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. 

In this paper we consider the existence of  positive solutions of  the Dirichlet 
problem 

(1) 
Au(x)  + f ( u ( x ) )  = O, x E  D" 

u(x) = O, x E OD n, 

where D n is an n-ball of radius R in R n. The well-known identity of  POHOZAEV 
[4] shows that the existence question, even for simple functions such as f (u )  ~- u k, 
is quite delicate. Previous results have been obtained by placing severe restrictions 
on f ;  for example, in [3] it is required that f(0) _> 0, and in [1] one finds f ' (0 )  > 0, 
and f (u )  >= O. 

Our approach is based upon the celebrated GIDAS, NI, & NIRENBERG Theo- 
rem, [2], which asserts that any positive solution of  (1) must be radially sym- 
metric, and thus satisfies an ordinary differential equation. In this context, it is 
natural to allow the radius R of D" to vary, and to consider orbits of  the as- 
sociated ordinary differential equation which satisfy u = p > 0 and u ' =  0 
at r ---- 0. Then we may define T(p)  to be the smallest R > 0 for which this 
orbit satisfies u(R) = O. 

In this note, we show that existence results may be obtained for very general 
functions f .  Specifically, if f (Po)  = 0 for some P0 > 0, we show that there 
exists a positive solution of  (1), with u(0) close to Po and u(0) < Po, for some R, 
if and only if there exists a positive solution of the Dirichlet problem 

(2) 
u"(x)  + f ( u ( x ) )  ---- O, x E D 1 

u(x) = O, x E ~D 1 , 

with u(0) close to Po and u(0) ~ Po, for some R. Since this lat ter  problem is 
equivalent to solving a Hamiltonian system having one-degree o f  freedom, it 
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can be solved by phase-plane methods. In fact, it is easy to show that there exists 
a solution of  (2), with u(0) near Po and u(0) < Po, for some R, if and only if 

Po 

f f (u )du  > 0 
P 

for 0 <= p < Po. If  we define 

(3) 
U 

F(u) = f f(s) 
0 

then we can state our theorem as follows. 

Theorem. Let f E C ~ and suppose that f(Po) = 0 for  some Po > O. Then 
the following statements are equivalent. 

(A) There exist positive solutions o f  (1) for  which 

(4) u(O) is arbitrarily close to Po; 

(B) There exist positive solutions o f  (2) for which (4) holds; 

(C) F(p) < F(po) for  0 <= p < Po. 

Observe that we place no conditions on the sign off(0) ,  nor do we require that 
0 < f ( u )  if 0 < u < f l ,  for some f l > 0 ;  cf. [3]. 

In the next section we shall give the proof  of the theorem, and in section 3 
we shall derive some consequences of  our result. 

. 

From a result of  GIDAS, NI, & NIRENBERG [2] the existence of  a positive 
solution of (1) on a ball is equivalent to the existence of  a positive solution for 
a boundary-value problem of  the form 

n - - 1  
(5) u"(r) + ~ u'(r) + f(u(r))  ---- O, 0 < r < T 

r 

(6) u'(0) = u ( r ) =  O. 

We let u(r, p) be the solution of (5) which satisfies the initial conditions u(0) ---- p, 
u'(0) = 0. 

We first show that (A) implies (C). As we have already noted, it suffices to 
assume that (5), (6) has solutions (for some T = T(p)) which satisfy (4). Now 
if (C) were false, let q < Po be a point where the maximum of  F on the interval 
[0, Po] is assumed. Then F(q) > F(p) for p near Po with p < Po. Using (A), 
we know that, for some such p, there is a solution u(r, p) of  (5) satisfying 
u'(0, p) ---- 0, u(0, p) = p and u(T(p), p) = 0. It follows that there is an rl > 0 
such that u(rl, p) = q. Then if H(u, v) = F(u) + v2/2, (v = u'), we see that 
H '  = (1 -- n) u'(r, p)2/r <= 0 along this solution. But 

H(u(rl, p), u'(r~, p)) > F(q) ~ F(p) = H(u(O, p), u'(O, p)),  
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and this is a contradiction. Thus (A) implies (C). In a similar manner, we can 
show that (B) implies (C). 

We next prove that (C) implies (B). Thus, define 

M = (p : F(q) < F(p) for all q, 0 =< q < p) f~ (0, Po]; 

then M =~ 0 since Po E M. We claim that there are points p E M arbitrarily 
close to Po, with f (p )  > O. To see this, let 6 > 0 be given; we must show that 
there is a point p E M A [Po -- 6, Po], with f (p)  > 0. Let 

a = sup(F(q):  0 <= q <=po -- 6); 

then a < F(po). Choose x so that a < x < F(po) and set 

y = i n f { q : F ( q ) = x ,  and p o - - 6 < q < P o } .  

Then clearly both F(y) = x and y E [Po -- 6, Po]. But also y E M, since if 
0 ~ q < y and 0 ~ q ~ p o  -- 6, then a >= F(q). Consequently a < x implies 
F(y) = x > F(q). On the other hand, if Po -- 6 -< q < Po, then q < y implies 
F(q) :4= x. I f  F(q) > x, then since x > a we could find ~ < q with F(~) ---- x 
and this violates the definition of  y;  thus a g a i n x > F ( q ) .  Hence y E M A  
[Po -- 6, Po). Thus F(M  ~ [Po -- 6, Po] ~ (a, F(po) ] implies that meas (F(M A 
[Po -- 6, Po)} > 0, and the claim follows from SARD'S Theorem. 

Take p E M Fx [Po -- 6, Po) with f (p )  > 0. Then the orbit of (2) through 
(p, 0) enters the region {u > 0, v < 0). Since H is constant along this orbit, 
we have F(p) = F(u) q- vZ/2 for u < p. Since p E M, this orbit cannot leave 
the region {u ~ 0, v ~ 0} through the line v = 0, and so it must leave through 
a point (0, v) with v < 0. Thus there is a solution of (2) with u(0) = p E [Po -- ~, 
Po). Therefore since 6 was arbitrary, we see that (B) holds. 

In order to complete the proof  of the theorem, we shall prove that (C) imp lie 
(A). Let 6 > 0  be given and choose q E M ~ [ p o - - ~ , p o )  with f ( q ) > O ,  ass 
above. Let 

= min {u: q < u ~ Po, and f(u) ---- 0). 

We shall find a solution of  (5), (6) with q < u(0) < ~. We define positive con- 

stants e, M, to, as follows: 

3~ -- F(~) --  F(q) ---- f f ( u )  du, 
q 

/~  = I /2- [F(~)-  min F(s)] 1/2, 
0<s<~ 

to ---- (n -- 1) Mq/e. 

Set 

H(r, p) = F(u(r, p)) + u'(r, p)2/2; 
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then H ~ = ( l - - n )  u '(r ,p)2/r<=O. We c h o o s e p ,  with q < p < ~ ,  such that 
both 

U(to, ~7) -- U(to, p) < ~t -- q and H(to, q) -- H(to, p) < e; 

this can be done since U(to, q) = q and since H is continuous. 
We now show that u(T, p)-----0 for some T > 0. Because f ( p ) >  0, we 

see, as above, that the orbit  through u = p, v = 0 enters the region (u > 0, 
v < 0}. Also, since f is bounded away from zero on [q, p], there is a constant 
t l > 0  such that u ( q , p ) = q  and u(r,p)>=q a n d  v(r ,p)=--u ' ( r ,p)~O for 
0 _ < r _ < t ~ ;  see [6, Theorem 17]. Note also that tx > t o  since U(to, p ) > q .  

We shall show that u ( T , p ) =  0 for some T satisfying tl < T=< t2 ~- 

t~ + q/]/~. To see this, observe that, for r > 0, 

F(p) = H(O, p) >= H(r, p) = F(u(r, p)) + vE(r, p)/2. 

Hence v 2 ~ 2 ( F ( p ) - F ( u ) ) < = M  2, so I v [ ~ M .  We also claim that if 

t2 --> r >_ tl then --v(r, p) >= ]/~ee. Assuming this, we have 

t2 t2 
u(t2, p) = U(tx, p) -k f v(r, p)dr <= q q- f -- ]/~e dr = O, 

t~ t t  

which implies the desired conclusion, Therefore to complete the proof  it suffices 
to prove the above claim. Thus, assume that for some t, t~ <_ t =< t2, we have 

v ( t , p ) > - - ] / ~  and v(r,p)<=O for 0 - -<r - -< t .  Then 

v(t,p) 2 

2 
- -  -- H(t, p) -- F(u(t, p)) 

= H(t, p) -- H(to, p) + H(to, p) -- F(u(t, p)) 

t 

= f H~(r, p) dr + n(to, p) -- F(u(t, p)) 
to  

t 

= _ f n --r 1 v 2 ( r  ' P) dr + n(to, p) -- F(u(t, p)) 
to 

- -  t 

> ( n  - -  1) M f = to v(r, p) dr q- H(to, ~t) -- e -- F(u(t, p)) 
to 

(n - -  1) M 
>= [u(t, p) -- u(to, p)] + F(q) - -  e - -  F(u(t, p)) 

to 

(n - -  1) M 
(--q) + F(q) -- F(u(t, p)) + 2e 

to 
>__ 

e + F(q) -- F(u(t, p)). 

But because t = > t l  we have u(t,p)<=q. 
F(u(t, p)). I t  follows that vE(t, p) ~ 2e. 

Hence q E M implies that F(q) 
Consequently, since v(t, p) <= O, we 
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have --v(t, p) >>_ ~ .  This is a contradiction, and the claim follows. The proof 
of the theorem is complete. 

Notice that if f '(Po) < 0, then we can strengthen (4) to the following: 

(4)' u(O) is in [Po -- 6, Po) for some ~ > O. 

To see this, observe that if f '(Po) < 0 then there is a number 6: > 0 such that 
f ( p ) > O ,  p o - - O l < p < p o .  Thus we can let ~ = p o - - 6 2 .  

. 

In this section we shall add some remarks and state several consequences of 
our theorem. 

First, we observe that in some cases our theorem can be used to deduce the 
existence of other solutions. For example, assume that f(0) ~ 0, and suppose 
that there are points Po and p~, Po < P~, both of which satisfy hypothesis (C) 
of the theorem. We claim that for balls of sufficiently large radii, there must be 
at least two positive solutions. To see this, take/5, Po < / 3  < p~, with the prop- 
erty that there is a positive solution of (5), (6) with u(0) ----/3. Then v(T,/5) < 0 
since f(0) ~ 0. Thus u(T, /5) ---- 0 and u'(T, ~) ---- v(T, ~) =~ O, so by the implicit 
function theorem T is a function o fp  for p near/5. Hence there is a neighborhood 
about/5 which is contained in the domain of T. Let (o~, fl) be the maximal interval 
about t5 which is in the domain of T. Then po ~ o~ < / 5  < fl ~ Pl and 

lira T(p) = lim T(p) = o0. p'-,~ p/# 

(If for example ~ T(p) ~- M < cx~, then we could find points PnSf l  such that 
p/'t~ 

T(pn) ~ To < oo. But u(T(p,), p,) = 0 implies u(To, fl) = 0, and this violates 
the definition of fl since u'(To,/3) ~ 0). It follows that, for T > T(/5), there 
exists at least two solutions. Thus we have the following 

C o r o l l a r y .  Let f E C ~ 
such that 

and f(O) >= 0, and suppose there are points Po < Pl 

f(Pi) = O, F(p) < F(pl) for 0 ~ p < Pl. 

Then there is an R such that i f  R ~ R the problem (1) has at least two positive 
solutions on the ball of  radius R. These solutions satisfy Po ~ u(O) < Pl. 

As another application of our theorem, we shall show that the conclusion of 
the last corollary (i.e., the existence of a second solution) can hold under quite 

different hypotheses. Eor example, suppose that k _> nn +-22 and that f is a 

smooth function such thatf(u  ) = u k, 0 <~ u <~ a, f(b) = O, f ' (b) < 0,0 < a < b, 
and f ( u ) > O  for 0 - < u < b .  
Then our theorem shows that (5), (6) has solutions for p near b. If  we define 

t 7 =  inf(p: 0 < p - <  b and (5), (6)is solvable for some T >  0, with u ( o ) = p } ,  



216 J. SMOLLER 8s A. WASSERMAN 

then a < p < b in view of the well-known POHOZAEV identity; see [3]. Taking 
any p in the domain of  T which satisfies ~ < p < b, we see that the last argu- 
ment holds. It follows that for large R the Dirichlet problem (1) again has at 
least two positive solutions. 

We end by noting that iff(u) > 0 for u < 0 then all solutions of (1) are positive 
and hence radial. To see this, observe that if there is an x E Q with u(x) < O, 
then 

inf (u(x): x E ~} 

is attained at a point s in Q. At this point, 7u(s ----- 0 and Au(~) ~ 0 and we 
obtain the contradiction Au(s +f(u(s  > O. This observation, together with 
our previous remarks, can be applied, for example, to the cubic nonlinear function 

(8) f ( u )  : - - u ( u  - -  a )  (u  - -  1), 0 < a < 1/2. 

Hence, for this f ,  all solutions of (1) are radial, and (1) has at least two solu- 
tions if the radius of D" is sufficiently large. It follows that problem (1) has at 
least one degenerate solution, in the sense that 0 is in the spectrum of the linearized 
equation; see [6]. It would be interesting to determine the number of  critical points 
of  the time map T(p) for f defined by (8). In [5] we have shown that if n : 1 
then T has exactly one critical point. 

Note added in proof. After this paper was accepted, we learned of the paper of 
P. HEss (On multiple solutions of nonlinear elliptic eigenvalue problems, Comm. on 
Partial Differential Equations 6, 1981, 951-961) in which similar results are obtained. 
HESS requires stronger conditions on f (including f(0) > 0) but he allows more general 
domains. 
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