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1. Introduction 

In a recent interesting paper, GIDAS, NI, and NIRENBERG [2] proved that 
positive solutions of the Dirichlet problem for second-order semi-linear elliptic 
equations on balls must themselves be spherically symmetric functions. Here 
we consider the bifurcation problem for such solutions. Specifically, we in- 
vestigate the ways in which the symmetric solution can bifurcate into a non- 
symmetric solution; when this happens, we say that the symmetry "breaks." 
To carry out this program, we rely on certain results in [6], where we studied 
the kernel of  the associated linearized operator. This enables us to give some 
necessary conditions for symmetry to break. We also find a class of  functionsf 
where these conditions are also sufficient; see equation (18) below. The problem 
is, of  course, to show that, when zero comes into the spectrum of the linearized 
operator and our conditions are fulfilled, bifurcation into the non-radial direction 
actually occurs. This is done by showing first that the "bifurcation curve" is a 
smooth manifold near the bifurcation point, and then appealing to a theorem 
of VANDERBAUWHEDE [8], which gives sufficient conditions for bifurcation to 
occur in the presence of  symmetries. 

2. Degenerate Solutions 

We consider the Dirichlet problem 

A u(x) -k f(u(x)) = O, x E D~ 

(1) u(x) = 0 ,  x E  

Here f E  C 1 and D]  denotes an n-ball of radius R. From the results in [2], all 
positive solutions of (1) are functions of the radius r and satisfy the inequality 
u,(r) ~ O, for 0 < r < R. Such solutions must therefore solve the boundary- 
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value problem 

n - - 1  
(2) ur~ q- u~ + f(u) = O, 

r 

(3)  u,(0)  = u(R)  = 0; 

O < r < R ,  

it is natural to think of  these radial solutions of  (1) as symmetric functions. Our 
purpose in this paper is to study how "symmetry" can be broken, that is, to 
describe the bifurcations of  these positive symmetric solutions to non-radial 
solutions of ( 1 ) .  

If  u is a (positive) solution of  (2), and u(0) = p > 0, we write u = u(r, p). 
Define 

A = (p > 0: u(r, p) ----- 0 for some r > 0), 

and for pE  A, set 

T(p) = min {r > 0: u(r, p) = 0}. 

The function p~--~ T(p), from A into R+, will be called the time-map (see [4, 5]). 
Clearly u(r, p) is a solution of (2), (3) if and only if T(p) = R. 

We say that a solution u of (1) is non-degenerate provided that v ~ 0 is the 
only solution of the linearized equations 

Av(x) +f ' (u (x ) )  v(x) = O, xE O'R, 

(4) v(x) ~-- O, x E OD]. 

Thus u is non-degenerate if and only if zero is not in the spectrum of the associated 
linearized operator; otherwise u is called degenerate. It is not hard to show that 
a necessary condition for a solution to bifurcate is that it be degenerate. 

In [6] the following characterization of  non-degenerate (positive) solutions 
of  (1) was obtained. 

Theorem 1. Let u = u(r, p) be a positive solution of  (1). Then u is non- 
degenerate i f  and only i f  

(5) ur(T(p), p) 4= 0 and T'(p) 4= O. 

In the proof  it is shown that if v is a solution of (4) corresponding to the 
positive solution u(r, p), then, in terms of spherical harmonics, v has the form 

(6) v(r, O) = ao(r) q- al(r) qS(O), 0 -<- r <-- R, 0 E S "-1 �9 

Here (b is an eigenfunction of  the Laplacian A on the (n -- 1)-sphere S "-1, cor- 
responding to the first non-zero eigenvalue. That is, all of  the higher modes vanish 
identically. Since the corresponding eigenspace is isomorphic to the standard 
representation of the orthogonal group O(n) on R" (by n • n orthogonal matrices), 
and since ao and al both satisfy linear second-order differential equations with 
linear boundary conditions, it follows that the kernel of  the linearized operator 
is at most (n § 1)-dimensional. That  is, ao and a~ are unique up to a constant 
multiple, and the set of  ~ 's  is n-dimensional. 
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From the results in [6] we know that al is zero if and only if 

(7) u,(T(p), p) ~= O, 

and ao is zero if and only if 

(8) u,(T(p), p) T'(p) + O. 

We summarize these results in the following theorem. 

Theorem 2. Any solution of  (4) relative to a positivesolution u(r,p) o f  (1) 
has the form (6). The function ao is zero i f  and only i f  (8) holds, while al is zero 
i f  and only i f  (7) holds. 

3. Symmetry Breaking 

It is natural to parametrize positive radial solutions of (2), (3) by p = u(0, p), 
this being the maximum of u(r, p) since u' < 0. Now suppose that we have a 
family of radial solutions u(r, p), Pt <= P <- P2. 

Definition 1. Let 0 < Pl < / 5  < P2. Then the symmetry is said to break 
infinitesimally at u(.,/5) provided there exists a solution of (4) with at =~ 0; see 
(6). 

2. The symmetry is said to break at u(., p-) provided that a non-radial solu- 
tion bifurcates out of u(., t5). 

It is not difficult to show that symmetry breaking implies infinitesimal sym- 
metry breaking; see for example [1]. We investigate first the weaker notion. 

In view of the discussion in the last section, we may assume that, for some 
/5, P~ < / 5 < P 2 ,  

(9) u,(T(~), ~) = O. 

Let K denote the kernel of the associated linearized operator, namely the op- 
erator 

(10) A +f ' (u ( r ,~ ) )  on (uE C2(/~r0~)): u(OD~-G)) = 0}. 

Define the set 

B ~- (Ou(r, p--)/exi: 1 <_ i <_ n). 

We then have the following result. 

Theorem 3. (a) Assume that (9) holds; then the elements o f  B are linearly 
independent and lie in K. 

(b) No element in B is a radial function. 
(c) The action o f  the orthogonal group O(n) on the space spanned by B is ir- 

reducible (in the sense that it has no proper invariant subspaces). 

Proof. Let v be any non-zero vector in R", and let Do denote differentiation 
in the direction v. Since D v commutes with A, we see that Dvu(r, ~) satisfies the 
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linearized equations. Since u is constant on the sphere we have Dou = 0 if 
(v, p )  = 0, while also D~u(T(~), ~) ----- 0 in view of (9). It  follows that B C K. 
I f  Dvu(r, p) ~ O, then u would be constant in the v direction, and then since 
u(T(~), ~) = 0 we would have u(r, ~) = O, 0 <-- r <-- T(~). This violates the 
condition u(0,~) = ~ > 0; thus (a) holds. Now 

6qU X i 
_ _  - -  U r ,  

8xi r 

and this shows that 8u/~xi is non-radial for each i; this proves (b). For  (c), let 
T E O(n). Then for any v E R n we have 

TD~u(r, p-') = Dr~u(r, p ) .  

I t  follows that the action of  O(n) on B is the same as the standard action of  O(n) 
on R n, and thus is irreducible. The proof  of  the theorem is now complete. 

We shall next obtain a necessary condition for infinitesimal (and hence actual) 
symmetry breaking. 

Theorem 4. For positive solutions, infinitesimal symmetry breaking cannot 
occur i f  f(O) >= O. 

Proof. Write (2) as the first order system 

n - - 1  
(11) u, : v, v, : - -  v - -  f (u ) .  

r 

I f  infinitesimal symmetry breaking occurs, then (11) has a positive solution with 
u(R) = 0 -~ v(R), for some R > 0. (Recall f rom [2] that v(r) < 0 if 0 < r < R.) 
At this point R we have ur = 0 and vr > 0; see Figure 1. Thus from (11) we 
find that v~(R) ----- - - f (u(R))  = --f(0). Formally, if f(0) > 0 then vr(R) < O, 
and so v(R - -  e) > 0 for some e > 0. Hence f(0) ~ 0. I f  f (0)  = 0, then (0, 0) 
is a "rest point" and no orbit enters (0, 0) in finite time. Therefore f(0) < 0. 
(Notice that u ~ = v > 0  when r > R  and r - - R  is small, so that the orbit 
in Figure 1 actually breaks into the region {u > 0}, as depicted.) 

f 
P 

Fig. 1 
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We have thus shown that if the symmetry breaks at u(r, ~), then necessarily 

(12) f(O) < 0 

and in addition 

(13) p) = p) = 0.  

The last condition implies that the function u(r, ~) is a solution of both the 

Dirichlet and Neumann problems on the ball (0 _~ r _~ R}. We now consider 
the question of primary interest; if (13) holds (so that (12) also holds), does the 
symmetry break at u(r, ~)? 

As is easily seen from simple examples, bifurcation need not occur even if 
the kernel of the linearized operator is non-zero; that is, control of the first-order 
terms does not necessarily imply that there is actual bifurcation. Some condition 
on the higher-order terms is also needed. Thus, for example in the proof of the 
Crandall-Rabinowitz Theorem (see [7]), one must impose a certain "trans- 
versality" hypothesis, taking the form of a condition on a mixed derivative. In 
the case considered here, in order to prove that bifurcation actually occurs, we 
shall appeal to an extension of the Crandall-Rabinowitz Theorem due to VAN- 
DE~AUWHEOE [8, Theorem 6.2.6]. This result applies when the kernel of the 
linearized operator has dimension greater than one, and when this kernel is also 
invariant under the action of the orthogonal group O(n). We now state the 
theorem in a form suitable to our purposes. 

Let X, Z and A be real Banach spaces, and let M be a mapping of class C 2 
of/2, a neighborhood of the origin in X•  A, into Z. We assume that M(0, 0) = 0, 
and that the following three hypotheses hold. 

(H1) There exist representations F:  O(n) ~ L(X) and /~: O(n) -+ L(Z) of 
the orthogonal group (where L(X) and L(Z) denote the set of linear transforma- 
tions on X and Z, respectively), such that M is equivariant with respect to 

(O(n),/~, z?). That is, for each s E O(n) and all (x, 2)E .(2, we have 
(i) (F(s) x, 2) E/2, and 

(ii) M(F(s) x, 2) = ['(s) M(x, 2). 
(H2) L ~ DxM(O, 0) is a Fredholm operator of index zero, and the re- 

presentation F o of O(n) induced by F on ker L is irreducible. 
(Ha) There is a non-zero vector Uo in ker L such that DxD:,M(O, 0). (0, Uo) ~i 

Range (L). 
Under these hypotheses, VANDERBAUWHEDE'S Theorem states that (0, 0) is a 

bifurcation point for the equation M(x, 2) = 0. We shall now apply this theorem 
to our problem. 

As above, we assume that (1) has positive radial solutions u(r, p) on some 
interval p~ ~ p _< P2. For such p we consider the equation 

u(R, p) = O. 

Suppose that u(T(~), ~) = 0 for some ~, Pl ~ /~  ~ P2 and 

(14) + o .  
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The implicit function theorem then implies that we may write p = p(R) near 
the point (T(~), ~). In this case, from the equation u(T(p), p) ~- 0 we obtain 

u,(T(p), p) T'(p) + up(T(p), p) = O, 

and thus [T'(p)[----oo as well as 

(15) p'(R'-) -~ O, where R =  T(~). 

We illustrate this situation in Figure 2(a), where the branch R >= R :> R -  e 
consists of positive solutions while the other branch is made up of non-positive 
solutions; cf. Figure 2(b). 

R 

tL~_ 
R C 

I 
I 
I 

a b 

Fig. 2 

by 

Still assuming (14), we define the operator 

M: (uE C2(Ixl < 1): u(x) = 0 if Ixl = 1}xI -+  (u6 C(Ixl < 1)} 

M(z, R) (x) = A(z(x) -b u(Ix[ R, p(R))) + R2f(z(x) + u([xl R,p(R))), 

where I ---- [0, 1] u(r, p(R)) is a radial solution of (1) and R -- e ~ R ~ R + e, 
0 <= R ~ 1. Note that M(0, R) = 0 and that M is equivariant* with respect to 
the natural action of O(n). Furthermore, Mz(0, R) is a Fredholm operator of zero 
index, as follows from standard results; see [3]. Finally, Theorem 3 shows that the 
induced representation of O(n) on the kernel of Mz(0, R) is irreducible. We have 
thus verified hypotheses (HI) and (H2) of VANDERBAUWHEDE'S Bifurcation Theo- 
rem. In order to verify the transversality hypothesis (H3), we compute 

MzR(Z, R) 

~- R2f"(z  + u(rR, p(R))) u'(rR, p(R)) r + uvp'(R) + --~f (z -k u(rR, p(R))), 

so that in view of (15) 

(16) MzR(O, R--) = R2(f"(u(rR, p)) u'(rR, p) r + 2R'-~f'(u(rR ", fi))}. 

* M(Z o T, R) (x) ---- M(Z, R) (Tx) for all TE O(n). 
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The crucial transversality hypothesis can now be stated as 

(17) f MzR(0, R) v2(x) dx 4= 0 
Ixl<l 

for some v in the kernel of  Mz(0, R). From [2] we know that u,(rR, ~) <= 0 in 
0 <~ r _< 1; thus (17) holds i f f '  and f "  have the opposite sign. We have there- 
fore proved the following result. 

Theorem 5. Suppose that (14) holds and that the symmetry breaks infinitesi- 
mally at ~. Then, if  f '  and f "  have the same sign, the symmetry breaks at ~. 

In order to apply this theorem we must still investigate the conditions under 
which (14) holds. As we shall show below, any C 2 function f can be composed 
with an arbitrarily small translation so that (14) holds. Thus, for example, let 

(18) f ( u )  ---- Au  - -  B + e -u,  A > O, B > O, 

where A and B are constants. Note that f(0) < 0 and that f '  < 0 and f "  > 0; 
thus (17) will always hold for the functions (18). 

To verify (14), we consider u ---- u(r, p) as a C 3 function* of its arguments. 
I f  u is a radial solution of (1), then of course u(R, p) = 0. Suppose now that 0 
is a regular value of u (see [7]). Then 

(u,(R, p), up(R, p)) =~ (0, 0). 

Hence the condition u r ( R , P ) =  0 implies that Up(-R,~)+ O, so (14) holds. 
Now by SARD'S Theorem [7] the set of  critical values of  a smooth function has 
measure zero. Thus, let 8 > 0 be a regular value of u and set 

: u - -  8, g(fi) ----f(u). 
Then 

A~t + g(h) ---- Au + f(u),  

and fi----0 if and only if u = b .  Also, using (18), we have 

g(u) : e-~[Ae~u -- e~(B -- AS) -- e-if]. 

Thus we set 

A' = Ae ~, B' = e~(B -- Ab), 

so that A', B'  > 0 small 8. Moreover, it is easily verified that the problem 

(19) Ah + g(h) = 0 in D] ,  h = 0 on OD], 

has a solution if and only if the problem 

Ah + cg(~) = 0 in D~, h = 0 on ~D~, 

has a solution, where /~ = R/~c.  Thus, we can find a positive number 8o such 
that (14) holds for almost 8 such that 0 <-- 8 <_ 80. 

* See [6], where it was shown that u E C k if fC C k. 
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It was shown in [6, Corollary 14], that if f grows linearly at infinity, that is, 
if f(u) = O(u) as u ~ 0% then (1) has positive radial solutions u ----- u(r, p) 
for all sufficiently largep. Note also that, fo r fg iven  by (18), we have uf'(u) > f ( u ) .  
It follows from this (see [6, Proof  of  Lemma C]) that the set of  points p where 
ur(R, p) = 0 must be discrete. We shall now show that this set is non-empty. 

To do this, we define 

h = inf(p:  ~t(.,p) solves (19)}. 

Note that /~ > Po > 0, where Po is the unique positive root o f f  (cf. (18)). We 
claim that the solution curve of  (2) which satisfies u(0) ----/3, u,(0) = 0 passes 
through the origin, that is, (u(R), u,(R)) = (0, 0) for some positive R. Indeed, 
observe that this orbit cannot meet u = 0 at a point where ur < 0, nor can it 
meet u, = 0 at a point where u > 0, since both such occurrences would imply 
the persistence of this behavior in a neighborhood of/3, thus violating the defi- 
nition of/3. The only other possibility is that this orbit enters the point (Po, 0) 
infinite "time", that is, 

(20) l irn (u(r,/3), ur(r,/3)) ---- (Po, 0). 

To see that this too cannot happen, let H be the "total energy", 

H(u, Ur) ---- (U~)2/2 + F(U) (where F '  ----f). 

Then H '  = --(n -- 1) (Ur) 2 r -1, SO H decreases along solution curves. More- 
over H(po, 0) < 0. Thus if (20) were true, then there would be some R > 0 
for which H(u(r,/3), u~(r,/3)) < 0 if r ~ R. We could then find a neighborhood 
N of (/3, 0) such that all orbits of (2) starting in N would have H < 0 if r > 2R. 
But then no such orbit could be a positive solution of the Dirichlet problem, and 
this would again violate the definition of/3. Our claim is now proved. 

It follows that the symmetry breaks infinitesimally for all such solutions 
u(r,/3). Hence if f is given by (18), then the symmetry breaks for almost all A and 
B satisfying A < 0, B ;> 1. We have thus proved 

Theorem 6. Consider the Dirichlet problem (1), where f is given by (18). Then 
for almost all choices of  A and B such that A > B ~ 1 there are positive radial 
solutions for which the symmetry breaks. 

For functions of the type (18) the bifurcation diagram near/3 therefore has 
the form shown in Figure 3, namely there is a n-manifold of  non-radial (hence 
non-positive) solutions which bifurcate out of u(r,/3). 

We close with a conjecture about symmetry breaking for a different class 
of  functions f .  Suppose in particular that f = f ( u )  satisfies the conditions 

(f(u)/u)' > O, f"(u)  ~ 0, f(0) < 0. 

For  such functions it was shown in [5] that there is always a unique positive solu- 
tion of  (1) for which the symmetry breaks infinitesimally; our conjecture is that 
the symmetry must also actually break. 
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