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ABSTRACT. Counting Processes (CP), which are stochastic processes
having right-continuous sample paths except for randomly located positive jumps
of size one, are ex’amined here in the light of a new notion resulting from the
Doob-Meyer decomposition for supermartingales: the Integrated Conditional
Rate (ICR). It is shown elsewhere ([4], [15]) that this ICR is particularly per-
tinent to the solution of the problems of filtering and detection for CP's.

The terminology ICR is motivated by the fact that when a CP(Nt) satisfies

t
some sufficient conditions its ICR takes on the form (f )\sds) where ()\t) is a

nonnegative process called the conditional rate, satisfyin:

)\t = h11_1;n0 E[h"l(Nt_i_h - Nt)l %t] Our approach, however, requires only the
weak assumptionb that Nt is a. s finite for each t; there always exists an ICR
while in general a conditional rate cannot be defined. Sufficient conditions for
the existence of a conditional rate are presented.

Based on the character (e.g., totally inaccessible) of the stopping times
defined by its jumps any C’P is shown to be uniquely decomposable into the sum
of a regular CP and an accessible CP, Itis also demonstrated that each class
is completely characterized by continuity properties of the ICR. CP's with inde-

pendent increments are uniquely distinguished by a property of their ICR's:

they are deterministic and given by the mean of the CP.

1.0 INTRODUCTION AND SUMMARY
1.1 INTRODUCTION. We are interested here in a description of Counting
Processes which is appropriate to study the problems of detection and filtering.

By a Counting Process we mean



Definition 1.1, 1: A Counting Process (Nt) (hereafter abbreviated CP)

is a stochastic process having sample paths which are zero at the time origin,
right-continuous step functions with positive jumps of size one.

CP's have been examined in terms of counting properties (i. e. properties
related to the number of jumps falling within specified subsets or more generally
in terms of random measures) or in terms of interval properties (i.e., relative
spacing between points, see e.g. [2]); but none of these approaches are specifical-
ly tailored to treat the problems of detection and filtering; hence we propose
here a new approach.

The solution to these problems, which involves the computation of condi-
tional expectations, is very much dependent on the information available to the
observer or, in mathematical terms, on an increasing family of o -algebras:
the family of observation ¢ -algebras (41t). Let (Nt) be a CP adapted to (% t)
and with the sole assumption that

(i) The random variable Nt is a.s. finite for each t. Then the Doob-Meyer
decomposition for sﬁpermartingales associates to (Nt) a unique natural increas-
ing process (A,) dependent on the family (-% ;). This process plays a central
part in solving the detection and filtering problems (see [5], [15]). We call it

the Integrated Conditional Rate (ICR) because under sufficient conditions (given

: t
in section 5. 0) it takes on the form (f A sds) where (A t) is a nonnegative process
) 0
called the rate, satisfying )\t = lim E[ (Nt+h-Nt)h-1H;It]. This paper is con-

h-0
cerned with a study of this notion of ICR., It should be strongly emphasized that

an ICR always exists, while in general a conditional rate cannot be defined.

Hence this study also generalizes and puts in the proper mathematical context



previous works on modelling CP's by conditional rates (see e.g. [12], [13],

(14], [3], [11], [1]).

1.2 SUMMARY. Let (Nt) be a CP satisfying assumption (i) and adapted
to an increasing right-continuous family of ¢ -algebras (% 1:).

It is shown in Section 3.0 (Sectioh 2.0 is concerned with preliminaries)
that the Doob-Meyer decomposition for supermartingales associates to the
CP (Nt) a unique natural increasing process (At) which makes the process

A

M, = Nt - At) a local martingale with respect to (ﬁ t). This decomposition

t
(Nt = Mt + At) is intuitively a decomposition into the part (M ) which is not

t

predictable and the ICR (At) which can be perfectly predicted. We refer to
that as the separating property of the Doob-Meyer decomposition for CP's (see
Section 4.3). Properties and examples of ICR's are exhibited.

In Section 4.0 three classes, regular, accessible and predictable CP's,
are defined, these latter constituting a subclass of accessible CP's, We
show that any counting process can be uniquely decomposed into the surﬁ of two
counting processes which are respectively regular and accessible. Regular
counting procesvses have, loosely speaking, totally unexpected times of jump.
Poisson processes are of this type. On the contrary, the times of jump of an
accessible counting process can be predicted with some chance of success.
A counting process which jumps with some positive probability at given fixed
times is an example of this kind of processes. It is also demonstrated that
each class is completely characterized by continuity properties of the ICR.

Finally in ‘Section 5.0 we give sufficient conditions for the existence

of conditional rates.



2.0 PRELIMINARIES. Let (2, %,P) be a complete probability space.
By (Xt) we denote a real valued stochastic process defined on Ry, the positive

real line. By a right-(resp. left-) continuous process we mean a process

with right- (resp. left-) continuous sample. paths. The process (Xt) is a

modification of the process (Yt) if Xt =Yt a.s. for eachte¢ [R,- We do not

distinguish here between modifications of the same process. If two right-
(resp. left-) continuous processes (Xt) and (Yt) are modifications of each other

then we also have P{Xt = Yt’ te R+} = 1 so that we can safely use the simplified

notation Xt = Yt a.s.

Let (4‘ t) be an increasing, right-continuousl family of ¢-subalgebras
of %, with ﬁo containing all the P negligible sets. In particular we often
consider the family (O'(Nu, 0 < u <t)), denoted g/g t)’ generated by a CP(N.t)
up to and at time t. The notions of stopping times and martingales are assumed

known. The basic references for this'material are [9] and [7]. We recall

simply some.definitions and facts useful in the context of this study.

- (a) The family (4 t) is said to be free of times of discontinuity if for
every increasing sequence (Sn) of ( %t) stopping times
7 =¥ ‘773
lim Sn n

n

/2
- (b) With respect to the family (¥7 t)’ a stopping time T is said to be

1If the family (%t) is not right-continuous, we consider then the family

Wy £ N g Gseels).
s>t



totally inaccessible if T is not a.s. infinite and if for every increas-
ing sequence (Sn) of stopping times majorized by T we have

P {lim Sn=T, S <T<ow for every n} = 0
nv

- inaccessible if there exists a totally inaccessible (‘%t) stopping

time S such that P{T =S <} >0
- accessible if it is not inaccessible

- predictable if there exists an increasing sequence (Sn) of stopping
times which converges a.s. to T and such that for every n one has

Sn<T on the set {T >0}

- (c) An increasing process (At) is a stochastic process adapted to the

family (% 1:) with (1) sample paths which are a.s. zero at t=0,
increasing and right-continuous with (2) At integrable for each t.

The ipcreas;ng process (At) is integrable if sx:p E At < o0.

- (d) A (7[ t) supermartingale (Xt) admits a Doob-Meyer decomposition

= - A
Xt Mt t

where (Mt) is a (% ) martingale and (At) an increasing process

t
if and only if (Xt) belongs to the class (DL).

- (e) This decomposition is - unique if the increasing process (At) is

natural .

- (f) The natural increasing process (At) is continuous if and only if

the supermartingale (Xt) is regular.



- (g) If the supermartingale (Xt) is of class (D) (hence uniformly inte-
grabie) with a unique Doob-Meyer decomposition (Xt = Mt - At)
- + . . .
then Mt E(Aoo Xoo | %t) and (At) is also the unique natural

increasing process which generates the potential Pt = Xt - E(Xoo |44t)-

- (h) If the supermartingale (Xt) is bounded by a constant ¢ (i.e.,

[th <c a.s.)thensup E M?; < o (for necessary and sufficient
t
conditions - see [5], Lemma 2. 2. 2).

-@{i) A (% t) martingale with sup E Mzt < is called a square integrable
t
martingale (see [9], Chapter VIII, Section 3).

-(G) A (% ) local martingale (Xt) is a process such that there exists a

sequence of (Z t) stopping times (Tn) increasing a.s. to co which
makes each process (Xt T ) 2 uniformly integrable martingale.
A
n

If furthermore (Xt T ) is square integrable then (Xt) is a
A
n _

square integrable local martingale.

- (k) We denote by ;‘f (%t) the space of ("47 t) local martingale which

are zero a.s, at the time origin.

- () A sequence of stopping times (Tn) reduces the local martingale

(Xt) if (Xt T ) is a uniformly integrable martingale.
A
n

- (m) As a consequence of the Doob-Mayer decomposition we can asso-
ciate to every square integrable (é/7t) local martingale (Xt) a unique
natural increasing process K X >t)' such that (th - <X >t) € g’( %t)

(see [9], Chapter VIII Section 3 [7]).



- (n) For a local martingale (Xt) (not necessarily square integrable) with
sample paths of bounded variation on every finite interval, the

2
quadratic variation process [X]t is defined by

x], = DA,

s<t
and the process (Xi - [X]t) € XJ (see [4]).
3,0 INTEGRATED CONDITIONAL RATE. The points in time at which a

CP (Nt) jumps are basic to this study:

Definition 3. 0. 1: The stopping time:

inf {t: N, >n})

_ o if the above set is empty
is called the time of the nth jump of the CP (Nt).
The fact that Jn is a stopping time with respect to any family (ﬁt)
to which the CP (Nt) is adapted can be easily verified. the set {Jn < t}

= {Nt > n} belongs to %t for every t.

3.1 DOOB-MEYER DECOMPOSITION FOR COUNTING PROCESSES.
As a direct application to CP's of the Doob-Meyer decomposition of super-
martingales into the sum of a martingale and an increasing process we have

(see [9], Theorem 31-VII; [6])

m——

2
For a right-continuous function { with left-hand limits A ft denotes the
jump ft - ft-'



THEOREM 3.1.1: (Doob-Mayer Decomposition for CPis). Let (N’c) be

a CP adapted to an increasing family (G t)'
(@) If for each t ¢ lR+, Nt is a.s. finite then there exists a unique

A .
natural increasing process (A ) such that the process (Mt = Nt - At) is a

t
square integrable (-g! 1:) local martingale. The unique decomposition
(Nt = Mt + At) is c;alled the Doob-Meyer decomposition for the CP (Nt) with
respect to the family (%t).

(b) If furthermore ENt is finite for each t then the process (Mt = Nt - At)

is a (% t) martingale.

Proof. (a) Let Jn be the time of the nth jump of the CP (Nt) and define

np

(N N

1: tAJn). By assumption Nt is a.s. finite for each t, Hence the se-
quence of stopping times (Jn) increases a.s. to infinity. Also by construction
. the stopped process (Nré) is bounded by n. For t >s we obviously have
E(-NI: |'<7vs) < - NISl Thus (-NI:) is a bounded ’(%.IZ) supermartingale and by

the Doob-Meyer decomposition we can obtain the unique decomposition:
(3.1) N =M, + At

where (MI:) is a square integrable (Q"l I;) martingale (see section 2.0, (h)) and
(AI:) a natural integrable increasing process. Now for n <m the unique

Doob-Meyer decomposition of (Nr;) with respect to (g“lr;) is also given by

(3.2) N = MT .+ AT
t tald t AJ
n n

Therefore comparing (3. 1) and (3.2) we get

m n m n
M = M . s, = . 8.
tAJn ¢ a.s and At"Jn At a.s



Hence we can uniquely define for all t an increasing natural process (At) and a
square integrable local martingale (Mt) by At 2 Arz and Mt = Mr: for t < Jﬁ
and we clearly have Nt = Mt + At a.s.; this proves part (a).

(b) If ENt is finite for each t then the process (-Nt) is a right-continuous
negative supermartingale. By Theorem 19-VI of [9], this supermartingale be-
longs to the class (DL). Then result (b) follows directly from the Doob-Meyer
decomposition (Theorem 31-VII of [9]).

Remark: If the random variable Nt is not a. s. firﬁte for each t then the
sequence (Jn) of times of jump of (Nt) does not converge a. s, to infinity. De-
fine J £ lim J . By Theorem 42-IV of [9], J is a stopping time. For t >,
Nt = 00 ancll'1 the best we can do in this case is to consider what is happening on
the stochastic interval [0, T) only, If now a local martingale (Xt) is redefined
as being a process such that there exists a sequence of stopping times (Rn)
increasing to J a.s. (instead of o) which makes the stopped process (Xt ARn)
a uniformly integrable martingale,then as above we can associate a unique

Doob-Meyer decomposit;on to the CP(Nt) on the stochastic interval [0, J).

When speaking of a CP (Nt) we always assume that the random variable

(Nt) is a.s. finite for each t since this is clearly the weakest condition under

which the unique Doob-Meyer decomposition of (Nt) is defined on the entire
positive real line. Note that this assumption is very weak as it is violated
only if the times of jump of the CP (Nt) considered converge with some positive
probability 4o a finite time, or, in other words, that the point process asso-
ciated with the CP (Nt) contains with some positive probability a point of

accumulation, an unlikely situation in practice.
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3.2 INTEGRATED CONDITIONAL RATE: DEFINITION. For every
CP(Nt) with Nt a.s. finite for each t and adapted to a family (6‘1 t), the unique-
ness of the Doob-Meyer decomposition for this CP (Nt) allows us to propose:

Definition 3.2.1: We will call Integrated Conditional Rate (hereafter

abbreviated ICR) with respect to the family (GI t) the unique natural increas-

ing process which appears in the Doob-Meyer decomposition of (Nt) with res-

pect to the family (/’2«' t).

The terminology Integrated Conditional Rate is motivated by the following:

when (Nt) satisfies some sufficiency conditions given in section 5. 0 the ICR
t

takes on the form (f )\S ds) where (kt) is a nonnegative process called the
0

conditional rate as it satisfies

N .-N

+
A, = lim E(-—t—hﬁ—i‘lﬁt).
h -0 »

The terminology ICR will be used even when, as may be the case, a conditional
rate does not exist. Note that if (Nt) is a nonhomogeneous Poisson process
then the notion of conditional rate with respect to the family of ¢-algebras

(& t) generated by the process itself reduces to the usual notion of rate.

Let (Nt) be a CP and denote by Iﬂt) the family of vcr-algebras generated
by (Nt). Let Jn be the time of n/Ch jump. Clearly for each n the stopped
process (Nt AT ) is a submartingale with respect to any family of (% t) such

n
that %t o ﬁt' Hence we can define an ICR, say (At), with respect to any
such family (%t). The process (Nt - A’c)’ that we will systematically denote

by (Mt), is in the general case a square integrable (% t) local martingale,

and a (@ t) martingale when the mean ENt is finite for each t. By definition
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the ICR is a natural process. This last property is dependent on the family

(617 t) chosen so that the ICR (At) is varies according to the family (ﬁt) considered.

For emphasis we therefore speak of a "(?7 t) ICR.. "

Given a CP (Nt) and its ICR's with respect to two distinet families (% t)
and (’g/t) such that @t_:) @t: 72t’ it.is natural to ask how these two ICR's
are related. This is whét we examine now. Assume that the CP (Nt) has a.
finite mean; even in this case there is no simple useful answer to this problem.

7
Denote respectively by (Afﬂ) and (A\tg) the ICR's of (Nt) with respect to the
families ((7’1 ?) and (-’&t), and by (Ct) a right-continuous modification of
(E(A't% ‘(fjt )). It is easy to check that
(a) The process (X,c e Nt - Ct) is a (#t) martingale;
(b) The process (C,) is not necessarily increasing or natural so that

t

(Ct) is generally not the (Sézt) ICR of (Nt);

(c) The process (Ct) is a (@t) submartingale of class (DL) which

has a Doob-Meyer decomposition (C, = Yt + Bt) where (Yt) isa (’U’t)

t

martingale and (Bt) a natural increasing process.
77

(d) The relation between (Atﬁ) and (A?ﬁ) is then

J
At = Bt = E(At |t)-Yt

It is also clear that if At )) is in fact adapted to the family (ﬂt) then

4 ¥

In conclusion there is no simple way to relate the two ICR's (At&) and (At%)
in the general case. But when conditional rates with respect to the two families

) 7
(/gﬁt) and (V’/t) exist then these two conditional rates are simply related (see

Theorem 5. 0. 2).
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We now demonstrate two simple propositions. The first one shows the
intuitive result that a.s. no jump occurs in an interval on which the ICR is
a.s. a constant as a function of time.

THEOREM 3. 2.2: Suppose (Nt) is a CP adapted to a family (¢’t) which
has an ICR with respect to this family that is a.s. constant as a function of
time on the stochastic interval [T, S] (T and S are stopping times, finite or not
such that T < S a.s). Then (Nt) is a.s. constant as a function of time for
te[T,s].

Proof: Let (Rn) be a sequence of stopping times reducing the local mart-

. A . =
ingale (Mt = Nt - At) where (At) is the ICR of (Nt). We have E(NSARn-INTARn) = 0.
B . ) . .
ut the random variable NSARn NT/\Rn is a. s. nonnegat1v§
so that N = N a.s. and the result follows by taking the limit on n.
S ARn TAR

THEOREM 3.2, 3: Let (4,) be the (&7 ) ICR of a CP (N,). Then
ENt < oo if and only if EAt < oo and ENt = EAt'

Proof: If ENt <o then by Theorem 3. 1.1 (b) the process (Mt e Nt-At)
is a zero mean (‘4/; t) martingale so that EAt = EN,C < oo, Conversely if Jn is

) then the process (N - A ) is a zero

. th .
the time of the n~ jump of (N tAJn t/\Jn

t

mean martingale so that ENt ;= EAt 3 and the result follows by the
A A
n n

monotone convergence theorem.
We close this section with identification of a special class of ICR:

THEOREM 3, 2.4; Let (Nt) be a CP of independent increments with a

finite mean m, for each t. Then the (7Zt) ICR (At) is given by At =m..



13

Proof: It is easy to show that the process (Nt - mt) is a (72/ t) martingale.
Furthermore the increasing process m, is natural because it is deterministic
so that (Nt) has the unique Doob-Meyer decomposition (Nt = (Nt-mt) + mt).

to be the (7lt) ICR.

Finally the uniqueness requires m,

We will reexamine CP's of independent increments in a future paper and
prove in particular a converse result to the above proposition: namely that if
a P (Nt) has a deterministic (//Ct) ICR then it is a process of independent incre-

ments. Hence CP's of independent increments are uniquely characterized by the

fact that their ICR's are deterministic (see [5], Theorem 2.6. 1).

It can be shown (see the Remark following Corollary 4. 3. 3) that the ICR
(At) of a CP (Nt) with respect to the family of ¢-algebras (% ¢ = %w) is
given by At = Nt' Hence for a CP of independent increments the (72t) ICR
is given by the mean m, and the (&7 ¢ = oo) ICR by (Nt). This illustrates

the dependence of ICR's on the choice of family of conditioning ¢-algebras.

4.0 REGULAR AND ACCESSIBLE COUNTING PROCESSES
4.1 DEFINITION AND DECOMPOSITION. Let (Nt) be a CP adapted to a
family (gt). Denote by Jn the time of nth jump. It is natural to classify CP's

in terms of the properties of their stopping times J'n.

Definition 4.1, 1: A CP (Nt) is called respectively regular, accessible

/i
or predictable with respect to the family (Wt) in accordance with the total
inaccessibility, accessibility or predictability of its times of jump Jn with

respect to this same faculty (see Section 0.2(b) ).
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While a process can be none of these, the next theorem will show that
any CP (Nt) can be decomposed uniquely into the sum of a regular CP and an
accessible CP. Here again these definitions are dependent on the particular
family (%t) chosen. We will see later on (below Theorem 4.2.2) that a CP
can be regular with respect to one family and predictable with respect to
another.

The term regular v;/as originally used ([9], Definition 33-VII) to charac-
terize a supermartingale (or submartingale ) (Xt) such that for any sequence
of stopping times (Sn) increasing to a bounded stopping time S we have

lim EXS = EXS. The next proposition shows that our terminology is con-
n n

sistent.

THEOREM 4 1.2: Let (Nt) be a CP. Then the three following state-
ments are equivalent:

(@) The CP (Nt) is regular in the sense of Definition 4. 1. 1.

(b) For any stopping time S such that ENS < oo the process (Nt /\S)

is a regular submartingale in the sense of Definition 33-VII of [9].)

(c) lim ENR = ENR for any sequence of stopping times increasing
n n
a.s. to R and such that ENR < o0.

Proof: Let S be a stopping time such that ENS < oo and ('I‘n) any sequence

of stopping times increasing to T a.s. If the relation

(4. 1) | lim NT AS = NT/\S a.s.
n n

3 . '
However, Rubin [11] uses the term in a different sense: it loosely denotes
a CP with a random rate which must possess numerous technical properties.



15

holds then by the monotone convergence theorem we have

(4.2) lim ENT A5 = ENTAS'
n n

o A - 2 = O
Conversely if relation (4.2) holds we have E(NTAS l}lm NTn /\S)

by the monotone convergence theorem. As the random variable NT g~
A

lim NT S is positive, relation (4. 1) must be valid. Hence conditions (4. 1)
A
n n

and (4.2) are equivalent. We show now that (a) is equivalent to (b). If (a) is

true then the times of jump of the submartingale (N S) are totally inaccessible

tEA

(the time of nt? jump of (N, ) is equal to J on the set {Jn < S}and to ®

tAS
otherwise) so that relation (4. 1) is valid and, being equivalent to (4.2), (b)

follows. Conversely if (b) is true, relation (4.2) is satisfied. Then (4. 1) holds

which implies that the times of jump of (Nt AS) are totally inaccessible (other-
wise we reach a contradiction). By taking S = Jn, the time of nth jump of (Nt)’
we get that Jn is a totally inaccessible stopping time. This is true for each n
so that (a) follows. The equivalence of (b) and (c) follows easily from the
definition of a regular supermartingale (Definition 33-VII of [9]).

Now the announced decomposition result:

THEOREM 4, 1.3: Let (N,) be a CP adapted to a family 4 ). Then there
evxists two CP's, (Nl;) and (Ni) which are respectively regular and accessible
with respect to the above family and such that

Nt = NI,; + Na{: for every t

This decomposition is unique.

Remark 4.1,4: The (% ;) ICR of (N ) is given by

t
A, = Al; + Aat
where (AI;) and (Ai) are respectively the (% t) ICR's of (N:) and (Na‘:).
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A
Proof: As usual, denote by Jn the time of nth jump. By Jn we mean
the stopping time

T if we A
n

oo otherwise

for A ¢ ﬂrj . By Theorem 44-VII of [9] there exists for each n an essentially
n
unique partition of the set {Jn < o} into two sets of %J , A and R, such that
n
A
the stopping times Jn and Ji are respectively accessible and totally inaccess-

ible. The two CP's NatL 2 2 ! {t > Ji} and NI; & r 1 {t > Ji} clearly
n n
satisfy the conditions of the theorem. The uniqueness of this decomposition

follows from the essential uniqueness of the partition of each set {Jn < oo},

Example 4,1.5: Take 2= [0,1] and P the Lebesgue measure defined

on the Lebesgue side of [0, 1]. Let I, be a random variable uniformly dis-

tributed on Q. Define the random variables Jn+l = Jl +n, forn>1. Let

L
= E {t> Jn}. One
. : n
can show that (see [5]) for any CP (Nt) the time of the first jump Jl is totally

(Nt) be the CP having Jn as time of nth jump, i.e., Nt

inaccessible with respect to (ﬂt) if and only if P { Jl =a} = 0 for any non-

negative constant a. Hence the time of jump J,, being here uniformly distri-

1}
buted on Q, is totally inaccessible. It is easy to show that for n > 2, the times of

of jump Jn are predictable. Thus the decomposition Nt = NI; + Ni with res-

pect to the family (7/[”1:) is given by NI; = ! ft > Jl} and Na,: Y I{t_>_ Jn}.
n>2

In this very simple example the CP (Ni) is in fact predictable. This is
not always the case. If we assume in the above example that jumps may be

r) and

skipped independently of each other with a positive probability, then (Nt
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(Nat) are still given as above but the CP (Nat) is no longer predictable (see
Example 4. 3.5).

For clarity we outline now some of the results we are going to investigate.
First regular, the_n accessible CP's are studied in detail. In particular we will
see that a CP is regular with respect to a family (% 1:) if and only if its (l%t)
ICR is continuous (Theorem 4.2.2); when the family (%t) is free of times of
discontinuity then accessible CP's are predictable (Theorem 4.3.1). Predic-
table CP's are uniquely characterized by the fact that their ICR is given by the
CP itself (Corollary 4.3.3). In other words predictable CP's are natural pro-
cesses. Combining these facts with the above decomposition for CP's (Theorem
4.1.3) gives, when the family (<'7}77t) is free of times of discontinuity, the
separating property of the unique Doob-Meyer decomposition for CP's (see
Corollary 4. 3. 4). The case where the family (E:Zt) does contain times of
discontinuity is more complex. Most of these results are obtained by studying
the different terms in the equation AN_ = AM,_, + AA_ in relation to the appro-

T T T
priate property of the stopping time T (Theorem 4. 3. 2).

4.2 REGULAR COUNTING PROCESSES. Let (Nt) be a regular CP with
7

7,
respect to a family (&7 ). By definition the times of jump Jn of (N ) are

t t

totally inaccessible. This has the immediate consequence that the probability
a jump occurs at time t is zero. Also,if T is a (% t) stopping time we cannot
make with a positive probability a prediction of any time of jump after T, the

prediction being based on the information available up to and at time T. More

precisely we have:
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THEOREM 4.2.1: Let (Nt) be a regular CP with respect to a family (% )

t
and T a (%t) stopping time. Assume W is a strictly positive %T measurable
random variable. Then for each n

P{T+W = Jn} =0
where Jn is the time of nth jump of (Nt)'
Proof: By contradiction. Assume that for n = n_ there exists W = Wo’
a strictly positive ( %T) measurable random variable, with
p{T + woo= T } = p>0. The sequence of (6’;;1:) stopping times (see [9],
Theorems 37 an<;)38-IV) ('I'i & T + (1-1/i)WO) is increasing and
P {1:1m Ti = Jn } = p>0, i.e. the time of nf)h jump is not totally inaccessible,

i o
a contradiction,

The next theorem is a direct consequence of Theorem 4.1.2 and a
result on the Doob-Meyer decomposition of regular supermartingales (E9],
Theorem 37-VII).

THEOREM 4.2,2: Let (Nt) be a CP adapted to a family (%t)' Then the

(‘Zt) ICR (At) of (Nt) is continuous if and only if the CP (N,) is regular with

t

respect to this family.

N ),

Proof: Let J_Dbe the nth time jump and define (Nn
n t t,\Jn

n A ‘ n A
A = =
( t AtAJ )s (Pt 4t,\;r )
N n T o n n
Meyer decomposition (A 1:) is the (*4 t) ICR of (N 1:). By Theorem 37-VII of

Note that by the uniqueness of the Doob-

[9] the process (A"

t) is continuous for each n if and only if the CP (Nt) is regular.

The result follows then by taking the limit as the sequence (Jn) increases to

00. One uses hexje the fact that on any interval [0, to}, At = Aré for sufficiently

large n (depending on ().
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Examples of regular CP's with respect to the family (gl t) are, by
Proposition 3.3.2 and the above theorem, any CP's of independent increments
with continuous mean, in particular Poisson processes. Note that these pro-
cesses of independent increments with continuous mean are not regular but
predictable if we take the family (P’Zt = ﬁoo) (see Proposition 3. 3. 1).

For a regular CP (Nt) with ICR (At) we have just proved that all the jumps
are contained in the local martingale (Mt = Nt - At). But these jumps cgmpletely
determined the CP (Nt). This suggests that there is a direct relation between
(Mt) and the ICR (At). This point is made clear in the following theorem. Re-
call that if (Nt = Mt + At) is the unique Doob-Meyer decomposition of (Nt) then
(Mt) is a square integrable local martingale (Theorem 3. 1. 1) to which a unique
natural increasing process (<M >t) can be associated (section 2.0, (m)).

THEOREM 4.2.3: Let (Nt) be a regular CP with respect to a family
(1;2 t). Denote by (At) its (% t) ICR and by (Mt) the square integrable local

martingale (Nt - At)' [See section 2.0 (h)]. We have

(a) At = <M >t

(b) If EN’c is finite then so is EMi, with EMZt < EN,.

t

Proof: (a) One has

.3 = +
(4.3) Nt Mt At

This shows that (Mt) is a martingale of bounded variation so that (see section

2.0, (n)) the quadratic variation process of (Mt) is given by

(4. 4) M, = 2 )

s
s <t
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But (Nt) is a regular CP and by Theorem 4. 2.2 its ICR (At) is continuous so

2 A
that A.ME = ANS. Now ANs is either 0 or 1. Hence (AMS) = (ANS) = ANS

which implies by (4. 4)
(4.5) (M], = N

2
The two processes (Mt - <M >t) and (M‘2 - [M],) are local martingales (see

t t

A
section 2.0 (m) and (n)); thus so is their difference (Xt = [M]t - <M >t) and
by (4.5) we get

4.6 = +<M>
( ) Nt Xt M t

where Xt € (76 . The increasing process ( <M >t) is natural so that by unique-

ness of the Doob-Meyer decomposition one must have, comparing (4. 3) and
.0), =< > = .
(4.6) At M A and Xt Mt

(b) We have seen above that the process (M2 - [M],) € i or by (4.5)

t t

2 v
<Mt - Nt) € 9() . Let (Tn) be a sequence of stopping times reducing this local

martingale i.e., the process (M2 - N ) is a uniformly integrable
EAT_ tAT

martingale. In particular

2 2

E(Mt/\'I‘n - NtATn) = E(M0 - No) =0
Hence
(4.7) E MZ’ZAT = EN,_ .
n n

Since MtAT converges to Mt’ Fatou's lemma implies
n

2

EM2 < lim (inf EM )
t - t/\T
n n

and by (4. 7) and the monotone convergence theorem (N increases to Nt)

tAT

n
we get

= EN

2 2
< 1 i L]

EMt < lim inf (E Mt/\T ¢AT ) ¢
n n n

) = lim (EN
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4.3 ACCESSIBLE COUNTING PROCESSES. Theorem 4.2.2, which says
that the ICR of a CP is continuous if and only if this CP is regular, implies that

the ICR (At) of an accessible CP (Nt) is discontinuous. We could conjecture that

the times of jump of the ICR (A ) are the same as those of the accessible CP (N ).

t t

As we will see this would be true, and we would have in fact (A, = Nt) but for

t

the possible presence of times of discontinuity for the family (%t) considered
(see Definitions 39 and 40-VII, [9]). Recall that an accessible (b’f’ft) stopping.
time which is not a time of discontinuity for the family (/7 t) is .(c;%zt) predic-
table (see Theorem 45-VII of 9]). This immediately gives us:

/4
THEOREM 4.3.1: An accessible CP (Nt) with respect to a family (Vét)

which is free of times of discontinuity is predictable.

Let (Nt) be any CP with ICR (A ). We examine now the jump AA_, in rela-

t T

tion to the property of the stopping time T. We already know that for a regular
CP AAT = 0 for any stopping time T (Theorem 4.2.2). The next result will
lead to a unique characterization of predictable CP's (Corollary 4. 3. 3) and the
s eparating property of the unique Doob-Meyer decomposition for CP's (Corb-
llary 4. 3. 4).

THEOREM 4. 3,2: Suppose (N )is any CP adapted to a family (%t)'

t

t

4
Denote by (A,) its (¢ .) ICR.
| Y
(a) If T is (04 t) predictable then

AAL = E@N] \;ﬁ@Tn)

where (Tn) is any sequence of stopping times increasing to T. In particular

0<AA_ <1, and MA_ =1 (or 0) a.s. if and only if AN, =1 (or 0) a.s.

T T T
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#7 7 14
€7 (b) If T is (5% t) accessible but not a time of discontinuity for (‘/7 t)

then

(c) If T is (L"% 1:) totally inaccessible then AAT = 0.

(d) Let Jn be the nlCh time of jump of (Nt)' Then

if and only if Jn is a predictable (%t) stopping time. In particular AAJ =1
n

if Jn is accessible but not a time of discontinuity for the family (x%'t).

Proof: (a) (see[9], section 51-VII) Let J Dbe the nth time of jump of

N.), and define (N 2 N ), (A" 2 A ).  We know (Theorem 3.1.1)
t t t/\Jn t t/\Jn

that the process (MI: 2 NI:: - Ar;) is a square integrable (%t) martingale.

Thus for i >m and any set H ¢ ﬁ where -(Tm) is a sequence of stopping

T
m

times increasing to T we have

1
o

- T

J o oM )aP = [ EMD - M| L )P
g T . Eas i A
1 1 m

n
so that using the relation (Mr:: = Nt - Ar;) one gets

T T,
i i

f(Al,;,-Ar,Il,)dP = [ (N, - N )P
H H

Letting i increase to infinity one obtains, by the monotone convergence theorem
n _ n 7z
[ oatap = [ alap VHe o
H H m

This implies

E(AA’,}[%
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and taking the limit with respect to m, by the Lemma of [10]

n n
E(AAz|V %T ) = E@Ng| Vv éT )
m m m m

The process (AI:) is natural with respect to the family (% t) so that, by Theorem

49-VII of {9], the random variable AAI,;[, is (r¥1 5/,’/,1, ) measurable., Thus the
m _
above relation gives

n n
AAT = E(@NG| V %T )
m m

and by the bounded conve‘rgence theorem we get the desired result letting n go
to oo.

(b) By Theorem 45-VII of [9], T is predictable so that part (a) is applicable.

Furthermore ;%T =V %T (T is not a time of discontinuity of (%t)). Hence
: m

T T

m
vV H )=E(ANT|«¢,’T)=AN
m m

Part (c) is just a restatement of condition (b) of Theorem 49-VII of [9]
and is given here for completeness.

= 1 so that by part (a) AA.T =1
n n
=D A = 1. = I =1 .
( ) Assume AA.I 1. Let Ct AAJ {t_>_J 3} »3J }
n n n n
The process (Clz) is natural because it satisfies the necessary and sufficient con-

(d) (<==) Jn is predictable and ANJ

ditions (a) and (b) of Theorem 69-VII of [9] (if not then the natural process. (At)
would not satisfy these two conditions, a contradiction). By Theorem 52-VII
of [9] J  is then a predictable stopping time.

COROLLARY 4.3.3: A CP (N,) with ICR (A,) with respect to (¥7,) is

predictable with respect to this family if and only if (At = Nt).
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Proof. (=) (Nt) is predictable so by (d) of Theorem 4.3.2

AAJ = 1 for eachn
n

where Jn is the time of nth jump of (Nt)' This implies At > Nt a.s. But for

each n we also have E(N - A ) = 0 and the relation A, = N, a, s, holds.
: t/\Jn t/\Jn t t

(=) If (N,c = At) then AAJ = 1 for each n and by (d) of Theorem

n

4.3.2 Jn is a predictable stopping time for each n, i.e. (N, )is predictable.

t

Remark: It is clear that any (0/4 ) stopping time is predictable with

t
respect to the family (Jg ¢ = '7200). Hence the ("% ¢ = 7200) ICR of a CP (Nt)
is given by (Nt)'

COROLLARY 4.3.4: Let (Nt) be an CP with (5/’57 t) ICR (At) and define

). Then if the family (v£7 ) is free of times of discontinuity

M t t

A
¢ = Nt-A

(a) The local martingale (Mt) has jumps of size one taking place only at
4
(¢ t) totally inaccessible stopping times.

i

(b) The (<7 J)ICR (A ) has jumps of size one only at (~/7t) predictable
stopping times.

Remarks: In other words, (Mt) represents the part of (Nt) which is
unexpected and the ICR (At) the one which can be perfectly predicted. This
is what we have called the separating property of the Doob-Meyer decomposi-
tion for CP's.

Proof: Let

A r a

4, e +
(4.9) Nt Nt Nt
denote the unique decomposition of Theorem 4. 1.3 where (NI;:) is a regular CP

a
and (N 1:) an accessible CP, and (N?) an accessible CP. Let respectively

a
(A”t) and (A7) be the ((}é;t) ICR of (Nrt) and (Ni). By Theorem 4. 2.2, (A‘;) is
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continuous so that the local martingale

(4. 10) M’ 2 N - A

r
t

has only jumps of size one taking place at totally inaccessible stopping times
(namely the times of jump of (N:)). By assumption the family (4 t) is free of
times of discontinuity so that by Theorem 4.3.1 (Ni) is a predictable CP

and by Corollary 4.3.3 |

(4.11) A, = N
Introducing (4. 10) in (4. 9) one gets

r r a
= 4+ +
Nt Mt (At Nt)

which is a unique Doob-Meyer decomposition of (Nt) as, by (4.11),

(Al; + Na,; = A" + Ai) is a natural increasing process. But (Nt = Mt +A)

t t

is also such a unique decomposition so that one must have

and the result follows.

Let (Nt = Mt + At) denote the unique Doob-Meyer decomposition of the
CP (Nt) with respect to the family (d"; 1:). When this family (‘% t) is free of
times of discontinuity the above Corollary 4. 3.4 completely describes the
discontinuities of the local martingale (Mt) and of the (4 t) ICR (At): either
(Mt) or (At) (‘but not both) have a discontinuity which is of size one and can
only take place at a time of jump of (Nt)' When the family (4 1:) does have

times of discontinuity the above statement is no longer necessarily true.

Because it is likely for a (vg 1:) local martingale to have a jump at a time of
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discontinuity for the family (\?/Zf t)’ the new following situations may now take
place:

(@) If T is a stopping time which is a time of discontinuity for the family
(tg. t) and such that ANT = 0 a. s. then it may happen that both AMT and
AA,I, = - AMT will be different from zero. In fact this can happen only if T has
an accessible partv which is not predictable.

(b) Let Jn ‘be the time of nth jump of (Nt) which -is supposed to be acces-
sible (but not predictable) and also a time of discontinuity for the family (‘% t).
Then Theorems 4.2.2 and 4. 3.2(d) imply that both (At) and (Mt) have a dis-

continuity at Jn.

The following example illustrates these two points.

Example 4.3.5: Take Q = {wl,wz} with {wl} = p where 0 <p < 1.

Define the following CP (Nt):

0 t<l1
N,(,) =

1 t>1
N (w,) =0 t>0

The family (ﬁt) is then given by

({6,9} fort<]l

k{<1>, b, 9 fort>1
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This stopping time J is obviously accessible. Observe also that J is a

time of discontinuity for the family (‘/m(/t): (see Definition 40-VII of {9]). Here

(Sn e 1 - 1/n) is an increasing sequence of stopping times, Sn < J for each

n and the set

{o: UmS_ =7} = ) ¢ V72l = {0,2)

Denote a (not necessarily unique) Doob-Meyer decomposition of (Nt) by

= +
(4.12) Nt Mt At

where (Mt) is a uniformly integrable martingale ((N ) is bounded) and (At)

t

an increasing (not necessarily natural) process. It is easy to see that the

martingale (Mt) is given by

( 0 V w, t<1
Mt{w) = < {a W = wl, t>1
b w=w2, tzl

where a and b are two constants such that

(4.13)

Then by (4. 12) we must have

( 0 V w, t<1
At(w) = < {l-a W =0, t>1
(Lb w=e,, £

By the uniqueness theorem only one set of values a and b makes the increasing
process (At) natural. These values area =1 - pand b = -p (this choice

obviously satisfies (4. 13)),as in this case
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Ap = pI[l,‘oo)(t)

is a deterministic hence natural process. Thus the ICR of (Nt) with respect to

i

the family (77/1:) is pI[1 Oo)(t) and the martingale (Mt = Nt - pI[ (t)) is given

1, o)
by
( 0 V w, t<1l
Mt= <{1-p w =W, t>1
L -p w=w2, t>1

Therefore both the ICR pI[ (t) and the above martingale have a dis-

1,00) "
continuity at the time of jump J of (Nt)' This illustrates case (b). As stated
above, this is a consequence of the fact that the accessible stopping time J is

not predictable and is also a time of discontinuity for ('7Z t)' Also if we de-

fine the stopping time T

o ® = Wy
T =
1 ® = w,
then
0 ® = oy
AAT=
P a)=a)2

even though ANT = 0 for any w. This illustrates case (a). It is easy to check

that T is a time of discontinuity for (7Z 1:) which is accessible but not predictable.



29

5.0 CONDITIONAL RATE. In the previous section we have seen that
we can decompose uniquely any CP (Nt) adapted to a family (14 t) into a sum
of two CP's which are respectively regular and accessible with respect to this

family (?" t) (Theorem 4.1.3). Regular CP's relatively to a family ('%' are -

)
precisely those which have a continuous (//,; t) ICR (Theorem 4.2.2). Buta
continuous ICR may not have absolutely continuous sample paths. For exam-
ple, consider a CP of independent increments with a continuous, but not ab-
solutely continuous mean.

In the next theorem we give sufficient conditions under which the ICR
(At) of a CP (Nt) with respect to a family ( péf?t) is absolutely confinuous; in

other words when does a random process (A 1;) adapted to (%t) exist such that

we can express the ICR (At) as

t
(5.1) A, = fo A ds ?

Under these conditions, we also have
N - N

(5.2) N, = lmE (2Rt g%

)
t b0 h t

and because of this relation we call the process (Xt) the "conditional rate'' of
the CP (Nt) with respect to the family @Zt). Expression (5. 1) is then a justi-
fication for the terminology '"Integrated Conditional Rate' (ICR) introduced in

section 3.2, terminology used even though a conditional rate does not generally

exist,
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Although there is great emphasis in the literature ([3], [1], [11], [12],_
[13], [14]) on CP's which admit a conditional rate, the problem of existence of
these CP's has been treated only lately by Breimand ([1]) where a partial
answer to this pfoblem is given: the existence of CP's which possess a

bounded random rate with respect to the family of o-algebras generated by

the CP itself is demonstrated by the use of absolutely continuous changes of

measures. This technique is discussed and extended in [5]. We now give suf-
ficient conditions under which a CP with finite mean does pessess a conditional
. rate:
THEOREM 5.0.1: If for a CP (Nt) with finite men and adapted to a
family (gl t)
(i) for each t the following limit exists a. s.
lim %Qm(t,h,w) e )\m(t, w m=12,...
h-0

where Q_(t,h, o) 2 PIN,,, -

N, > m|<.¢l }
t - t
(ii) for almost all wthere exists ho(w) > 0 such that the series

2 KlQm(t, h, w) converges uniformly for h ¢ (0, ho(w)] and
m

t

which is bounded by a function a(t,w) such that f a(s,w)ds < oo
0

for each t. Then

(@) The series E )\m is convergent. Define the process
m

(n DY M) We have the relation:
m



31

Nen ~ N
)\’c = lim E(———h———-|%t)a.s. for every t
h-0

(b) The (A ;) ICR of (N) is given by
t
A = [ nds
0
Proof: By (i) and (ii)

(5.3) lim ﬁE Q (th,w) =2 lim %Qm(t, h,w) =2 A (5 0)

h-0 m ! m h-0 m

A

=\
t(uo)

where the first equality follows by the uniform convergence on (0, ho(w)‘].

Assumption (ii) also implies for almost all w and h ﬁho(‘co)

i Q_ (th,0) < aftwlh (o) <o

and this is enough to justify the equality

Zm@_ -Q_,)=22Q
m m

m m
m
But

- - - - / .
Qn - Qi+ Ny - N, m |4 ¢

so that the above relation gives for h < ho( )

5.4 E@, -N|F ) = Zoa mh )

m

and by (5.3)

N. -N
+
(5. 5) . = lim -}l;Qm(t,h,w) - imE (22t | &

)
b heo hes 0 h

t

(b) The CP (Nt) is right-continuous;
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there exists a right-continuous modification for the submartingale E(Nt+h|¢ ))
(see Definition 27-VII of [9]) and we denote by (ph)\ ) a right-continuous modi-
fication of the process (E( —t-—-—-—|¢ )).  We have seen above that

lim pA = A a.s. By (i) and (5.4)
hes0 t t

1
0 =2 2 Q_(the) < alto)
m

for h < ho( ). Hence the integral

t

fO ph)\ sds

is well defined for almost all w and by the dominated convergence theorem |
t
(5.6) lim f ph)» ds = f )\Sds a.s.
h-0 0
Denote by (At) the (5/7/1:) ICR of (Nt) and define as usual the martingale

A

(M, = Nt - At)' Let c be any positive constant and define

t

c A
(5.7) Pl s E(Act%t) Erc

It is easy to check that (Pi) is a potential and by Theorem 29-VII of [9]

we know that for each t

i t 1 c c (L ’Loo)
= . /7
(5.8 fo FE(P] - P | )ds ——2 A
, 1 |
where convergence is in the weak sense inL . Now (A =N -M )

t AC taC tac

so that by (5.7)

- /7 .
Pt - [E(Ach/(t) * Mt,\c)] B Nt/\c
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where (M, ) 1is notonlya (% ) but also a (éf?'t) martingale. Hence

tac tac

for s < t and if we choosec >t + h

- /A = -
C-P %) = Em_, - N |

Thus on the one hand by (5. 8)

t (L.,L )
1 1" oo
fo p BN, - N %74 b0 At
and on the other by (5. 6)
t 1 as
fOH - N as 25 fxds

so that we must have a.s. for each t
t

f )\sds
0

Our last result shows that the two conditional rates of a same CP (Nt)

but with respect to two families (% 1:) and (/éj t) such that %t ) Iéﬂt ) 77t

are related by a simple expression.

THEOREM 5.0.2: Let (Nt) be a CP with finite mean. Denote its condi-
tional rate with respect to the family (.j} 1:) by (A t)' Let (:&t) be another
family such that %tc ﬂt c ?t Then the conditional rate (/;\t) of (Nt) |

with respect to (,#t) exists and is given by
= E(Ktl"@t)

Remark: Note that this result makes good intuitive sense, the conditional

M

A .
rate (A 1:) being the best mean square estimate of the conditional rate ()\t)'
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Proof: Part of this proof is a consequence of the innovation theorem

t
A
([1], Theorem 1.1), i.e., the process (Nt - f )\Sds) is a (/&/t) martingale.
0

AS
Now the process (f )\Sds) is increasing, continuous hence natural and conse-

0
quently is the (’éj’t) ICR of (N,) by the uniqueness of the Doob-Meyer decompo-

¢

sition.
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