a model for the lightly placed finger 
which explains these observations. It turns out that a strong frictional resistance 
which is localized in a very small region has the desired properties. More precisely, 



268 A. BAMBERGER, J. RAUCH & M. TAYLOR 

the model we propose for the string occupying the interval 0 ~ x _~ n and fixed 
at the endpoints x----0 and h i s  

(1.1) utt + b(x)  ut = uxx; 0 ~-- x ~-- •, t >= O, 

(1.2) u(t, O) = u(t,  ~)  =- 0; t ~ 0. 

Here the frictional resistance b(x) ,  which models the finger pressure, is assumed 
to be positive and strongly localized near a point a E (0, n), as illustrated in 
Figure 3. Existence, uniqueness, and qualitative behavior of solutions of the 
problem are developed largely from the law of energy decay 

d = n 
--d[ o f (u~ § u~) dx = - 2  o f b(x) u~(x) dx <= O. 

The analysis proceeds in two steps. First, we show that for highly localized b, 
the behavior of  (1.1) is approximated by that of the singular equation 

(1.3) utt § o~ 6 (x  - -  a) u t = Uxx, o~ = / b ( x )  dx .  
0 

b(x) T 

0 a 
I b 

x 

Fig. 3 

This formally reasonable limit is equivalent to the wave equation for x ~= a 
supplemented by a transmission condition at x = a. The second step is a fairly 
precise analysis of this limiting equation. Among other things, we show that if 
a/:~ is irrational, then all solutions tend to zero as t -+ ~ ,  while if a/zc is rational, 
the components of u in the span of  the modes which vanish at x ---- a propagate 
as if there were no friction while the components orthogonal (in the natural scalar 
product given by the energy) to these decay exponentially. These results mirror 
the observed phenomena described above. 

The appropriateness of  our model and a possible experimental test are dis- 
cussed in w 4, after the precise results are in hand. 

2. The limiting transmission problem 

To study the behavior of (1.1), (1.2) with highly localized friction, we investigate 
the limiting behavior as b(x)  becomes more and more localized. It turns out that 
the limiting behavior corresponds quite closely to the above observations concern- 
ing stringed instruments. In this section, we will show that the limiting behavior 
is given by solving a specific transmission problem, and an analysis of this problem 
is given in the next section. 
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First, we cast the basic problem in the framework of  the theory of  semi- 
groups of  operators. Consider the pair U ~ (ut, u) as an element of  the Hilbert 

0 0 
space ~ = L2[0, ~] @/-/110, ~], where HI[0, ~] is the completion of  C~(0, ~) 

 o,,o . o . m  

the evolution equation 

(2.1) 

where 

The mixed problem (1.1)-(1.2) is equivalent to 

Ut = P U  

/ ' =  , D - -  ~ x  

0 o  ,E0, 
~ ( r )  = HI[0, ~1 �9 

It is a simple matter, using the theory of  ordinary differential equations, to show 
that F so defined is a maximal dissipative operator. We will present a similar but 
slightly harder proof  for the operator G~ which occurs further on, and therefore 
omit the details of  the present argument. The theory of  semigroups provides a 
solution of  the differential equation (2.1) with initial condition 

(2.2) t2(0) = (g,D ~ ~ ,  

the solution U being a continuous function of  t with values in ~r In addition, 
if (g , f )E  ~(/ ,3) ,  it is not hard to show that the associated function u(t, x) is a 
classical solution of  the mixed problem (1.1)-(1.2), with u(0, x) -----f, ut(O, x) = g. 
There are, of  course, other ways to treat this mixed problem, using for example 
the method of  characteristics [1, chap. 5], or the theory of  symmetric positive 
systems [2, 8]. We have chosen the present approach because it seems to yield the 
strongest results when we consider the limiting behavior as b becomes more lo- 
calized. 

For  future use, we record one more fact about/1.  The equation (I  --  F )  U = F 
for U = (v, w) and F = (Ft, F2) in ~ is equivalent to the following equations: 

f ~ 0 
(2.4) (wch + bvch + wxChx) dx = f F,4, dx, for all V4~ E/-/1 [0, ~]. 

0 0 

This weak formulation is ideally suited to our needs. We consider a sequence 
of  nonegative friction coefficients b, E C~[0, n] with the property that 

(2.5) lim f b,(x) ~p(x) dx = o~p(a), for all V~p E C[0, ~t], 
n 0 

where 0 ~ 0~ < co. If  bn satisfies (2.5) and u, is the solution of  the mixed prob- 
lem (1.1)-(1.2) with initial data (g, f) ,  then as n---~ oo the functions u, converge 

(2.3) w -- v = F 2  

and 
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to the solution u o f  the t ransmission p rob lem 

(2.6) utt --  Uxx = 0 for  x E [0, ~] \ a, t > 0, 

(2.7) [ut] ~ 0 and ~ut ---- [Ux] at  x = a, t :> 0, 

(2.8) u : 0 at x = 0, zc, 

with (ut(O, x), u(O, x)) ---- ( g , f ) .  The quant i ty  [h] at  x ----- a is the j u m p  h(a + O) 
--h(a--O) in h at  the poin t  a. 

There  is a semigroup formula t ion  of  this p rob lem also. Fo r  the state vector  
U ~- (ut, u) E ~ we get the equat ion 

U t = Go, U 
where ~ 

G ~ =  0 for  x # a ,  

and 

{ 0 } 
N(G~) = (v, w) E Hi[0,  ~1 @ (/-/2[0, a] A tt2[a, ~]) I ~v = [Wx] at  x ---- a . 

This is reasonable,  since formal ly  [ '  approaches  ( - - ; ~ "  O2)  while the equat ion 

D 2 w - - ~ d a V = I : I  t ranslates to D 2 w = F 1  for  x # a  and  ~ v = [ W x ]  at 
x = a .  

We show tha t  G~ as defined above is a maximal  dissipative operator .  First,  
for  all U = (v, w) E N(G~) we have 

~e(GU, U)~ = --o~v2(a) < O, 

so G~ is dissipative. T o  see tha t  ~ g ( I  - -  G~) = ~ suppose that  F = (F~, F2) E ~ ;  
then the equat ion  ( I -  G~) U = F is equivalent  to 

(v, w) E ~ (G) ,  w - -  v = F2, 

v - - D 2 w - - - - F 1  on [ O , ~ ] \ a .  

Using the first equat ion to eliminate v f rom the second, we get 

(2.9) - -D2w %- w = FI - -  F2, x ~ a .  

There  is a two pa ramete r  family of  solutions o f  this equat ion which, in addition, 
satisfy the condit ions w----0 at  x = 0, :~; in fact, we may  take w'(0), w'(7 0 
as the parameters .  In  addit ion to (2.9) w must  satisfy 

(2.10) [w] : 0 and o~w - -  [wx] = F2 at  x : a ,  

where the second condi t ion comes f rom eliminating v f rom the t ransmission 
condit ion.  

To  see tha t  these restrictions uniquely determine w'(0), w'( :0 we need only 
show tha t  the m a p  

(w'(O), w'(n)) --> ([w], o~w(a + )  --  [wx]a) 
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is a nonsingular linear transformation from R 2 into itself. For this, it suffices 
to show that the map is injective. If (w'(0), w'(z0) ~ (0, 0), then the associated 
function w satisfies 

( I - -  D2) w = O for x @ a, 

[ w ] = o ~ w - - [ W x ] = 0  at x = a ,  

w = 0  at x = 0 , ~ .  

Integrating by parts in the identity 

/ - w + f - w . x  = 0 
0 a 

then yields 

f ((Dw) 2 -+- w 2) dx § o, wZ(a) = O, 
0 

so w ----- 0 .  Thus w is uniquely determined by (2.9), (2.10). Setting v = w -- F2 
the pair U ---- (v, w) satisfies (I -- G~) U = F and proof of maximality is com- 
plete. 

The next theorem asserts the convergence of the solutions of the mixed prob- 
lem (1.1)-(1.2), with friction coefficients, b~ satisfying (2.5), to the solution of the 
above transmission problem. 

Theorem I .  I f  the nonnegative friction coefficients bn satisfy (2.5), and i f  I" n 
are the associated maximal dissipative operators, then for each t >= 0 

s-lim e trn • e ta~ 
11"->00 

and the convergence is uniform on compact time intervals. 

Proof. We apply the TROTTER-KATO theorem [4, chapter 9, theorem 2.16], 
thereby reducing the problem to showing that for every FE 

( I  - -  I',,) -a F- -+  ( I  - -  G~,)-aF in J8 ~ 

Let U. = (v., w . ) ~ ( I - / ' . ) - I F .  We first show that U. converges weakly 
in ~ to ( I -  G~,)-IF. Notice that 

II U.ll~e ~ l i f t -  F.)-lll [IFI[~ =< lifll, 
so (On} is weakly compact in ~ff. Let U = (v, w) be a weak limit point and choose 
a subsequence Ung converging weakly to U (symbolically, U,k ~ U). We must 
show that U = ( I -  G~,)-~F. 

From equation (2.3), we find w , k -  V,k = F2. Hence, passing to the limit 
k - - ~  we have w - - v ~ F 2 .  

Similarly, equation (2.4) holds for w~k, v~k provided b is replaced by b#k. 
Passing to the limit, we obtain 

f ( w 4 ~ + D w D q ~ ) d x + l i m f b . k V . k e o d x =  F~eodx, V4, E H~[O, :~l. 
0 0 
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By (2.5), if we consider bn4~ as an element of  (C[0, z~])', the sequence bnd# converges 
0 

weakly to ~4,(a) t3a. However  vnk = Wnk -- F 2 converges weakly to v in //1[0, zc] 

and therefore uniformly.  Thus the limit above is ow(a)cb(a), and we have 

(2.11) f (web q- Dw D4,) dx q-- ~xv(a) r = f Flcb dx, 
0 0 

0 
for  all 4) E//1[0,  :z]. With  the help of  the identity w - -  v = F 2, the condi t ion 
(2.11) is easily shown to be equivalent  to the equat ion ( I -  G~) U = F. This 
proves  the weak convergence Un ~ U. 

T o  prove  the s t rong convergence,  we investigate the sequence 1[ U,[[ae. T o  do 
this, set ~b = wn in (2.4) to obta in  

f (w2. + (Dw.) 2) dx = f Flwn dx -- b,v,w, dx. 
0 0 0 

The limit o f  the right hand  side as n---> oo is 

f F1w dx -- o~w(a) v(a), 

which is precisely / w  2 § (Dw)2dx as can be seen by choosing 4~ = w in 
0 

0 
(2.11). This takes care of  the w componen t ;  that  is, Wn---> W in/-/1 [0, zc]. I t  follows 
then that  Vn : Wn -- Fz ~ v in L2[0, :z], and the p r o o f  is complete.  

I f  one considers bn(x) with bn ~ 0, this theorem shows that  f bn(x) ax is 
an appropr ia te  measure  of  the strength of  the frictional force, since if f bn(x) dx 
--> ~ ~ 0, the limiting behavior  is given by (2.6)-(2.8). Next,  we turn our  at ten- 
t ion to the case of  extremely large friction. Suppose b, ~ 0 ,  and 

(2.12)i f bn(x) dx =fin 7 cx~ as n--->oo, 

(2.12)i i l im sup b,(x) O, for  all compac t  K Q [0, zt] \ a .  
xEK 
n~Z+ 

The second hypothesis  asserts that,  away f rom the point  a, the functions b,  are 
bounded  uniformly,  a hypothesis  expressing the localization of  the b, near  a. 

Suppose that  Un is the solution of  the wave equat ion (1.1)-(1.2) with Cauchy 
~Un 

data  ~ (0) = % u,(0) = q~ and energy at  t ime t given by 

7~ 

II un(t)II~e =~ f (u2,(t, x) + u~(t, x)) dx. 
0 

The fo rmula  for  energy decay is 

[1U,(T)[[ 2 = [1 un(0)ll~ - o o bn \ Ot] dx dt. 

In  part icular ,  for  all n, 

o o \ Ot (t, x) dx dt ~ f (~o(x) z q- qg'(x) z) dx. 
0 
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0u. 
This implies that if we consider -~- (., x) E L2[0, T] for each x, the weighted 
averages satisfy 

~a[0,T ] 
1 f bn(x) Ou,, x) dx -+ 0 as n -+ cx~. (2.13) "fl-~'~ o "b7 (" 

Now {U,} is bounded in Hi((0, T)• ~)), and 

Hi((0, T)•  (0, ~)) ~ C([0, ~]; L2(0, T)) compactly; 

thus t 0t ) lies in a compact subset of C([0, z~]; H-I(0, T)). Since equation (2.13) 

implies that 

1 n Un 2_~(0,T ) f b,(x) ei; t (., x) dx -+ 0 as n --~ oo 
ft, o 

it follows that 

(2.14) 
6qU n 

(., a) ~ 0 in H-l(0, T), as n -+ ~ .  

It is therefore reasonable to expect that un tends in the limit to the unique 
solution u E Hi((0, T) • (0, ~)) of the mixed problem 

(2.15) ut, -- uxx = 0 in (0, T) • ((0, z0 \ a), 

(2.16) u(., 0) = u(., z 0 ----- 0 on (0, T), 

Ou 
(2.17) ~'--7 ('' a) = 0 on (0, T), 

(2.18) u(0, .) = cp on (0, ~), 

~u 
(2.19) 0-7(0, .) = 7~ on (0, ~). 

Note that this limiting problem is energy conserving. 

Theorem 1'. I f  (2.12) holds and the Cauchy data (% q~) is in z/g, then for each 
t > = o  

C" )C" ) et (t), u.(t) ~ ~ ( t ) ,  u(t) in ~ as n- - .  ~ ,  

where uE C([0, T] : o~) is the solution of  the mixed problem (2.15)-(2.19). 

Proof. Because the energy is a decreasing function of time for each U., it 
suffices to prove the theorem for a set of Cauchy data which is dense in ~ .  
Thus, we may assume there is an ~ > 0  and a C E R  such that 

~ o = 0  on [ a - - % a + r / ]  
and 

= C on [a--~7, a + ~ ] .  
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It follows from the finite speed of propagation that, for all n, 

(2.20) u, ---- C on ((t, x) : It[ -k- Ix -- a I < ~}. 

We begin by showing that u, ~ u weakly in HI((0, T)x  (0, ~)). To do this, 
we show that every subsequence of the b, has a further subsequence converging 
weakly to u. The crucial observations are 

0 
(2.21) (u.} is bounded in C([0, T]: H1(0, n)) 

and 

(2.22) t St / is bounded in C([0, T]: L2(0, ~)), 

both consequences of energy decay. From the differential equation (1.1) and 
condition (2.12)ii, we see that, for any compact interval K in [0, ~] \ a, 

~t 2 ] is bounded in C([0, T] : H-I(K)). 

It follows that, given any subsequence of the u,, we may choose a further sub- 
sequence u,j such that in the weak star topologies 

0 
(2.23) u.j ~ w in L~((0, T): H'(0, ~r)), 

(2.24) t~unj ~w #t at in L~ T) :L2(0, r0), 

(2.25) 
~211nj ~2 W 
at 2 ~ ~ in L~((0, T) : Hlo~((0, ~) \ a)). 

It follows immediately that 

w E Hl((O, T) • (0, ~)), 

w, -- wxx =- 0 in (0, T)• ((0, :~) \ a), 

w = 0 in (0, T) • (0} and (0, T) x {~}, 

w = 4~ on (0} • (0, ~). 

From (2.14) we see that, as an element of H-l(0, T), 

6qW 
- o o n  (0 ,  r )  • 

St t ~  

t~W 
From (2.20) we get ~ = 0 on (0, r/)• and therefore 

6qW 
(2.26) St -- 0 on [0, T) • (a}. 
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~w 
We must show that at 

275 

t = 0, -~-----~p. From (2.23)-(2.35), it follows that 

%1 Bt [/=0 8t It=0 weakly in L2o~((0, z 0 \ a), 

so that 

~-~-t t=o (2.27) = ~o on (0, ~) \ a. 

However, from (2.21), 

~ W  
- - 0  on ( O } x ( a - - ~ , a - t -  ~/), ~- -  Ot 

which together with (2.27) yields the desired result. 
We have proved that un ~ u weakly in Hi((0,  T)x(0 ,  ~)). The functions 

un and u lie in the closed subspace of  3~f consisting of  functions vanishing at 
(0, T )x  (0). On this subspace the quantity 

T z~ 

l[~Pl~ ==- f f (r § u~) dx dt 
0 0 

furnishes a norm equivalent to that of  HI((O, T) • (0, ~)). Clearly 

(2.28) [lu.ll~ ~ Zlt(~, ~)ll~e = [lu[l~. 

This norm inequality together with weak convergence implies that u, ~ u strongly 
in Hi((0, T) x (0, z0). 

It remains to show that, for each t E [0, T], 

' 
--~(t),u~(t))---~ u(t)) in ~ .  

From the laws of  energy decrease, we know that {u~(t)} is bounded in H1(0, ~) 
and from the weak convergence in //I((0, T) • (0, ~)) we know that u,(t) ~ u(t) l~ in L2(0, :~). It follows that u,(t) ~ u(t) weakly in //1(0, :~). Similarly, --~-(t) 

is bounded in L2(0, :~), and (2.23) and (2.25) imply that 

~t  (t ) ~ Ou - ~  (t) weakly in L2oc((0, zi) \ a)). 

Consequently 

Thus 

~t . ( t  ) ~ eu - ~  (t) weakly in L2(0, zt). 

(~un (~ (t), 8t (t), Un(t)) ~ u(t)) weakly in ~ .  
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In addition, 
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D C" ) ~t (t)'Un(t) =~ II(w,~)~ll - --~(t),u(t) ye' 

and the strong convergence in ~ follows. 

3. Analysis of the transmission problems 

In this section, we make a qualitative analysis of  the transmission problems 
associated with localized friction. A crucial role is played by the position a of  
the friction and in particular the rationality or irrationality of  a/~. The main 
results describe the spectrum of G~ and the asymptotic behavior of  e tc~ as t -~ cx~. 
First, we present some results which do not depend on the value of a. 

Theorem 2. The family G~ is holomorphic in or for all o~ E C. The operators 
G~ have compact resolvents and the eigenvalues o f  G~ are simple, that is, have 
multiplicity one. The eigenvalues and eigenprojections are analytic functions o f  a 
for 0 < a < z~. For o~ ~ O, the spectrum of  G~ is contained in the half plane 
R e Z  ~ 0. 

Remark.  To consider o~ complex, one must pass to the obvious complex ver- 
sion of  ~ ' .  We assume that this is done whenever necessary. 

Proof. That  G~ is holomorphic in ~ follows from Theorem VII- l-14 of [4], 
by precisely the argument in example 1.15 which follows the proof  of  that theorem. 
The details are omitted. 

That  G~ has a non-empty resolvent set follows from the observation that for 
Re o~ ~ 0, G~ is maximal dissipative and for Re ~ --< 0, --G~ is maximal dissi- 
pative. All the G~ are restrictions of  order one (dim D(T)/D(G~) ---- 1) of  the 
operator T defined by 

0 / 0 \ 
In, E0, n n2t0, al n n2ta, D ( T )  = 1-I1[0, �9 

o 
T =  for x ~  a. 

By Corollary 111.6.34 of [4], it follows that G~ has compact resolvent either for 
all values of  0~ or for none. For  0~ ---- 0, Go is skewadjoint with a complete system 
of  eigenvectors 

(:]: in sin nx, sin nx), n : 1, 2 . . . .  

with eigenvalues •  Thus Go I is compact and G~ has compact resolvent for all 0r 
To prove the simplicity of  the eigenvalues, notice that the equation G~U = iAU 

for U : (v, w) is equivalent to 

DZw = iAv, x ~ a, 

v : i~w, 

[w]----0 and ~v---- [Dw] at x = a .  
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Eliminating v yields 

(3.1) D 2 w + A Z w = O  for x # : a ,  

(3.2) i2o~w = [Dw] and [w] = 0 at x ---- a.  

Given two eigenvectors with the eigenvalue i2, we may form a linear combination 
(v, w), such that w'(O) = 0. Then since w(0) = 0 the differential equation (3.1) 
implies w---~ 0, on [0 a]. The transmission conditions (3.2) then show that 
Dw(a d-) = (wad-) = 0, and equation (3.1) yields w ~ 0  on [a,=].  Hence 
w ---- 0 and therefore v = i2w ---- 0. Thus (v, w) = 0. This shows that any two 
eigenvectors with the same eigenvalue are linearly dependent. 

The analytic dependence on 0r is now a consequence of  the fact that G~ is 
holomorphic in 0~ ([4, thin. VII.1.7]). 

The analyticity in a is a little harder since the location of the transmission 
condition is changing. Fortunately, a standard method takes care of  this. Let 

~-~ax i f 0 - - < x ~ a  

y . ( x )  = 
= 

2(= - -  a) (X - -  =) d- = if a - - < x ~ .  

The map x ~ y,(x) is a homeomorphism [0, =] onto itself which takes a to 
=/2. Denote the inverse mapping by xa(y) and define maps 

S, = ~ a ~  
by 

(S~U) (y) = U(xa(y)). 

The mapping S~ is invertible, and G~ ~--- S~IG~,S~ is the operator given by the 
following procedure: 

0 0 

D(O~) = (v, w) ~ HI[O, =] ~ (H,[O, =1 r~ U:EO, a] r~ U:[a, =]) I 

a t  x ---- a ,  o~v - -  2 ( =  - -  a"~ D w  + - -  "~a D w  - -  

D 2 = 

, 0 < y < -  T 

2(a - -  =) D2 = 

0 ' - 2 " < Y <  =" 

The operator G~ has coefficients depending analytically on a, and the trans- 

mission condition at y = =/2 depends analytically on a. Thus the family G~ 
is holomorphic in a (in the sense of  [4, chap. I I I , w  1]); since the eigenvalues 
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of  G~ and G~ are the same, we have proved the desired analytic dependence 
o n  a. 

F o r  Re o~ ~ 0, G~ is dissipative. Accordingly its spectrum is in the half  
p lane Re  Z :~ 0 and  the p r o o f  of  Theorem 2 is complete.  

Theorem 3. l f  a/:~ is irrational and or > 0, then the spectrum of  G~ is contained 
in the open half plane Re Z < O. All solutions o f  the transmission problem U t = 
G~U decay to zero as t-+ + ~ ;  more precisely, s -- l i m e  tc~ = O. However 

t ~ + ~  

G~ has eigenvalues o f  arbitrarily small real part, whence [I e t~  ][ : 1 for  all t ~: O. 

Proof. We analyse more  closely the condit ions (3.1), (3.2) that  must  be satis- 
fied by  solutions o f  GU : i2U. In  the p r o o f  of  the simplicity o f  the eigenvalues, 
we showed that  w'(0 ) =~ 0 if w ~ 0. Thus the differential equat ion (3.1) and 
Dirichlet  condit ions at  x : 0, zt imply that  up to a scalar multiple w must  be 
given by 

[ s in2x,  0 _ < x ~ a ,  
(3.3) w = [b sin 2(x - -  Jr), a --< x ~< z~. 

Since [w] : 0  at  x : a ,  we must  have 

(3.4) sin 2a : b sin 2(a - -  :t), 

and  the t ransmission condi t ion i2o~w : [Dw] at x : a yields 

(3.5) - - i~  sin 2a ---- cos ;ta - -  b cos 2(a - -  ~) .  

Now,  purely imaginary  eigenvalues correspond to real values of  2 for  which the 
right hand  side of  (3.5) is real, so we must  have sin 2a - -  0. F r o m  (3.4), it follows 
tha t  either sin 2(a - -  n) ---- 0 or  b = 0. However  if b : 0, then the right hand 
side of(3.5)  is cos 2a : =[= 1 ~= 0, so (3.5) cannot  hold. Thus sin 2a = sin 2(a - -  n) 
= 0 .  Hence  2 a : n z c  and 2 ( a - - ~ ) : m z ~  for  integers n , m ~ 0  (for 2 : 0 ,  
(3.3) yields w ~ :0 ) ,  so 

m '  

a 
a ra t ional  number ,  Thus,  s i n c e -  is irrational,  the assertion abou t  the spectrum 
o f  G~ is proved.  :~ 

The  decay propert ies  now follow by applying the next result, which is implicit  
in the work  in Section 9 of  [5]. 

Abstract Decay Theorem. I f  A is a maximal dissipative operator on a Hilbert 
space ~ such that 

1. A has no purely imaginary eigenvalues, and 
2. A has eompact resolvent, 

then 
s - -  lim e t A : O .  
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Taking A = G~, we obtain the required decay condition. 
Next we show that G~ has eigenvalues arbitrarily close to the imaginary axis. 

For 2 not real it is clear that sin 2a.  sin 2(a -- :t) 4= 0. Hence we may divide 
(3.5) by this product to obtain 

(3.6) io~ = cot 2(a -- ~) -- cot 2a. 

Since a/zc is irrational, we may choose ([3, Theorem 36]) fractions p/q (in lowest 
terms) with q arbitrarily large such that 

r§ 
The spectrum of Go consists of the numbers i i n ,  n ---- 1, 2 . . . . .  with correspond- 
ing eigenfunctions (-t-in sin nx, sin nx). Consider the eigenvalue i2(o0, which 
starts at ~ = 0 from the point iq (that is 2(0) ---- q). We claim that 2(00 remains 
close to q even for rather large 0r 

To make this precise, choose p/q satisfying (3.7) and let 0% > 0 be the smallest 
value of oc such that ]2(o 0 - - q l  = 1/q. Let 

E1 = qa --p~r (so 0 < ]El[ < l/q) 
and 

E2 =2(oQ - - q  (so IE21 = 1/q, ImE2 > 0). 

If  _---- denotes equality modulo an integer multiple of ~, we have 

2(OCc) a = qa + E2a ---- El + E2a, 

2(O~c) (a - zO - -  E~ + E , a  - -  E2z~. 

The cotangent function is periodic of period ~; thus (3.6) implies that 

(3.8) iOCc ---- cot (El + E2a -- E2n) -- cot (E~ + E2a). 

Since the singular part of the Laurent expansion of cot Z about Z ---- 0 is I/Z, 
we conclude that there is a positive constant C such that, for [Z1 ] < 1, [Z21 < 1, 

1  cot Z1 -- cot Z21 => ~1 

Using this estimate in (3.8) yields 

[E2 J 
]~cl----> [El + (a - -~)e2[  lEa + E2a[ 

1- - -  C .  

~g 

- - C ~  ( ~ +  1 ) 2 q - - C .  

Thus for q sufficiently large, we have [o%1 ~ q/lO. Consequently if o~ < q/10, 
then ]2(o 0 - -q[  < 1/q. For fixed or this shows that there are eigenvalues /2(o 0 
arbitrarily close to the imaginary axis, and the proof is complete. 

Theorem 4. I f  ~ > 0, q/rc is rational, and M is the closed linear span of  the 
eigenvectors of  G~ with purely imaginary eigenvalues, then: 

1. M is precisely the closed linear span of  the eigenvectors of  Go which vanish at a, 
and Go = G~ on such eigenvectors; 
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2. e ta~ -~ e tac' on M;  in particular e ta~, is unitary on M;  
3. M • is invariant under the semigroup e ta~. Furthermore there exist positive con- 
stants Cx and C2 depending only on c~ and a such that 

I[e'e~Uf[ <= G e - c ' '  I[ Ull 

f o r  all UE M • and t ~ O. 

Proof.  Suppose that G~U = i2U with o~ > 0 and 2 E R. Then U = (v, w), 
v ~- i2w, and w is given by (3.3) up to a scalar multiple, where b satisfies (3.4) 
and (3.5). For  2 = 0, (3.3) shows that w ~ 0 .  For 2 E R  \ 0 the imaginary 
part  of  (3.5) yields sin 2o~ • 0, which shows that w(a) = 0. Thus [Dw] (a) = 0 
and w satisfies D2w § 22w = 0 on the entire interval [0, ~]. It  follows that 

1 
U =  (v, w) E D(Go), GoU = i2U, and v(a) = - - [ D w ]  = O. Conversely, if 

or 
G o U =  i2U and U(a) -~O , then U-~  (v, w)E D(G~) and G~U = i2U; note 
here that the transmission condition ~v = [Dw] at x = a is automatically 
satisfied since both sides vanish. Thus (1) is proved. 

That  e tG~ = e tG~ on M follows from the fact that the two semigroups agree 
on finite linear combinations of  the eigenvectors of  Go and that this is a dense 
subset of  M. That  M • is invariant under e tc~ follows by applying the following 
simple lemma to C ~ e t a ~ .  

Lemma 1. I f  C is a linear contraction f r o m  the Hilbert space ~ to itself  and 
M C ~ is a closed invariant subspace o f  ~ such that C -~ M ~ M is unitary, 
then M • is invariant under C. 

Proof. Suppose mE M and n E M• then for all e E R  we have 

IIC(m § en)l[ ~ _<- I[m + enlt ~. 

Expanding both sides and using the relations I[Cmll z = I[ml[ 2 and (m, n) ---- O, 
we get 

2~(Cm, Cn) § ~2 II Cn[I ~ <= ~ Ilnll ~- 

Thus (Cm, Cn) ----- 0 for all m E M. Since C maps M onto M, we have Cn E M • 
This proves the lemma. 

Now eta~lM• is a semigroup of contractions whose generator has no purely 
imaginary eigenvalues. Thus the abstract decay theorem shows that 

s - -  lira e t a ~ l M •  = O. 
t--~- OO 

The exponential decay asserted in (3) lies deeper. The idea of  our demonstra- 
tion is that for a/z~ = p/q with p and q relatively prime integers we can find a 
simple and explicit formula for e q-lc~. Let h -~ 1/q and suppose that the under- 

0 
lying space ~ is the complex Hilbert space L z @ H ~. The form of the explicit 
solution is described in the following lemma. In the proof, the mappings A and 
D are described explicitly. 
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Lemma 2. Let h ---- 1/q be defined as above, and let or >= O. Then there are 
Hilbert spaces ~ and 8 with dim 8 = 4q - -  1, and a unitary map 

such that 

1. ,Y:andLZ ((0,  h )  
\ 

; g)  are invariant under Aeha~A-1; 

2. Aeha~'A - l  ~ ..,T" = Ida; 

3. There is a D E H o m ( 8 ) s u c h  that Aeha~A-l ~ L2 ((O, ~ i  
cation by D; that is, 

; g)  is multipli- 

((h)) 
( A e h a ~ A - 1 V ) ( x ) : D V ( x )  for all V E L  2 0,,-~ ; g  . 

Before proving the lemma, we complete the proof  of  Theorem 4. Since Aehe~A -1 
is a contraction, the same must be true of  D. Write 8 = go @• 81, where 80 
is the span of  eigenvectors of  D with eigenvalues of  modulus one. Then D is 
unitary on 80, and there are constants c > 0 and ~ E (0, 1) with 

[I/Y' 'l" 8x 1[ =< C~", n = 0, 1, 2 . . . . .  

Corresponding to the decomposition of  8, we have a canonical decomposition 

L~ ((o, ~);  8 )~L  ~ ((o, ~);  8o)e~L ~ ((o,-h2-);< ) . 
Define Mo Q J/: by 

Then Mo has the following properties: 

e h~ : M o -+  M o is unitary,  

W~ : Mol-+ Mo l , 
and 

(3.9) l[ e"ha~ :[' M0 l l[ =< CO", n = 0, 1, 2 . . . . .  

As a consequence, we must have Mo = M. Hence (3.9) yields part  (3) of  Theo- 
rem 4. 

We return now to the proof  of  Lemma 2. Introduce the characteristic coordi- 
nates 

1 1 
~ = ~ - ( t  + x), ~ = ~ - ( t -  x) 



282 A. BAMBERGER, J. RAUCH & M. TAYLOR 

and the characteristic derivatives 

~u 1 (~u ~u) u~-~ - r -b-; + ~ ' 

~ l(~u ~u) 
~ ~ i/5- -b-; + ~  

The wave equation (2.6) yields 
~2u 

(3.10) -- 0 for x ~ a. 

Equivalently, u~ is constant on the characteristics of speed --1, and u n is constant 
on the characteristics of speed q-1. 

The operator A will be the product of unitary maps, the first one being the 
map which passes from the variables (u t, u) to the variable (ur un). More precisely, 
we define A~ : o~ --~ o~l by 

Hence if 

then 

~ 1  ~ (v, w) ~ L2(O, ~)2 : f (v - -  w) dx = 0 , 
o 

( ~ - - ~ x  Al(q), ~o) = q9 @ -~x,  9 

(ut(t), u(t)) = ergo(% 9) 

&(u,(t),  u(t)) = (u~(t), .~(t)). 

The inverse of A1 is given by 

The condition f (v --  w) dx = 0 in the definition of ~ 1  reflects the fact that 
0 o 

u E H~. The fact that ~ is not quite all of L2(0, ~)2 will cause some small 
problems later on. The operator AlehOc, A~ 4 gives the operator "evolution by h 
units of time in the (u~, u~) variables". Because of (3.10), the evolution of (u~, u~) 
is particularly simple. To study this evolution, we decompose the interval (0, z 0 
into q intervals of length h, the jth interval being 

( ( j -  1)h, h), j = 1, 2 . . . . .  q. 

We define u~, u~ to be the restriction of u~, u~ to the jth interval, translated to the 
reference position (0, h), that is 

.~(t) ~ L~(0, h), u~(t) ~ L~(0, h), 

(3.11) u ~ ( t , x ) ~ u ~ ( t , ( j - - 1 ) h + x ) ,  O < x < h ,  

(3.12) uJn(t, x) ~ u,(t, ( j  -- 1) h -t- x), 0 < x < h. 
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Equation (3.10) yields 

(3.13)~ u [ ( t + h ) = u L + l ( t ) ,  j =  1,2  . . . . .  p - l , p + l  . . . . .  q - l ,  

(3.13) n u~(t + h) = u~' l ( t ) ,  j = 2 , 3  . . . . .  p, p + 2 . . . . .  q. 

To complete the description of the evolution, we must give rules for determining 

u~(t + h), u~(t + h), uff(t + h), and u~+l(t + h), 

from ur and u~(t). The first two of these are determined with the aid of the bound- 
ary condition 

u~ + u~ ----- 0 at x = 0 ,~ .  
One finds 

(3.14)n u~(t + h) -= --Ru~(t) ,  

(3.14)~ u~(t + h) = --Rug(t) ,  

where R = L2(0, h) -+ L2(0, h) denotes reflection about x ---- h/2, that is 

( g ~ )  (x) = ~0(h - -  x), 0 < x < h. 

The transmission condition (2.7) provides the values of uf(t -q- h) and u~ + t(t -k h). 
Let 

ui-(a, t) = lim ur t), u~-(a, t) = lim ur t) ,  
x,~a x".aa 

u~-(a, t) = lim u~(x, t), u+(a, t) = lim u~(x, t) .  
x : a  xNa 

These quantities exist provided (ut(0), u(0)) E ~(G~). In fact, the entire calculation 
of  Aleha~A~ -~ should be considered for such u and then extended by continuity 
to u with (ut(0), u(0))E M'. The wave equation (3.10) yields 

u~-(t § s, a) = ur a § s), 0 < s < h, 

u~-(t + s, a) = un(t, a - -  s), 0 < s < h. 

In terms of the ur u~ variables, the transmission conditions (2.7) become 

. {  + u~ + = u~- + ~ - ,  ([u,] = 0),  

( u g  - u.  +) - (u/- - . ; )  = ~(u/~ + u~+), ([~x] = ~ , ) .  

Solving these equations for u~- and u + yields, for o~ =t= --2, 

2 o~ --o~ 2 

u~- --  2 q_ o~ u+ 2 _k o~ u~ ", u+ = 2 + o u+ -k- ~ - ' ~  u~" . 

Using the previous expressions for u{ and u~- we find 

2 o~ 
= - -  R u ~ ,  (3.15)~ u~(t q- h) 2 + o~ uf+l(t)  2 -k o~ 

--or 2 
(3.15)~ u~+'(t + h) - -  2 + o~ R uf+'( t )  + ~ uP(t)" 
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The formulas (3.13)-(3.15) give a simple expression for the time evolution of 
(u,, un). The reflections R can be removed from these formulas by splitting 

2 q q Lz((O,h) C 2q) v( t )  :_ (uL u'~, ug, u,~ . . . . .  ~ ,  u,,) ~ 

into its even and odd parts, 

u = Uoven + Uod~ 

1 
(Ueven(t)) (x) = -~- [U(t) (x) -{- U(t) (]1 -- x)],  

1 
(Uodo(t)) (x) = -~- [U(t) (x) -- U(t)  (h --  x)]. 

From formulas (3.13)-(3.15) we see that the even and odd parts are preserved 
by the evolution, that is 

(Aleha~,A~ 1U)~ve~ : Aleha~A1 - I ( U ~ )  

with a similar formula with even replaced by odd. 
Furthermore, on the even (respectively odd) parts R acts as multiplication by 1 

(respectively --1). Thus, if we let A2 be defined by 

A2 : L2((O, h); (~2q)--~ L2 ( (O, --~) ; C 4q) 

A2U = T ( U ~ v o n ,  Uod~) ~ O, , 

and let 

then 

A2 : .,~1 ~ ~V2 is unitary 

A2AlehG~(A2AI )  -1 : ~ 1  -+ ~ 2  

and 

(3.16) A u A t e h a ~ ( A u A 1 )  -1 = multiplication by a Dl ~ Horn (c4q). 

From the definitions of ~ 1  and A 2 we find that, for 

~ ( l , - - 1 ,  I , - - 1  . . . . .  1 , - -1 ,  0 ,0  . . . . .  0 ) E C  4q, 
v - -  , ~ t 

2q entries 2q entries 

~ 2 =  e E L  2 0 , - -  ;C  4~ : f < ~ ( x ) , ~ > & = 0  . 
0 
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If Oeg'2 were all of L2((0 ,  2h-~-);C 4q) the proof would be finished. To eliminate 

the "orthogonal to ~" condition, we write 

where 

# _= {,~ ~ c ' , :  ( ~ ,  r = 0}. 

Corresponding to this decomposition, there exists a canonical decomposition 

L 2 ((0, ~);  C 4q) ~ L 2 ((0, ~-~-); C()@1 L 2 ((0, 2h---); 6 ~) 
(3.17) 

where ( )h,2 
~ v, CL 2 O, ;Cr : f <~o(x) ,r  

0 

To finish the proof, we need two simple properties of the matrix DI, namely 

(3.18)1 DI~ = 

and 

(3.18)2 D~'r = ~', 

where D~' is the adjoint of D1. The first of  these properties is equivalent to the 
easily verified fact that the evolution defined by (3.13)-(3.15) leaves invariant the 
function defined by 

ur x) = --un(t, x) = I, 0 < x < ~r. 

The second property follows from the first. Indeed (3.16) and (3.18)1 show that 

(3.19) A2Alehe~(A2A1)  -1 ~ o,~ = Idar. 

Since 0r > 0, A2Aleha~(A2A1)  -1 is a contraction; hence Lemma 1 implies 

that ,)~('J" = L 2  ((0,  ~'-~-);o ~) is invariant. Thus we may form the adjoint of  
~ \  - - I 1  

equation (3.19), to obtain 

[AzAleha~'(A2AO-1] * [' ~ = Ida,; 

because of (3.16) this is equivalent to the identity (3.18)2. 
The condition D*~- = ~" implies Dl(g)  Q 8.  Consequently we may define 

D E H o r n ( 8 )  by D ~ D I [ # .  If A 3 : ~ 2 - + o , ~ f @ •  2 is the isomorphism 
in (3.17), then (3.16), (3.17) and (3.19) show that, with 

A = A 3 A 2 A 1 ,  

~{" and D have the properties required in Lemma 2. 
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Theorem 4 shows that if a is rational, the spectrum of G~ ~ M • must lie 
re 

in a half  plane Re Z ~ --C2, while the spectrum of G~ [" M is on the imaginary 
axis. 

a 
In contrast, Theorem 3 shows that if ~ is irrational, the spectrum of G~ lies 

in the half plane Re Z < 0, but has points arbitrarily close to the imaginary 
axis. 

These results all involve bounds on the spectrum, from the right. A comple- 
mentary result, which is much more elementary is the following. 

Theorem 5. For a E (0, ~r) f i x ed  and ~ =4= --2, the spectrum o f  G~ is contained 
in a strip Re Z ~ C(o O, where the function C(~) is bounded on compact subsets 
o f  C \ {--2}. 

Proof. We need only consider eigenvalues/2 with 2 ~ R. For these, equation 
(3.6) holds and the theorem follows from the observation that cot Z - + ~ i  
as Im Z - + - 4 - 0 %  the convergence being uniform in Re Z. 

The exceptional value o~ = - -2  occurs in another (not unrelated) context. 
For  o~ ~ - - 2 ,  G~ is the generator of  a one parameter group on ~ ,  while for 
o~ = --2, it only generates a semigroup. It  is interesting to note that the higher 
dimensional analogues of  our transmission problem, for example friction localized 
on a curvilinear subset of  a membrane, are never reversible, that is if Re o~ =4= 0 
one gets a semigroup and not a group. The proofs of  these facts are omitted. 

~r 
In case a = -~-, e =G~ can be computed without great effort. Though somewhat 

special, this result will play a role in our discussion of the significance of the 
model. 

~r o ~ - - 2  
Theorem 6. I f  a = - ~  and o~ =~ --2, then e ~ ~ M i -- ~ IdMi. 

~ +  

Proof. We calculate, in somewhat more detail, the explicit solution constructed 
in the p roof  of  Theorem 4. First of  all, we observe that M consists simply of 

re 
those functions % ~p which are even with respect to reflection in x = -~-, while 

M • consists of  those functions which are odd. Thus for time evolution, it suffices 
to consider functions u for which u t is even and Ux odd, that is, 

(u~ q- u~) (t, x) = (u~ + u~) (t, re - -  x) 
and 

(u~ - u~) (t ,  x )  = - ( u e  - u~) (t ,  re - x ) .  

These relations are equivalent to 

2 R(u  + = + 
and 

= - u L  
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where R and u~, u 2 . . . .  occur in equation (3.11)-(3.14); while also 

2 Ru~. u~ = Ru~ and u~ = 

I With these equations in mind, we may write the time evolution in terms of  u~, u~ 
only. Equation (3.15)~ yields 

u~ t +  - - 2 + c ~  

while equation (3.14)7 gives 

o~ 2 --  o~ Ru~(t) 
- -  2 v - s  

U ~ ( ' , 2 ) - ~  --Rul~(t). 

Iterating, we obtain 

(u Ct + u (t + = 

which is the desired result. 

0~ - -2  I 
+ 2 

4. Discussion 

It is not a simple matter to decide whether equation (1. !) with a highly localized 
friction describes the primary mechanism for the production of  harmonics, for 
it seems impossible to measure directly the effect of a musician's finger. We 
must therefore rely on qualitative predictions of  the model. Fortunately, we have 
obtained many such in Sections 2 and 3. The principal results assert that, given 
an initial configuration (dictated, for example, by plucking a string), the motion 
governed by (1.1) is approximated by the limiting transmission problem (2.6)- 
(2.8), provided the friction b(x) is localized. This limiting problem has the follow- 
ing properties: 

a 
1. I f -  is irrational, all solutions tend to zero. 

a 
2. If - -  is rational, the modes which vanish at a are unaffected by the fric- 

7~ 

tion, while those in the orthogonal complement decay exponentially. 

These properties coincide with the observed fact that to play harmonics one places 
a 

one's finger at a point with -~- (L = length of the string) where a is rational with 

a small denominator. For other placements, one only hears a short lived thud. 
When playing harmonics, a musician removes his finger from the string after a 
short time. In view of  the fact that for a friction b(x) spread over a finite interval 
all solutions tend to zero, this seems wise. Presumably what is happening is that 
the rate of  decay is much slower for the modes vanishing at a (a fact that is ri- 
gorously true in the limit b(x )dx  = ~ ~ ( x -  a)); thus the musician leaves his 
finger in contact with the string long enough to damp the components in M • 
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but not those in M. As this desription indicates, the playing of harmonics is a 
delicate matter, a fact that can easily be verified by anyone inexperienced in the 
art. 

There is an additional sensitivity to the artistry of  the player, clearly indicated 
in Theorem 6. The object in playing harmonics is to obtain as rapid decay as 
possible on M I. 

Yg 
For  a = - ~ w e  have 

o ~ - - 2  
e ~ [' M • : - - .  I .  

~ §  

Clearly, the desirable value of 0~ is ~ ---- 2. The optimal strategy is to apply a 

friction with b(x) dx ~ 2t~ ( x - - 2 )  for approximately ~ units of time. Too much 

friction (o~ >~ 2) or too little (0~ ~ O) yields a very slow damping on M • We 
a 

expect that similar phenomena occur for other rational values o f - - .  The player 

7g 
must strive to achieve the correct " touch",  which for a = - ~ -  corresponds to 

b(x) d x ~  25 ( x - - 2 ) .  The idea  of correct touch leads to an intriguing mathe- 

matical problem. 

a p 
Given , f ind the value of  ~ which, in some sense, gives the most rapid 

~r q 
decay for e t ~  r M • 

Yg 
Theorem 6 shows that 0~ = 2 is the answer when a ---- -~--. It  is of  interest to 

P 
know how strongly 0r depends o n - - .  

q 
The descriptions above correspond to common experience with harmonics. 

This is not to say that we consider equation (1.1) an exact model. What  we believe 
is that localized frictional damping is a reasonable candidate for the primary 
mechanism in the playing of harmonics. To support  this idea, one must know that 
similar qualitative behavior occurs when other effects are included, since it is 
more than likely that the finger introduces effects other than friction. For  example, 
one might expect that the finger exerts a spring force on the string with a strongly 
localized positive spring constant k(x). The basic equation of motion is then 

(4.1) 

and the energy 

utt + b(x) ut = uxx --  k(x) u 

f (u~ + u~ + ku 2) dx 
0 

is a decreasing function of  time. If, as above, we consider a sequence bn and kn 
becoming increasingly localized, that is bn -+ ~ 8., k.  --~ fl 6a (fl = 0 is allowed), 
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then the solutions of the equation (4.1)will converge to solutions of  the transmission 
problem 

Igt t  - -  U x x  -~-  O ,  X ~ a, 

[ / / t ]  : 0 ,  0r = [ f ix]  - -  flu at x : a,  

u = 0  at x = 0 , : ~ .  

An analysis like that given in Section 3 shows that this problem behaves quali- 
tatively like (2.6)-(2.8) provided c~ > 0. For  example, regardless of the value of 
a, the solutions yield a contraction semigroup on ~ ,  if ~ is given the norm 

(4.2) II (v, w)ll 2 = f (v-" + (Ow) 2) dx q- fluZ(a). 
0 

a 
In addition, i f - -  is irrational all solutions decay, while if a-- is rational the motion 

Y[ 7$ 

on the space M of  Theorem 4 is the same as the free motion. Finally, if M • is 
the orthogonal complement in the scalar product induced by (4.2), then M • is 
invariant and solutions in M • decay. Since the proofs are similar to those already 
presented, the details are omitted. The point is that the qualitative behavior of 
our model is somewhat stable under perturbations. 

There is a different and very natural candidate for the effect of  the musician's 
finger. One might expect that the finger acts as an impenetrable obstacle which 
constrains the string to lie below the finger. More exactly, if the position of the 
obstable is given by the functional relation y : ~v(x), with a form such as that 
indicated in Figure 3, one is lead to the constraint 

u(t, x) ~ cr for all t, x. 

U 
0 a 

Fig. 4 

Unfortunately, such problems are as yet poorly understood. On the other hand, 
the limiting case of an infinitely thin obstacle has been analysed by M. SCHATZMAN 
[9]. She has shown that for any a 6 (0, :~) and any initial data (ut(0), u(0)) 6 ~/g 
with u(0, a ) ~  0, there is one and only one function u such that 

u( t, a) ~ O, u,, - U~x <= o, 

supp (utt - -  llxx ) ~ { ( t ,  a):  u(t, a) = 0). 

The first condition expresses the constraint exerted at the point a, the second and 
third say that the constraining force acts downward and is zero unless the string 
is in contact with the obstacle. 
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: z  

A surprising consequence of  these conditions is that the energy f (u2(t, x) q- 
0 

u~(t, x)) dx is conserved. Explicit solution of  several test problems shows that such 
a punctual constraint could provide a model for harmonics. In these examples 
one observes that the components of u in M are unaffected while the energy in M • 

a 
is converted to energy in M at high frequency. When - - i s  irrational, all energy 

moves into the high frequency range. Initially regular data lead to a superposition 
of  a regular part and a jagged, high frequency part. Since the human ear has limited 
range, such an evolution could explain why one "hears" either a motion in M, 

a 
or zero, depending on the rationality o f - - .  The difference in the way the effect 

~r 
is achieved suggests an experimental test. One can observe in a laboratory the 
energy in high frequency modes (even those above the audible range). I f  energy 
seems to be pumped into these modes, this would favor the idea of a thin obstacle, 
while of the high frequency modes seem to be damped out, this would favor an 
explanation by a dissipative mechanism such as the friction we propose. 

Note. This research was partially supported by the National Science Foundation 
under grants NSP GP 34260 and MCS 78 02179. 
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