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1. Introduction 

We consider here the problem 

u,, - -  u~ = ok(t, 3 ) +  g(u), (t, z)  r R 2 , 

(1) u(t  q- T, "c) -~ u(t, 3) = u(t, z -? T ) ,  

~b(t § T, ~:) = ok(t, 3) = 4~(t, ~ -? T ) ,  

where u and 4~ denote scalar functions on R 2, and g is a scalar function on R. 
We shall assume g and ff continuous, and we shall determine sufficient condi- 
tions in the form of inequalities to guarantee that problem (1) has continuous 
solutions. Thus, the solutions which we consider will be weak solutions in the 
sense of distributions. 

In terms of functional analysis and the alternative approach [cf. 3, 6], prob- 
lem (1) is difficult since the kernel of the underlying operator ~ u  = utt - -  U r r  , 

with u doubly T-periodic, is infinite dimensional. 
CESARt [1], HALE [5], and more recentlY CESARI and KANNAN [4] have consider- 

ed problem (1) and the analogous problem 

U x y  = ~ ( x ,  y)  + G(U) ,  (x,  y )  E R 2 , 

(2) U ( x  + T, y )  = U(x,  y)  = U(x,  y q- T ) ,  

[ q)(x q- T, y) = ~b(x, y) = ~b(x, y § T), 

in different settings and by, a uniform alternative approach. Though the usual 
transformation, x : t + ~-, y -~ t -- ~', takes the linear operator utt - -  Urr 
into the linear operator U~,y, the boundary cor~ditions do not match. 

In the present paper the relations between problems (1) and (2) are closely 
investigated in terms of: functional analysis and suitable projection operators. 
Then problem (1) is discussed by an alternative approach, yielding sufficient con- 
ditions for the existence of continuous solutions. 
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For elliptic problems LANDESMAN and LAZER showed, again by an alternative 
approach, that qualitative condition on g suffice. For instance, the condition 

(3) g(x) >= B for x >~ b; g(x) <= - - B  for x ~ --b, 

is sufficient to guarantee the existence of solutions of ~ u  ~ - # ( t ,  7 ) +  g(u), 
(t, 7)E f2, u = 0 on 8f2, where 3 is a strongly uniformly elliptic operator, 

E Lz(f2), and [#1 is "not  too large" (cf. [3]). 
For hyperbolic problems such as (1) and (2) it appears that this is not the case. 

We shall use the same condition (3), but together with a number of quantitative 
restrictions in the form of algebraic inequalities. The analogous situation is well- 
known in other global existence theorems for hyperbolic problems (e.g., L. CESARI 
[2], P. PUCCI [7]), where existence has also been proved under a set of restrictions 
in the form of algebraic inequalities. At the same time, existence theorems for 
problem (1) under qualitative assumtions are also known for globally monotone 
functions g. We have tried not to use this condition here. 

2. Reduction of  the Wave Equation in R z to the Canonical Equation 

For a given periodic function f :  R 2 ~ R of period T in t and 7 (briefly, 
doubly T-periodic), we consider the problem of doubly T-periodic solutions 
u ---- u(t, 7) of the linear wave equation 

utt - -  u ~  -~  f ( t ,  7 ) ,  ( t ,  1:) E R 2 , 

(1) u(t + T, 7:) ---- u(t, 7) ----- u(t, 7 + T),  

f ( t  + T, 3) = f ( t ,  7) = f( t ,  7 + T) ,  

Let us consider the relations 

t + 7 : x ,  t - -  7 : y;  t = (x  + y)/2, 7 : ( x - - y ) ~ 2 .  

We denote by A the operation (t, z) -+ (x, y) defined by these relations, and by 
A - t  the inverse operation (x, y) -+ (t, 7). Then the differential equation in (l) is 
reduced to the form 

(2) Uxy = F(x,  y)  

with 

U(x, y)  ~-- u((x + y)/2, (x --  y)/2), F(x,  y) = � 8 8  + y)/2, (x  - -  y)/2), 

u(t, 7)---- U(t + 7, t - -  7), f ( t ,  7) = 4r ( t  + 7, t - -  7), 

and now F is doubly 2T-periodic. 
Even if we were able to determine doubly 2T-periodic solutions U of (2), 

the corresponding functions u would not necessarily be doubly T-periodic. For 
instance, for T = 2rr, utt " u,~ = sin t becomes Uxy = �88 sin (x  + y)/2, which 
has the doubly 47r-periodic solution U(x, y) = --sin (x  + y)[2 + sin x/2. The 
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corresponding function u(t, 3) --- --sin t § sin (t § ~')/2 is a doubly 4~-periodic 
solution of (1), not a doubly 2~t-periodic one. 

We shall first describe (see CESARI [1]) the alternative process for the deter- 
mination of  doubly 2T-periodic solutions of (2), and then we shall discuss a modi- 
fication of  the process to obtain doubly T-periodic solutions of (1). 

3. An Alternative Process for the Doubly 2T-Periodic Solutions 
of the Equation Uxy --  F 

Let F(x, y), or F :  ~2 __> ~ ,  be a given doubly 2T-periodic function, which we 
shall assume to be continuous inR  2. Let the functions m(y), n(x), or m, n : R --> R ,  
and the constant # be defined by 

2 T  

re(y) = (2T) -1 f [F(x, y) -- I ~] dx, 
0 

2 T  

(1) n(x) = (2/') -1 f [F(x, y) -- tt] dy, 
0 

2 T  2 T  

# = (2T) -2 f f F(x, y)dx  dy, 
0 0 

and take 
ro(x, y) = re(y) + n(x) + #. 

Thus m and n are 2T-periodic functions of  mean value zero, that is, 

2 T  2 T  

f m(y )dy=O,  f n(x)dx-~O. 
0 0 

Moreover, the function F~(x, y), or Ft :R  2-+ R, defined by 

(2) Ft(x, y) = F(x, y) -- re(y) -- n(x) -- t t -- F(x, y) -- Fo(x, y), 

is doubly 2T-periodic and has all its mean values zero, that is 

2 T  2 T  

(3) f F~(x, y ) d x  = 0 for all y, f F~(x, y)dy = 0 for all x,  
0 0 

2 T  2 T  

(4) f f F , ( x , y ) d x d y = O .  
0 0 

Finally, the function U~(x, y), or U1 : R 2 -+ R, defined by 

x y 

(5) U,(x,y) = f f F,(o~,fl)do~dfl, 
0 0 

is again doubly 2T-periodic, with U~ = 0 on the boundary of  the fundamental 
square S = { ( x , y ) ] 0 ~ - - x ~ 2 T ,  0 ~ y ~ 2 T } .  Note that U~ = 0  also on all 
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straight lines [ x = 2 k T ,  y E R ]  and [xER,  y = 2 h T ] ,  h,k-----O, 4-1 ,4-2  . . . .  
Moreover, 

(6) Ulxy -= Fl(x, y), (x, y) E R 2 �9 

Any other doubly 2T-periodic continuous solution of equation (6) is of  the form 
U(x, y ) =  Ut(x, y ) +  4'(x)+ ~p(y), where 4', v 2 are arbitrary 2T-periodic conti- 
nuous functions, 4', ~0 : R ---> R. 

Now, let F(x, y, U), or F :R3-->  R, be a given function which is doubly 
2T-periodic in x and y and continuous i n R  3, and let us consider the problem of  
doubly 2T-periodic solutions U(x, y) of the equation 

(7) Vxy = F(x, y, V(x, y)). 

As in CESARI [1] we shall express this problem in terms of  functional analysis. 
Let X denote the Banach space of all doubly 2T-periodic functions U(x, y) 

which are continuous in R 2, and let X be equipped with the uniform norm 
II uIIoo -- sup L U(x, y)l. Let Xo denote the subspace of all elements Uo of  X of 

R 2  

the form Uo(x, y) = uo(x) + Vo(y), where Uo, Vo are 2T-periodic continuous func- 
tions in R. Obviously, all constant functions are in Xo. Let X1 denote the subspace 
of all elements UI of X which are zero on the boundary bS of the fundamental 
square S (hence U~ ---- 0 also on all the straight lines in g2  mentioned above). 

If  P : X--> X is the projection operator defined by 

PU(x, y) = U(x, 0) + U(0, y) -- U(0, 0) for all (x, y) E R 2 , 

then Uo = PU is an element 0fXo and, furthermore, P X =  Xo and (I -- P) X 
= X~, where I is the identity map on X. 

Let Y = X, with the same norm, and'let  Yo denote the subspace of  all ele- 
ments Fo of Y of  the form Fo(X, y) = m(y) + n(x), where m, n are 2T-periodic 
continuous functions i n R  with mean value zero. Again, all constant functions are 
included in ]1o. Let Y1 denote the subspace of Y consisting of all functions F~(x, y) 
whose mean values are all zero (i.e., satisfy (3) and (4)). 

Let Q: Y---> Y denote the projection operator defined by 

QF(x, y) = m(y) + n(x) + # for all (x, y) E R 2 , 

where m, n ,#  are given by (1). Then QY ~- Yo, ]Io = Xo, and (I --  Q) Y =  YI, 
where I is again the identity map on Y. 

Finally, let H :  Y1 --~ X1 denote the linear operator defined by (5) for every 
element F~ E Ya, or HF~ ~- Ua. 

We note that for any four points (x, y), (~, B), (x, ~), (~, y) E R 2 we have 

x y 

U~(x, y) + Ua(~, ~) -- U,(x, ~) -- Ut(~, y) = f f F~(~x, [3) ao~ aft, 
n 

and if II/:1 []o~ ~ M also 

I v ~ ( x , y )  + v , ( ~ , v )  - v~(x, ,~)  - vl(~, y)l -<_ M i x - -  ~1 lY - -  '~t. 
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Thus, for ~ /=  0, [yl __< T we have 

[ U1(x, y) - U~($,y)I =< m T l x  - ~[, 

and the same holds for ~ ---- 2T, T =< [Yl ~ 2T. 
By exchanging the roles of  x, ~ with y, r /we  also get 

I U l ( x , y )  - Vl($,y)l =< M T I x  --  ~[, 
(8) 

[ Ul(x,  y) --  Ut(x, ~)[ ~ M T I y  --  ~11, 

for all (x, y), (~, y) and (x, y), (x, ~) in R, 2. Hence Ut ---- H ( I  --  Q) F is Lipschitz, 

continuous in R 2 with Lipschitz constant I / 2 M T .  
It was proved by CESARI and KANNAN [4] that 

(9) IIPlloo ---- 3, [I / --  P][oo = 4, 11Qlloo : 3, 

I I I -  alloo = 4, [ [ H ( I -  O)ll~o = T 2, 

the last norm being the value of  T2/4 in [4], with 2T replacing T. 
From relations (1), (2) we find that for FE Y the element Fj  E Y~ has the 

integral representation 

FI(X, y) = ( I  - -  Q) F(x,  y) 

2T 2T 

= (2T) -2 f f [r(x,  y) --  r(~, y) --  r ( x ,  ~1) + r(~,  ~/)] d~ dr/. 
0 0 

Thus, if F is Lipschitz continuous, say with 

] F(x + p, y) --  F(x, y) I <= Z ]p 1, I F(x, y + q) -- F(x, y) ] <: Z ] q ], 

then 

(10) l F1 (x + p, y) -- FI (x, y) I ~ 2L I P 1, [ Fa (x, y + q) --  Fa (x, y) ] :< 2L [ q 1. 

4. An Alternative Approach to Doubly T-Periodic Solutions 
of tttt-- urr = f 

First let us consider the original problem concerning doubly T-periodic solu- 
tions u(t, z) of the differential equation 

~ u  :-- utt --  u~ = r z) + g(u),  

where ~ is a given doubly T-periodic function. We shall assume $ continuous in 
R 2 and g continuous in R, and we shall seek continuous solutions u. 

Let Z' denote the fundamental square, X ---- [0 ~ t, z ~ T]. Let D denote the 
set of  all doubly T-periodic functions w(t, z) of class C ~ in R 2. Let ~ denote the 
space of  all continuous doubly T-periodic functions u(t, ~), with the uniform topo- 
logy. Then W is a Banach space with the norm [[u[Ioo = sup lu(t,~O[. 

lZ2 
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Let f E  s An element u E ~ is said to be a weak solution of ~u  = f ,  or 
u ,  - -  u~, ----f, provided that 

f f [(w,, - w,,) u + wf] dt dr = 0 for all w E D. 
.g 

The weak kernel of  E, or ker =, is the subspace ~ o  of ~C made up of  all func- 
tions u E ~f of  the form u(t, ~) 4p(t + ~) + ~p(t -- ~), where if, ~p are T-periodic 
continuous functions in R. 

Let 
%-00 

(1) u ( t , r ) =  ~ Ckt e(2"iIT)(kt+m 
k,l= --oo 

be the complex form of the Fourier series of  any element u E s Then we define 
the projection operator .~ : s _+ ~0  by 

(2) Uo(t, v) = .~u(t, ~:) : y~ ckte (2~i/r)(kt+t~) 
Ikl=lll 

r e(2~rilT)k(t+~r)-~ : COO ~-~ Z kk Z Cl-le(2niIT)l(t-O 
k@-O 140 

Thus . ~  : ~o  ----- ker ~.  
Let ~rl : ( I  - -  .~) ~ ,  where I is the identity map on ~r. In other words, we 

consider elements ul of  Y" represented by 

u~(t, ~) : ( I  - a )  u(t, 3) = ~ c~le ~2"~lr)~kt+t" 
Ikl+[li 

for u E 5f given by (1). We shall show that the operators .~ and I - -  ~ map func- 
tions of  ~ into continuous functions; thus .~, 1 - - . ~ :  6f--> s ~/'o = .~c, 
~1 = ( I  - -  .~) s and ~C o = ker w 

We have already considered the spaces X = Y of continuous doubly 2T-perio- 
dic functions U(x, y), or U: R 2 --> R, and their decompositions X = Xo § X1, 
Y = Yo q- Yl. We have also considered the projection operators P : X - >  X, 
a ' Y - >  Y, with P X = 2 ( o ,  ( I - - P )  X = X I ,  a Y =  }To, ( I - O ) Y =  Y~. 

Let S = [0 ~ x, y ~ 2T] be the fundamental square in the xy-space R 2. 
For  any FE Y the function Fo(x, y) = QF(x, y) = m(y) -k n(x) q- # is the 
system of the mean values of  F, and F~ = ( I  - -  Q) F is a function whose mean 
values are all zero. I f  

+oo 

(3) F(x, y) = ~ Ckte (€ for all (x, y) E R 2 
k,l= -- oo 

is the Fourier series of  F, which is certainly convergent to F in L2(S), then 

(4) Fo(x, y) = QF(x, y) = m(y) q- n(x) -k Iz 

2T 2T 
= (2 r ) -Z  f f [F(~e, y) _~ F(x, ~1) -- F(~, '7)1 d~ e d~/ 

0 0 

= Coo "~- Z Ckoe(ailr)kx -~ Z Cole(=i/T)ly" 
kfi=o I+0 
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Also 

(5) FI(x,  y) = (I  -- Q) F(x, y) = Y~ Ckl e(~i/r)(kx+ly). 
k#~O,l+O 

Note  tha t  the equation Utt - -  1,1rr = qb(t, "K) 4- g(Ig), r ,IIE ~ ,  is t r ans fo rmed  
by the operation A into the equation 

U~ = r y) + G(U), ~,  U E X' ,  

where U(x, y) = u((x 4- y)/2, (x -- y)/2), ~(x,  y) = �88 4- y)/2, (x -- y)/2), 
G(U) = -~g(U), and where we have denoted by X'  the image of  Y" in X under the 
operation A, that is X'  = A~ .  

We restate here that X = Y, that Xo = Yo is the space of  all sums Vl(x) 
4- V2(y) of continuous 2T-periodic functions of X only and o f y  only, and that 
P : X--> Xo, Q : Y---~ Yo = Xo, though the operators P and Q are different. 
We shall identify the spaces X and Y, so that now Q can be thought of as mapping 
X into Xo; of course I -- P maps X into X1 as usual, and I -- Q maps X into the 
space Y1, thought of as a subspace of X different from X~. 

Also we indicate by A the operation u -+  U defined by 

U(x, y) = u((x 4- y)/2, (x --  y)/2), 

and by A -1 the inverse operator U-+ u, or 

u(t, ~) = U(t4- r, t --  ~). 

We denote by X' the subset of X defined by X ' =  ASf. Analogously, let 
X 0, X~ denote the subsets of  X defined by Xo = ASf0 and X~ = A~rl. In other 
words, X'  is the subspace of X of  all functions U(x, y) in X of the form U(x, y) 
= u((x + y)/2, (x -- y)/2) with u C W, and analogously for X 0 and )(i'. Clearly 
X ' =  X o + X~. We shall denote by j : X ' - +  X the injection map, keeping in 
mind that X = Y. The space X', however, is smaller than X. For  instance, 
U(x, y) = sin (zt/T) x belongs to X but not to X',  since u(t, r) = sin (zt/T) (t 4- ~) 
is doubly 2T-periodic, but not doubly T-periodic. " ' ' Fmaily, X ,  X0, X~ are closed sub- 
spaces of X in the uniform topology. We now obtain some important relations. 

(i) X o C X  o = Yo, X ~  Y~. 

Indeed, for u E Y" we have 

for u EY'o we have 

-[-oo 
u(t, T) = Y] ckte(2"~i/r)<kt+m; 

k,l= --oo 

U(t, V) = ~a Ckl e(2~ilT)(kt+tO 
Ikl =t11 

C e (2ni/T)l(t-r)" = COO 4- Z Ckk e(2~i/T)k(t+r) 4- Z I,--I 
k~=O 1~0 
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and for u E Y'I we have 

u(t, T) = Y~ cme (2~i/r3(kt+lO. 
Ikl+l/I 

Similarly;:for U E A~;  ~ X '  wehave  

-]-oo 

(6) U ( x ,  y )  : Z Ckl e(ni/T)[k(x+y)+l(x-y)] 
k,l= - oo 

+oo 

= E 
k,l= - oo 

for U*  E A~0 = Xo we have 

(7) 

Ckle(~i/73[(k + l)x + (k - l)y] . 

U*(x, y ) =  ~ Ckl e(ni/T)[(k+l)x+(k-l)y] 

Ik[=l/I 

= COO -Jr- Z Ckke(2Zd/r)kx -[- Z cl  --le(2~i/T)ly; 
k=~O l~O 

and for UI E AS~rl ~--- XI we have 

U~(x, y) = ~ Ckl e(ni/T)[(k +t)x+('~-l)yl, 
[kl 4-Ill 

where k + l = t  =0, k - - l @ 0 .  For k ' - - - - k + l ,  l ' = k - - / ,  we have k ' @ 0 ,  
1' ~= 0, and k', l '  are either both even or both odd. If  Z" denotes a sum ranging 
over all such couples (k', 1'), and C'k, r ---- c2-1(k,+t,),2-1~k,_t, ), then 

(8) U l ( x ,  y) : X ' Ck,l,e (niI T)(k" x + l' y) . 

Comparing (6), (7), (8) with (3), (4), (5), we see that 

X' : A.~ Q X, Xo = A-~o Q Xo, X; = A . ~  C Yx, 

and the elements U* E X0 ---- AY'o are sums of T-periodic functions of x only and 
of y only. 

(ii) a : x'---~ Xo; I -  a : x ' - +  X~. 

Indeed, any element UE X '  has a Fourier series (6), and the corresponding 

function Q U  given by (4) belongs to Xo; finally the corresponding function 

( I -  Q) U given by (5) belongs to Xl. 

(iii) .~u = A - 1 Q A u  fo r  any u E ~ .  

This can be best seen by using Fourier series. Thus for 

+oo  

t / ( t ,  "K) : Z Ckl e(2ni/T)(kt+lr), 
k J =  - oo 
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we have 
q-oo 

Au(x ,  y) : U(x, y) : ~ Ckl e(ni/r)tk(x+y)+l(x-y)] 
k,l= -- oo 

-~oo 
= E Ckl e(ni/T)[(k+l)x+(k-l)y] ; 

k,l= - oo 

QU(x, y) : Coo q- ~ Ckket2~i/r)kx q - ~ ct,-~e(2"~i/r)tY ; 
k4=O 14~0 

A-1QU(t ,  3) : Coo q- ~ Ckk e(2ni/T)k(t+~) -~- ~ ~ ~(ani/T)l(t-~) 
~ l , - - I  ~ 

k=~O l~0  

Comparing this development with (2), we conclude that A - 1 Q A u  = .~u for any 
u E 5(. W e  also note that 

( I - -  Q) U(x, y) : ~ ckte (~i/r)t(k+Ox+(k-OyJ , 
Ikl ~= I11 

A - I ( I -  Q) U(t, 3) : ~a Ckl e(2ni/T)(kt+lr)" 
Ik14=l/I 

(iv) .~ : s __~ s and I - -  .~ : 3; -+ ~ are continuous linear operations in 
in the uniform topology. 

Obviously A and A - t  are continuous linear operations from ~ to X and from 
X to ~ respectively. Thus, for UE X we have from (4), 

2 T  2 T  

Uo(x, y) = QU(x, y) = (2T) -~ f f [U(s y) + U(x, ~) - u(~, ,,)l d~ d~, 
0 0 

and so Q : X - +  Xo is a continuous linear map. 

(v) ( I  - -  Q)  H :  X; -+ X i. 

Let E denote the operator defined by E U  : U~y, and note that Xo, the set 
of  all sums of continuous 2T-periodic functions of  x only and of y only, is the 
kernel of  E in X. Now, for any UE X~ we can write 

U(x, y) = ~a Ckl e('~i/r)tk(x+y)+t(x-y)l 
Ikl 4 ~ Ill 

E Ckl e("i/T)[(k+l)x+(k-t)y]" 

[kl 4= I11 

and consequently any solution V of  the equation Vxy : U, VE X, must be of  
the form 

(9) V(x, y)  : - -  ~ (TZ/z~ z) [(k + l) (k  - -  I)] -1 ckle <'ilr)t(k+l)x+(k-Oyl § Z(x, y), 
Ik[ 4= I11 

where Z is any element of  ker E. In other words 

V(x, y) : - -  ~-a (T2/zl2) ( k2 - -  12) -1 e(=i/r)t(k+~ + Vl(X) + Vz(y),  
lk l~ l l l  
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where Vl(x), V2(x) are arbitrary continuous 2T-periodic functions of x only and 
of y only. It follows that 

QV(x, y ) :  Va(x) ~- V2(y), 

(I --  Q) V(x, y) : - Y~ (T2/n 2) (k 2 -- 12) -1 e <~i/r)t<k+Ox+[k-Oel, 
Ik[4=lll' 

A - l ( I  -- Q) v(t, z) = - ~ (T2/:z 2) (k 2 -- 12) -1 e r , 
[k[ =[=ll[ 

that is, (I  -- Q) V = (I - Q) HUE X~ for any UE X~. 

(vi) Q H ( I -  Q): X ' ->  Xo = Yo. 

For any UE X', we have (I -- Q) UE X~ by (ii). Hence by (v), V : H(1--  Q) U 
is a continuous doubly 2T-periodic solution of Vxy : (I -- Q) U. Thus V is of 
the form (9) and QV(x, y) = Z(x, y) = V~(x) q- V2(y), that is, QH(I -- Q) UE Xo. 

Let k be a fixed real constant, which will ultimately depend on the particular 
problem under consideration. Also let 6 a :Y0 --> x0 be the identity map, and let T* 
denote the transformation defined by 

(10) Ut : (I --  Q) H(I  --  Q) [qb + G(U* + f l ) ]  : / s  

(11) U* : U* -- k6ea[~ -k G(U* .4- U1)] : KoU, 

for all U*EX0, U1EX~; clearly U :  U ' q -  U1EX'.  
We shall denote by N the nonlinear operator defined by NU---- �9 q- G(U). 

(vii) For U* E Xo and U1 E X~ we also have U* E Xo, ~ E X~. 

Here g~=Aff ,  where ~ E ~ ;  hence g~EX'. Now U :  U * +  UIEX' .  
Since g is a continuous function, also g(U)E X' and so �9 4- G(U)E X'. By 
(ii) and by (i) it follows that (I -- Q) [~ -k G(U)] E X~ Q }'1, and by (v) we 

get ( I - - Q )  H ( I - - Q ) [ ~ 4 - G ( U ) ] E X ~ ,  that is, /~EX~. Therefore U * +  

U~ E X' and so q} + G(U* 4- ffl) E X'.  By (ii) we have a[~P + G(U* -k U~)] E Xo. 

Since U* E Xo, it now follows that U* E X0. 

(viii) 1]" U :  U*-k  UI, where U*EXo and UI E X1, is a f ixed point of 
T*, then Uxy : ~ 4- G(U) and u : A -1U satisfies utt -- u~ : cb -t- g(u). 

First, O[~ 4- G(U)] : 0. Now (I  -- Q) H(I  -- Q) [cO q- G(U)] E X~ as noted 
above in the proof of (vii). Moreover, by (vi), QH(I -- Q) [~P 4- G(U)] E Xo is 
a sum of 2T-periodic continuous functions of x only and of y only. Also U* is 
a sum of continuous 2T-periodic functions of x only and of y only. Thus UE 
X' : A ~  and 

Uxy : Ux*y -~ Ulxy : 0 Av Ulxy  

= [H(I -- Q) (q~ -k G(U))lxy -- [ Q H ( I -  Q) (~  -b G(U))]xy 

= (I- Q) [~P 4- G(U)] -- 0 : cO -}- G(U). 

Hence we have 
gltt - -  ~lzr : dp -~- g(u), for u : A -1U. 
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5. A Suitable Mixed Uniform-Lipschitz Topology 

Let Xo* be the subspace of all elements U*E Xo which are Lipschitz con- 
tinuous in R 2. Since U*(x, y) = Vl(x) + V2(y) is a sum of functions of  x only 
and of  y only, this is actually a restriction to functions V~(x), V2(x) which are 
Lipschitz continuous in 1%. For  any Lipschitz continuous function U(x, y), or 
U: R 2 ~ R, let 

Lipx U = sup Ip[ -x I U(x + p, y) - U(y, x)l ,  

Lipy U =  sup Iq[-' [ U(x, y + q) - U(x, y)l. 

Finally we denote by I IIu*lll the new norm in X0 : 

I1[ u*lll  = II U*lloo + .4 max [Lipx U*, Lipy U*] = II u*l[oo + a II U*II,, 
a mixed uniform-Lipschitz norm, where A is a fixed constant, which will ultimately 
depend on the particular problem under consideration. 

For  given Ro, r > 0, let us consider the sets 

s~={e*~Xo*: l l lu* l l l<=Ro} ,  s x = { u ,  cx ; : l IU ,  Iloo <=r}, 
t2* = S~ • S~. 

We shall restrict T* to the set O* and shall prove below that, under suitable hypo- 
theses, T* maps O* into itself and that T* has a fixed point in .Q*, that is, U = 
U* q- U1 E -Q* with T*U = U. 

We consider 12" as a subset of  the Banach space X with norm I1" IIoo. We first 
show that .t2* is closed in the uniform topology. Let Uk = U~' + Ukl, k = I, 2 . . . .  
be in (2* with Uk -+ U, i.e., II u~ - UIl~ -+ 0 as k ~ o0. Then 

IIUk~lloo <=r, JIf~llo~ + allUT, fl,-< Ro. 
Thus the elements U* are uniformly bounded and uniformly Lipschitz continuous. 
Hence * U* U~ -+ U*, where is Lipschitz continuous and 

II u*  II, < lim inf II * = u ;  If,, II u* 11oo =< lim inf I[ U~'lloo, 

implying that IIU*lloo + a lIU*ll, -<_ Ro. Analogously, Ukl-+ U1 as k-+cx~ 
and ]l UI Iloo =< lim inf [I uka I1~ < r. Thus .(2* is closed in X. 

It is easily seen that .Q* is convex. 
We now show that T* : .Q* ~ .(2* is compact in the topology of X. In fact, 

if U k E if2*, Uk : T*U~,, Uk E ~2" with Uk = U~" + Uki, k = 1, 2 . . . . .  then 

Ukl = (I -- Q) H(I -- Q) N(Uk) = (I -- Q) H(I -- Q) N(U~ + Ukl). 

Thus for [~[=<e,  ]g(u)[<=C, we have ]q~+G(U)[<=�88247  Since 
IIH(I--  Q)lloo G T 2 and 11I-- QI[~o = 4, we obtain 

II u~, Iloo =< (c + c )  T ~. 

On the other hand, H ( I -  Q)N(Uk) is Lipschitz continuous with constant 

�88 q- C) T; hence Ukl is Lipschitz continuous with constant �89 q- C) T by rela- 

tions (8) and (10) o fw 3. Now by hypothesis U~' is Lipschitz continuous with con- 

stant R/A, and hence Uk is Lipschitz continuous with constant (R/A) q- 
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�89 + C) T. Moreover IIUffiloo ~ Ro, II UkJll~o ~ (c + C) T 2, so that 

I[ Uklloo <= Ro + (e + C) T 2. 

Thus, by Ascoli's theorem there is a subsequence ( ~ s )  which is uniformly conver- 

gent to some UE X. 
It follows that T* is a compact map in the topology of X, provided we prove 

that T* maps ~2" into itself. By Schauder's fixed point theorem, T* has at least 
one fixed point U in ~2", i.e., the problems (1) and (2) of w 1 have at least one Lip- 
schitz continuous periodic solution. 

Theorem. Let 

(1) 
(2) 
(3) 
(4) 

(5) 
(6) 
(7) 

where 

4' : R 2 ~ R and g : R ~ R satisfy the following assumptions: 

r + T, 3) : dp(t, 3) : r z + T) for all (t, 3) E R 2 ; 
[4,(t, z)] _--< c, Ig(u)t _--< C, for all ( t , v ) E R  2, lu[ ~ Ro + r; 
g(u) >= B for u ~ b, g(u) <= --B for u <= --b, g(O) ---- O; 

Ir 3) - r + s ~ + ~) - ~(t + ~7, ~ - ~)  + r + ?, + s ~ + h - k) I 
<= d for all t, 3, h, k E R; 
I~b(t, z) - ~b(t + h + k. x + i f - -  k)l ~ 22(/~2 + k~) ~/2 for all t, 3, h, k E R;  
[g(u) - g(v)l <= D lu - vl for all lul, Ivl <= Ro -k r; 
[g(u) -- g(v)[ ~ d [ u --  v I for all [ u I, ] v l <= Ro -k r and either u, v ~ b 
or u,v<=--b;  

b, c, c, B, C, d, D, r, Ro, 2 are given positive constants satisfying 

B <  C, d <  D. 

Assume also that there the constant k in (11), Section 4, and the constant A 
above satisfy the following conditions: 

(8) l u - -  v - - k g ( u ) + k g ( v ) [  <--~']u-- v I for all lul, Iv] <=~', 
(9) TZ(c q- C) <= r; 

(10) R o - - R l + r ~ ;  
(11) Ro -- R~ -- 2(R,/A) T - -  r ~ b; 
(12) c + c' + ,~A + 2 ( g t / A ) d T +  (e + C)dT  2 + dRt + �89 + C)TA ~ B; 
(13) k[�88 + c' + C + 2A) q- �88 + C) dT 2 + ~d(c + c)  TA] <= 2(go -- R~ 

- -  ( R , / A )  T) - -  � 8 9  dT - �88 dR~; 
(14) k ( c - l - c ' q - A A + D r ) + 2 ( c q - C ) T + ( c + C ) T  2 q - 2 ( c + c )  TA 

+ �89 -k C) TA ~ (1 -- ~, -- @T/A) Ro. 

where 7, ~ and R~ are positive constants satisfying 

b < ~ < Ro -F r, R1 ~ R o. 

Then the nonlinear problem 

u,, - u~ = r 0 + g(u) 

has at least one continuous doubly T-periodic weak solution. 

Proof. Let us write R instead of  Rj in relations (11), (12), (13), and note that 
such relations then hold for all 0 ~ R < R1. Let us denote the same relations, 
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with R replacing R1, by the same numbers. Multiplying the new relation (12) by 
k/4 we have 

~k(c + c' -}- 2A) + 12-k(R/A ) dT + �88 -t- C) dT 2 + �88 dR + { k  d(e -}- C) TA 

�88 
or, equivalently, 

Ro -- �88 + �89 dT + �88 dR + �88 + c' + 2A + (c +, C) dT 2 

+ �89 + C) TA] <= Ro. 

By adding and subtracting R and rearranging the terms, we also get 

[Ro -- R -- �88 + �88 + c') + �89 dT + �88 + C) dT ~] 

+ ( 1  + �88 d) R + -~k d(c + C) TA + �88 <= Ro, 
in other words, 

Z, + (1 + �88 el) R + �88 + -~k d(c + C) TA <= Ro, 
and thus 

Z1 = Ro -- R(I -- �89 dT/A) + �88 + c' - - B )  + �88 + C) dT 2 <= Ro. 
Now, if 

Z 2 = R o - - R ( l  + 2 T / A + � 8 9  " �88 + c' + C)--�88 + C)dr  2 

is negative, we let Z f  = --Z2 and from 03) we derive 

--Ro + R + 2(R/A) T + �88 + c' + C + 2A) + �89 dT 

kd) + {k  d(c + C) TA < Ro, + �88 + C) dT 2 + R(1 + ~ 

in other words 

Z~- + R(1 + �88 d) + {-k d(c + C) TA + ]k2A <= Ro 
and 

Z2 = Ro -- R(1 + 2T/A + �89 dT/A) -- �88 + c' + C) -- �88 + C)dT 2 ~ -- Ro. 

If Z2 > 0, then Z2- = 0 and the above relations are still true. 
Finally, multiplying (14) by ~ we derive 

� 8 8 1 8 9 1 8 8  C) T 2 

+ �89 + �88 + C) TA ~ (�88 -- �88 -- yT/A) Ro, 
in other words 

3 �88 + + c' 1 y(�88 + T/A) R o + zRo + c + 2A) + �89 + C) T[1 +~-T 

+ (1 + �88 A] =< Ro. 

Note that for r E ker z- we have c" = 0, for otherwise certainly c' ~ 4c. 
As noted earlier, the proof is complete if we show that T* maps (2" into itself. 

Recall that T* is defined by (10) and (11) of w 4, with T*: (U*, U1) -->- (U*, U1). 
By assumption (2) and by the fact that 

~(X, Y) = �88 + y)/2, (x - y)/2) 
and 

G(U(x, y)) = �88 + y)/2, (x -- y))/2), 
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we get llN(U)l[oo = I[~ + G(U)llo~ ~ �88 + C). Also 

I[mll~ =< �89 + C), [In[l~ =< �89 + C), I/~[ ~ k(c + C) 

and from relation (1) of  {}3, as in [4], 

IJ m § n + tt 1[~ <= ~ (c + C), [[ (I ~ Q) NUll~ ~ c § C. 

Thus from relations (9) of {}3 we again have 

(15) [ [ b ' , l l ~ - - I l g t U l l ~ = [ l ( l - a )  n ( l - a ) g ( u ) l l o o < = T Z ( c §  

for all U = U* § U, E -<2*. Therefore K 1 : ~'2" ~ S t . 

Moreover, from (8) and (10) of  {} 3 we derive 

(16) max [Lipx U~, Lip e U~] --<_ �89 § C). 

Before we discuss the map K0, defined by (11) of {} 4, we consider the expres- 
sion 

U* = U* -- kYQN(U* § ~J,), 

where U = U* § U~ E .62* and U-, = K1U. Calling U' = U* § U1, we have 

U*(x, y) = U*(x, y) -- kS/'QNU'(x, y) 
2 T  

= U"(x, y) -- k(2 r ) - '  f [~(}, y) § G(U'(}, y))] d} 
0 

2T 
- -  k(2T) -1 f [r + 6(U'(x, ,~))] a,~ 

0 
2T 2T 

§ k(2T) -2 f f [~(~:, r/) § G(U'(~,  ~/))] d~: drl, 
0 0 

or, equivalently, 

Fl*(x, y) = V*(x, y) -/,:[~(x, y) + a(U'(x, y))] 
(17) 2r 2r 

+ k(2T) -2 f f [A~b + AG]d# d~7, 
0 O 

where for the sake of brevity we have put 

A ~  = ~0(x, y) -- ~(~, y) -- ~(x, ~) § ~(~:, ~), 

3 c  = G(U'(x, y)) - G(U'(~ ,y)) -- C(U'(x, ,~)) + G(U'(~, ,~)). 

If we write ~ = x § 2h, ~1 = y § 2/7, then from assumptions (4) and (5) 
follows 

IA~I = [~(x, y) - ~ (x  § 2h, y) -- ~ ( x , y  § 2k) § ~(x  § 2h, y § 2/7)1 

= [/[~(�89 + y), �89 - y)) - ~(�89 + y) + ~, �89 - y) + 7,) 

-- 4~(�89 § y) § tr �89 -- y) --/7) § ~(�89 § y) §  § k, �89 -- y) § h --/7)][ 

= 1�88 ~) - ~ t  +/T, ~ + /7)  - ,t,(t + 17, ~ - / 7 )  

§ ,b(t § h§  § =4c,<1 ,. 
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[ q)(x, y) --  q~(x § 2if, y 4- 2hi 
= [�88 § y), �89 -- y)) -- ~(�89 § y) § h §  �89 -- y) §  -- It)] I 

= ] k[4,(t, ~) - 4(t + h + ~', ~r § h -- kT)][ __< � 8 8  § 1 8 9  

= �88 z 4- (2k)21�89 

that is, 
I~(P)  - ~(Q) I --< �88 I e - a l. 

Two cases arise in the study of  the map Ko. 

Case 1. U ---- U* + Ut E .Q*, [I U* 1[oo = Ro -- R, max [Lipx U*, Lipy U*] 
<=R/A for some R, 0 < ~ R ~ < R I < R o .  Observe that 

Ill u ' I l l  = II U*l!~ + A I[ U*II. <= Ro -- R + A(R/A) = go 

and tl U~ I[~o <= r, II C'1 [l~ =< r, as shown in (15). 
Note that U*E S~' is a function of the form U*(x, y) ---- Uo(x) + Vo(y) 

with [IU*l!. = [[Uo § Vo[I. =< R/A by assumption. Thus 

Osc [Uo(x), 0 ~< x <~ 2T] ~ (R/A) T 

since Uo(0)=  Uo(T)---- Uo(2T). Analogously, 

Osc [Vo(y), 0 ~ y =< 2T] ~ (R/A) T. 

Hence U* has the same value at the points (rT, sT), r, s = 0, ~ 1, ~ 2  . . . . .  and 
moreover 

Osc [U*(x, y), 0 ~ x, y "< 2T] ~ 2(R/A) T. 

It follows that 

[ U*(x, y) l --> [I U* ![~ - 2(R/A) T ~= Ro -- R -- 2(R/A) T for all (x, y) E a 2 �9 

Then, by (15) and by assumption (11) we also derive 

[ U'(x, y)[ = I U*(x, y) -1- U~(x, y)[ >: Ro -- R -- 2(R/A) T -- r ~ b 

for U ' =  U* + Ul. 

Therefore either U'(x, y) ~ b for all (x, y) E R 2 or U'(x, y) <= --b for all 
(x, y) E R 2. 

If  U'(x, y) ~ b for all (x, y), then by using assumption (3) we obtain 

g(U'(x, y)) ~ B for all (x, y). 

With this in mind, we now consider the expression (17), where the integration 
over [0, 2T] • [0, 2T] can be performed instead over [x -- T, x § T] • [y -- T, 
y -k T], because of the double 2T-periodicity of the integrand. 

The expressions A~,  AG in the integrand can now be estimated. First by 
using assumption (4), we get [A~[ < 1 , = ~c,  as stated above. Next, since any two 
corresponding points in AG are equivalent to points at a distance less or equal to 



202 L. CESARI ~; P. PUCO 

T because of  the double 2T-periodicity, by using assumption (7), inequality (16), 
and the fact II U*ll, < R/A we obtain 

I AGI <= �88 + �89 + c)  T] T § �88 § �89 .-b C) T] T 

= �89 + �88 § C) dT 2 . 

Thus from (17) and the above relations, 

U*(x, y) = U*(x, y) - kq,(x, y) - ka(U'(x, y)) 
x + T  y + T  

§ k(2T) -2 f f [Ar § Aa].d# dr, 
x - - T  y - - T  

U*(x, y) <= Ro -- R § k �88 -- k �88 § k �88 § l k  dT(R/A) § �88 § C) dr  2 -= Z, 

= Ro -- R(1 -- �89 dT/A) -t- �88 § c' -- B) § �88 § C) dT 2 <= Ro, 

U*(x, y) >~ Ro -- R -- 2(R/A) T -- k �88 -- k �88 

-- k[�88 § �89 T § �88247 C ) d r  2] = z~ 

= Ro -- R(1 § 2T/A § �89 dT/A) -- �88 § c' § C) 

-- �88 § C) dT 2 >= --Ro. 

If U'(x, y) < --b for all (x, y), then by assumption (3) we have g(U'(x, y)) <= 

- - B .  By using the same argument, we also get --Ro ~ U*(x, y) ~< Ro for all 
(x, y). 

To obtain the Lipschitz constant of  U*, we note that 

U*(x, y) = U*(x, y) -- k[m(y) § n(x) § t ~] 
2T 

-- k[m(y) § #] § U*(x, y) -- k(2T) -~ f ~(x, r]) dr/ 
0 

2T 

-- k(2T)- '  f G(U'(x, ~)) d~; 
0 

thus 

U*(x + p, y) -- U*(x, y) = U*(X + p, y) -- U*(x, y) 
2T 

- -k(2T)  -x f [r  § p, r/) -- ~(x, ~)] d~ 
0 

2T 

-- k(ZT) -~ f [G(U'(x + p, ~)) -- G(U'(x, ~))] d~. 
0 

Hence, by assumptions (5) and (7) and since [I U*]t, =< R/A, we have 

I U*(x + p , y )  -- U*(x, y)] <__ (R/A)Ipl + k�88 ]Pl 
2T 

+ k(2T) -x f �88 U'(x + p, ~) -- U'(x, ~)[ dr/ 
0 

[(R/A) § �88 + �88 d(R/A § �89 + C) T)] IP[. 
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Thus 

i kd(c + C) T, Lipx 8.7" =< (R/A) (1 + �88 d) + �88 + -8- 

and the same inequality holds for Lipy 0*. Therefore 

III 8"111 = II 8*bloo + A II 8"11, 
l k d) + l k2A + t k d(c + C) TA.  max [Z1, Z~] + R(1 + 4- 4- 

The requirement III U*]II ~ Ro, i.e., (7" E S~, is satisfied provided assumptions 
(12) and (13) are verified, as stated above. 

Case 2. U =  U* + UIE Q*, IIU*H~= R o - -  R, I IU*I I ,~R/A forsomeR,  
0 < R I < ~  R < R o .  Again 

III u*ll l  =< Ro, II UII[~ _--< r, II 8,11~ =< r, [I U~II, =< 1(c § C) r .  

Again, let us write R instead of R~ in relation (10), and note that the new relation 
holds for all R with Rt <~ R < R 0. Let us denote the new relation by the same 
number. By the new relation (10) we have 

(18) I I U * t l o o = g o - - R < v ,  [ [ U ' l l o ~ = l l U * + U ~ l l o o < = R o - - R §  

and by (8) for v = 0  we also get 

(19) II U* -- kg(U*)l[oo ~ e II U*ll~ -<_ ~,(Ro --  R).  

Since v < Ro § r, we have by assumptions (6) and (8) 

IIg(U*) -- g(U')ll~o --<__ O]l/71 Iloo --<_ Dr, 

Ilu* ' I ~ u*  - kg(U )l,o~ <= ~ 1[ -- kg(U*)[1~o + (3-)[[ U* ]loo + k [[ G(U*) G(U') [[~ 
1 (20) <= 4 ~(Ro -- R) + (�88 (Ro -- R) + �88 k Dr 

= �88 [(~, + 3) (Ro -- R) + k Dr], 

using relations (18) and (19). 
For P~ = (x, y), P2 ---- (~:, Y), e3 = (X, v/), P ,  = (~, ~), we can write k A G 

in (17) as follows: 

(21) k A G = k G ( U ' ( P , ) )  - -  kG(U'(P2))  - -  kG(U' (P3)  ) 21- kG(Ut(e4)) 

= --  [�88 --  �88 --  k O ( U ' ( P , ) )  + kG(U'(P2))I 

+ [�88 --  1 U ' ( P , )  - -  kG(U'(P3))  + kG(U'(P,))I 

+ �88 o * ( e 2 ) -  U*(Pa)+ U*(P,,)] 

+ � 8 8  U I ( P 2 ) -  U I ( P 3 ) +  UI(P4)]. 

The third bracket in (21), namely A U*, is zero, since U* is sum of functions 
of  x only and of y only. The fourth bracket in (21) was estimated in w 3, namely 

IA UI[ _--< FII - QII~ I~(a ( t  - Q) N(U))I ~ 4. �88 + C) T 2 = (c + C) T 2. 
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Let us denote the first and the second brackets in (21) by -~P3"~ and Z'p~l,, 
respectively. Then by assumption (8) we have 

I~V*PtP2[ ~ 171Ut(p1) - -  Ut(p2)I ~ 17[IU*(P1) -- U*le(P2)l -~- I UI(PI) -- UI(P2)I] 

�88 -k �89 + C) T] I P ,  --  P21 <= �89 -k �89 -k C) T], 

and an analogous relation holds for Se3p,. Now from (21) and the above argu- 
ment we derive 

(22) ] k A G [ =< ~,(R/A) T -~ �89 -}- C) T q- 0 -}- 1(c q- C) T 2 . 

Finally, from (17), (20), (22) and the assumptions (2), (4) we obtain 

(23) II U* ![ ~ ~ �88 q- 3) (Ro --  R) -[- l k  Dr § l k ( c  q- c') 

q- 7(R/A)  T -]- �89 q- C) T -[- �88 ~- C) T 2 . 

Concerning the Lipschitz constant of U* we shall need estimates different from 
those of Case 1. First we have 

Ur*(x, y) = U*(x, y) - k S t a N U ' ( x ,  y) = U*(x, y) - -  k[m(y) -}- n(x) q- #] 

2T 

~- - -k[m(y)  + t t] + U*(x, y) - -  k(2T) -1 f [q~(x, ~2) + G(U'(x,  r/))] d~/ 
0 

2T 

3 U*(x, y) k(2T) -1 f q}(x, r/) dB = --k[m(y)  + t z] -~- ~ 
0 

2T  

+ �88 y) + (2T)-' f �88 y) --  U'(x, ~7)1 d~/ 
0 

2 T  

+ (2T)- '  f �88 ~) - -  kg(U' (x ,  ~))] d~. 
0 

For tT*(x + p, y) we have an analogous expression with x + p replacing x. 
Hence by subtraction we obtain 

U*(x -1- p, y) -- U*(x, y) 
2T 

---- (~) [U*(x -k p, y) -- U*(x, y] -- k(2r)  -~ f [~(x § p, B) -- ~(x, ~7)] d,7 
O 

-k �88 + p, y) - -  U x ( x ,  y)] 

2T 

-k (2T) -1 f k[U*(x § p, y) - U*(x, y) - U*(x q- p, ~) -k U*(x, ~7)1 d~ 2 
0 

2T 

q- (2T) -~ f �88 ~- p, '7) - -  U'(x, ~) - -  kg (U ' (x  -k p, ~)) + kg(U'(x ,  r/))] d,? 
0 

2 T  

- -  (2T) -~ f �88 + p, y) - -  Ua(x, y)  - -  U I ( X  7[- p, ")~) -~- UI(X , ~])] d~], 
0 
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The third term cancels the first part  of  the sixth term and the fourth term is zero, 
since U* is a sum of  functions of  x only and of y only. Then using (18) and assump- 
tions (5), as shown above, as well as (8), we obtain 

I U*(x § p, y) -- U*(x, y)[ 
2 T  

<= [3(R/A) + �88 + ~-y(2T) - t  f I U'(x + p,,~) - U'(x, ~)l d,j 
0 

§ �89 + c )  TIP [ 

=< [(�88 (R/A) + �88 + �88 + �89 + C) T) + �89 + C) T] IPl- 
Thus 

(24) Lipx/7* ~ �88 (3 § y) § k2] § �89 + C) T(I § �88 

and the same estimate holds for Lipy U*. 
Finally, f rom (23) and (24) we have 

III ~*lll  -- fl rT*iloo + A II U*It, _--< ~(~ + 3) (Ro -- R) + lk(Or + c + c') 

@ y(R/A) T § �89 § C) T + �88 § C) T 2 

+ �88 + V) + �88 + �89 + C) T(1 + �88 A 

Y(-~- + T/A) Ro § �88 § �88 § c + c' + ,~A) 

§ 1 8 9  T[1 § 1 8 9 1 8 8  A], 

since 0 < R ~ Ro. Therefore [[] U*[[] ~ Ro provided (14) holds, as stated above. 
This shows that T* : -(2* --> .Q* and concludes the proof. 

6. Example 

Let us consider the problem 

I l l ,  - -  Il lr$ = r 7:) § g(u) 
(1) 

u(t § T, z) ---- u(t, "r) ---- u(t, ~ + T) 

with g(u) ---- --g(--u),  g(u) = arctan u for 0 _< u < v = tan (0.95) = 1.4, and 
g(u) = 0.95 + 0 sin a(u -- v) for u => v, where 9, a are arbitrary constants with 
101 --< 0.06 and [Qa[ ~ 0.4. 

Here we have [g(u)l _< 0.95 + 0.06 = 1.01 for all u and we can take C = 
1.01. We also have 

1 >= g'(u) = (1 § u2) -1 ~ (1 + v2) -1 ~ 0.3378 for 0 =< u < v = 1.4, 

I g'(u)[ --- leo cos o(u - ~)1 _-< I o~1 _-< 0.4 for u > v. 

Thus, we can take D =  1. 
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Fo r  b---- 1 . 2 3 4 6 = t a n ( 0 . 8 9 )  and b ~ u < v  we have g(u) >= 0.89; for 
u --> v we have g(u) >= 0.95 - -  0.06 = 0.89. Thus we can take B = 0.89. 

Again,  for  b ~ u < v ,  we have 

0.3378 = (1 + v2)-1 ~ g'(u) <= (1 + b2) -1 ---- 0.3962, 

and for the function g, which is continuous in R,  we have 

[g(u) - -  g(v) I =< d I u - -  v l for all u, v ~ b and d ---- 0.4. 

Finally, for k---- 1, we have [ u - - v - - g ( u ) + g ( v ) I ~ y [ u - - v ] ,  or 

I1 - -  ( u - -  v) -x [g(u) - -  g(v)] I =< ~, for all 0 =< u, v_< v 

with ~, ---- 1 --  (1 + v2)-1 = 0.6622. 
For  the sake o f  simplicity we write R for RI.  I f  we take 

A = 1, Ro = 3, R = 1.61, r ---- 0.01, T---- 0.04 

then it remains to verify relations (9)-(14). 
Relat ion (9) becomes T2(c + C) = (0.0016) (c + 1.01) =< 0.01, or  

(0.0016) c + 0.001616 ~< 0.01 

and this is true for c ~ 5.24. 
Relation (10) becomes R o - - R + r - - - - 3 - -  1.61 + 0 . 0 1  = 1 . 4 = v .  
Relat ion (11) becomes 

Ro -- R -- 2(R/A) T - -  r---- Ro --  R(1 + 2 T ) - - r = 3 - -  1 . 6 1 ( 1 + 0 . 0 8 )  

- -  0.01 = 1.2512 > 1.2346 = b. 

Relat ion (12) becomes 

c q- c' -k 2A + 2(R/A) dT -I- (c -k C) dT 2 Jr- dR Jr- 2 -1 d(c -k C) TA 

= c + c '  + ;t + 2(1.61) (0.4) (0.04) 

+ (c + 1.01) (0.4) (0.0016) + (0.4) (1.61) + (0.5) (0.4) (c + 1.01) (0.04) 

= (1 + 0.00064 + 0.008) e + c' + 2 § 0.05152 + 0.0006464 -k 0.644 + 0.00808 

0.89 ---- B 

or, equivalently, 

and this is true for 

(1.00864) c + c' § ;t + 0.70425 ~ 0.89 

(1.00864) c -k c '  -k 2 ~ 0.18575. 
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Concerning relation (13), we have 2(Ro -- R) = 2(3 -- 1.61) = 2.78, whence 
(13) becomes 

k[�88 -k c' -1- C -k 2A) -[- �88 -k C) dT 2 -k ~-d(c -k C) TA] 

-k 2(R/A) T -1- �89 dT -q- �88 dR 

: (0.25) (c -k c' q- 1.01 -I- 2) -I- (0.25) (c -}- 1.01) (0.4) (0.0016) 

-1- (0.125) (0.4)(c -t- 1.01) (0.04) 

-k 2(1.61) (0.04) q- (0.5) (1.61) (0.4) (0.04) q- (0.25) (0.4) (1.61) 

: (0.25 q- 0.00016 -t- 0.002) c + (0.25) c' -k (0.25) 2 -[- 0.2525 q- 0.0001616 

+ 0.00202 -k 0.1288 q- 0.01288 -I- 0.161 ~ 2.78 : 2(Ro -- R), 

in other words, 

(0.25216) c + (0.25) c' q- (0.25) 2 + 0.55736 ~ 2.78, 

and this is true for 

(1.00864) c q- c' -]- 2 ~ 8.89056. 

Concerning relation (14) we have 

[1 --  ~ --  4~(T/A)] Ro = (1 -- 0.6622 -- 0.105952) 3 = 3(0.231848) = 0.695544 

and now relation (14) becomes 

k(c + c' + 2A + Dr) -k- 2(c + C) T +  (c + C) T 2 -~ 2(c + C) TA + �89 + C) TA 

= c -}- c' + 2 + 0.01 + 2(c + 1.01) (0.04) + (c + 1.01) (0.0016) 

q- 2(c + 1.01) (0.04) q- (0.5) (0.6622) (c + 1.01) (0.04) 

~- (1 + 0.08 + 0.0016 + 0.08 § 0.013244) e + c' + 2 + 0.01 + 0.0808 

q- 0.001616 + 0.0808 q- 0.01337644 ~ 0.695544 

and this is true for 

(1.17484) c + c' + 2 ~ 0.50895. 

Thus we have obtained the relations 

c ~ 5.24 

(1.00864) c + c' + 2 ~ 0.18575 

(1.00864) c + c' § 2 < 8.89056 

(1.17484) e + c' -? 2 ~ 0.50895. 

We note that the first and the third are consequences of  the second one. We 
conclude that problem (1) has a continuous T-periodic (weak) solution provided 
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that  

14,(t, 3) 1 =< c, 14,(t, 3) - -  4~(t § tt + k, 3 § h - -  lc) l ~ 22(/~ z q- ~:2)�89 

I~(t, 3) - ~(t + ~, 3 + 7,) - ~(t + L 3 - ~) + ~(t + 7, + ~, 3 + ~ - ~)1 =< c', 

(1.00864) c q- c' + 2 ~ 0.18575, 

(1.17484) c q- c '  + 2 ~ 0.50895. 

Since c' =< 4c the last two relations are certainly consequences o f  the following 
ones: 

(5.00864) c q- 2 <= 0.18575, (5.17484) c + 2 =< 0.50895. 

Fo r  instance, for  

4~(t, 3) : 10 -a  sin (2~/T) (t § 3), 

we have 

c = 0.001, 4, E ker  •, 

T = 0.04, 

c' ----- 0 

and since 

10 -3 Isin (2z~/T)(t + T) -- sin (2z~/T)(t + 3 -}- 2ff)l 

- -  10 -3 I (2:~/T) cos [(2re/T) t + 3 + 20h)] I �9 I2hl ~ 22 [/~l, 

we can take 

2 = (0.001) (2:~/T) = 0.15708. 

Thus  the inequalities above are certainly satisfied. 
Similarly, for  

4~(t, 3) = 10 -3 sin (2=/T) t, T = 0.04, 

we have r = 0.001 and we can take e ' =  0.004. Thus,  because 

10 -3 I sin (2=/T) t - -  sin (2zl/T) (t + h)] 

= 10 -3 I (2=/T) cos (2z~/T) cos (2z~/T) (t + Oh)] Ihl _-< 2a ]?,1, 
we can take 

2 = (0.5) (0.001) (2zc/T) = 0.07854. 

Thus  the inequalities above are certainly satisfied. 
Therefore,  bo th  equat ions 

bltt - -  / / l r r  = 1 0 - - 3  sin (2n/T) (t + 3) + g(u), 

u ,  - -  u~ = 10 -3 sin (2:~/T) t + g(u), 

with g defined as usual in this section, have doubly  T-periodic solutions satis- 
fying ]u(t, 3) l ~ < R o + r = 3 §  = 3 . 0 1 .  
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